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ABSTRACT

This research introduces a novel multi-agent self-learning solution for large and
complex tasks in dynamic and unpredictable environments where large groups of
homogeneous agents coordinate to achieve collective goals. Using a novel iterative
two-phase multi-agent reinforcement learning approach, agents continuously learn
and evolve in performing the task. In phase one, agents collaboratively determine an
effective global task distribution based on the current state of the task and assign the
most suitable agent to each activity. In phase two, the selected agent refines activity
execution using a shared policy from a policy bank, built from collective past
experiences. Merging agent trajectories across similar agents using a novel shared
experience learning mechanism enables continuous adaptation, while iterating
through these two phases significantly reduces coordination overhead. This novel
approach was tested with an exemplary test system comprising drones, with results
including real-world scenarios in domains like forest firefighting. This approach
performed well by evolving autonomously in new environments with a large number
of agents. In adapting quickly to new and changing environments, this versatile
approach provides a highly scalable foundation for many other applications tackling
dynamic and hard-to-optimize domains that are not possible today.

1 INTRODUCTION

Many real-world problems are quite big and complex, requiring many agents with different capabilities
to effectively tackle them. Autonomous multi-agent applications like delivery systems, warehouse
robots, and drone shows work in mostly deterministic and constrained environments. However, there
are many complicated dynamic environments, such as forest fire-fighting, disaster relief, urban fire,
and medical rescue operations involving collaboration between a very large number of agents, where
each episode is unique and ridden with unpredictable challenges. Today’s MARL algorithms fail to
address the enormity and complexity of these tasks (Rashid et al., 2018) (Yu et al., 2022).

We propose a novel two-phase iterative approach to enable groups of homogeneous agents with
different capabilities to autonomously learn to perform huge, unpredictable, fast-changing tasks.
Phase One - Refocus: determines the best way to target the task, Phase Two: Refine - uses the
collective intelligence of the group for each agent to best perform its task, and iteratively repeating
this leads to continuous evolution. This opens the possibility of complementing pure reinforcement
learning with adjunct strategies, including domain intelligence or human-in-the-loop (HIL), to
expedite learning. It realigns learning to focus on the most relevant portion of the state-space and
gives agents autonomy to improvise while significantly reducing the coordination effort across
numerous agents. Using shared experience across homogeneous agents with a shared population
policy bank, this result-oriented learning is highly scalable. We demonstrate this approach via an
exemplary test system comprising drones fighting forest fires.

2 RELATED WORK

Recent progress in multi-agent reinforcement learning (MARL) has enabled significant achievements
in complex environments, yet scaling up to large, dynamic, and unpredictable tasks remains challeng-
ing. Scalability issues arise due to exponential growth in state space and agent interactions, along
with multi-agent variance and multi-observation variance (Hopkins, 2024). With partial observability,
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non-stationarity, and dynamic environments, these significantly hinder stable learning, (Wei et al.,
2024; Liang et al., 2025) underscoring the need for improved frameworks that can handle large-scale
multi-agent coordination more efficiently.

One approach to manage large problems is to adopt hierarchical reinforcement learning (HRL).
Hierarchical RL techniques reduce dimensionality by decomposing tasks into subtasks governed
by high-level policies (Dietterich, 2000; Levy et al., 2019; Nachum et al., 2019). These methods
define high-level policies that operate over temporally extended actions or subtasks, thereby pruning
the search space. However, reliance on static decompositions or domain knowledge limits their
applicability when tasks evolve significantly over time (e.g., rapidly shifting operational zones).
Additionally, current approaches for subgoal discovery (Pateria et al., 2022) (Wang et al., 2025),
learning when to retrain (Haighton et al., 2023), and learning hierarchical world models (Schiewer
et al., 2024) could have limited scalability for large-scale tasks involving a large number of agents.

Dividing large tasks into subtasks and assigning them to homogeneous agents is combinatorial and
non-trivial, often leading to overlapping roles or inefficient exploration (Martins et al., 2025; Zheng
et al., 2018). Repetitive subtasks (e.g., scouting or delivery) can be addressed through a policy bank
of pre-optimized solutions (Teh et al., 2017; Rusu et al., 2016), enabling faster adaptation. Joint
experience-sharing—via parameter, memory, or replay sharing—further improves learning efficiency
(Gupta et al., 2017; Rashid et al., 2018). Nonetheless, scaling these techniques to truly massive and
fluid domains remains a key research challenge. Some collaborative MARL approaches perform role
assignment by matching latent subtask representations with latent trajectory representations and use
algorithms like QMIX to mix similar policies. However, this approach limits scalability and limits
expressivity for activities and constraints. (Yang et al., 2022) (Xia et al., 2023) (You et al., 2025)
Automated grouping approaches (Zang et al., 2023) and role assignment (Nguyen et al., 2022) can
also limit expressivity and scalability. Here we address the large, fast-changing state-space aided by a
task-specific means to decompose an activity assignment and use a policy bank to address many types
of activities that are still commonplace for the huge tasks, and learn these policies through shared
experiences of homogeneous agents.

3 PROPOSED APPROACH

3.1 TASK DECOMPOSITION, ASSIGNMENT, AND EXECUTION POLICY

Consider a dynamic taskW(t) that evolves over time t. The task is performed by a set of N agents
partitioned into G homogeneous groups, such that A =

⋃G
g=1Ag . Each group Ag consists of agents

with identical capabilities, meaning a minimum set of capabilities Cg = C(agi) for all agi ∈ Ag . The
taskW(t) is composed of Mt activities, whereW(t) = {w1t, w2t, . . . , wMtt}.
Each activity wjt has an associated complexity level c(wjt) and requires capabilities C(wjt). The
activities change over time, appearing and disappearing based on the task’s evolving state. Each
activity wjt has an associated relevance duration (tstart

j , tend
j ) such that the activity exists within

the time window tstart
j ≤ t ≤ tend

j . Activities dynamically emerge and vanish depending on task
conditions. The presence of an activity is determined by the function Ψ(W(t), t), such that wjt

where 1 ≤ j ≤Mt exists at time t if Ψ(W(t), t) = 1. The task state function Φ(W(t)) describes the
current status of the task and influences which activities are required.

Since agents in a group share capabilities, task decomposition ensures that there are multiple similar
activities to fully utilize homogeneous agents. A decomposition function D partitions the task into
activities that match group capabilities, i.e., D(W(t)) =

⋃G
g=1Wg(t), whereWg(t) is the subset of

activities assigned to Ag . Each activity wjt ∈ Wg(t) must satisfy C(wjt) ⊆ Cg . The decomposition
process aims to generate enough similar activities such that |Wg(t)| ≥ |Ag|, for full agent utilization.

Each agent agi ∈ Ag is assigned an activity from Wg(t). The binary assignment matrix Xt ∈
{0, 1}N×Mt is defined such that xij = 1 if agent ai is assigned to activity wjt, otherwise xij = 0.
This assignment of an agent to an activity can be optimized in many ways, depending on the overall
goal of executing the task. This optimization directly impacts the efficacy of performing the task,
and therefore, we formalize this framework here to be able to explore this issue in the subsequent
sections. For example, if the goal is to perform the task so as to minimize the execution cost,
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the agent assignment must minimize
∑N

i=1

∑Mt

j=1 C(ai, wjt)xij , where C(ai, wjt) is the execution
cost of agent ai working on activity wjt. In general, it must do so while satisfying constraints∑N

i=1 xij ≥ r(wjt), where r(wjt) is the minimum number of agents required to execute activity wjt.
This ensures each activity is assigned sufficient agents. Moreover,

∑Mt

j=1 xij ≤ κ(ai), where κ(ai) is
the maximum number of activities that agent ai can handle at a given time, thereby ensuring to limit
the agent’s workload. A simplified representation of this agent assignment is a function S(wjt) that
determines the set of agents executing wjt, such that S(wjt) = {ai ∈ A|xij = 1}.
Various operational concerns, such as business, technical, and logistics, may determine a task
decomposition and activity assignment to agents for many complex real-world tasks. Additionally, for
the task to be optimized, in addition to an effective agent assignment, it is necessary to also ensure that
each agent ai optimizes the execution of its assigned activity wjt. A task performance metric is given
by J(W(t), Xt,Π), whereW(t) represents task activities at time t, Xt is the agent-assignment matrix,
and Π denotes execution policies. The goal is to meet all operational concerns and also to continuously
adaptW(t), Xt, and Π such that J improves over time. W∗(t) and X∗

t are comprehensive when
operational concerns are met and when

∑N
i=1 xij ≥ r(wjt) and

∑Mt

j=1 xij ≤ κ(ai).

Task decomposition to match agent capabilities and generate balanced activities is a combinatorial
problem that is often NP-hard. MARL algorithms struggle with such problems, particularly at scale,
as shown in Gu et al. (2020); Martins et al. (2025). They rely on local rewards, perform poorly in
discrete combinatorial spaces, and converge slowly in dynamic environments. By Bellman’s principle
of optimality, if task decomposition and assignment are suboptimal, as with MARL, overall task
performance cannot be optimal with MARL.

3.2 TWO-PHASE APPROACH

Given MARL’s limitations in optimally decomposing and assigning tasks in dynamic environments,
we introduce a two-phase approach, as illustrated in Figure 1. This iterative process enables continu-
ous adaptation to evolving tasks while ensuring that homogeneous agents execute activities using the
most effective policies available.

Policy

Task Remaining Task Decomposition

Perform Activity
Merge Selected Trajectories

Activity Distribution

Detect, Decompose, Prune

Match Activity to Agent Capabilities

Record TrajectoryEach assigned activity:

Agents & Capabilities

PHASE-1
Refocus

Refine
PHASE-2

Policy Policy

Figure 1: Two-phase approach - iterating between Phase-1 refocusing agent task distribution and
Phase-2 executing activity with the best policy from the policy bank and shared experience merging
of optimal trajectories leads to continuous learning.

3.2.1 PHASE ONE - TASK DECOMPOSITION AND ASSIGNMENT

In phase one, each agent helps obtain information from their environment and shares it with a task
distributor. The task distributor decomposes the task in its current state into activities and distributes
these activities to the most suitable agents. This allows segmenting a massive state space for a huge
task into smaller-scale activities that agents can handle, as discussed in the last section. During phase-
1, we optimize task decomposition W ∗(t) with an optimal assignment X∗

t for all possible tasks W (t)
by matching the agent capabilities with the activities. This opens the possibility of complementing
pure reinforcement learning with adjunct strategies by leveraging AI-driven task decomposition
and assignment methods. Additionally, it becomes feasible to use domain-centric, oracle-centric,
human-in-the-loop (HIL), another learning approach, or a combination of these approaches to aid in
determining what is the best way for the group of agents to tackle the current state of the task.

At each timestep t, given the current task state Φ(W (t)), we seek an optimal task decomposition
W ∗(t) and assignment matrix X∗

t . As this is repeated regularly, the system adapts to the dynamic
nature of the task and refocuses agents to operate on the currently most relevant aspects of the task.
Unlike a pure MARL approach where each agent would learn to tackle a vast task state-space, phase
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one could refocus the agents at every iteration of the two-phase approach to attend a specific, narrow
state-space of an activity that is most likely to make an immediate and significant contribution to
the overall task. By decomposing the large task environment into small activities that an agent can
execute, it becomes amenable to optimization at the local level by the most appropriate reinforcement
learning algorithms known for the activity.

3.2.2 PHASE TWO - POLICY EXECUTION AND LEARNING

Each agent ai ∈ Ag selects the best-known policy for its assigned activity wjt from a policy bank.
Agents execute activities using RL/MARL algorithms such as PPO and record trajectories. A merge
operation refines the policy based on the best experiences and stores the updated policy back into the
policy bank.

Each agent ai ∈ Ag executes its assigned activity wjt using a policy from a policy bank Bg, where
πwjt

= Π(wjt) ∈ Bg. The policy πwjt
is selected based on the similarity between the assigned

activity and previously encountered activities. At each time step τ , an agent ai ∈ Ag selects an action
aτ ∼ πwjt

(hτ ). The policy πwjt
: H ×A→ [0, 1], where H represents histories and A represents

agents. Agents with same capabilities belong to a group Ag, and these homogeneous agents share
their experiences to collectively refine πwjt .

Consider Ag agents executing activity wjt, each following initial policy πwjt
, with expected policy

performance J(πwjt
) = Eζ∼πwjt

[R(ζ)], where R(ζ) is the expected return over trajectory ζ. Each
agent ai collects experience Eai = {(oτ , aτ , rτ , oτ+1) | τ = 0, . . . , Tζ} for Tζ trajectory samples,
with POMDP observations o ∈ O, actions a ∈ A, reward r ∈ R, and timestep τ . The policy
improvement in πwjt

after k updates for experience distribution E is given by J(π
(k)
wjt) = J(π

(k−1)
wjt )+

αE(o,a)∼E [∇J(πwjt
)]. For individual learning, E = Eai

. With a merge strategyM, shared learning
aggregates experience as E =M(Ea1 , Ea2 , . . . , Ea|Ag|).

Proposition 1. [Convergence Acceleration via Merged Learning] If p homogeneous agents merge
the top and bottom n % of the combined trajectories, the policy learns 2pn times faster than for a
single agent learning using all its trajectories.
Lemma 1.1. [Policy Update through Experience Merging] Updating policy πwjk

through expe-
rience merging with the best and worst n% trajectories ζ across all homogeneous agents ensures
improvement in expected task performance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt)]

Thus, homogeneous agents can collectively refine a single policy by pooling experiences, leading
to faster and more stable learning. During execution, each agent collects experience tuples Eai

=
{(oτ , aτ , rτ , oτ+1)}. A merge operation refines the policy based on the best-performing trajectories:
π′
wjt

=M(πwjt
, Ebest), whereM integrates high and low reward trajectories into the stored policy.

The updated policy replaces the existing one in the policy bank: Bg[wjt]← π′
wjt

. This ensures groups
of homogeneous agents continually refine and reuse the best available policies for task execution
under partial observability.
Proposition 2. [Two-Phase Task Optimization] Let J(W (t), Xt,Bg) be the task performance func-
tion, where Bg is the policy bank. The iterative execution of phase one and phase two ensures the
task policy converges to an optimal solution as the iterations progress if

1. Task decomposition and assignment are comprehensive: (W ∗(t) and X∗
t ), and

2. Policy update through experience merging ensures improvement in expected task perfor-
mance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt)]

Theorem 1 (Task Learning). If there is a dynamic taskW(t) decomposed and assigned comprehen-
sively as (W ∗(t), X∗

t ) as described in section 3.1, the taskW(t) can be effectively distributed and
learned among agents ai ∈ A.

Algorithm 1 demonstrates the two-phase approach where agents obtain the activity from task distrib-
utor, perform the activity using operateAgent procedure using a reinforcement learning algorithm
suitable for the optimal policy for the activity, and collect their experiences in Di. The agents use a
merge strategy to update the policy using Algorithm 2. The updateSharedLearning procedure updates
the policy based on the reinforcement learning algorithm used by the agent.
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Algorithm 1 Population policy MARL for agent ai

1: Initialize populations Π0(b) for all agent activity-types b ∈ B
2: for each task iteration k = 1, 2, 3, · · · do
3: Obtain activity assignment ti from task distributor.
4: Select optimal policy for b = type(ti) as Πk(b) from population.
5: Πk

i (b) = Πk(b)
6: Di = operateAgent(ai, Πk

i (b))
7: Prune Di using merge strategy
8: policyMerge(Di, Πk

i (b), ai)
9: end for

Algorithm 2 Merging learned policies - policyMerge

Require: Di set of trajectories (ht
i, a

t
i, r

t
i , h

t+1
i ), Πk

i (b) policy, ai agent identity
1: Dshared =

⋃
i∈I,type(ti)=b Di

2: Await potentially contributing agents i ∈ I with type(ti) = b
3: Πk(b)= updateSharedLearning(Πk(b), Dshared)
4: save Πk(b) to population.

3.3 EXEMPLARY SYSTEM
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Figure 2: Exemplary two-phase approach for forest fire-fighting - standard Phase-1 task distribution
complemented with forest fire fighting pipelines. Phase-2 activity execution with optimal policy
selection followed by shared experience learning.

This approach was tested with an exemplary system as shown in Figures 2a and 2b. It works with
a large number of simulated drones that can operate alongside a few actual replicas of real-world
autonomous drones. Figure 2a shows phase one task distribution for a forest fire-fighting system used
to showcase the implementation, testing, and results discussed here. This algorithm can handle task
distribution for similar domains, such as flood control and synthetic domains. Here, the standard

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

phase-1 task distribution A∗ module and capability coordinator are complemented with fire-fighting
specific pipelines to expedite learning.

Each drone takes in inputs of critical fire-fighting components like fire image, wind speed and
direction, location, humidity, temperature, vegetation type, and population. It detects fire-spread
locations and hotspots. An edge progression module detects fire boundary progression since the
last time step. These components are fed into a convolution-transformer pipeline to detect current
and predict future hotspots and their intensity. A task distributor collects the boundary and hotspot
information along with drone capabilities and uses a heuristics-based A∗ planner to divide tasks
and assign agents to an activity. Some exemplary activities include fight-edge and fight-hotspot of
different sizes and intensities, as shown in Figure 2b.

Figure 2b shows phase two, where homogeneous agents ai ∈ Ag select the best policy πwjt from the
policy bank for its activity wjt. Each agent ai performs its activity wjt using RL/MARL algorithms
based on PPO in Schulman et al. (2017), Actor-Critic in Konda & Tsitsiklis (2000), and DQN in Mnih
et al. (2013) for πwjt

. They gather their experience as in Algorithm 1 and merge their experiences
as in Algorithm 2. Their shared experience evolves the system, and the two-phase approach allows
adapting to the dynamics of forest fires in an effective manner.

4 RESULTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP

This system was tested with the exemplary forest-fighting system disclosed in the last section. The
simulation allows testing a large number of drones in a variety of simulated environments based on
real fires. Testing with actual drones shows how the system can operate in the real world. A detailed
description of the experimentation is disclosed in Appendix A.3Experiment Details.

Simulating wildfires is an active research area, with many accurate ways to model the fire and fire
extinguishing. We used the WRF-Fire modeling guidelines in Coen et al. (2013) to determine the
spread of wildfires based on factors like fuel and weather, and used Hansen (2012) to determine water
extinguisher efficacy based on the spray angle, duration, and power, along with vegetation type. A
custom simulator was created using these modeling guidelines to test our approach for fighting forest
fires. A fleet of three custom-built drones that can coexist with more than 3000 simulated drones
was used. The drones were built using a PixHawk with an Ardupilot flight controller, a LASER to
emulate a fire extinguisher, and an onboard Raspberry Pi for autonomous operation in coordination
with an on-ground custom ground controller integrated with the simulator.

The POMDP reward function Ra used by agents is based on the change in fire intensity ∆I
I and

fire-area ∆A
A as a result of an agent action. Ra = α · min

(
∆I
I , k1

)
+ β · min

(
∆A
A , k2

)
where,

factors α and β control the weightage of changes in intensity and fire-area on the resulting reward.
The experiments used by default α = 2500, β = 3500, k1 = 0.02, k2 = 0.02 to balance the effects
of both intensity and area. There is a slight overweight for area change, as a smaller area offers better
opportunities to contain and fight with fewer high-capacity drones.

Both public datasets such as Singla et al. (2020); Fantineh (2023); Nguyen et al. (2024); Center
(2025); NIFC (2025) and synthetic datasets using fire models were used for testing, to test specific
aspects of the system for different fire scenarios. Fire was simulated with multi-colored fabric that can
be moved along the ground, simulating different fire positions and intensities of a fire dataset sample.
On-board drone CNN trained for this fabric fire simulation effectively helped simulate many fire
scenarios. A fire unit represents a normalized unit area of full fire on the ground. Three homogeneous
groups of drones with capability types small, medium, and large having speeds of 4x, 2x, and 1x and
fire extinguisher capacities of 10 liters, 50 liters, and 100 liters respectively were used with varying
density and fleet composition per fire unit.

A baseline of firefighters from the public datasets was used to evaluate the overall fire containment
performance using fire containment time and extinguisher resources. The fire containment perfor-
mance of 3,000 simulated agents - comprising a drone fleet with small:medium:large size ratios
of 50:35:15 and equipped with water-based extinguishers - is compared to that of real firefighters.
The evaluation focuses on improvements in containment time and efficiency of fire-extinguishing
resource usage. This was tested for fires of different sizes and hotspots. To ensure repeatability and

6
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consistency in performance, multiple trials were conducted to measure percentage improvements in
time and resource usage across fires of different sizes. Specifically, medium fires with 10 hotspots
and large fires with 30 hotspots were tested, each using 10 different random seeds.

The evaluation return for T timesteps is computed as the cumulative returns during multiple trial
episodes, using the greedy policy after training it for T timesteps. The effect of individual com-
ponents and algorithms on learning the policy is evaluated by comparing evaluation returns across
configurations, as it isolates the learning dynamics of the training phase.

An ablation study of phase one components was done with a transformer, edge progression, and A*
distributor to evaluate the efficacy of phase one and its components. The transformer was replaced
by a no-transformer component that predicts the location and fire intensity using image analysis
based on fire colors. The A* component was replaced by a rules-based distribution method, and
the edge-progression component was replaced by a fire-edge contour detector along with the mean
intensity along each contour.

Algorithms used for two-phase population policy-bank based learning are evaluated, including on-
policy PPO, Advantage Actor-Critic, and off-policy DQN, and compared against traditional MARL
versions of these algorithms with 25 agents, including MAPPO as in Yu et al. (2022), an A2C
alternative of MAPPO, and QMIX as in Rashid et al. (2018). The scalability of this approach was
examined by conducting a test, where a hotspot of the same size was assigned to each available agent
and recording the total area fought in a fixed duration of 2000 timesteps.

The impact of trajectory merging based on shared experiences was analyzed in terms of the fire
containment time improvement, while maintaining the same level of resource usage as under the fire-
fighter baseline. Three trajectory merge strategies tested include Best-N, Hybrid-N, and Weighted-N
trajectory merging. Their impact was evaluated using an ANOVA test for statistical significance.
Trajectories from similar homogeneous agents were ranked based on reward and used for shared
experience learning. The Best-N strategy merges the top N trajectories, hybrid-N merges the top and
bottom N trajectories, and weighted N merges trajectories by repeating them multiple times based on
their weights computed by their top and bottom ranks.

Note that we explored many standard benchmarks that exist for traditional MARL algorithms, such
as the SMAC benchmark as in Samvelyan et al. (2019); Ellis et al. (2023) that focuses on zero-sum
competitive games or games with a limited number of agents as discussed in Appendix A.5. These
benchmarks did not allow evaluating the many aspects of our system for cooperative tasks with high
scalability. Therefore, it was necessary to test this system with an exemplary firefighting system
involving coordination between a large number of agents to cooperatively accomplish a complex,
unpredictable, and fast-changing task like fighting forest fires.

4.2 COMPARISONS AND ANALYSIS
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Figure 3: Containment performance

Figure 3 shows the fire containment time and resource improvement of our approach over the baseline
system. In Figure 3a, regardless of the number of units and hotspots, our approach outperforms the
baseline by over 15% and exceeds 40% for a large number of units and hotspots. In Figure 3b, as fire
units and hotspots increase, our approach outperforms the baseline in resource consumption. As the
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Figure 4: Containment by hotspots

number of fire units and hotspots increases, optimizations along burning edges and hotspots increase,
greatly reducing the containment time and fire-extinguishing resource usage. Figure 4a and 4b further
support this observation, showing greater improvements with more hotspots and larger fire-sizes as
bigger tasks offer more scope for optimizations.
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Figure 5: Task distribution methods
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Figure 6: Two-phase learning algorithms

Figure 5 shows ablation study results with transformer, A∗, and edge progression providing the
best performance, as edge progression helps detect edges, transformers predict hotspots, and A∗

best distributes when edges, hotspots, and agent capabilities are available. This also shows that
task-specific combinatorial optimization quickly offers good performance. The transformer allows
predicting future hotspots, and edge-progression allows accurate edge tracking, which are crucial in
staying ahead of the fire spread by timely positioning and spraying the extinguisher. A* allows using
heuristics based on danger quotient, which allows assigning high-capability drones to areas that are
prone to maximum fire spread.

Figure 6 shows that phase two algorithms significantly outperform traditional MARL algorithms.
Phase One refocuses training to relevant activities, and phase two uses the best known policies to
efficiently perform and using shared learning quickly optimizes those policies. PPO clipping the
loss function to limit updates performs better than other on and off-policy algorithms. Traditional
MARL algorithms take too long to learn and cannot optimize well on their own for such complex
tasks. Additionally, the 95% confidence interval for traditional MARL algorithms is much wider,
as the non-determinism in joint observations and drastically varying joint actions lead to drastically
different rewards and much different policy learning. Phase one in the two-phase approach drastically
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mitigates these issues by pruning the state-space, which leads to a much faster rise in the early stages
of learning and overall much higher evaluation returns.
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Figure 7: Shared experience learning

Table 1: Trajectory merge summary

Purpose Stability
KL Divergence

Adaptation
KL Divergence

Adaptation
Iterations

Weighted-N 0.0181 0.0681 8

Hybrid-N 0.0323 0.0776 11

Best-N 0.0206 0.0998 13
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Figure 8: Multi-agent scalability

Figure 8 shows that two-phase algorithms significantly outperform traditional MARL algorithms as
the number of agents increases. It was not possible to run tests with more than 30 MARL agents, as
the coordination effort significantly increases and the state-space becomes exponential due to many
agents. However, the two-phase approach circumvents this issue, allowing for a very large number of
agents. This is done by first distributing activities to the best agents capable to handle such activity
and then the agents working on those assigned activities, typically either independently or in smaller
groups. With groups of homogeneous agents, it becomes possible to use shared experience learning
using a population policy bank, making it feasible to learn how to handle very large fires, as shown in
the two-phase algorithms in this figure.

Figure 7 shows shared learning performance using three prominent strategies. The Weighted-N
strategy performed the best, reaching an average 34% improvement. The ANOVA test yielded a
F-statistic of 13.92 and a p-value of 0.0000221 < 0.05. This indicates a statistically significant
difference between the means of the three merge trajectory strategies, contributing to a significant
time improvement. Table 1 shows a low KL divergence for the Weighted-N strategy, indicating high
stability. Furthermore, with a low adaptation KL divergence, the Weighted-N strategy is resilient to
adversarial environment changes, and its low adaptation iteration signifies quick adaptation to diverse
new conditions.

These results show that the two-phase multi-agent approach is very effective and scalable in perform-
ing large, unpredictable tasks using groups of homogeneous agents.

5 CONCLUSION

In this paper, we presented a novel approach to effectively learn how to best perform a dynamic task
with multiple groups of homogeneous agents in complex environments. The novel two-phase refocus,
refine, repeat approach where phase one evaluates how to best assign the agents to accomplish the
task, and phase two refines the performance of the task by using the collective intelligence of the
agents to learn an optimal RL policy performs well for such tasks. We demonstrated this approach
works quite well with an exemplary system where a large number of drones learn to fight forest fires
and tested it using both simulations and with actual drones. This approach can be used in many other
applications, including fighting fires in urban settings, providing medical assistance in urban settings,
and many disaster relief scenarios.
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REPRODUCIBILITY STATEMENT

This paper contributes an approach for performing complex tasks with a large number of agents. We
fully described our proposed approach in section 3 with additional details in A.2 Exemplary Phase
Two Algorithms on algorithm implementations. Theorem 1, Prepositions 1 and 2, and Lemma 1.1
give a theoretical basis and are proven in Appendix A.1 Two Phase Approach Proofs. Section 4 and
Appendix A.3 Experiment Details give details on obtaining the results. This constitutes complete
details on reproducing the work presented in this paper.
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A APPENDIX

A.1 TWO PHASE APPROACH PROOFS

A.1.1 PROPOSITION 1

Proposition (Convergence Acceleration via Merged Learning). If p homogeneous agents merge the
top and bottom n % of the combined trajectories, the policy learns 2pn times faster than for a single
agent learning using all its trajectories.

Proof. Since p agents are homogeneous, all trajectories Z = {ζ1, ζ2, ...ζn} are interchangeable.
Therefore, if we were originally getting s trajectories for an agent, we are now getting sp trajectories
that are all interchangeable. However, we are only choosing 2n % trajectories to train the policy,
resulting in 2nsp total trajectories. This means if the original training took t timesteps, the new
training only takes t/2pn timesteps, which is 2pn times faster than a single agent.

A.1.2 LEMMA 1.1

Lemma (Policy Update through Experience Merging). Updating policy πwjk
through experience

merging with the best and worst n% trajectories ζ across all homogeneous agents ensures improve-
ment in expected task performance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt

)]

Proof. The policy gradient theorem states ∇θJ(θ) = Eτ∼pθ
[R(τ)∇θ log pθ(τ)] . Since we select

the policies with n% highest and lowest returns, let there be an indicator function 1sel(τ), which
is 1 if τ is in the top or bottom n%. Since Eτ∼pθ

1 = 2n, the expectation of the estimator is:

∇θJ(θ) = Eτ∼pθ

[
1sel(τ)

R(τ)
2n ∇θ log pθ(τ)

]
. Since the merge algorithm discards trajectories sets

Z such that gt · ∇θJ(θt) < 0 where gt is the gradient of a random sample of trajectories from Z ,
gt · ∇θJ(θt) ≥ 0 so the update with best and worst n% of combined trajectories is aligned with Z .
With J ← J + α∇θJ(θ), it results in improvement of J by α∇θJ(θ). Thus the 2n samples result in
expected improvement of α

2n∇θJ(θ).

A.1.3 PROPOSITION 2

Proposition (Two-Phase Task Optimization). Let J(W (t), Xt,Bg) be the task performance function,
where Bg is the policy bank. The iterative execution of phase one and phase two ensures the task
policy converges to an optimal solution as the iterations progress if

1. Task decomposition and assignment are comprehensive: (W ∗(t) and X∗
t ), and

2. Policy update through experience merging ensures improvement in expected task perfor-
mance over time: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt

)]

Proof. Since all homogeneous agents ai ∈ A use a particular policy πwjt , all trajectories Z =
{ζ1, ζ2, ...ζn} are interchangeable and therefore can be treated equivalently. In order to obtain an
optimal solution, it is necessary to have a comprehensive task decomposition and assignment result
in a policy that improves and convergence, leading to the solution. Additionally, the learning rate α
tends to 0 as t tends to infinity. According to Lemma 1.1, if the top and bottom n% policies from each
ζi ∈ Z are merged, the E(J(W ∗(t), X∗

t ,Π
′
wjt

)) increases and therefore, the policy improves. Since
the two-phase process is continuously repeated, the E(J(W ∗(t), X∗

t ,Π
′
wjt

)) continually converges
and improves.

A.1.4 THEOREM 1

Theorem (Task Learning). If there is a dynamic taskW(t) decomposed and assigned comprehen-
sively as (W ∗(t), X∗

t ) as described in section 3.1, the taskW(t) can be effectively distributed and
learned among agents ai ∈ A.
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Proof. Since the task W(t) is decomposed and assigned comprehensively i.e. (W ∗(t), X∗
t ), the

constraints
∑N

i=1 xij ≥ r(wjt) and
∑Mt

j=1 xij ≤ κ(ai) hold true. This ensures that each activity is
adequately assigned enough agents and that the agents are not overworked and are capable of working
on their assigned activity.

Each activity has an assigned policy from the policy bank, and at least r(wjt) agents have trajectories
for the activity. By proposition 1, a policy with r agents taking the top and bottom n % of trajectories
learns 2rn times faster than a single agent since each agent in a group g is homogeneous. So if
r > 1

2n , distributing learning across multiple agents as done in phase two leads to faster learning.
Since r ≥ 1 and r > 1

2n , by proposition 2 the system continuously learns by merging the policies,
allowing for continual evolution and optimal learning.

A.1.5 PRACTICAL CONSIDERATIONS

We believe that our assumptions reflect the practical considerations for the proposed multi-agent
reinforcement learning paradigm. The analysis relies on three assumptions, each of which aligns with
how large-scale multi-agent systems are actually deployed:

1. Homogeneity within each policy group, assumed by Proposition 1: Policies are used within smaller
groups of homogenous agents, grouped by similar sensing, actuation, and capability profile. This
is consistent with real-world deployments, where fleets naturally consist of classes of similar types
and structures of drones. If a group exhibits internal heterogeneity, it can be further subdivided - our
framework imposes no restriction on the number of groups - until this homogeneity is met.

2. Sufficient/comprehensive task decomposition, assumed by Proposition 2 and Theorem 1: This
decomposition assumption formalizes the practical goal of full agent utilization, where a task is
decomposed into activities such that these activities are assigned to the best capable agent, resulting
in the highest possible utilization across the agents. An activity lacking agents with the required
capabilities will not be performed effectively, and agents not being assigned sufficient activities leads
to underutilization of the available capability.

3. Performance improvement under experience merging, as assumed by Proposition 2: Merging
additional trajectories improves the shared policy by incorporating information that helps it adapt.
Trajectory sets whose update direction increases expected performance are retained. Thus, every
update step moves the policy in an improving direction, ensuring the process is not assumptive but
explicitly performance-aligned.

Taken together, these assumptions mirror the operational structure of real multi-agent systems.
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A.2 EXEMPLARY PHASE TWO ALGORITHMS

An operateAgent procedure allows a homogeneous agent ai ∈ Ag to execute an activity πwjt . This
procedure is invoked from Algorithm 1. A variety of single-agent on-policy algorithms like ones
based on PPO and Actor-Critic and off-policy algorithms like ones based on DQN can be used for the
operateAgent procedure that executes activity πwjt . A sample algorithm based on PPO (Schulman
et al., 2017) is shown by algorithm 3

For the forest fire fighting with drones application, the state is the current representation of the drone
and its relation with the fire, including location, fire intensity, wind speed, wind direction, humidity,
distance to nearest settlement, distance to body of water, etc. The action is the discrete actions
the drones can do, including moving in a certain direction, spraying water in a certain direction or
intensity, or creating a controlled fire. Since the number of states and actions is reasonable for each
particular policy due to the distributed approach, it is able to learn it in a reasonable timeframe.

Algorithm 3 operateAgent: Proximal Policy Optimization (PPO)

Require: Agent identifier ai, starting policy Πk
i (b)

Ensure: Returns a set of trajectories (ht
i, a

t
i, r

t
i , h

t+1
i )

1: Initialize actor network π with parameters ϕ
2: Initialize critic network V with parameters θ
3: Initialize policy π ← Πk

i (b)
4: Initialize empty trajectories set Di

5: for each episode do
6: for time step t = 0, 1, 2, . . . do
7: Observe current state ht

i
8: Sample action ati ∼ π(·|ht

i;ϕ)
9: Apply action ati; observe reward rti and next state ht+1

i

10: Di = Di ∪ ⟨ht
i, a

t
i, r

t
i , h

t+1
i ⟩

11: πβ(a
t
i|ht

i)← π(ati|ht
i;ϕ)

12: for epoch e = 1, . . . , Ne do
13: Importance sampling ratio: ρ(ht

i, a
t
i)←

π(at
i|h

t
i;ϕ)

πβ(at
i|ht

i)

14: N -step: Adv(ht
i, a

t
i) =

∑N−1
τ=0 γτR(ht+τ

i , at+τ
i , ht+τ+1

i ) + γNV (ht+N
i )− V (ht

i)

15: Target: yti ←
∑N−1

τ=0 γτrt+τ
i + γNV (ht+N

i )
16: Entropy regularization: H(π(·|ht

i;ϕ)) =
∑

a∈A π(a|ht
i;ϕ) log π(a|ht

i;ϕ)

17: Actor loss: L(ϕ)← −min
[
ρ(ht

i, a
t
i) ·Adv(ht

i, a
t
i),

clip(ρ(ht
i, a

t
i), 1− ϵ, 1 + ϵ)

·Adv(ht
i, a

t
i)
]
− αH(π(·|ht

i;ϕ))

18: Critic loss: L(θ)← (yti − V (ht
i; θ))

2

19: Update parameters ϕ by minimizing actor loss L(ϕ)
20: Update parametetrajectoryTablers θ by minimizing critic loss L(θ)
21: end for
22: end for
23: end for
24: return Di

A set of trajectories ζ is selected across the group of agents Ag to merge shared experiences back to
the policy πwjt

before placing it back in the policy bank. The updateSharedLearning procedure is
invoked by Algorithm 2 to merge shared learning across the agents. A variety of single-agent on-
policy algorithms like ones based on PPO and Actor-Critic and off-policy algorithms like ones based
on DQN can be used for updateSharedLearning procedure alongside the corresponding operateAgent
procedure. Here, we illustrate an updateSharedLearning algorithm based on actor-critic (Konda &
Tsitsiklis, 2000) to merge a selection of trajectories Z = {ζ1, · · · , ζn} obtained from homogeneous
agents ai ∈ Ag while they executed activity wjt using policy πwjt .
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Algorithm 4 updateSharedLearning: On-Policy Experience Sharing

Require: Shared policy Πk(b), shared experience buffer {Dshared}
Ensure: Updated shared policy Πk(b) with off-policy corrections

1: Initialize temporary policy Πk
temp(b)← Πk(b)

2: for each epoch e = 1, . . . , Ne do
3: for each mini-batch of transitions (hk, ak, rk, hk+1) sampled from Dshared do
4: for each agent i do
5: Importance sampling ratio correcting off-policy updates: ρ(hk

i , a
k
i )←

π(ak
i |h

k
i ;ϕi)

πβ(ak
i |hk

i )

6: N-step Adv: Adv(hk
i , a

k
i ) =

∑N−1
τ=0 γτR(hk+τ

i , ak+τ
i , hk+τ+1

i ) + γNV (hk+N
i ; θi) −

V (hk
i ; θi)

7: Target: yki ← rki + γmaxa′
i∈Ai

Q(hk+1
i , a′i; θ̄i)

8: Corrected actor loss: L(ϕi) = −ρ(hk
i , a

k
i )

(
rk + γV (hk+1; θi)− V (hk; θi)

)
log π(aki |hk

i ;ϕi)

9: Critic loss: L(θi)← 1
B

∑B
k=1(y

k
i −Q(hk

i , a
k
i ; θi))

2

10: Update actor parameters ϕi by minimizing L(ϕi)
11: Update critic parameters θi by minimizing L(θi)
12: end for
13: end for
14: end for
15: Update shared policy Πk(b)← Πk

temp(b) using aggregated policy updates
16: return Updated shared policy Πk(b)

A.3 EXPERIMENT DETAILS

A.3.1 SETUP AND PARAMETERS

Various aspects of the two-phase approach were tested with experiments using an exemplary forest-
fighting system disclosed in section 4.1. A simulated agent was operated using a set of test fire-
images and corresponding sensor data for that image. Inputs from many agents are reported to a
task distributor that performs the task distribution. A real agent is an actual fire-fighting drone that
captures the fire-image using its camera and acquires current sensor data using its on-board sensors
to correspond with the captured image. This data is periodically sent to a task distributor to reassign
activities to each agent. The test fire-images were input to the image pipeline, and the sensor data
were input to the sensor pipeline as shown in Figure 2a. The task distribution result assigns a hotspot
or an edge to an agent. Such an assignment is reported to the agent as an activity assignment. An
agent continuously performs its assigned activity as shown in the Figure 2b. A reassignment of a
different activity by the task distributor results in the agent preempting its current assigned activity
and moving to the new assigned activity. Best and worst trajectories across similar agents performing
an activity are used for merging their shared experiences into their shared policy persisted in the
policy bank.

A real agent is a Raspberry-Pi-based drone exemplary agent that is an X-Configuration Quadcopter
UAV with a PixHawk 2.4.8 flight controller driving A2212/KV930 motors with 8038 propellers
and SimonK 10A ESC, a GPS M8N, and a Matek Optical Flow sensor for positioning, along with
Benewake TFmini Plus LIDAR sensor. Drone captures temperature, humidity, pressure, wind speed,
and wind direction using onboard sensors along with image frames using Raspberry Pi Camera, and
reports them for task distribution by default every 15 seconds. Image resolution defaults to 384 x 384.
It communicates directly with a ground control station using onboard WiFi, and falls back to radio
telemetry if WiFi is out of range.

Simulated agents are pure software components that run on multiple servers with 32 cores, 128GB
RAM, and 1TB storage medium end servers. These agents use a pre-captured stream of image and
sensor data with around 4800 samples for different fire scenarios. The task distribution uses multiple
16GB vRAM GPUs, depending on the number of agents and fire analysis request frequency for each
experiment.
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Different fire scenarios are simulated based on the actual fire dataset. In a virtual agent, the duration
and frequency of spray operation are recorded to determine the effect of the fire extinguisher in
changing the fire based on modeling guidelines in Hansen (2012). This change helps in computing
the reward for the current action of the agent. When using a real agent, it is also necessary to precisely
recreate a test environment so that the performance of a real agent can be evaluated in conditions
close to those of a real forest fire. Based on an actual fire sample from the fire dataset, a forest fire
mock layout is created on the ground using different fire-colored fabric pieces as shown in 10. The
fabric is moved to simulate changes in the fire condition. Images captured by a real agent is processed
using a CNN model that is trained on these forest fire mock layouts. A point-laser device operated by
the real agent is used to simulate the spraying of a fire extinguisher. The duration and frequency of
this laser operation are recorded, and using modeling guidelines in Hansen (2012), the effect of the
fire extinguisher is determined to guide altering the fire status on the ground. In order to streamline
results with real and virtual agents, a fire-unit is used to represent one unit of fire. By default, one
fire-unit maps to one square kilometer of a real forest fire, and this is typically equivalent to one
square centimeter of the forest fire mock layout. Fire unit is used to represent the size of fire for all
results in section 4.2.

A.3.2 AGENTS, ACTIVITY ASSIGNMENTS, AND EXECUTION FOR EXEMPLARY SYSTEM

The formal task decomposition and activity distribution is disclosed in section 3.1. Here, we explore
certain aspects of this formalism in a more informal setting as applied to the exemplary system of
Section 3.3 for providing a deeper understanding of the underlying concepts.

The forest fire-fighting task W(t) changes over time as fire spreads or is contained. Agents are
systems with specific capabilities that help perform activities related to the task of fighting wildfires.
This may include drones of different sizes, speeds, and their ability to perform the firefighting tasks.
Agents are categorized into groups based on their capabilities, which for this exemplary domain
includes fire-extinguishing capacity, fire-extinguishing type, and drone speed. All agents in the same
group have the same capabilities. E.g., we have a group of small, medium, and large drones with
relative speeds 4x, 2x, 1x, and liquid fire extinguisher capabilities of 10 liters, 50 liters, and 100 liters,
respectively. A drone may temporarily leave its group, such as to refuel and join back when it is ready
to operate again. However, a drone does not change groups, as the drone’s association with a group is
based on its capabilities.

During phase-1, the current task is holistically analyzed and decomposed into many activities, such
as fighting a specific fire edge or a specific fire hotspot at a specific location in the forest. Each
such activity wjt involves a complexity level c(wjt), such as the danger it poses and the likelihood
of it spreading the fire. An activity of a specific complexity level needs to be addressed by agents
with a specific capability. E.g., a fire edge near an inert area like a lake or a rocky hill is not very
dangerous and may be handled by a small, low-capacity drone, whereas one that is close to dangerous
vegetation requires a medium or high-capacity drone that can immediately contain it. An activity
such as fighting fire-edge or fighting a hotspot is assigned to each agent, not their group. An activity
may require one or more agents as defined by r(wjt). E.g., when r(wjt) = 2, two or more agents,
possibly from different agent groups, may be assigned to wjt. Thus, two groups may have agents
working on an overlapping subset of activities. Moreover, κ(ai) is the maximum number of activities
that agent ai can handle at a given time. The r(wjt) and κ(ai) are typically prior domain knowledge
specified by the expert or pre-defined while creating the domain. This allows defining more than
one drone to be assigned to an activity and more than one activity assigned to a drone for maximum
flexibility. A very big hotspot cannot be handled by a single drone - requiring many drones, and a
large drone may handle many small fire edges.

An agent is not required to operate on its assigned activity to completion. An agent’s task assignment
may be continuously revised, and the agent may not be tied to an activity until completion. We iterate
continuously between the two phases. In phase-1, a holistic view of the current taskW(t) governs
the partitioning of the task into activities, and assignment of agents to these activities. An agent
continues to work on an activity until the activity is completed or the agent gets reassigned. E.g., a
small drone may be assigned to a fire edge that was initially of low risk. However, due to a change in
wind direction, that fire edge is now flagged as high risk, causing it to be assigned to another potent
medium or high capacity drone. Upon completion of any activity, it can no longer be assigned to any
agent.
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If the task is decomposed such that each agent is assigned the most appropriate activity, it can lead to
optimal results. The idea is for decomposition to shoot for full agent utilization so that all available
agents remain active. So D partitions the task, assigning activities to agents based on their capability.
With excess activities, some activities won’t get done immediately. If there are excess agents, some
agents remain idle. We try to avoid this by attempting |Wg(t)| ≥ |Ag|.
The custom test environment was specifically designed to evaluate scalability issues with many
agents. Same codebase between virtual and real drones enables them to coexist with real drones
using camera and sensors against sampling of these inputs from fire datasets, along with simulated
activities for virtual drones. Real drones operate alongside virtual or other real peers, all coexisting
under a common custom ground control implementation that launches virtual drones with special
virtual settings. This design allows us to test performance in the presence of a very large number of
agents with real messages, unearthing any scalability issues and communication delays that would be
encountered with a very large number of real drones, using the test setup with many virtual drones.
The purpose of such a hybrid setup was also to visualize how real drones perform their activities
in the presence of a very large number of other real/virtual drones. The testing environment can
simulate more than 3000 drones, and two-phase algorithm testing shows effective scaling beyond
1000 agents. To compare two-phase algorithms against SOTA MARL algorithms, we had to limit test
comparisons to only 25 agents, as SOTA MARL algorithms failed beyond 25 agents.

Note that the scope of this paper is a novel approach to enable groups of homogeneous agents
to autonomously learn to perform unpredictable tasks, including those with a massive state space
not feasible with today’s state-of-the-art approaches. We use the exemplary firefighting domain to
demonstrate various aspects of our novel approach, and the real drones, virtual drones, and associated
controls constitute an effective testbed for testing these aspects.

A.3.3 CONTAINMENT PERFORMANCE STUDY

This experiment evaluated the performance of the two-phase approach against a baseline of actual
fire fighters. It evaluates the improvement of the containment time and the fire extinguisher resources
needed to reach that containment against the baseline. For a specific target fire sample scenario,
using the information from the datasets, we obtained additional information related to the fire such as
vegetation, containment time, and percentages. This information was then correlated with the model
to obtain the fire containment time and resources involved in fighting the fire. Based on the fire size,
groups of homogeneous agents are used with a fleet comprising 50% small capacity drones, 35%
medium capacity drones, and 15% large capacity drones. The drones used a pre-trained population
policy bank. The containment time included the time the drones are armed to the time the entire fire
is extinguished. Moreover, each drone recorded the total amount of fire extinguisher used, and these
were compared against the baseline of real fire fighters. The test was repeated for fires of different
sizes and hotspots. The same test was repeated for multiple trials on samples with 10 and 30 hotspots.

A.3.4 ABLATION STUDY

The task distribution is performed during phase one processing, and it can have a profound impact on
the overall performance. Since there are multiple components for performing this task distribution,
an ablation study was performed to determine the necessary components for optimal task distribution.
The transformer was replaced by image-analysis-based hotspot detector, the A* component was
replaced by a rule-based task assigner, and the edge-progression component was replaced by a
contour-based edge processing. A component was swapped out, and the evaluation return was
recorded to identify which components provide optimal performance.

A.3.5 TWO-PHASE ALGORITHMS STUDY

Upon assignment of an activity, each agent loads a policy from the population policy bank and
performs activity steps under the guidance of this policy. The efficacy of this algorithm directly
impacts the efficacy of the overall approach, and therefore, different algorithms are evaluated to
determine which algorithms provide optimal performance. The policies are not pre-trained - the test
uses the evaluation returns as agents learn policies and execute activity steps using these policies.
On-policy PPO was evaluated with a clipping epsilon of 0.1 with a policy gradient actor and critic
models with two layers of 128 nodes.
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The primary purpose of experimentation was to evaluate the two-phase approach using an exemplary
fire-fighting domain, testing key aspects of our approach. Each algorithm in Figure 6 was evaluated
with the optimal set of hyperparameters obtained after testing for these cases. For two-phase
PPO MARL, an ϵ clip value of 0.1 and a continuously decreasing learning rate provided optimal
performance. Larger PPO clipping thresholds (0.2–0.3) produced overly aggressive updates and led
to moderate reductions in evaluation returns for Two-Phase MAPPO. Higher initial learning rates
caused similar degradation in both two-phase PPO and two-phase A2C, reflecting their reliance on
stable value estimates. Adjusting the discount factor away from 0.99 also impacted performance,
affecting PPO, A2C, and DQN to varying degrees. Reward parameters of α and β represented as
2500 and 3500. While observing the difference in reward would be largely ineffective since higher
values would implicitly result in a higher value of evaluation returns, these values enabled prioritizing
greater emphasis on area reduction over intensity reduction, resulting in greater refinement efficacy.

The actor-critic policy also used models with two layers of 128 nodes, and DQN used a Q and
target networks with two layers of 128 nodes. A shared experience with Weighted-N trajectory
merging strategy was used to merge the experiences of homogeneous agents sharing similar activities.
Traditional MARL Algorithms tested include Centralized Training Decentralized Execution Actor-
Critic, PPO, and DQN Algorithms. Since traditional MARL algorithms do not perform well, this
testing was done using 25 agents to compare the efficacy of the two-phase algorithm versus traditional
MARL algorithms. The tests were performed for different environment timesteps ranging from 2000
to 20000 time steps.

A.3.6 MULTIAGENT SCALABILITY STUDY

The two-phase algorithms study was further extended to evaluate performance with a different number
of agents. Each agent was assigned a hotspot spanning a fire-unit and allowed to perform the activity
for a total of 2000 timesteps. Upon completion, the amount of fire extinguished across all agents is
computed to determine the effective total number of fire-units that were collectively extinguished
across these agents. The number 2000 timesteps was chosen to allow an agent sufficient time to
extinguish a large portion of the fire. It must be noted that since traditional MARL does not scale well
beyond around 30 agents, the tests were conducted with only two-phase algorithms beyond 30 agents.

For the trajectory merge test as in Table 1, the KL divergence shows the difference in the probability
distributions. For this paper, it is used to show the improvement of policy refinement through
trajectory merging. Stability KL Divergence is the difference in the distributions between the current
stable distribution and minor perturbations affecting that stability. Adaptation KL Divergence is the
difference in the distributions between the original distribution and a restabilized distribution that
has undergone major perturbations such as drastic changes in wind speeds and humidity. Adaptation
Iterations is the number of phase-one -> phase-two cycle iterations that it takes to reach the accuracy
of the current domain, to see how quickly the system can adapt to different environments.

A.3.7 SHARED EXPERIENCE LEARNING STUDY

This experiment was conducted to study the efficacy of merged experience learning using trajectories
from homogeneous agents with similar capabilities performing a similar activity. Because each
group of agents maintains its own specialized policy and only merges experiences internally, we
do not observe any policy destabilization. Unlike the conventional population-based training for
policy space response oracle (PSRO) as in Lanctot et al. (2017) for non-cooperative tasks, here, the
cooperating agents learn by sharing their experiences upon completion of an activity and the goal
is to determine an optimal way to merge the experiences captured in the trajectory of these agents.
Trajectories are compared based on a reward for a step in the trajectory. The best-N strategy was
tested by selecting only N-best trajectories from the reporting agents, N typically set to one-fourth of
total homogeneous agents reporting their trajectories. However, worst experiences also teach what not
to do and therefore, a hybrid-N strategy was also tested with best-N and worst-N trajectories. Another
variant of the hybrid strategy is the Weighted-N strategy, where the best and worst strategies are given
the highest weight among the best-N and worst-N trajectories. More weight causes a trajectory to be
repeatedly used that many times for experience learning, and each of the N best and worst trajectories
is weighted based on their ranking. A policy gets saved in the population policy bank upon shared
learning, and this policy gets distributed across agents, serving as a critical means to communicate

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and share experiences across the agents. Therefore, the efficacy of shared experience learning forms
an important aspect of the two-phase learning approach.

A.4 INJECTING EXTERNAL/DOMAIN KNOWLEDGE

A unique aspect of this approach is the ability to complement pure reinforcement learning with
adjunct strategies, including domain intelligence, learning algorithms, human-in-the-loop (HIL), to
expedite learning. It provides a means to inject prevalent external/domain knowledge in the learning
process, making it feasible to significantly prune the massive search space. Figure 8 shows how the
current state-of-the-art MARL approaches can’t scale for such a massive state space, limiting their
real-world MARL applicability. Most MARL approaches fail to inject a means to curb exploring
irrelevant portions of massive search-space, resulting in their failure for pragmatic real-world use of
such complex huge tasks.

Injecting prevalent external/domain knowledge using a phase-1 strategy enables significantly pruning
search space resulting in phase-2 learning for huge, complex tasks which are not possible today.
Phase-2 "refine" is completely task-independent, and it is also possible to transfer optimizations
similar to Phase-1 optimizations using sensory and image data demonstrated in the exemplary system
to other domains. E.g., Locating fire-areas using transformer pipelines can be transferred to locating
flooded areas for a system of autonomous robots in a flood-control application. Fire-fighting activities
of exemplary system are replaced by flood-control activities that robots learn in identical manner
for the flood-control application. Thus a system similar to the exemplary system disclosed here
for fighting forest fires can be used to model many other applications that tackle complex tasks in
dynamic and unpredictable environments.

A.5 TWO PHASE IDEATION WITH SMAC V2

A.5.1 IDEATION STRATEGY

In the early stages of our research, we developed our ideation using SMACv2 as in Ellis et al. (2023)
to experiment with how to prune a large RL search space. SMACv2 provides a standard way to
compare performance against many state-of-the-art algorithms in small-to-moderate environments,
and unlike its predecessor, SMAC as in Samvelyan et al. (2019), it provides for a larger RL search
space and partial observability to experiment with diverse scenarios for a small number of agents.
In our explorations with both SMACv2 and SMAC, we quickly faced severe scaling issues with the
state-of-the-art algorithms as well as the test frameworks as we tried to increase the number of agents.
So we had to limit our explorations with a small number of agents supported by the test framework
and the state-of-the-art algorithms and use the exemplary forest firefighting environment in Section 4
for comprehensive testing of all aspects of our research. Although the SMACv2 test framework and
baseline state-of-the-art algorithms were limited and the behaviors vary significantly, it nevertheless
allowed us to quickly experiment with different strategies in the early stage of our research that
led to our two-phase approach and compare them with state-of-the-art algorithms, revealing many
interesting insights which we share here.

SMACv2 procedurally generates teams for different races - Terran, Zerg, and Protoss. Terran uses
ranged attacking units of Marine and Marauder, as well as Medivac support units. Zerg uses a mixture
of ranged unit Hydralisk, melee unit Zergling, and exploder unit Baneling. For our tests, we used
Terran and Zerg, as Terran allows testing range-focused strategy and Zerg enables testing a hybrid
strategy.

To explore ideations for the two-phase approach, we used a phase-1 strategy that executes part
of a predefined combat strategy suitable for fighting the enemy units, and phase-2 involved using
reinforcement learning to learn the remainder of the combat strategy. The phase-1 strategy allows the
agent to prune out the RL search space by eliminating moves that do not conform to the predefined
combat strategy, allowing phase-2 to then learn for a smaller RL search space. For example, a combat
strategy involves positioning the units relative to allies and enemy units and attacking the enemy
with the right weapons and timing. Learning both positioning and firing involves a huge RL search
space with many units. As the phase-1 strategy guides the agent to the correct position, the agent then
has to learn firing-related behavior, significantly reducing the RL search space. The tables show the
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improvement of the two-phase strategy over a baseline state-of-the-art algorithm with both average
improvement and range of improvements observed during multiple trials.

A.5.2 EFFECTIVE TERRAN COMBAT

Terran’s ranged composition imposes some unique coordination requirements. Marauders are durable
armored frontliners that intercept and deliver high single-target damage, slowing enemies to control
the pace of engagement. While they have ranged attacking capabilities, their range is shorter than the
Marines. Marines are more vulnerable but can provide longer-range, effective bursts of sustained
DPS - so Marines must hide behind Marauders. Medivacs heal damaged units but cannot fight back -
so they must remain sealed behind other allies. An effective strategy, therefore, coordinates Marauder
positioning, Marine focus fire and kiting, and Medivac healing, all operating as a cohesive group for
maximum efficacy.

A.5.3 RANGED STRATEGY

For Terran scenarios (Terran_5_vs_5 and Terran_20_vs_20), we employ a structured ranged-unit
strategy that separates positioning and firing into two phases to evaluate our two-phase approach.
Phase-1 attempts the predefined spatial formation with Marauders taking positions in the front facing
the enemy, Marines aligned behind them, and Medivacs maintaining a protected rear position, while
enforcing sufficient spacing, enemy-facing orientation, and engaging in limited micro-adjustments.
By eliminating random formation-breaking movements, Phase-1 dramatically narrows the effective
RL search space, converting chaotic navigation into focused positional behaviors. With a focused
positioning, Phase-2 learns firing-related decisions for combat effectiveness, including focus-fire
selection, target switching, kiting, burst timing, and Medivac healing prioritization.

As shown in Table 2, this strategy achieved faster and higher battle win rates than the baseline QMIX
algorithm. Our results showed a steep early rise in performance compared to baseline, confirming that
Phase-1’s structured positioning, by replacing random positioning movement with strategy-focused
aligned movements, sharply narrows the effective exploration space and enables faster learning. With
agents consistently placed in tactically favorable formations, Phase-2 can immediately begin learning
coordinated firing behaviors rather than spending millions of steps discovering viable positions. In
contrast, QMIX requires significantly longer training to reach moderate win percentages and also fails
to match the peak performance achieved by our method. The sustained advantage over 10M timesteps
highlights that disciplined, strategy-aligned positioning not only accelerates convergence but also
enables higher-quality policies in larger range combat scenarios. As evident with Terran_20_vs_20,
as the search space increases, its impact becomes even more significant. Similar results were obtained
against baseline MAPPO as shown in Table 3. Use of different Phase-2 algorithms did not significantly
alter the results. Phase-1 preserves the essential tactical decisions but removes the combinatorial
explosion associated with free movement, enabling significantly faster and more stable Phase-2
learning, resulting in better overall efficacy across both small and large Terran engagements.

Table 2: Terran 2-Phase over QMIX

Time
steps
(106)

Terran_5_vs_5
Improvement %

Terran_20_vs_20
Improvement %

Avg. Max. Min. Avg. Max. Min.

1 16.2 28.1 9.6 28.7 35.6 16.5

2 8.4 19.3 -3.2 20.3 35.1 4.7

3 2.8 13.3 -8.5 9.5 16.8 -2.3

4 5.3 17.4 -8.1 5.3 16.0 -5.8

5 2.7 11.6 -7.3 9.1 21.8 0.7

6 8.1 19.2 0.8 7.9 17.3 0.3

7 3.8 14.6 -3.5 7.2 19.7 -1.4

8 6.2 12.7 -1.9 8.8 22.6 -5.0

9 4.8 13.3 -5.3 6.4 18.2 -1.9

10 4.0 17.4 -6.3 7.1 21.4 -2.6

Table 3: Terran 2-Phase over MAPPO

Time
steps
(106)

Terran_5_vs_5
Improvement %

Terran_20_vs_20
Improvement %

Avg. Max. Min. Avg. Max. Min.

1 40.6 52.3 30.7 38.3 44.1 26.2

2 31.3 42.5 20.7 32.8 43.3 19.2

3 22.2 33.6 12.8 32.0 40.6 22.9

4 25.5 38.4 10.9 28.5 36.2 15.7

5 23.8 34.2 12.3 25.4 37.2 16.5

6 27.1 41.0 15.7 22.2 29.8 12.3

7 17.8 24.7 11.1 17.7 25.3 8.9

8 19.5 32.2 5.6 18.7 27.2 7.5

9 21.2 30.6 7.9 16.3 25.0 3.8

10 20.7 31.2 10.4 15.6 26.8 4.6
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A.5.4 EFFECTIVE ZERG COMBAT

Zerg’s hybrid composition imposes unique coordination requirements that are different than those
of Terran. Zerglings must reach and touch enemy units so that higher-value enemy Banelings and
fragile backline enemy units become accessible. Banelings are scarce, high-impact resources whose
explosions provide greater impact when targeting dense enemy clusters rather than isolated dying
units. Hydralisks are ranged units providing sustained DPS with clear firing lanes, and remain
protected when behind the melee screen. An effective strategy must therefore synchronize Zergling
engagement, Baneling explosion timing, and Hydralisk focus fire into a coherent, staged attack.

A.5.5 HYBRID STRATEGY

For Zerg scenarios (Zerg_5_vs_5 and Zerg_20_vs_20), the ranged strategy used for Terran is insuf-
ficient, as unit roles differ, calling for a different hybrid combat strategy. For the hybrid strategy,
Phase-1 arranges units into multiple spatial group configurations, each group comprising a small
number of Zerglings forming a melee screen in front, one or two Banelings immediately behind
the Zerglings, and a few Hydralisk in the rear. These groups are placed side by side with enough
spacing between groups such that an enemy Baneling explosion damages only a single group, while
neighboring groups continue their fight. This structured positioning strategy purges many chaotic
movement patterns so that Phase-2 can focus on learning Baneling commit timing, local surroundings,
and Hydralisk target selection and firing patterns for effective hybrid Zerg combat.

As shown in Table 4, with this hybrid strategy, learning was much earlier than baseline QMIX, as
there is less to discover initially in terms of viable movement, resulting in a high latency before
QMIX becomes useful. QMIX fails to precisely master all nuances of positioning and firing, and its
performance remains below our two-phase strategy even after 10M+ timesteps. In contrast, Phase-2
successfully masters detailed firing patterns and their coordination with the Phase-1 movements,
yielding highly effective hybrid Zerg behavior. QMIX struggles substantially on the more challenging
Zerg_20_vs_20 scenario: its win rate increases slowly and remains well below our method, reflecting
the difficulty of exploring an enormous joint movement and firing space without structural guidance.
In contrast, our two-phase strategy performs consistently well. Similar results were obtained against
baseline MAPPO as shown in Table 5. These results reveal that aggressively reducing the effective
RL search space and guiding exploration based on a good combat strategy is particularly beneficial
when the underlying search space is very large.

This exploration led to some very interesting insights that helped the ideation of our two-phase
approach. When the RL search space is unreasonably large, the SOTA algorithms fail to adequately
learn in a reasonable time and hence are of little pragmatic use. The problem becomes worse as the
problem space becomes bigger. Injecting a strategy that continuously targets trimming the search
space while working alongside the learning algorithm significantly expedites learning and leads to
effective learning for these problems.

Table 4: Zerg 2-Phase over QMIX

Time
steps
(106)

Zerg_5_vs_5
Improvement %

Zerg_20_vs_20 
Improvement %

Avg. Max. Min. Avg. Max. Min.

1 12.7 25.3 -4.2 11.9 19.8 1.1

2 11.6 20.8 -2.5 9.7 22.1 -8.4

3 11.2 18.3 -7.0 8.4 21.6 -8.7

4 9.4 19.9 -2.8 6.7 18.3 -7.5

5 3.7 19.4 -5.5 7.0 19.4 -8.8

6 8.2 21.7 -1.9 9.3 21.7 -4.9

7 9.2 23.3 -4.1 11.3 22.2 -3.6

8 10.0 26.6 -2.3 12.6 22.6 -3.0

9 9.5 19.8 -2.7 14.7 28.3 0.3

10 10.8 20.1 -4.8 13.9 26.2 -2.1

Table 5: Zerg 2-Phase over MAPPO

Time
steps
(106)

Zerg_5_vs_5
Improvement %

Zerg_20_vs_20 
Improvement %

Avg. Max. Min. Avg. Max. Min.

1 26.3 44.2 9.8 26.4 31.1 17.0

2 29.5 41.6 14.3 33.1 41.3 22.7

3 22.7 36.3 4.7 28.9 40.6 14.6

4 18.8 31.2 5.0 22.4 34.7 11.1

5 7.3 22.6 -5.7 19.5 31.4 4.6

6 12.7 23.0 -1.9 13.6 28.2 2.1

7 10.6 24.2 -5.3 13.0 30.3 -3.8

8 9.2 24.4 -4.3 12.2 29.7 -5.2

9 9.7 21.6 -3.9 13.5 25.8 0.3

10 8.8 22.4 -5.3 8.6 25.1 -6.5
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A.6 FIRE-FIGHTING WITH DRONES

Optical 
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Pixhawk Flight Controller
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 Agent PI SBC
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Figure 9: Drone top view

Fire Hotspot
Fire

Autonomous Drone Agents

Figure 10: Drones in action
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