
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALABLE MULTI-AGENT AUTONOMOUS LEARNING
IN COMPLEX UNPREDICTABLE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

This research introduces a novel multi-agent self-learning solution for large and
complex tasks in dynamic and unpredictable environments where large groups of
homogeneous agents coordinate to achieve collective goals. Using a novel iterative
two-phase multi-agent reinforcement learning approach, agents continuously learn
and evolve in performing the task. In phase one, agents collaboratively determine an
effective global task distribution based on the current state of the task and assign the
most suitable agent to each activity. In phase two, the selected agent refines activity
execution using a shared policy from a policy bank, built from collective past
experiences. Merging agent trajectories across similar agents using a novel shared
experience learning mechanism enables continuous adaptation, while iterating
through these two phases significantly reduces coordination overhead. This novel
approach was tested with an exemplary test system comprising drones, with results
including real-world scenarios in domains like forest firefighting. This approach
performed well by evolving autonomously in new environments with a large number
of agents. In adapting quickly to new and changing environments, this versatile
approach provides a highly scalable foundation for many other applications tackling
dynamic and hard-to-optimize domains that are not possible today.

1 INTRODUCTION

Many real-world problems are quite big and complex, requiring many agents with different capabilities
to effectively tackle them. Autonomous multi-agent applications like delivery systems, warehouse
robots, and drone shows work in mostly deterministic and constrained environments. However, there
are many complicated dynamic environments, such as forest fire-fighting, disaster relief, urban fire,
and medical rescue operations involving collaboration between a very large number of agents, where
each episode is unique and ridden with unpredictable challenges. Today’s MARL algorithms fail to
address the enormity and complexity of these tasks (Rashid et al., 2018) (Yu et al., 2022).

We propose a novel two-phase iterative approach to enable groups of homogeneous agents with
different capabilities to autonomously learn to perform huge, unpredictable, fast-changing tasks.
Phase One - Refocus: determines the best way to target the task, Phase Two: Refine - uses the
collective intelligence of the group for each agent to best perform its task, and iteratively repeating
this leads to continuous evolution. This opens the possibility of complementing pure reinforcement
learning with adjunct strategies, including domain intelligence or human-in-the-loop (HIL), to
expedite learning. It realigns learning to focus on the most relevant portion of the state-space and
gives agents autonomy to improvise while significantly reducing the coordination effort across
numerous agents. Using shared experience across homogeneous agents with a shared population
policy bank, this result-oriented learning is highly scalable. We demonstrate this approach via an
exemplary test system comprising drones fighting forest fires.

2 RELATED WORK

Recent progress in multi-agent reinforcement learning (MARL) has enabled significant achievements
in complex environments, yet scaling up to large, dynamic, and unpredictable tasks remains challeng-
ing. Scalability issues arise due to exponential growth in state space and agent interactions, along
with multi-agent variance and multi-observation variance (Hopkins, 2024). With partial observability,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

non-stationarity, and dynamic environments, these significantly hinder stable learning, (Wei et al.,
2024; Liang et al., 2025) underscoring the need for improved frameworks that can handle large-scale
multi-agent coordination more efficiently.

One approach to manage large problems is to adopt hierarchical reinforcement learning (HRL).
Hierarchical RL techniques reduce dimensionality by decomposing tasks into subtasks governed
by high-level policies (Dietterich, 2000; Levy et al., 2019; Nachum et al., 2019). These methods
define high-level policies that operate over temporally extended actions or subtasks, thereby pruning
the search space. However, reliance on static decompositions or domain knowledge limits their
applicability when tasks evolve significantly over time (e.g., rapidly shifting operational zones).
Additionally, current approaches for subgoal discovery (Pateria et al., 2022) (Wang et al., 2025),
learning when to retrain (Haighton et al., 2023), and learning hierarchical world models (Schiewer
et al., 2024) could have limited scalability for large-scale tasks involving a large number of agents.

Dividing large tasks into subtasks and assigning them to homogeneous agents is combinatorial and
non-trivial, often leading to overlapping roles or inefficient exploration (Martins et al., 2025; Zheng
et al., 2018). Repetitive subtasks (e.g., scouting or delivery) can be addressed through a policy bank
of pre-optimized solutions (Teh et al., 2017; Rusu et al., 2016), enabling faster adaptation. Joint
experience-sharing—via parameter, memory, or replay sharing—further improves learning efficiency
(Gupta et al., 2017; Rashid et al., 2018). Nonetheless, scaling these techniques to truly massive and
fluid domains remains a key research challenge. Some collaborative MARL approaches perform role
assignment by matching latent subtask representations with latent trajectory representations and use
algorithms like QMIX to mix similar policies. However, this approach limits scalability and limits
expressivity for activities and constraints. (Yang et al., 2022) (Xia et al., 2023) (You et al., 2025)
Automated grouping approaches (Zang et al., 2023) and role assignment (Nguyen et al., 2022) can
also limit expressivity and scalability. Here we address the large, fast-changing state-space aided by a
task-specific means to decompose an activity assignment and use a policy bank to address many types
of activities that are still commonplace for the huge tasks, and learn these policies through shared
experiences of homogeneous agents.

3 PROPOSED APPROACH

3.1 TASK DECOMPOSITION, ASSIGNMENT, AND EXECUTION POLICY

Consider a dynamic taskW(t) that evolves over time t. The task is performed by a set of N agents
partitioned into G homogeneous groups, such that A =

⋃G
g=1Ag . Each group Ag consists of agents

with identical capabilities, meaning a minimum set of capabilities Cg = C(agi) for all agi ∈ Ag . The
taskW(t) is composed of Mt activities, whereW(t) = {w1t, w2t, . . . , wMtt}.
Each activity wjt has an associated complexity level c(wjt) and requires capabilities C(wjt). The
activities change over time, appearing and disappearing based on the task’s evolving state. Each
activity wjt has an associated relevance duration (tstart

j , tend
j) such that the activity exists within

the time window tstart
j ≤ t ≤ tend

j . Activities dynamically emerge and vanish depending on task
conditions. The presence of an activity is determined by the function Ψ(W(t), t), such that wjt

where 1 ≤ j ≤Mt exists at time t if Ψ(W(t), t) = 1. The task state function Φ(W(t)) describes the
current status of the task and influences which activities are required.

Since agents in a group share capabilities, task decomposition ensures that there are multiple similar
activities to fully utilize homogeneous agents. A decomposition function D partitions the task into
activities that match group capabilities, i.e., D(W(t)) =

⋃G
g=1Wg(t), whereWg(t) is the subset of

activities assigned to Ag . Each activity wjt ∈ Wg(t) must satisfy C(wjt) ⊆ Cg . The decomposition
process aims to generate enough similar activities such that |Wg(t)| ≥ |Ag|, for full agent utilization.

Each agent agi ∈ Ag is assigned an activity from Wg(t). The binary assignment matrix Xt ∈
{0, 1}N×Mt is defined such that xij = 1 if agent ai is assigned to activity wjt, otherwise xij = 0.
This assignment of an agent to an activity can be optimized in many ways, depending on the overall
goal of executing the task. This optimization directly impacts the efficacy of performing the task,
and therefore, we formalize this framework here to be able to explore this issue in the subsequent
sections. For example, if the goal is to perform the task so as to minimize the execution cost,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the agent assignment must minimize
∑N

i=1

∑Mt

j=1 C(ai, wjt)xij , where C(ai, wjt) is the execution
cost of agent ai working on activity wjt. In general, it must do so while satisfying constraints∑N

i=1 xij ≥ r(wjt), where r(wjt) is the minimum number of agents required to execute activity wjt.
This ensures each activity is assigned sufficient agents. Moreover,

∑Mt

j=1 xij ≤ κ(ai), where κ(ai) is
the maximum number of activities that agent ai can handle at a given time, thereby ensuring to limit
the agent’s workload. A simplified representation of this agent assignment is a function S(wjt) that
determines the set of agents executing wjt, such that S(wjt) = {ai ∈ A|xij = 1}.
Various operational concerns, such as business, technical, and logistics, may determine a task
decomposition and activity assignment to agents for many complex real-world tasks. Additionally, for
the task to be optimized, in addition to an effective agent assignment, it is necessary to also ensure that
each agent ai optimizes the execution of its assigned activity wjt. A task performance metric is given
by J(W(t), Xt,Π), whereW(t) represents task activities at time t, Xt is the agent-assignment matrix,
and Π denotes execution policies. The goal is to meet all operational concerns and also to continuously
adaptW(t), Xt, and Π such that J improves over time. W∗(t) and X∗

t are comprehensive when
operational concerns are met and when

∑N
i=1 xij ≥ r(wjt) and

∑Mt

j=1 xij ≤ κ(ai).

Task decomposition to match agent capabilities and generate balanced activities is a combinatorial
problem that is often NP-hard. MARL algorithms struggle with such problems, particularly at scale,
as shown in Gu et al. (2020); Martins et al. (2025). They rely on local rewards, perform poorly in
discrete combinatorial spaces, and converge slowly in dynamic environments. By Bellman’s principle
of optimality, if task decomposition and assignment are suboptimal, as with MARL, overall task
performance cannot be optimal with MARL.

3.2 TWO-PHASE APPROACH

Given MARL’s limitations in optimally decomposing and assigning tasks in dynamic environments,
we introduce a two-phase approach, as illustrated in Figure 1. This iterative process enables continu-
ous adaptation to evolving tasks while ensuring that homogeneous agents execute activities using the
most effective policies available.

Policy

Task Remaining Task Decomposition

Perform Activity
Merge Selected Trajectories

Activity Distribution

Detect, Decompose, Prune

Match Activity to Agent Capabilities

Record TrajectoryEach assigned activity:

Agents & Capabilities

PHASE-1
Refocus

Refine
PHASE-2

Policy Policy

Figure 1: Two-phase approach - iterating between Phase-1 refocusing agent task distribution and
Phase-2 executing activity with the best policy from the policy bank and shared experience merging
of optimal trajectories leads to continuous learning.

3.2.1 PHASE ONE - TASK DECOMPOSITION AND ASSIGNMENT

In phase one, each agent helps obtain information from their environment and shares it with a task
distributor. The task distributor decomposes the task in its current state into activities and distributes
these activities to the most suitable agents. This allows segmenting a massive state space for a huge
task into smaller-scale activities that agents can handle, as discussed in the last section. During phase-
1, we optimize task decomposition W ∗(t) with an optimal assignment X∗

t for all possible tasks W (t)
by matching the agent capabilities with the activities. This opens the possibility of complementing
pure reinforcement learning with adjunct strategies by leveraging AI-driven task decomposition
and assignment methods. Additionally, it becomes feasible to use domain-centric, oracle-centric,
human-in-the-loop (HIL), another learning approach, or a combination of these approaches to aid in
determining what is the best way for the group of agents to tackle the current state of the task.

At each timestep t, given the current task state Φ(W (t)), we seek an optimal task decomposition
W ∗(t) and assignment matrix X∗

t . As this is repeated regularly, the system adapts to the dynamic
nature of the task and refocuses agents to operate on the currently most relevant aspects of the task.
Unlike a pure MARL approach where each agent would learn to tackle a vast task state-space, phase

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

one could refocus the agents at every iteration of the two-phase approach to attend a specific, narrow
state-space of an activity that is most likely to make an immediate and significant contribution to
the overall task. By decomposing the large task environment into small activities that an agent can
execute, it becomes amenable to optimization at the local level by the most appropriate reinforcement
learning algorithms known for the activity.

3.2.2 PHASE TWO - POLICY EXECUTION AND LEARNING

Each agent ai ∈ Ag selects the best-known policy for its assigned activity wjt from a policy bank.
Agents execute activities using RL/MARL algorithms such as PPO and record trajectories. A merge
operation refines the policy based on the best experiences and stores the updated policy back into the
policy bank.

Each agent ai ∈ Ag executes its assigned activity wjt using a policy from a policy bank Bg, where
πwjt

= Π(wjt) ∈ Bg. The policy πwjt
is selected based on the similarity between the assigned

activity and previously encountered activities. At each time step τ , an agent ai ∈ Ag selects an action
aτ ∼ πwjt

(hτ). The policy πwjt
: H ×A→ [0, 1], where H represents histories and A represents

agents. Agents with same capabilities belong to a group Ag, and these homogeneous agents share
their experiences to collectively refine πwjt .

Consider Ag agents executing activity wjt, each following initial policy πwjt
, with expected policy

performance J(πwjt
) = Eζ∼πwjt

[R(ζ)], where R(ζ) is the expected return over trajectory ζ. Each
agent ai collects experience Eai = {(oτ , aτ , rτ , oτ+1) | τ = 0, . . . , Tζ} for Tζ trajectory samples,
with POMDP observations o ∈ O, actions a ∈ A, reward r ∈ R, and timestep τ . The policy
improvement in πwjt

after k updates for experience distribution E is given by J(π
(k)
wjt) = J(π

(k−1)
wjt)+

αE(o,a)∼E [∇J(πwjt
)]. For individual learning, E = Eai

. With a merge strategyM, shared learning
aggregates experience as E =M(Ea1 , Ea2 , . . . , Ea|Ag|).

Proposition 1. [Convergence Acceleration via Merged Learning] If p homogeneous agents merge
the top and bottom n % of the combined trajectories, the policy learns 2pn times faster than for a
single agent learning using all its trajectories.
Lemma 1.1. [Policy Update through Experience Merging] Updating policy πwjk

through expe-
rience merging with the best and worst n% trajectories ζ across all homogeneous agents ensures
improvement in expected task performance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt)]

Thus, homogeneous agents can collectively refine a single policy by pooling experiences, leading
to faster and more stable learning. During execution, each agent collects experience tuples Eai

=
{(oτ , aτ , rτ , oτ+1)}. A merge operation refines the policy based on the best-performing trajectories:
π′
wjt

=M(πwjt
, Ebest), whereM integrates high and low reward trajectories into the stored policy.

The updated policy replaces the existing one in the policy bank: Bg[wjt]← π′
wjt

. This ensures groups
of homogeneous agents continually refine and reuse the best available policies for task execution
under partial observability.
Proposition 2. [Two-Phase Task Optimization] Let J(W (t), Xt,Bg) be the task performance func-
tion, where Bg is the policy bank. The iterative execution of phase one and phase two ensures the
task policy converges to an optimal solution as the iterations progress if

1. Task decomposition and assignment are comprehensive: (W ∗(t) and X∗
t), and

2. Policy update through experience merging ensures improvement in expected task perfor-
mance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt)]

Theorem 1 (Task Learning). If there is a dynamic taskW(t) decomposed and assigned comprehen-
sively as (W ∗(t), X∗

t) as described in section 3.1, the taskW(t) can be effectively distributed and
learned among agents ai ∈ A.

Algorithm 1 demonstrates the two-phase approach where agents obtain the activity from task distrib-
utor, perform the activity using operateAgent procedure using a reinforcement learning algorithm
suitable for the optimal policy for the activity, and collect their experiences in Di. The agents use a
merge strategy to update the policy using Algorithm 2. The updateSharedLearning procedure updates
the policy based on the reinforcement learning algorithm used by the agent.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Population policy MARL for agent ai

1: Initialize populations Π0(b) for all agent activity-types b ∈ B
2: for each task iteration k = 1, 2, 3, · · · do
3: Obtain activity assignment ti from task distributor.
4: Select optimal policy for b = type(ti) as Πk(b) from population.
5: Πk

i (b) = Πk(b)
6: Di = operateAgent(ai, Πk

i (b))
7: Prune Di using merge strategy
8: policyMerge(Di, Πk

i (b), ai)
9: end for

Algorithm 2 Merging learned policies - policyMerge

Require: Di set of trajectories (ht
i, a

t
i, r

t
i , h

t+1
i), Πk

i (b) policy, ai agent identity
1: Dshared =

⋃
i∈I,type(ti)=b Di

2: Await potentially contributing agents i ∈ I with type(ti) = b
3: Πk(b)= updateSharedLearning(Πk(b), Dshared)
4: save Πk(b) to population.

3.3 EXEMPLARY SYSTEM

Image History

Fire Edge
Progression

Current &
Future Hotspots

Agent
Capabilities

Contour
 Matching

Iterative Closest
 Point Matching

Transformer
Module

Output
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Positional
Encoding

Add & Norm

Nx

A
1
2
3
4

B C D
A* Module

Cross
Attention

Capability
Coordinator

Current
Feed-Forward

Future
Feed-Forward

Sensor History
Sensor Pipeline Sensor

 FeaturesSensor
Neural Net

Convolution
Flow History

Image Pipeline

Convolution
 Module

 Inputs
- Wind speed, dir
- Humidity ...
- Inert/Population

- Fire Image

Task
Distribution

Output

C
F

(a) Phase one - task distribution

Best way to
do an activity?

Use pre-learned
policy

Select policy
based on

activity type

Fight
Edge

Fight
Edge

Tackle
Hotspot

Tackle
Hotspot

Policy Bank

Policy

How to execute? Policy-based
Actions

Situation:
10% Wind
Increase
At Edge

Action:
12% Water
Increase
At Edge

Fight
Edge

State

Reinforce
based on result

Action

Fight
Edge

Save
Refinements

Merge
Best

Refinements

How to learn?

Policy Bank

Refine Policy

(b) Phase two - policy learning

Figure 2: Exemplary two-phase approach for forest fire-fighting - standard Phase-1 task distribution
complemented with forest fire fighting pipelines. Phase-2 activity execution with optimal policy
selection followed by shared experience learning.

This approach was tested with an exemplary system as shown in Figures 2a and 2b. It works with
a large number of simulated drones that can operate alongside a few actual replicas of real-world
autonomous drones. Figure 2a shows phase one task distribution for a forest fire-fighting system used
to showcase the implementation, testing, and results discussed here. This algorithm can handle task
distribution for similar domains, such as flood control and synthetic domains. Here, the standard

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

phase-1 task distribution A∗ module and capability coordinator are complemented with fire-fighting
specific pipelines to expedite learning.

Each drone takes in inputs of critical fire-fighting components like fire image, wind speed and
direction, location, humidity, temperature, vegetation type, and population. It detects fire-spread
locations and hotspots. An edge progression module detects fire boundary progression since the
last time step. These components are fed into a convolution-transformer pipeline to detect current
and predict future hotspots and their intensity. A task distributor collects the boundary and hotspot
information along with drone capabilities and uses a heuristics-based A∗ planner to divide tasks
and assign agents to an activity. Some exemplary activities include fight-edge and fight-hotspot of
different sizes and intensities, as shown in Figure 2b.

Figure 2b shows phase two, where homogeneous agents ai ∈ Ag select the best policy πwjt from the
policy bank for its activity wjt. Each agent ai performs its activity wjt using RL/MARL algorithms
based on PPO in Schulman et al. (2017), Actor-Critic in Konda & Tsitsiklis (2000), and DQN in Mnih
et al. (2013) for πwjt

. They gather their experience as in Algorithm 1 and merge their experiences
as in Algorithm 2. Their shared experience evolves the system, and the two-phase approach allows
adapting to the dynamics of forest fires in an effective manner.

4 RESULTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP

This system was tested with the exemplary forest-fighting system disclosed in the last section. The
simulation allows testing a large number of drones in a variety of simulated environments based on
real fires. Testing with actual drones shows how the system can operate in the real world. A detailed
description of the experimentation is disclosed in Appendix A.3Experiment Details.

Simulating wildfires is an active research area, with many accurate ways to model the fire and fire
extinguishing. We used the WRF-Fire modeling guidelines in Coen et al. (2013) to determine the
spread of wildfires based on factors like fuel and weather, and used Hansen (2012) to determine water
extinguisher efficacy based on the spray angle, duration, and power, along with vegetation type. A
custom simulator was created using these modeling guidelines to test our approach for fighting forest
fires. A fleet of three custom-built drones that can coexist with more than 3000 simulated drones
was used. The drones were built using a PixHawk with an Ardupilot flight controller, a LASER to
emulate a fire extinguisher, and an onboard Raspberry Pi for autonomous operation in coordination
with an on-ground custom ground controller integrated with the simulator.

The POMDP reward function Ra used by agents is based on the change in fire intensity ∆I
I and

fire-area ∆A
A as a result of an agent action. Ra = α · min

(
∆I
I , k1

)
+ β · min

(
∆A
A , k2

)
where,

factors α and β control the weightage of changes in intensity and fire-area on the resulting reward.
The experiments used by default α = 2500, β = 3500, k1 = 0.02, k2 = 0.02 to balance the effects
of both intensity and area. There is a slight overweight for area change, as a smaller area offers better
opportunities to contain and fight with fewer high-capacity drones.

Both public datasets such as Singla et al. (2020); Fantineh (2023); Nguyen et al. (2024); Center
(2025); NIFC (2025) and synthetic datasets using fire models were used for testing, to test specific
aspects of the system for different fire scenarios. Fire was simulated with multi-colored fabric that can
be moved along the ground, simulating different fire positions and intensities of a fire dataset sample.
On-board drone CNN trained for this fabric fire simulation effectively helped simulate many fire
scenarios. A fire unit represents a normalized unit area of full fire on the ground. Three homogeneous
groups of drones with capability types small, medium, and large having speeds of 4x, 2x, and 1x and
fire extinguisher capacities of 10 liters, 50 liters, and 100 liters respectively were used with varying
density and fleet composition per fire unit.

A baseline of firefighters from the public datasets was used to evaluate the overall fire containment
performance using fire containment time and extinguisher resources. The fire containment perfor-
mance of 3,000 simulated agents - comprising a drone fleet with small:medium:large size ratios
of 50:35:15 and equipped with water-based extinguishers - is compared to that of real firefighters.
The evaluation focuses on improvements in containment time and efficiency of fire-extinguishing
resource usage. This was tested for fires of different sizes and hotspots. To ensure repeatability and

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

consistency in performance, multiple trials were conducted to measure percentage improvements in
time and resource usage across fires of different sizes. Specifically, medium fires with 10 hotspots
and large fires with 30 hotspots were tested, each using 10 different random seeds.

The evaluation return for T timesteps is computed as the cumulative returns during multiple trial
episodes, using the greedy policy after training it for T timesteps. The effect of individual com-
ponents and algorithms on learning the policy is evaluated by comparing evaluation returns across
configurations, as it isolates the learning dynamics of the training phase.

An ablation study of phase one components was done with a transformer, edge progression, and A*
distributor to evaluate the efficacy of phase one and its components. The transformer was replaced
by a no-transformer component that predicts the location and fire intensity using image analysis
based on fire colors. The A* component was replaced by a rules-based distribution method, and
the edge-progression component was replaced by a fire-edge contour detector along with the mean
intensity along each contour.

Algorithms used for two-phase population policy-bank based learning are evaluated, including on-
policy PPO, Advantage Actor-Critic, and off-policy DQN, and compared against traditional MARL
versions of these algorithms with 25 agents, including MAPPO as in Yu et al. (2022), an A2C
alternative of MAPPO, and QMIX as in Rashid et al. (2018). The scalability of this approach was
examined by conducting a test, where a hotspot of the same size was assigned to each available agent
and recording the total area fought in a fixed duration of 2000 timesteps.

The impact of trajectory merging based on shared experiences was analyzed in terms of the fire
containment time improvement, while maintaining the same level of resource usage as under the fire-
fighter baseline. Three trajectory merge strategies tested include Best-N, Hybrid-N, and Weighted-N
trajectory merging. Their impact was evaluated using an ANOVA test for statistical significance.
Trajectories from similar homogeneous agents were ranked based on reward and used for shared
experience learning. The Best-N strategy merges the top N trajectories, hybrid-N merges the top and
bottom N trajectories, and weighted N merges trajectories by repeating them multiple times based on
their weights computed by their top and bottom ranks.

Note that we explored many standard benchmarks that exist for traditional MARL algorithms, such
as the SMAC benchmark as in Samvelyan et al. (2019); Ellis et al. (2023) that focuses on zero-sum
competitive games or games with a limited number of agents as discussed in Appendix A.5. These
benchmarks did not allow evaluating the many aspects of our system for cooperative tasks with high
scalability. Therefore, it was necessary to test this system with an exemplary firefighting system
involving coordination between a large number of agents to cooperatively accomplish a complex,
unpredictable, and fast-changing task like fighting forest fires.

4.2 COMPARISONS AND ANALYSIS

0
100

200
300

400
500

600
700

800
900

1000Fire Units

5

10

15

20

25

30

Hotspots

15

25

35

45

T
im

e
Im

pr
ov

em
en

t %

5

10

15

20

25

30

35

40

45

(a) Containment time

0
100

200
300

400
500

600
700

800
900

1000Fire Units

5

10

15

20

25

30

Hotspots

5

15

25

35

R
es

ou
rc

e
Im

pr
ov

em
en

t %

0

5

10

15

20

25

30

35

40

(b) Containment resources

Figure 3: Containment performance

Figure 3 shows the fire containment time and resource improvement of our approach over the baseline
system. In Figure 3a, regardless of the number of units and hotspots, our approach outperforms the
baseline by over 15% and exceeds 40% for a large number of units and hotspots. In Figure 3b, as fire
units and hotspots increase, our approach outperforms the baseline in resource consumption. As the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

 Im
pr

ov
em

en
t

Fire Units

10-Hotspots
30-Hotspots

(a) Containment time

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

10-Hotspots

30-Hotspots

P
er

ce
nt

 Im
pr

ov
em

en
t

Fire Units

(b) Containment resources

Figure 4: Containment by hotspots

number of fire units and hotspots increases, optimizations along burning edges and hotspots increase,
greatly reducing the containment time and fire-extinguishing resource usage. Figure 4a and 4b further
support this observation, showing greater improvements with more hotspots and larger fire-sizes as
bigger tasks offer more scope for optimizations.

Transformer,A*,EdgeProgression
NoTransformer,A*,EdgeProgression

Transformer,RuleBased,EdgeProgression
Transformer,A*,NoEdgeProgression

-10000

-5000

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160 180 200

Environment Time Steps (x100)

E
va

lu
at

io
n

R
et

ur
ns

Figure 5: Task distribution methods

-10000

-5000

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160 180 200

E
va

lu
at

io
n

R
et

ur
ns

Environment Time Steps (x100)
Two-Phase PPO

Two-Phase Actor Critic
Two-Phase DQN

Traditional MARL PPO (MAPPO)
Traditional MARL A2C

Traditional MARL DQN (QMIX)

Figure 6: Two-phase learning algorithms

Figure 5 shows ablation study results with transformer, A∗, and edge progression providing the
best performance, as edge progression helps detect edges, transformers predict hotspots, and A∗

best distributes when edges, hotspots, and agent capabilities are available. This also shows that
task-specific combinatorial optimization quickly offers good performance. The transformer allows
predicting future hotspots, and edge-progression allows accurate edge tracking, which are crucial in
staying ahead of the fire spread by timely positioning and spraying the extinguisher. A* allows using
heuristics based on danger quotient, which allows assigning high-capability drones to areas that are
prone to maximum fire spread.

Figure 6 shows that phase two algorithms significantly outperform traditional MARL algorithms.
Phase One refocuses training to relevant activities, and phase two uses the best known policies to
efficiently perform and using shared learning quickly optimizes those policies. PPO clipping the
loss function to limit updates performs better than other on and off-policy algorithms. Traditional
MARL algorithms take too long to learn and cannot optimize well on their own for such complex
tasks. Additionally, the 95% confidence interval for traditional MARL algorithms is much wider,
as the non-determinism in joint observations and drastically varying joint actions lead to drastically
different rewards and much different policy learning. Phase one in the two-phase approach drastically

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

mitigates these issues by pruning the state-space, which leads to a much faster rise in the early stages
of learning and overall much higher evaluation returns.

-30

-20

-10

0

10

20

30

40

2 4 6 8 10 12 14

Weighted-N
Hybrid-N
Best-N

T
im

e
Im

pr
ov

em
en

t (
%

)

Iterations (x2000)

Figure 7: Shared experience learning

Table 1: Trajectory merge summary

Purpose Stability
KL Divergence

Adaptation
KL Divergence

Adaptation
Iterations

Weighted-N 0.0181 0.0681 8

Hybrid-N 0.0323 0.0776 11

Best-N 0.0206 0.0998 13

10

100

1000

10 100 1000

F
ire

 U
ni

ts

Number of Agents

Two-Phase PPO
Two-Phase Actor Critic

Two-Phase DQN
Traditional MARL PPO

Traditional MARL Actor Critic
Traditional MARL DQN

Figure 8: Multi-agent scalability

Figure 8 shows that two-phase algorithms significantly outperform traditional MARL algorithms as
the number of agents increases. It was not possible to run tests with more than 30 MARL agents, as
the coordination effort significantly increases and the state-space becomes exponential due to many
agents. However, the two-phase approach circumvents this issue, allowing for a very large number of
agents. This is done by first distributing activities to the best agents capable to handle such activity
and then the agents working on those assigned activities, typically either independently or in smaller
groups. With groups of homogeneous agents, it becomes possible to use shared experience learning
using a population policy bank, making it feasible to learn how to handle very large fires, as shown in
the two-phase algorithms in this figure.

Figure 7 shows shared learning performance using three prominent strategies. The Weighted-N
strategy performed the best, reaching an average 34% improvement. The ANOVA test yielded a
F-statistic of 13.92 and a p-value of 0.0000221 < 0.05. This indicates a statistically significant
difference between the means of the three merge trajectory strategies, contributing to a significant
time improvement. Table 1 shows a low KL divergence for the Weighted-N strategy, indicating high
stability. Furthermore, with a low adaptation KL divergence, the Weighted-N strategy is resilient to
adversarial environment changes, and its low adaptation iteration signifies quick adaptation to diverse
new conditions.

These results show that the two-phase multi-agent approach is very effective and scalable in perform-
ing large, unpredictable tasks using groups of homogeneous agents.

5 CONCLUSION

In this paper, we presented a novel approach to effectively learn how to best perform a dynamic task
with multiple groups of homogeneous agents in complex environments. The novel two-phase refocus,
refine, repeat approach where phase one evaluates how to best assign the agents to accomplish the
task, and phase two refines the performance of the task by using the collective intelligence of the
agents to learn an optimal RL policy performs well for such tasks. We demonstrated this approach
works quite well with an exemplary system where a large number of drones learn to fight forest fires
and tested it using both simulations and with actual drones. This approach can be used in many other
applications, including fighting fires in urban settings, providing medical assistance in urban settings,
and many disaster relief scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

This paper contributes an approach for performing complex tasks with a large number of agents. We
fully described our proposed approach in section 3 with additional details in A.2 Exemplary Phase
Two Algorithms on algorithm implementations. Theorem 1, Prepositions 1 and 2, and Lemma 1.1
give a theoretical basis and are proven in Appendix A.1 Two Phase Approach Proofs. Section 4 and
Appendix A.3 Experiment Details give details on obtaining the results. This constitutes complete
details on reproducing the work presented in this paper.

REFERENCES

National Interagency Fire Center. National interagency fire center data portal, 2025.

Janice L. Coen, Marques Cameron, John Michalakes, Edward G. Patton, Philip J. Riggan, and
Kara M. Yedinak. Wrf-fire: Coupled weather–wildland fire modeling with the weather research
and forecasting model. Journal of Applied Meteorology and Climatology, 52(1):16–38, January
2013. ISSN 1558-8432. doi: 10.1175/jamc-d-12-023.1. URL http://dx.doi.org/10.
1175/JAMC-D-12-023.1.

Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of Artificial Intelligence Research, 13:227–303, 2000.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj
Mahajan, Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark
for cooperative multi-agent reinforcement learning. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Pro-
cessing Systems, volume 36, pp. 37567–37593. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/
764c18ad230f9e7bf6a77ffc2312c55e-Paper-Datasets_and_Benchmarks.
pdf.

Fantineh. Next day wildfire spread. Kaggle, 2023. URL https://www.kaggle.com/
datasets/fantineh/next-day-wildfire-spread.

Yifan Gu, Qi Sun, and Xinye Cai. Multiagent reinforcement learning for combinatorial optimization.
In International Conference on Neural Computing for Advanced Applications, pp. 23–34. Springer,
2020.

Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS) Workshop, pp. 66–83, 2017.

Rachel Haighton, Amirhossein Asgharnia, Howard Schwartz, and Sidney Givigi. Hierarchical
reinforcement learning for non-stationary environments. In 2023 IEEE Symposium Series on Com-
putational Intelligence (SSCI), pp. 1421–1428, 2023. doi: 10.1109/SSCI52147.2023.10371909.

Richard Hansen. Estimating the amount of water required to extinguish wildfires under different
conditions and in various fuel types. International Journal of Wildland Fire, 21(5):525, 2012. doi:
10.1071/wf11022.

Bryce Alexander Hopkins. Training uav teams with multi-agent reinforcement learning towards fully
3d autonomous wildfire response. Master’s thesis, Clemson University, 2024.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning, 2017. URL https://arxiv.org/abs/1711.00832.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In Proceedings of the 7th International Conference on Learning Representations
(ICLR), 2019.

10

http://dx.doi.org/10.1175/JAMC-D-12-023.1
http://dx.doi.org/10.1175/JAMC-D-12-023.1
https://proceedings.neurips.cc/paper_files/paper/2023/file/764c18ad230f9e7bf6a77ffc2312c55e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/764c18ad230f9e7bf6a77ffc2312c55e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/764c18ad230f9e7bf6a77ffc2312c55e-Paper-Datasets_and_Benchmarks.pdf
https://www.kaggle.com/datasets/fantineh/next-day-wildfire-spread
https://www.kaggle.com/datasets/fantineh/next-day-wildfire-spread
https://arxiv.org/abs/1711.00832

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jiaxin Liang, Haotian Miao, Kai Li, Jianheng Tan, Xi Wang, Rui Luo, and Yueqiu Jiang. A review of
multi-agent reinforcement learning algorithms. Electronics, 14(4), 2025. ISSN 2079-9292. doi:
10.3390/electronics14040820. URL https://www.mdpi.com/2079-9292/14/4/820.

Miguel S. E. Martins, João M. C. Sousa, and Susana Vieira. A systematic review on reinforcement
learning for industrial combinatorial optimization problems. Applied Sciences, 15(3), 2025. ISSN
2076-3417. doi: 10.3390/app15031211. URL https://www.mdpi.com/2076-3417/15/
3/1211.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ofir Nachum, Haoran Tang, Xingyu Lu, Shixiang Gu, Honglak Lee, and Sergey Levine. Why does
hierarchy (sometimes) work so well in reinforcement learning?, 2019. URL https://arxiv.
org/abs/1909.10618.

Dung Nguyen, Phuoc Nguyen, Svetha Venkatesh, and Truyen Tran. Learning to transfer role
assignment across team sizes. arXiv preprint arXiv:2204.12937, 2022.

Dung Nguyen, Erin J. Belval, Yu Wei, Karen C. Short, and David E. Calkin. Dataset of united states
incident management situation reports from 2007 to 2021. Scientific Data, 11(1), Jan 2024. doi:
10.1038/s41597-023-02876-8.

NIFC. Nifc open data — national interagency fire center. https://data-nifc.opendata.
arcgis.com/, 2025.

Shubham Pateria, Budhitama Subagdja, Ah-Hwee Tan, and Chai Quek. End-to-end hierarchical
reinforcement learning with integrated subgoal discovery. IEEE Transactions on Neural Networks
and Learning Systems, 33(12):7778–7790, 2022. doi: 10.1109/TNNLS.2021.3087733.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In Proceedings of the 35th International Conference on Machine Learning
(ICML), pp. 4292–4301, 2018.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. In Proceedings of
the 33rd International Conference on Machine Learning (ICML) Workshop, 2016.

Mikayel Samvelyan, Tabish Rashid, Christian S. Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Fred Rudin, Chia-man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. In Proceedings of the 33rd Annual Conference on Neural
Information Processing Systems (NeurIPS), pp. 2186–2196, 2019.

Robin Schiewer, Anand Subramoney, and Laurenz Wiskott. Exploring the limits of hierarchical
world models in reinforcement learning. Scientific Reports, 14(1):26856, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Samriddhi Singla, Tina Diao, Ayan Mukhopadhyay, Ahmed Eldawy, Ross Shachter, and Mykel
Kochenderfer. Wildfiredb: A spatio-temporal dataset combining wildfire occurrence with relevant
covariates. In 34th Conference on Neural Information Processing Systems (NeurIPS 2020), 2020.

Yee Whye Teh, Victor Bapst, Wojciech M. Czarnecki, Razvan Pascanu, Raia Hadsell, and Nicolas
Heess. Distral: Robust multitask reinforcement learning. In Proceedings of the 31st Annual
Conference on Neural Information Processing Systems (NeurIPS), pp. 4499–4509, 2017.

Vivienne Huiling Wang, Tinghuai Wang, and Joni Pajarinen. Hierarchical reinforcement learning
with uncertainty-guided diffusional subgoals. arXiv preprint arXiv:2505.21750, 2025.

11

https://www.mdpi.com/2079-9292/14/4/820
https://www.mdpi.com/2076-3417/15/3/1211
https://www.mdpi.com/2076-3417/15/3/1211
https://arxiv.org/abs/1909.10618
https://arxiv.org/abs/1909.10618
https://data-nifc.opendata.arcgis.com/
https://data-nifc.opendata.arcgis.com/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

XiaoLong Wei, WenPeng Cui, XiangLin Huang, LiFang Yang, XiaoQi Geng, ZhuLin Tao, and Yan
Zhai. Hierarchical rnns with graph policy and attention for drone swarm. Journal of Computational
Design and Engineering, 11(2):314–326, 03 2024. ISSN 2288-5048. doi: 10.1093/jcde/qwae031.
URL https://doi.org/10.1093/jcde/qwae031.

Yu Xia, Junwu Zhu, and Liucun Zhu. Dynamic role discovery and assignment in multi-agent task
decomposition. Complex & Intelligent Systems, 9(6):6211–6222, 2023.

Mingyu Yang, Jian Zhao, Xunhan Hu, Wengang Zhou, Jiangcheng Zhu, and Houqiang Li. Ldsa:
Learning dynamic subtask assignment in cooperative multi-agent reinforcement learning. Advances
in neural information processing systems, 35:1698–1710, 2022.

Chenlong You, Yingbo Wu, Junpeng Cai, Qi Luo, and Yanbing Zhou. Dynamic subtask representation
and assignment in cooperative multi-agent tasks. Neurocomputing, 628:129535, 2025.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

Yifan Zang, Jinmin He, Kai Li, Haobo Fu, Qiang Fu, Junliang Xing, and Jian Cheng. Automatic
grouping for efficient cooperative multi-agent reinforcement learning. Advances in neural informa-
tion processing systems, 36:46105–46121, 2023.

Le Zheng, Jiaxu Yang, Han Cai, Ming Zhou, Wensheng Zhang, and Jun Wang. Magent: A many-agent
reinforcement learning platform for artificial collective intelligence. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI), pp. 8222–8229, 2018.

12

https://doi.org/10.1093/jcde/qwae031

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 TWO PHASE APPROACH PROOFS

A.1.1 PROPOSITION 1

Proposition (Convergence Acceleration via Merged Learning). If p homogeneous agents merge the
top and bottom n % of the combined trajectories, the policy learns 2pn times faster than for a single
agent learning using all its trajectories.

Proof. Since p agents are homogeneous, all trajectories Z = {ζ1, ζ2, ...ζn} are interchangeable.
Therefore, if we were originally getting s trajectories for an agent, we are now getting sp trajectories
that are all interchangeable. However, we are only choosing 2n % trajectories to train the policy,
resulting in 2nsp total trajectories. This means if the original training took t timesteps, the new
training only takes t/2pn timesteps, which is 2pn times faster than a single agent.

A.1.2 LEMMA 1.1

Lemma (Policy Update through Experience Merging). Updating policy πwjk
through experience

merging with the best and worst n% trajectories ζ across all homogeneous agents ensures improve-
ment in expected task performance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt

)]

Proof. The policy gradient theorem states ∇θJ(θ) = Eτ∼pθ
[R(τ)∇θ log pθ(τ)] . Since we select

the policies with n% highest and lowest returns, let there be an indicator function 1sel(τ), which
is 1 if τ is in the top or bottom n%. Since Eτ∼pθ

1 = 2n, the expectation of the estimator is:

∇θJ(θ) = Eτ∼pθ

[
1sel(τ)

R(τ)
2n ∇θ log pθ(τ)

]
. Since the merge algorithm discards trajectories sets

Z such that gt · ∇θJ(θt) < 0 where gt is the gradient of a random sample of trajectories from Z ,
gt · ∇θJ(θt) ≥ 0 so the update with best and worst n% of combined trajectories is aligned with Z .
With J ← J + α∇θJ(θ), it results in improvement of J by α∇θJ(θ). Thus the 2n samples result in
expected improvement of α

2n∇θJ(θ).

A.1.3 PROPOSITION 2

Proposition (Two-Phase Task Optimization). Let J(W (t), Xt,Bg) be the task performance function,
where Bg is the policy bank. The iterative execution of phase one and phase two ensures the task
policy converges to an optimal solution as the iterations progress if

1. Task decomposition and assignment are comprehensive: (W ∗(t) and X∗
t), and

2. Policy update through experience merging ensures improvement in expected task perfor-
mance over time: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt

)]

Proof. Since all homogeneous agents ai ∈ A use a particular policy πwjt , all trajectories Z =
{ζ1, ζ2, ...ζn} are interchangeable and therefore can be treated equivalently. In order to obtain an
optimal solution, it is necessary to have a comprehensive task decomposition and assignment result
in a policy that improves and convergence, leading to the solution. Additionally, the learning rate α
tends to 0 as t tends to infinity. According to Lemma 1.1, if the top and bottom n% policies from each
ζi ∈ Z are merged, the E(J(W ∗(t), X∗

t ,Π
′
wjt

)) increases and therefore, the policy improves. Since
the two-phase process is continuously repeated, the E(J(W ∗(t), X∗

t ,Π
′
wjt

)) continually converges
and improves.

A.1.4 THEOREM 1

Theorem (Task Learning). If there is a dynamic taskW(t) decomposed and assigned comprehen-
sively as (W ∗(t), X∗

t) as described in section 3.1, the taskW(t) can be effectively distributed and
learned among agents ai ∈ A.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Proof. Since the task W(t) is decomposed and assigned comprehensively i.e. (W ∗(t), X∗
t), the

constraints
∑N

i=1 xij ≥ r(wjt) and
∑Mt

j=1 xij ≤ κ(ai) hold true. This ensures that each activity is
adequately assigned enough agents and that the agents are not overworked and are capable of working
on their assigned activity.

Each activity has an assigned policy from the policy bank, and at least r(wjt) agents have trajectories
for the activity. By proposition 1, a policy with r agents taking the top and bottom n % of trajectories
learns 2rn times faster than a single agent since each agent in a group g is homogeneous. So if
r > 1

2n , distributing learning across multiple agents as done in phase two leads to faster learning.
Since r ≥ 1 and r > 1

2n , by proposition 2 the system continuously learns by merging the policies,
allowing for continual evolution and optimal learning.

A.1.5 PRACTICAL CONSIDERATIONS

We believe that our assumptions reflect the practical considerations for the proposed multi-agent
reinforcement learning paradigm. The analysis relies on three assumptions, each of which aligns with
how large-scale multi-agent systems are actually deployed:

1. Homogeneity within each policy group, assumed by Proposition 1: Policies are used within smaller
groups of homogenous agents, grouped by similar sensing, actuation, and capability profile. This
is consistent with real-world deployments, where fleets naturally consist of classes of similar types
and structures of drones. If a group exhibits internal heterogeneity, it can be further subdivided - our
framework imposes no restriction on the number of groups - until this homogeneity is met.

2. Sufficient/comprehensive task decomposition, assumed by Proposition 2 and Theorem 1: This
decomposition assumption formalizes the practical goal of full agent utilization, where a task is
decomposed into activities such that these activities are assigned to the best capable agent, resulting
in the highest possible utilization across the agents. An activity lacking agents with the required
capabilities will not be performed effectively, and agents not being assigned sufficient activities leads
to underutilization of the available capability.

3. Performance improvement under experience merging, as assumed by Proposition 2: Merging
additional trajectories improves the shared policy by incorporating information that helps it adapt.
Trajectory sets whose update direction increases expected performance are retained. Thus, every
update step moves the policy in an improving direction, ensuring the process is not assumptive but
explicitly performance-aligned.

Taken together, these assumptions mirror the operational structure of real multi-agent systems.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2 EXEMPLARY PHASE TWO ALGORITHMS

An operateAgent procedure allows a homogeneous agent ai ∈ Ag to execute an activity πwjt . This
procedure is invoked from Algorithm 1. A variety of single-agent on-policy algorithms like ones
based on PPO and Actor-Critic and off-policy algorithms like ones based on DQN can be used for the
operateAgent procedure that executes activity πwjt . A sample algorithm based on PPO (Schulman
et al., 2017) is shown by algorithm 3

For the forest fire fighting with drones application, the state is the current representation of the drone
and its relation with the fire, including location, fire intensity, wind speed, wind direction, humidity,
distance to nearest settlement, distance to body of water, etc. The action is the discrete actions
the drones can do, including moving in a certain direction, spraying water in a certain direction or
intensity, or creating a controlled fire. Since the number of states and actions is reasonable for each
particular policy due to the distributed approach, it is able to learn it in a reasonable timeframe.

Algorithm 3 operateAgent: Proximal Policy Optimization (PPO)

Require: Agent identifier ai, starting policy Πk
i (b)

Ensure: Returns a set of trajectories (ht
i, a

t
i, r

t
i , h

t+1
i)

1: Initialize actor network π with parameters ϕ
2: Initialize critic network V with parameters θ
3: Initialize policy π ← Πk

i (b)
4: Initialize empty trajectories set Di

5: for each episode do
6: for time step t = 0, 1, 2, . . . do
7: Observe current state ht

i
8: Sample action ati ∼ π(·|ht

i;ϕ)
9: Apply action ati; observe reward rti and next state ht+1

i

10: Di = Di ∪ ⟨ht
i, a

t
i, r

t
i , h

t+1
i ⟩

11: πβ(a
t
i|ht

i)← π(ati|ht
i;ϕ)

12: for epoch e = 1, . . . , Ne do
13: Importance sampling ratio: ρ(ht

i, a
t
i)←

π(at
i|h

t
i;ϕ)

πβ(at
i|ht

i)

14: N -step: Adv(ht
i, a

t
i) =

∑N−1
τ=0 γτR(ht+τ

i , at+τ
i , ht+τ+1

i) + γNV (ht+N
i)− V (ht

i)

15: Target: yti ←
∑N−1

τ=0 γτrt+τ
i + γNV (ht+N

i)
16: Entropy regularization: H(π(·|ht

i;ϕ)) =
∑

a∈A π(a|ht
i;ϕ) log π(a|ht

i;ϕ)

17: Actor loss: L(ϕ)← −min
[
ρ(ht

i, a
t
i) ·Adv(ht

i, a
t
i),

clip(ρ(ht
i, a

t
i), 1− ϵ, 1 + ϵ)

·Adv(ht
i, a

t
i)
]
− αH(π(·|ht

i;ϕ))

18: Critic loss: L(θ)← (yti − V (ht
i; θ))

2

19: Update parameters ϕ by minimizing actor loss L(ϕ)
20: Update parametetrajectoryTablers θ by minimizing critic loss L(θ)
21: end for
22: end for
23: end for
24: return Di

A set of trajectories ζ is selected across the group of agents Ag to merge shared experiences back to
the policy πwjt

before placing it back in the policy bank. The updateSharedLearning procedure is
invoked by Algorithm 2 to merge shared learning across the agents. A variety of single-agent on-
policy algorithms like ones based on PPO and Actor-Critic and off-policy algorithms like ones based
on DQN can be used for updateSharedLearning procedure alongside the corresponding operateAgent
procedure. Here, we illustrate an updateSharedLearning algorithm based on actor-critic (Konda &
Tsitsiklis, 2000) to merge a selection of trajectories Z = {ζ1, · · · , ζn} obtained from homogeneous
agents ai ∈ Ag while they executed activity wjt using policy πwjt .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 4 updateSharedLearning: On-Policy Experience Sharing

Require: Shared policy Πk(b), shared experience buffer {Dshared}
Ensure: Updated shared policy Πk(b) with off-policy corrections

1: Initialize temporary policy Πk
temp(b)← Πk(b)

2: for each epoch e = 1, . . . , Ne do
3: for each mini-batch of transitions (hk, ak, rk, hk+1) sampled from Dshared do
4: for each agent i do
5: Importance sampling ratio correcting off-policy updates: ρ(hk

i , a
k
i)←

π(ak
i |h

k
i ;ϕi)

πβ(ak
i |hk

i)

6: N-step Adv: Adv(hk
i , a

k
i) =

∑N−1
τ=0 γτR(hk+τ

i , ak+τ
i , hk+τ+1

i) + γNV (hk+N
i ; θi) −

V (hk
i ; θi)

7: Target: yki ← rki + γmaxa′
i∈Ai

Q(hk+1
i , a′i; θ̄i)

8: Corrected actor loss: L(ϕi) = −ρ(hk
i , a

k
i)

(
rk + γV (hk+1; θi)− V (hk; θi)

)
log π(aki |hk

i ;ϕi)

9: Critic loss: L(θi)← 1
B

∑B
k=1(y

k
i −Q(hk

i , a
k
i ; θi))

2

10: Update actor parameters ϕi by minimizing L(ϕi)
11: Update critic parameters θi by minimizing L(θi)
12: end for
13: end for
14: end for
15: Update shared policy Πk(b)← Πk

temp(b) using aggregated policy updates
16: return Updated shared policy Πk(b)

A.3 EXPERIMENT DETAILS

A.3.1 SETUP AND PARAMETERS

Various aspects of the two-phase approach were tested with experiments using an exemplary forest-
fighting system disclosed in section 4.1. A simulated agent was operated using a set of test fire-
images and corresponding sensor data for that image. Inputs from many agents are reported to a
task distributor that performs the task distribution. A real agent is an actual fire-fighting drone that
captures the fire-image using its camera and acquires current sensor data using its on-board sensors
to correspond with the captured image. This data is periodically sent to a task distributor to reassign
activities to each agent. The test fire-images were input to the image pipeline, and the sensor data
were input to the sensor pipeline as shown in Figure 2a. The task distribution result assigns a hotspot
or an edge to an agent. Such an assignment is reported to the agent as an activity assignment. An
agent continuously performs its assigned activity as shown in the Figure 2b. A reassignment of a
different activity by the task distributor results in the agent preempting its current assigned activity
and moving to the new assigned activity. Best and worst trajectories across similar agents performing
an activity are used for merging their shared experiences into their shared policy persisted in the
policy bank.

A real agent is a Raspberry-Pi-based drone exemplary agent that is an X-Configuration Quadcopter
UAV with a PixHawk 2.4.8 flight controller driving A2212/KV930 motors with 8038 propellers
and SimonK 10A ESC, a GPS M8N, and a Matek Optical Flow sensor for positioning, along with
Benewake TFmini Plus LIDAR sensor. Drone captures temperature, humidity, pressure, wind speed,
and wind direction using onboard sensors along with image frames using Raspberry Pi Camera, and
reports them for task distribution by default every 15 seconds. Image resolution defaults to 384 x 384.
It communicates directly with a ground control station using onboard WiFi, and falls back to radio
telemetry if WiFi is out of range.

Simulated agents are pure software components that run on multiple servers with 32 cores, 128GB
RAM, and 1TB storage medium end servers. These agents use a pre-captured stream of image and
sensor data with around 4800 samples for different fire scenarios. The task distribution uses multiple
16GB vRAM GPUs, depending on the number of agents and fire analysis request frequency for each
experiment.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Different fire scenarios are simulated based on the actual fire dataset. In a virtual agent, the duration
and frequency of spray operation are recorded to determine the effect of the fire extinguisher in
changing the fire based on modeling guidelines in Hansen (2012). This change helps in computing
the reward for the current action of the agent. When using a real agent, it is also necessary to precisely
recreate a test environment so that the performance of a real agent can be evaluated in conditions
close to those of a real forest fire. Based on an actual fire sample from the fire dataset, a forest fire
mock layout is created on the ground using different fire-colored fabric pieces as shown in 10. The
fabric is moved to simulate changes in the fire condition. Images captured by a real agent is processed
using a CNN model that is trained on these forest fire mock layouts. A point-laser device operated by
the real agent is used to simulate the spraying of a fire extinguisher. The duration and frequency of
this laser operation are recorded, and using modeling guidelines in Hansen (2012), the effect of the
fire extinguisher is determined to guide altering the fire status on the ground. In order to streamline
results with real and virtual agents, a fire-unit is used to represent one unit of fire. By default, one
fire-unit maps to one square kilometer of a real forest fire, and this is typically equivalent to one
square centimeter of the forest fire mock layout. Fire unit is used to represent the size of fire for all
results in section 4.2.

A.3.2 AGENTS, ACTIVITY ASSIGNMENTS, AND EXECUTION FOR EXEMPLARY SYSTEM

The formal task decomposition and activity distribution is disclosed in section 3.1. Here, we explore
certain aspects of this formalism in a more informal setting as applied to the exemplary system of
Section 3.3 for providing a deeper understanding of the underlying concepts.

The forest fire-fighting task W(t) changes over time as fire spreads or is contained. Agents are
systems with specific capabilities that help perform activities related to the task of fighting wildfires.
This may include drones of different sizes, speeds, and their ability to perform the firefighting tasks.
Agents are categorized into groups based on their capabilities, which for this exemplary domain
includes fire-extinguishing capacity, fire-extinguishing type, and drone speed. All agents in the same
group have the same capabilities. E.g., we have a group of small, medium, and large drones with
relative speeds 4x, 2x, 1x, and liquid fire extinguisher capabilities of 10 liters, 50 liters, and 100 liters,
respectively. A drone may temporarily leave its group, such as to refuel and join back when it is ready
to operate again. However, a drone does not change groups, as the drone’s association with a group is
based on its capabilities.

During phase-1, the current task is holistically analyzed and decomposed into many activities, such
as fighting a specific fire edge or a specific fire hotspot at a specific location in the forest. Each
such activity wjt involves a complexity level c(wjt), such as the danger it poses and the likelihood
of it spreading the fire. An activity of a specific complexity level needs to be addressed by agents
with a specific capability. E.g., a fire edge near an inert area like a lake or a rocky hill is not very
dangerous and may be handled by a small, low-capacity drone, whereas one that is close to dangerous
vegetation requires a medium or high-capacity drone that can immediately contain it. An activity
such as fighting fire-edge or fighting a hotspot is assigned to each agent, not their group. An activity
may require one or more agents as defined by r(wjt). E.g., when r(wjt) = 2, two or more agents,
possibly from different agent groups, may be assigned to wjt. Thus, two groups may have agents
working on an overlapping subset of activities. Moreover, κ(ai) is the maximum number of activities
that agent ai can handle at a given time. The r(wjt) and κ(ai) are typically prior domain knowledge
specified by the expert or pre-defined while creating the domain. This allows defining more than
one drone to be assigned to an activity and more than one activity assigned to a drone for maximum
flexibility. A very big hotspot cannot be handled by a single drone - requiring many drones, and a
large drone may handle many small fire edges.

An agent is not required to operate on its assigned activity to completion. An agent’s task assignment
may be continuously revised, and the agent may not be tied to an activity until completion. We iterate
continuously between the two phases. In phase-1, a holistic view of the current taskW(t) governs
the partitioning of the task into activities, and assignment of agents to these activities. An agent
continues to work on an activity until the activity is completed or the agent gets reassigned. E.g., a
small drone may be assigned to a fire edge that was initially of low risk. However, due to a change in
wind direction, that fire edge is now flagged as high risk, causing it to be assigned to another potent
medium or high capacity drone. Upon completion of any activity, it can no longer be assigned to any
agent.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

If the task is decomposed such that each agent is assigned the most appropriate activity, it can lead to
optimal results. The idea is for decomposition to shoot for full agent utilization so that all available
agents remain active. So D partitions the task, assigning activities to agents based on their capability.
With excess activities, some activities won’t get done immediately. If there are excess agents, some
agents remain idle. We try to avoid this by attempting |Wg(t)| ≥ |Ag|.
The custom test environment was specifically designed to evaluate scalability issues with many
agents. Same codebase between virtual and real drones enables them to coexist with real drones
using camera and sensors against sampling of these inputs from fire datasets, along with simulated
activities for virtual drones. Real drones operate alongside virtual or other real peers, all coexisting
under a common custom ground control implementation that launches virtual drones with special
virtual settings. This design allows us to test performance in the presence of a very large number of
agents with real messages, unearthing any scalability issues and communication delays that would be
encountered with a very large number of real drones, using the test setup with many virtual drones.
The purpose of such a hybrid setup was also to visualize how real drones perform their activities
in the presence of a very large number of other real/virtual drones. The testing environment can
simulate more than 3000 drones, and two-phase algorithm testing shows effective scaling beyond
1000 agents. To compare two-phase algorithms against SOTA MARL algorithms, we had to limit test
comparisons to only 25 agents, as SOTA MARL algorithms failed beyond 25 agents.

Note that the scope of this paper is a novel approach to enable groups of homogeneous agents
to autonomously learn to perform unpredictable tasks, including those with a massive state space
not feasible with today’s state-of-the-art approaches. We use the exemplary firefighting domain to
demonstrate various aspects of our novel approach, and the real drones, virtual drones, and associated
controls constitute an effective testbed for testing these aspects.

A.3.3 CONTAINMENT PERFORMANCE STUDY

This experiment evaluated the performance of the two-phase approach against a baseline of actual
fire fighters. It evaluates the improvement of the containment time and the fire extinguisher resources
needed to reach that containment against the baseline. For a specific target fire sample scenario,
using the information from the datasets, we obtained additional information related to the fire such as
vegetation, containment time, and percentages. This information was then correlated with the model
to obtain the fire containment time and resources involved in fighting the fire. Based on the fire size,
groups of homogeneous agents are used with a fleet comprising 50% small capacity drones, 35%
medium capacity drones, and 15% large capacity drones. The drones used a pre-trained population
policy bank. The containment time included the time the drones are armed to the time the entire fire
is extinguished. Moreover, each drone recorded the total amount of fire extinguisher used, and these
were compared against the baseline of real fire fighters. The test was repeated for fires of different
sizes and hotspots. The same test was repeated for multiple trials on samples with 10 and 30 hotspots.

A.3.4 ABLATION STUDY

The task distribution is performed during phase one processing, and it can have a profound impact on
the overall performance. Since there are multiple components for performing this task distribution,
an ablation study was performed to determine the necessary components for optimal task distribution.
The transformer was replaced by image-analysis-based hotspot detector, the A* component was
replaced by a rule-based task assigner, and the edge-progression component was replaced by a
contour-based edge processing. A component was swapped out, and the evaluation return was
recorded to identify which components provide optimal performance.

A.3.5 TWO-PHASE ALGORITHMS STUDY

Upon assignment of an activity, each agent loads a policy from the population policy bank and
performs activity steps under the guidance of this policy. The efficacy of this algorithm directly
impacts the efficacy of the overall approach, and therefore, different algorithms are evaluated to
determine which algorithms provide optimal performance. The policies are not pre-trained - the test
uses the evaluation returns as agents learn policies and execute activity steps using these policies.
On-policy PPO was evaluated with a clipping epsilon of 0.1 with a policy gradient actor and critic
models with two layers of 128 nodes.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

The primary purpose of experimentation was to evaluate the two-phase approach using an exemplary
fire-fighting domain, testing key aspects of our approach. Each algorithm in Figure 6 was evaluated
with the optimal set of hyperparameters obtained after testing for these cases. For two-phase
PPO MARL, an ϵ clip value of 0.1 and a continuously decreasing learning rate provided optimal
performance. Larger PPO clipping thresholds (0.2–0.3) produced overly aggressive updates and led
to moderate reductions in evaluation returns for Two-Phase MAPPO. Higher initial learning rates
caused similar degradation in both two-phase PPO and two-phase A2C, reflecting their reliance on
stable value estimates. Adjusting the discount factor away from 0.99 also impacted performance,
affecting PPO, A2C, and DQN to varying degrees. Reward parameters of α and β represented as
2500 and 3500. While observing the difference in reward would be largely ineffective since higher
values would implicitly result in a higher value of evaluation returns, these values enabled prioritizing
greater emphasis on area reduction over intensity reduction, resulting in greater refinement efficacy.

The actor-critic policy also used models with two layers of 128 nodes, and DQN used a Q and
target networks with two layers of 128 nodes. A shared experience with Weighted-N trajectory
merging strategy was used to merge the experiences of homogeneous agents sharing similar activities.
Traditional MARL Algorithms tested include Centralized Training Decentralized Execution Actor-
Critic, PPO, and DQN Algorithms. Since traditional MARL algorithms do not perform well, this
testing was done using 25 agents to compare the efficacy of the two-phase algorithm versus traditional
MARL algorithms. The tests were performed for different environment timesteps ranging from 2000
to 20000 time steps.

A.3.6 MULTIAGENT SCALABILITY STUDY

The two-phase algorithms study was further extended to evaluate performance with a different number
of agents. Each agent was assigned a hotspot spanning a fire-unit and allowed to perform the activity
for a total of 2000 timesteps. Upon completion, the amount of fire extinguished across all agents is
computed to determine the effective total number of fire-units that were collectively extinguished
across these agents. The number 2000 timesteps was chosen to allow an agent sufficient time to
extinguish a large portion of the fire. It must be noted that since traditional MARL does not scale well
beyond around 30 agents, the tests were conducted with only two-phase algorithms beyond 30 agents.

For the trajectory merge test as in Table 1, the KL divergence shows the difference in the probability
distributions. For this paper, it is used to show the improvement of policy refinement through
trajectory merging. Stability KL Divergence is the difference in the distributions between the current
stable distribution and minor perturbations affecting that stability. Adaptation KL Divergence is the
difference in the distributions between the original distribution and a restabilized distribution that
has undergone major perturbations such as drastic changes in wind speeds and humidity. Adaptation
Iterations is the number of phase-one -> phase-two cycle iterations that it takes to reach the accuracy
of the current domain, to see how quickly the system can adapt to different environments.

A.3.7 SHARED EXPERIENCE LEARNING STUDY

This experiment was conducted to study the efficacy of merged experience learning using trajectories
from homogeneous agents with similar capabilities performing a similar activity. Because each
group of agents maintains its own specialized policy and only merges experiences internally, we
do not observe any policy destabilization. Unlike the conventional population-based training for
policy space response oracle (PSRO) as in Lanctot et al. (2017) for non-cooperative tasks, here, the
cooperating agents learn by sharing their experiences upon completion of an activity and the goal
is to determine an optimal way to merge the experiences captured in the trajectory of these agents.
Trajectories are compared based on a reward for a step in the trajectory. The best-N strategy was
tested by selecting only N-best trajectories from the reporting agents, N typically set to one-fourth of
total homogeneous agents reporting their trajectories. However, worst experiences also teach what not
to do and therefore, a hybrid-N strategy was also tested with best-N and worst-N trajectories. Another
variant of the hybrid strategy is the Weighted-N strategy, where the best and worst strategies are given
the highest weight among the best-N and worst-N trajectories. More weight causes a trajectory to be
repeatedly used that many times for experience learning, and each of the N best and worst trajectories
is weighted based on their ranking. A policy gets saved in the population policy bank upon shared
learning, and this policy gets distributed across agents, serving as a critical means to communicate

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

and share experiences across the agents. Therefore, the efficacy of shared experience learning forms
an important aspect of the two-phase learning approach.

A.4 INJECTING EXTERNAL/DOMAIN KNOWLEDGE

A unique aspect of this approach is the ability to complement pure reinforcement learning with
adjunct strategies, including domain intelligence, learning algorithms, human-in-the-loop (HIL), to
expedite learning. It provides a means to inject prevalent external/domain knowledge in the learning
process, making it feasible to significantly prune the massive search space. Figure 8 shows how the
current state-of-the-art MARL approaches can’t scale for such a massive state space, limiting their
real-world MARL applicability. Most MARL approaches fail to inject a means to curb exploring
irrelevant portions of massive search-space, resulting in their failure for pragmatic real-world use of
such complex huge tasks.

Injecting prevalent external/domain knowledge using a phase-1 strategy enables significantly pruning
search space resulting in phase-2 learning for huge, complex tasks which are not possible today.
Phase-2 "refine" is completely task-independent, and it is also possible to transfer optimizations
similar to Phase-1 optimizations using sensory and image data demonstrated in the exemplary system
to other domains. E.g., Locating fire-areas using transformer pipelines can be transferred to locating
flooded areas for a system of autonomous robots in a flood-control application. Fire-fighting activities
of exemplary system are replaced by flood-control activities that robots learn in identical manner
for the flood-control application. Thus a system similar to the exemplary system disclosed here
for fighting forest fires can be used to model many other applications that tackle complex tasks in
dynamic and unpredictable environments.

A.5 TWO PHASE IDEATION WITH SMAC V2

A.5.1 IDEATION STRATEGY

In the early stages of our research, we developed our ideation using SMACv2 as in Ellis et al. (2023)
to experiment with how to prune a large RL search space. SMACv2 provides a standard way to
compare performance against many state-of-the-art algorithms in small-to-moderate environments,
and unlike its predecessor, SMAC as in Samvelyan et al. (2019), it provides for a larger RL search
space and partial observability to experiment with diverse scenarios for a small number of agents.
In our explorations with both SMACv2 and SMAC, we quickly faced severe scaling issues with the
state-of-the-art algorithms as well as the test frameworks as we tried to increase the number of agents.
So we had to limit our explorations with a small number of agents supported by the test framework
and the state-of-the-art algorithms and use the exemplary forest firefighting environment in Section 4
for comprehensive testing of all aspects of our research. Although the SMACv2 test framework and
baseline state-of-the-art algorithms were limited and the behaviors vary significantly, it nevertheless
allowed us to quickly experiment with different strategies in the early stage of our research that
led to our two-phase approach and compare them with state-of-the-art algorithms, revealing many
interesting insights which we share here.

SMACv2 procedurally generates teams for different races - Terran, Zerg, and Protoss. Terran uses
ranged attacking units of Marine and Marauder, as well as Medivac support units. Zerg uses a mixture
of ranged unit Hydralisk, melee unit Zergling, and exploder unit Baneling. For our tests, we used
Terran and Zerg, as Terran allows testing range-focused strategy and Zerg enables testing a hybrid
strategy.

To explore ideations for the two-phase approach, we used a phase-1 strategy that executes part
of a predefined combat strategy suitable for fighting the enemy units, and phase-2 involved using
reinforcement learning to learn the remainder of the combat strategy. The phase-1 strategy allows the
agent to prune out the RL search space by eliminating moves that do not conform to the predefined
combat strategy, allowing phase-2 to then learn for a smaller RL search space. For example, a combat
strategy involves positioning the units relative to allies and enemy units and attacking the enemy
with the right weapons and timing. Learning both positioning and firing involves a huge RL search
space with many units. As the phase-1 strategy guides the agent to the correct position, the agent then
has to learn firing-related behavior, significantly reducing the RL search space. The tables show the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

improvement of the two-phase strategy over a baseline state-of-the-art algorithm with both average
improvement and range of improvements observed during multiple trials.

A.5.2 EFFECTIVE TERRAN COMBAT

Terran’s ranged composition imposes some unique coordination requirements. Marauders are durable
armored frontliners that intercept and deliver high single-target damage, slowing enemies to control
the pace of engagement. While they have ranged attacking capabilities, their range is shorter than the
Marines. Marines are more vulnerable but can provide longer-range, effective bursts of sustained
DPS - so Marines must hide behind Marauders. Medivacs heal damaged units but cannot fight back -
so they must remain sealed behind other allies. An effective strategy, therefore, coordinates Marauder
positioning, Marine focus fire and kiting, and Medivac healing, all operating as a cohesive group for
maximum efficacy.

A.5.3 RANGED STRATEGY

For Terran scenarios (Terran_5_vs_5 and Terran_20_vs_20), we employ a structured ranged-unit
strategy that separates positioning and firing into two phases to evaluate our two-phase approach.
Phase-1 attempts the predefined spatial formation with Marauders taking positions in the front facing
the enemy, Marines aligned behind them, and Medivacs maintaining a protected rear position, while
enforcing sufficient spacing, enemy-facing orientation, and engaging in limited micro-adjustments.
By eliminating random formation-breaking movements, Phase-1 dramatically narrows the effective
RL search space, converting chaotic navigation into focused positional behaviors. With a focused
positioning, Phase-2 learns firing-related decisions for combat effectiveness, including focus-fire
selection, target switching, kiting, burst timing, and Medivac healing prioritization.

As shown in Table 2, this strategy achieved faster and higher battle win rates than the baseline QMIX
algorithm. Our results showed a steep early rise in performance compared to baseline, confirming that
Phase-1’s structured positioning, by replacing random positioning movement with strategy-focused
aligned movements, sharply narrows the effective exploration space and enables faster learning. With
agents consistently placed in tactically favorable formations, Phase-2 can immediately begin learning
coordinated firing behaviors rather than spending millions of steps discovering viable positions. In
contrast, QMIX requires significantly longer training to reach moderate win percentages and also fails
to match the peak performance achieved by our method. The sustained advantage over 10M timesteps
highlights that disciplined, strategy-aligned positioning not only accelerates convergence but also
enables higher-quality policies in larger range combat scenarios. As evident with Terran_20_vs_20,
as the search space increases, its impact becomes even more significant. Similar results were obtained
against baseline MAPPO as shown in Table 3. Use of different Phase-2 algorithms did not significantly
alter the results. Phase-1 preserves the essential tactical decisions but removes the combinatorial
explosion associated with free movement, enabling significantly faster and more stable Phase-2
learning, resulting in better overall efficacy across both small and large Terran engagements.

Table 2: Terran 2-Phase over QMIX

Time
steps
(106)

Terran_5_vs_5
Improvement %

Terran_20_vs_20
Improvement %

Avg. Max. Min. Avg. Max. Min.

1 16.2 28.1 9.6 28.7 35.6 16.5

2 8.4 19.3 -3.2 20.3 35.1 4.7

3 2.8 13.3 -8.5 9.5 16.8 -2.3

4 5.3 17.4 -8.1 5.3 16.0 -5.8

5 2.7 11.6 -7.3 9.1 21.8 0.7

6 8.1 19.2 0.8 7.9 17.3 0.3

7 3.8 14.6 -3.5 7.2 19.7 -1.4

8 6.2 12.7 -1.9 8.8 22.6 -5.0

9 4.8 13.3 -5.3 6.4 18.2 -1.9

10 4.0 17.4 -6.3 7.1 21.4 -2.6

Table 3: Terran 2-Phase over MAPPO

Time
steps
(106)

Terran_5_vs_5
Improvement %

Terran_20_vs_20
Improvement %

Avg. Max. Min. Avg. Max. Min.

1 40.6 52.3 30.7 38.3 44.1 26.2

2 31.3 42.5 20.7 32.8 43.3 19.2

3 22.2 33.6 12.8 32.0 40.6 22.9

4 25.5 38.4 10.9 28.5 36.2 15.7

5 23.8 34.2 12.3 25.4 37.2 16.5

6 27.1 41.0 15.7 22.2 29.8 12.3

7 17.8 24.7 11.1 17.7 25.3 8.9

8 19.5 32.2 5.6 18.7 27.2 7.5

9 21.2 30.6 7.9 16.3 25.0 3.8

10 20.7 31.2 10.4 15.6 26.8 4.6

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.5.4 EFFECTIVE ZERG COMBAT

Zerg’s hybrid composition imposes unique coordination requirements that are different than those
of Terran. Zerglings must reach and touch enemy units so that higher-value enemy Banelings and
fragile backline enemy units become accessible. Banelings are scarce, high-impact resources whose
explosions provide greater impact when targeting dense enemy clusters rather than isolated dying
units. Hydralisks are ranged units providing sustained DPS with clear firing lanes, and remain
protected when behind the melee screen. An effective strategy must therefore synchronize Zergling
engagement, Baneling explosion timing, and Hydralisk focus fire into a coherent, staged attack.

A.5.5 HYBRID STRATEGY

For Zerg scenarios (Zerg_5_vs_5 and Zerg_20_vs_20), the ranged strategy used for Terran is insuf-
ficient, as unit roles differ, calling for a different hybrid combat strategy. For the hybrid strategy,
Phase-1 arranges units into multiple spatial group configurations, each group comprising a small
number of Zerglings forming a melee screen in front, one or two Banelings immediately behind
the Zerglings, and a few Hydralisk in the rear. These groups are placed side by side with enough
spacing between groups such that an enemy Baneling explosion damages only a single group, while
neighboring groups continue their fight. This structured positioning strategy purges many chaotic
movement patterns so that Phase-2 can focus on learning Baneling commit timing, local surroundings,
and Hydralisk target selection and firing patterns for effective hybrid Zerg combat.

As shown in Table 4, with this hybrid strategy, learning was much earlier than baseline QMIX, as
there is less to discover initially in terms of viable movement, resulting in a high latency before
QMIX becomes useful. QMIX fails to precisely master all nuances of positioning and firing, and its
performance remains below our two-phase strategy even after 10M+ timesteps. In contrast, Phase-2
successfully masters detailed firing patterns and their coordination with the Phase-1 movements,
yielding highly effective hybrid Zerg behavior. QMIX struggles substantially on the more challenging
Zerg_20_vs_20 scenario: its win rate increases slowly and remains well below our method, reflecting
the difficulty of exploring an enormous joint movement and firing space without structural guidance.
In contrast, our two-phase strategy performs consistently well. Similar results were obtained against
baseline MAPPO as shown in Table 5. These results reveal that aggressively reducing the effective
RL search space and guiding exploration based on a good combat strategy is particularly beneficial
when the underlying search space is very large.

This exploration led to some very interesting insights that helped the ideation of our two-phase
approach. When the RL search space is unreasonably large, the SOTA algorithms fail to adequately
learn in a reasonable time and hence are of little pragmatic use. The problem becomes worse as the
problem space becomes bigger. Injecting a strategy that continuously targets trimming the search
space while working alongside the learning algorithm significantly expedites learning and leads to
effective learning for these problems.

Table 4: Zerg 2-Phase over QMIX

Time
steps
(106)

Zerg_5_vs_5
Improvement %

Zerg_20_vs_20
Improvement %

Avg. Max. Min. Avg. Max. Min.

1 12.7 25.3 -4.2 11.9 19.8 1.1

2 11.6 20.8 -2.5 9.7 22.1 -8.4

3 11.2 18.3 -7.0 8.4 21.6 -8.7

4 9.4 19.9 -2.8 6.7 18.3 -7.5

5 3.7 19.4 -5.5 7.0 19.4 -8.8

6 8.2 21.7 -1.9 9.3 21.7 -4.9

7 9.2 23.3 -4.1 11.3 22.2 -3.6

8 10.0 26.6 -2.3 12.6 22.6 -3.0

9 9.5 19.8 -2.7 14.7 28.3 0.3

10 10.8 20.1 -4.8 13.9 26.2 -2.1

Table 5: Zerg 2-Phase over MAPPO

Time
steps
(106)

Zerg_5_vs_5
Improvement %

Zerg_20_vs_20
Improvement %

Avg. Max. Min. Avg. Max. Min.

1 26.3 44.2 9.8 26.4 31.1 17.0

2 29.5 41.6 14.3 33.1 41.3 22.7

3 22.7 36.3 4.7 28.9 40.6 14.6

4 18.8 31.2 5.0 22.4 34.7 11.1

5 7.3 22.6 -5.7 19.5 31.4 4.6

6 12.7 23.0 -1.9 13.6 28.2 2.1

7 10.6 24.2 -5.3 13.0 30.3 -3.8

8 9.2 24.4 -4.3 12.2 29.7 -5.2

9 9.7 21.6 -3.9 13.5 25.8 0.3

10 8.8 22.4 -5.3 8.6 25.1 -6.5

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.6 FIRE-FIGHTING WITH DRONES

Optical
LASER

8'' 8038 Propellers

Pixhawk Flight Controller

Benewake-LIDAR
TF-mini Sensor

PM02 Power Module

Pi Camera

 Agent PI SBC

M8N GPS Module FS-iA10B Receiver

Figure 9: Drone top view

Fire Hotspot
Fire

Autonomous Drone Agents

Figure 10: Drones in action

23

	Introduction
	Related Work
	Proposed Approach
	Task Decomposition, Assignment, and Execution policy
	Two-Phase Approach
	Phase One - Task Decomposition and Assignment
	Phase Two - Policy Execution and Learning

	Exemplary system

	Results and Discussion
	Experimental Setup
	Comparisons and Analysis

	Conclusion
	Two Phase Approach Proofs
	Proposition 1
	Lemma 1.1
	Proposition 2
	Theorem 1
	Practical Considerations

	Exemplary Phase Two Algorithms
	Experiment Details
	Setup and Parameters
	Agents, activity assignments, and execution for exemplary system
	Containment Performance Study
	Ablation Study
	Two-Phase Algorithms Study
	Multiagent Scalability Study
	Shared Experience Learning Study

	Injecting External/Domain Knowledge
	Two Phase Ideation with SMAC v2
	Ideation Strategy
	Effective Terran Combat
	Ranged Strategy
	Effective Zerg Combat
	Hybrid Strategy

	Fire-fighting with Drones

