
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALABLE MULTI-AGENT AUTONOMOUS LEARNING
IN COMPLEX UNPREDICTABLE ENVIRONMENTS

Anonymous authors
Paper under double-blind review

ABSTRACT

This research introduces a novel multi-agent self-learning solution for large and
complex tasks in dynamic and unpredictable environments where large groups of
homogeneous agents coordinate to achieve collective goals. Using a novel iterative
two-phase multi-agent reinforcement learning approach, agents continuously learn
and evolve in performing the task. In phase one, agents collaboratively determine an
effective global task distribution based on the current state of the task and assign the
most suitable agent to each activity. In phase two, the selected agent refines activity
execution using a shared policy from a policy bank, built from collective past
experiences. Merging agent trajectories across similar agents using a novel shared
experience learning mechanism enables continuous adaptation, while iterating
through these two phases significantly reduces coordination overhead. This novel
approach was tested with an exemplary test system comprising drones, with results
including real-world scenarios in domains like forest firefighting. This approach
performed well by evolving autonomously in new environments with a large number
of agents. In adapting quickly to new and changing environments, this versatile
approach provides a highly scalable foundation for many other applications tackling
dynamic and hard-to-optimize domains that are not possible today.

1 INTRODUCTION

Many real-world problems are quite big and complex requiring many agents with different capabilities
to effectively tackle them. Autonomous multi-agent applications like delivery systems, warehouse
robots, and drone shows work in mostly deterministic and constrained environments. However, there
are many complicated dynamic environments such as forest fire-fighting, disaster relief, urban fire,
and medical rescue operations where each episode is unique and ridden with unpredictable challenges.
Today’s MARL algorithms fail to address the enormity and complexity of these tasks (Rashid et al.,
2018) (Yu et al., 2022).

We propose a novel two-phase iterative approach of refocus and refine to enable groups of homo-
geneous agents with different capabilities to autonomously learn to perform huge, unpredictable,
fast-changing tasks. Phase One: refocus determines the best way to target the task, phase two: refine
uses the collective intelligence of the group for each agent to best perform its task, and iteratively
repeating this leads to continuous evolution. This opens the possibility of complementing pure
reinforcement learning with adjunct strategies, including domain intelligence or human-in-the-loop
(HIL), to expedite learning. It realigns learning to focus on the most relevant portion of the state-space
and gives agents autonomy to improvise while significantly reducing the coordination effort across
numerous agents. Using shared experience across homogeneous agents with a shared population
policy-bank, this result-oriented learning is highly scalable. We demonstrate this approach via an
exemplary test system comprising drones fighting forest fires.

2 RELATED WORK

Recent progress in multi-agent reinforcement learning (MARL) has enabled significant achievements
in complex environments, yet scaling up to large, dynamic, and unpredictable tasks remains challeng-
ing. Scalability issues arise due to exponential growth in state space and agent interactions along
with multi-agent variance and multi-observation variance (Hopkins, 2024). With partial observability,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

non-stationarity, and dynamic environments these significantly hinder stable learning (Wei et al.,
2024; Liang et al., 2025) underscoring the need for improved frameworks that can handle large-scale
multi-agent coordination more efficiently.

One approach to manage large problems is to adopt hierarchical reinforcement learning (HRL).
Hierarchical RL techniques reduce dimensionality by decomposing tasks into subtasks governed
by high-level policies (Dietterich, 2000; Levy et al., 2019; Nachum et al., 2019). These methods
define high-level policies that operate over temporally extended actions or subtasks, thereby pruning
the search space. However, reliance on static decompositions or domain knowledge, limits their
applicability when tasks evolve significantly over time (e.g., rapidly shifting operational zones).

Dividing large tasks into subtasks and assigning them to homogeneous agents is combinatorial and
non-trivial, often leading to overlapping roles or inefficient exploration (Martins et al., 2025a; Zheng
et al., 2018). Recent studies use self-organization or hierarchical structures for role negotiation (Li
et al., 2021), but current methods struggle with real-time, unpredictable changes in agent tasks and
group sizes.

Repetitive subtasks (e.g., scouting or delivery) can be addressed through a policy bank of pre-
optimized solutions (Teh et al., 2017; Rusu et al., 2016), enabling faster adaptation. Joint experience-
sharing—via parameter, memory, or replay sharing—further improves learning efficiency (Gupta
et al., 2017; Rashid et al., 2018). Nonetheless, scaling these techniques to truly massive and fluid
domains remains a key research challenge. Here we address the large fast changing state-space aided
by a task-specific means to decompose an activity assignment and use policy bank to address many
types of activities that are still commonplace for the huge tasks, and learn these policies through
shared experiences of homogeneous agents.

3 PROPOSED APPROACH

3.1 TASK DECOMPOSITION, ASSIGNMENT, AND EXECUTION POLICY

Consider a dynamic taskW(t) that evolves over time t. The task is performed by a set of N agents
partitioned into G homogeneous groups, such that A =

⋃G
g=1Ag . Each group Ag consists of agents

with identical capabilities, meaning minimum set of capabilities Cg = C(agi) for all agi ∈ Ag. The
taskW(t) is composed of Mt activities, whereW(t) = {w1t, w2t, . . . , wMtt}.
Each activity wjt has an associated complexity level c(wjt) and requires capabilities C(wjt). The
activities change over time, appearing and disappearing based on the task’s evolving state. Each
activity wjt has an associated relevance duration (tstart

j , tend
j) such that the activity exists within

the time window tstart
j ≤ t ≤ tend

j . Activities dynamically emerge and vanish depending on task
conditions. The presence of an activity is determined by function Ψ(W(t), t), such that wjt where
1 ≤ j ≤ Mt exists at time t if Ψ(W(t), t) = 1. The task state function Φ(W(t)) describes the
current status of the task and influences which activities are required.

Since agents in a group share capabilities, task decomposition ensures that there are multiple similar
activities to fully utilize homogeneous agents. A decomposition function D partitions the task into
activities that match group capabilities, i.e., D(W(t)) =

⋃G
g=1Wg(t), whereWg(t) is the subset of

activities assigned to Ag . Each activity wjt ∈ Wg(t) must satisfy C(wjt) ⊆ Cg . The decomposition
process aims to generate enough similar activities such that |Wg(t)| ≥ |Ag|, ensuring full agent
utilization.

Each agent agi ∈ Ag is assigned an activity from Wg(t). The binary assignment matrix Xt ∈
{0, 1}N×Mt is defined such that xij = 1 if agent ai is assigned to activity wjt, otherwise xij = 0.
This assignment of an agent to an activity can be optimized in many ways depending on the overall
goal of executing the task. This optimization directly impacts the efficacy of performing the task
and therefore, we formalize this framework here to be able to explore this issue in the subsequent
sections. For example, if the goal is to perform the task so as to minimize the execution cost,
the agent assignment must minimize

∑N
i=1

∑Mt

j=1 C(ai, wjt)xij , where C(ai, wjt) is the execution
cost of agent ai working on activity wjt. In general, it must do so while satisfying constraints∑N

i=1 xij ≥ r(wjt), where r(wjt) is the minimum number of agents required to execute activity wjt.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

This ensures each activity is assigned sufficient agents. Moreover,
∑Mt

j=1 xij ≤ κ(ai), where κ(ai) is
the maximum number of activities than agent ai can handle at a given time, thereby ensuring to limit
the agent’s workload. A simplified representation of this agent assignment is a function S(wjt) that
determines the set of agents executing wjt, such that S(wjt) = {ai ∈ A|xij = 1}.
Various operational concerns such as business, technical, and logistics may determine a task decompo-
sition and activity assignment to agents for many complex real-world tasks. Additionally, for the task
to be optimized, in addition to an effective agent assignment, it is necessary to also ensure that each
agent ai optimizes its execution of its assigned activity wjt. A task performance metric is given by
J(W(t), Xt,Π), whereW(t) represents task activities at time t, Xt is the agent-assignment matrix,
and Π denotes execution policies. The goal is to meet all operational concerns and also to contin-
uously adaptW(t), Xt, and Π such that J improves over time. W∗(t) and X∗

t are comprehensive
when operational concerns are met and when

∑N
i=1 xij ≥ r(wjt) and

∑Mt

j=1 xij ≤ κ(ai).

Task decomposition to match agent capabilities and generate balanced activities is a combinatorial
problem that is often NP-hard. MARL algorithms struggle with such problems, particularly at scale,
as shown in Gu et al. (2020); Martins et al. (2025b). They rely on local rewards, perform poorly in
discrete combinatorial spaces, and converge slowly in dynamic environments. By Bellman’s principle
of optimality, if task decomposition and assignment are suboptimal as with MARL, overall task
performance cannot be optimal with MARL.

3.2 TWO-PHASE APPROACH

Given MARL’s limitations in optimally decomposing and assigning tasks in dynamic environments,
we introduce a two-phase approach, as illustrated in Figure 1. This iterative process enables continu-
ous adaptation to evolving tasks while ensuring that homogeneous agents execute activities using the
most effective policies available.

Phase 1. Adaptive Task-Distribution

Phase 2. Intelligent Activity Execution -
 MultiAgent Reinforcement Learning (MARL)

Two-Phase Approach

Figure 1: Two-phase approach - iterating between Phase-1 refocusing agent task distribution and
Phase-2 executing activity with best policy from the policy bank and shared experience merging of
optimal trajectories leads to continuous learning.

3.2.1 PHASE ONE - TASK DECOMPOSITION AND ASSIGNMENT

In phase one, each agent helps obtain information from their environment and share it with a task
distributor. The task distributor decomposes the task in its current state into activities and distributes
these activities to the most suitable agents. This allows segmenting a massive state space for a huge
task into smaller-scale activities that agents can handle as discussed in the last section. During phase-1
we optimize task decomposition W ∗(t) with an optimal assignment X∗

t for all possible tasks W (t)
by matching the agent capabilities with the activities. This opens the possibility of complementing
pure reinforcement learning with adjunct strategies by leveraging AI-driven task decomposition
and assignment methods. Additionally, it becomes feasible to use domain-centric, oracle-centric,
human-in-the-loop (HIL), some other learning-based approach, or some combination of all of the
above approaches to aid in determining what is the best way for the group of agents to tackle the
current state of the task.

At each time-step t, given the current task state Φ(W (t)), we seek an optimal task decomposition
W ∗(t) and assignment matrix X∗

t . As this is repeated regularly, the system adapts to the dynamic
nature of the task and refocuses agents to operate on the currently most relevant aspects of the task.
Unlike a pure MARL approach where each agent would learn to tackle a vast task state-space, phase
one could refocus the agents to attend a specific narrow state-space of an activity that is most likely
to make an immediate and significant contribution to the overall task. By decomposing the large task

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

environment into small activities that an agent can execute, it becomes amenable to optimization at
the local level by the most appropriate reinforcement learning algorithms known for the activity.

3.2.2 PHASE TWO - POLICY EXECUTION AND LEARNING

Each homogeneous agent ai ∈ Ag selects the best-known policy for its assigned activity wjt from
a policy bank. Agents execute activities using RL/MARL algorithms such as PPO and record
trajectories. A merge operation refines the policy based on the best experiences and stores the updated
policy back into the policy bank.

Each agent ai ∈ Ag executes its assigned activity wjt using a policy from a policy bank Bg, where
πwjt

= Π(wjt) ∈ Bg. The policy πwjt
is selected based on the similarity between the assigned

activity and previously encountered activities. At each time step τ , an agent ai ∈ Ag selects an action
aτ ∼ πwjt

(hτ). The policy πwjt
: H ×A→ [0, 1], where H represents histories and A represents

actions, ensures consistency in decision-making across the homogeneous agents in the group. Since
agents operate under similar conditions, they can share experiences to collectively refine πwjt

.

Consider Ag agents executing activity wjt, each following initial policy πwjt
, with expected policy

performance J(πwjt
) = Eζ∼πwjt

[R(ζ)], where R(ζ) is the expected return over trajectory ζ. Each
agent ai collects experience Eai

= {(oτ , aτ , rτ , oτ+1) | τ = 0, . . . , Tζ} for Tζ trajectory samples,
with POMDP observations o ∈ O, actions a ∈ A, reward r ∈ R, and time-step τ . The policy
improvement in πwjt

after k updates for experience distribution E is given by J(π
(k)
wjt) = J(π

(k−1)
wjt)+

αE(o,a)∼E [∇J(πwjt
)]. For individual learning, E = Eai

. With a merge strategyM, shared learning
aggregates experience as E =M(Ea1 , Ea2 , . . . , Ea|Ag|).

Proposition 1. [Convergence Acceleration via Merged Learning] If p homogeneous agents merge
the top and bottom n % of the combined trajectories, the policy learns 2pn times faster than for a
single agent learning using all its trajectories.

Lemma 1.1. [Policy Update through Experience Merging] Updating policy πwjk
through experience

merging with best and worst n% trajectories ζ across all homogeneous agents ensures improvement
in expected task performance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt

)]

Thus, homogeneous agents can collectively refine a single policy by pooling experiences, leading
to faster and more stable learning. During execution, each agent collects experience tuples Eai

=
{(oτ , aτ , rτ , oτ+1)}. A merge operation refines the policy based on the best-performing trajectories:
π′
wjt

=M(πwjt
, Ebest), whereM integrates high and low reward trajectories into the stored policy.

The updated policy replaces the existing one in the policy bank: Bg[wjt]← π′
wjt

. This ensures groups
of homogeneous agents continually refine and reuse the best available policies for task execution
under partial observability.

Proposition 2. [Two-Phase Task Optimization] Let J(W (t), Xt,Bg) be the task performance func-
tion, where Bg is the policy bank. The iterative execution of phase one and phase two ensures the
task policy converges to an optimal solution as the iterations progress if

1. Task decomposition and assignment are comprehensive: (W ∗(t) and X∗
t), and

2. Policy update through experience merging ensures improvement in expected task perfor-
mance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt)]

Theorem 1 (Task Learning). If there is a dynamic taskW(t) decomposed and assigned comprehen-
sively as (W ∗(t), X∗

t) as described in section 3.1, the taskW(t) can be effectively distributed and
learned among agents ai ∈ A.

Algorithm 1 demonstrates the two-phase approach where agents obtain activity from task distributor,
perform the activity using operateAgent procedure where they operate using a reinforcement learning
algorithm suitable for the optimal policy for the activity, and collect their experiences in Di. The
agents use a merge strategy to update the policy using Algorithm 2. The updateSharedLearning
procedure updates the policy based on the reinforcement learning algorithm used by the agent.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Population policy MARL for agent ai

1: Initialize populations Π0(b) for all agent activity-types b ∈ B
2: for each task iteration k = 1, 2, 3, · · · do
3: Obtain activity assignment ti from task distributor.
4: Select optimal policy for b = type(ti) as Πk(b) from population.
5: Πk

i (b) = Πk(b)
6: Di = operateAgent(ai, Πk

i (b))
7: Prune Di using merge strategy
8: policyMerge(Di, Πk

i (b), ai)
9: end for

Algorithm 2 Merging learned policies - policyMerge

Require: Di set of trajectories (ht
i, a

t
i, r

t
i , h

t+1
i), Πk

i (b) policy, ai agent identity
1: Dshared =

⋃
i∈I,type(ti)=b Di

2: Await potentially contributing agents i ∈ I with type(ti) = b
3: Πk(b)= updateSharedLearning(Πk(b), Dshared)
4: save Πk(b) to population.

3.3 EXEMPLARY SYSTEM

Image History

Fire Edge
Progression

Current &
Future Hotspots

Agent
Capabilities

Contour
 Matching

Iterative Closest
 Point Matching

Transformer
Module

Output
Embedding

Multi-Head
Attention

Add & Norm

Feed
Forward

Add & Norm

Masked
Multi-Head
Attention

Positional
Encoding

Add & Norm

Nx

A
1
2
3
4

B C D
A* Module

Cross
Attention

Capability
Coordinator

Current
Feed-Forward

Future
Feed-Forward

Sensor History
Sensor Pipeline Sensor

 FeaturesSensor
Neural Net

Convolution
Flow History

Image Pipeline

Convolution
 Module

 Inputs
- Wind speed, dir
- Humidity ...
- Inert/Population

- Fire Image

Task
Distribution

Output

C
F

(a) Phase one - task distribution

Best way to
do an activity?

Use pre-learned
policy

Select policy
based on

activity type

Fight
Edge

Fight
Edge

Tackle
Hotspot

Tackle
Hotspot

Policy Bank

Policy

How to execute? Policy-based
Actions

Situation:
10% Wind
Increase
At Edge

Action:
12% Water
Increase
At Edge

Fight
Edge

State

Reinforce
based on result

Action

Fight
Edge

Save
Refinements

Merge
Best

Refinements

How to learn?

Policy Bank

Refine Policy

(b) Phase two - policy learning

Figure 2: Exemplary two-phase approach for forest fire-fighting - standard Phase-1 task distribution
complemented with forest fire fighting pipelines. Phase-2 activity execution with optimal policy
selection followed by shared experience learning.

This approach was tested with an exemplary system as shown in Figures 2a and 2b. It works with
a large number of simulated drones that can operate alongside a few actual replicas of real-world
autonomous drones. Figure 2a shows phase one task distribution for a forest fire-fighting system used
to showcase the implementation, testing, and results discussed here. Similar implementations handle
task distribution for flood control and synthetic domains. Here, the standard phase-1 task distribution

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

A∗ module and capability coordinator are complemented with fire-fighting specific pipelines to
expedite learning.

Each drone takes in inputs of critical fire-fighting components like fire image, wind speed and
direction, location, humidity, temperature, vegetation type, and population. It detects fire-spread
locations and hotspots. An edge progression module detects fire boundary progression since last time-
step. These components are fed into a convolution-transformer pipeline to detect current and predict
future hotspots and their intensity. A task distributor collects the boundary and hot-spot information
along with drone capabilities and uses heuristics-based A∗ planner to divide task and assign agents
to an activity. Some exemplary activities include fight-edge and fight-hotspot of different sizes and
intensities as shown in Figure 2b.

Figure 2b shows phase two where homogeneous agents ai ∈ Ag select best policy πwjt from policy
bank for its activity wjt. Each agent ai performs its activity wjt using RL/MARL algorithms based
on PPO in Schulman et al. (2017), Actor-Critic in Konda & Tsitsiklis (2000), and DQN in Mnih
et al. (2013) for πwjt

and gather their experience as in Algorithms 1 and merge their experiences
as in Algorithm 2. Their shared experience evolves the system and the two-phase approach allows
adapting to the dynamics of forest-fires in an effective manner.

4 RESULTS AND DISCUSSION

4.1 EXPERIMENTAL SETUP

This system was tested with the exemplary forest-fighting system disclosed in the last section. The
simulation allows testing a large number of drones in a variety of simulated environments based on
real fires, and testing with actual drones shows how the system can operate in real world. A detailed
description of the experimentation is disclosed in Appendix A.3Experiment Details.

Simulating wildfires is an active research area, with many accurate ways to model the fire and fire
extinguishing. We used the WRF-Fire modeling guidelines in Coen et al. (2013) to determine the
spread of wildfires based on factors like fuel and weather, and used Hansen (2012) to determine water
extinguisher efficacy based on the spray angle, duration, and power along with vegetation type. A
custom simulator was created using these modeling guidelines to test our approach for fighting forest
fires. A fleet of three custom-built drones that can coexist with more than 3000 simulated drones
was used. The drones were built using a PixHawk with an Ardupilot flight controller, a LASER to
emulate a fire extinguisher, and an onboard Raspberry Pi for autonomous operation in coordination
with an on-ground custom ground controller integrated with the simulator.

The POMDP reward function Ra used by agents is based on change in fire intensity ∆I
I and fire-area

∆A
A as a result of an agent action. Ra = α ·min

(
∆I
I , k1

)
+ β ·min

(
∆A
A , k2

)
where, factors α and

β control the weightage of changes in intensity and fire-area on the resulting reward. The experiments
used by default α = 2500, β = 3500, k1 = 0.02, k2 = 0.02 to balance effects of both intensity and
area with slight overweight for area change as smaller area offers better opportunities to contain and
fight with fewer high capacity drones.

Both public datasets such as Singla et al. (2020); Fantineh (2023); Nguyen et al. (2024); Center (2025)
and synthetic datasets using fire models were used for testing, to test specific aspects of the system
for different fire scenarios. Fire was simulated with multi-colored fabric that can be moved along the
ground simulating different fire positions and intensities of a fire dataset sample. On-board drone
CNN trained for this fabric fire simulation effectively helped simulate many fire scenarios. A fire unit
represents a normalized unit area of full fire on the ground. Three groups of drones with capability
types small, medium, and large having speeds of 4x, 2x, and 1x and fire extinguisher capacities of 10
liter, 50 liter, and 100 liter resp. were used with varying density and fleet composition per fire unit.

A baseline of firefighters from the public datasets was used to evaluate the overall fire containment
performance using fire containment time and extinguisher resources. The fire containment perfor-
mance of 3,000 simulated agents - comprising a drone fleet with small:medium:large size ratios
of 50:35:15 and equipped with water-based extinguishers - is compared to that of real firefighters.
The evaluation focuses on improvements in containment time and efficiency of fire-extinguishing
resource usage. This was tested for fires of different sizes and hotspots. To ensure repeatability and
consistency in performance, multiple trials were conducted to measure percentage improvements in

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

time and resource usage across fires of different fires. Specifically, medium fires with 10 hotspots and
large fires with 30 hotspots were tested, each using 10 different random seeds.

The evaluation return for T time-steps is computed as the cumulative returns during multiple trial
episodes, using the greedy policy after training it for T time-steps. The effect of individual com-
ponents and algorithms to learning the policy is evaluated by comparing evaluation return across
configurations, as it isolates the learning dynamics of the training phase.

An ablation study of phase one components was done with a transformer, edge progression, and A*
distributor to evaluate the efficacy of phase one and its components. The transformer was replaced
by a no-transformer component predicting the location and fire intensity using image analysis based
on fire colors. The A* component was replaced by a rules-based distribution method, and the edge-
progression component was replaced by a fire-edge contour detector along with the mean intensity
along each contour.

Algorithms used for two-phase population policy-bank based learning are evaluated, including on-
policy PPO, Actor-Critic and off-policy DQN - and compared against traditional MARL versions
of these algorithms with 25 agents, including MAPPO as in Yu et al. (2022), an A2C alternative of
MAPPO, and QMIX as in Rashid et al. (2018). The scalability of this approach was examined by
conducting a test where a hotspot of the same size was assigned to each available agent and recording
the total area fought in fixed duration of 2000 time-steps.

The impact of trajectory merging based on shared experiences was analyzed in terms of the fire
containment time improvement, while maintaining the same level of resource usage as under the
fire-fighter baseline. Three trajectory merge strategies tested include Best-N, Hybrid-N, and Weighted-
N trajectory merging. Their impact was evaluated using ANOVA test for statistical significance.
Trajectories from similar homogeneous agents were ranked based on reward and used for shared
experience learning. The Best-N strategy merges the top N trajectories, hybrid-N merges the top and
bottom N trajectories and weighted N merges trajectories by repeating them multiple times based on
their weights computed by their top and bottom ranks.

Note that we explored many standard benchmarks that exist for traditional MARL algorithms, such
as the SMAC benchmark as in Samvelyan et al. (2019) that focuses on zero-sum competitive games
or games with a limited number of agents. These benchmarks did not allow evaluating the many
aspects of our system for cooperative tasks with high scalability. Therefore, it was necessary to test
this system with an exemplary firefighting system involving coordination between large number of
agents to cooperatively accomplish a complex, unpredictable and fast changing task like fighting
forest fires.

4.2 COMPARISONS AND ANALYSIS

0
100

200
300

400
500

600
700

800
900

1000Fire Units

5

10

15

20

25

30

Hotspots

15

25

35

45

T
im

e
Im

pr
ov

em
en

t %

5

10

15

20

25

30

35

40

45

(a) Containment time

0
100

200
300

400
500

600
700

800
900

1000Fire Units

5

10

15

20

25

30

Hotspots

5

15

25

35

R
es

ou
rc

e
Im

pr
ov

em
en

t %

0

5

10

15

20

25

30

35

40

(b) Containment resources

Figure 3: Containment performance

Figure 3 shows the fire containment time and resource improvement of our approach over the baseline
system. In Figure 3a, regardless of the number of units and hotspots, our approach outperforms the
baseline by over 15% and exceeds 40% for a large number of units and hotspots. In Figure 3b as fire
units and hotspots increase, our approach outperforms the baseline in resource consumption. As the
number of fire units and hotspots increase, optimizations along burning edges and hotspots increase,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0

10

20

30

40

50

60

100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

 Im
pr

ov
em

en
t

Fire Units

10-Hotspots
30-Hotspots

(a) Containment time

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600 700 800 900 1000

10-Hotspots

30-Hotspots

P
er

ce
nt

 Im
pr

ov
em

en
t

Fire Units

(b) Containment resources

Figure 4: Containment by hotspots

greatly reducing the containment time and fire-extinguishing resource usage. Figure 4a and 4b further
support this observation, showing greater improvements with more hotspots and larger fire-sizes as
bigger tasks offer more scope for optimizations.

Transformer,A*,EdgeProgression
NoTransformer,A*,EdgeProgression

Transformer,RuleBased,EdgeProgression
Transformer,A*,NoEdgeProgression

-10000

-5000

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160 180 200

Environment Time Steps (x100)

E
va

lu
at

io
n

R
et

ur
ns

Figure 5: Task distribution methods

-10000

-5000

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120 140 160 180 200

E
va

lu
at

io
n

R
et

ur
ns

Environment Time Steps (x100)
Two-Phase PPO

Two-Phase Actor Critic
Two-Phase DQN

Traditional MARL PPO (MAPPO)
Traditional MARL A2C

Traditional MARL DQN (QMIX)

Figure 6: Two-phase learning algorithms

Figure 5 shows ablation study results with transformer, A∗, and edge progression providing the
best performance, as edge progression helps detect edges, transformers predict hotspots, and A∗

best distributes when edges, hotspots, and agent capabilities are available. This also shows that
task-specific combinatorial optimization quickly offers good performance. The transformer allows
predicting future hotspots and edge-progression allows accurate edge tracking, which are crucial in
staying ahead of the fire spread by timely positioning and spraying extinguisher. A* allows using
heuristics based on danger quotient which allows assigning high capability drones to areas that are
prone to maximum fire spread.

Figure 6 shows phase two algorithms significantly outperform traditional MARL algorithms. Phase
One refocuses training to relevant activities and phase two uses the best known policies to efficiently
perform and using shared learning quickly optimizes those policies. PPO clipping the loss function to
limit updates performs better than other on and off-policy algorithms. Traditional MARL algorithms
take too long to learn and cannot optimize well on its own for such complex tasks. Additionally, the
95% confidence interval for traditional MARL algorithms is much wider as the non-determinism in
joint observations and drastically varying joint actions lead to drastically different rewards and much
different policy learning. Phase one in the two-phase approach drastically mitigates these issues by

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

pruning the state-space, which leads to a much faster rise in the early stages of learning and overall
much higher evaluation returns.

-30

-20

-10

0

10

20

30

40

2 4 6 8 10 12 14

Weighted-N
Hybrid-N
Best-N

T
im

e
Im

pr
ov

em
en

t (
%

)

Iterations (x2000)

Figure 7: Shared experience learning

Table 1: Trajectory merge summary

Purpose Stability
KL Divergence

Adaptation
KL Divergence

Adaptation
Iterations

Weighted-N 0.0181 0.0681 8

Hybrid-N 0.0323 0.0776 11

Best-N 0.0206 0.0998 13

10

100

1000

10 100 1000

F
ire

 U
ni

ts

Number of Agents

Two-Phase PPO
Two-Phase Actor Critic

Two-Phase DQN
Traditional MARL PPO

Traditional MARL Actor Critic
Traditional MARL DQN

Figure 8: Multi-agent scalability

Figure 8 shows two-phase algorithms significantly outperform traditional MARL algorithms as the
number of agents increases. It was not possible to run tests with more than 30 MARL agents as
the coordination effort significantly increases and the state-space becomes exponential due to many
agents. However, the two-phase approach circumvents this issue allowing for a very large number of
agents. This is done by first distributing activities to the best agents capable to handle such activity
and then the agents working on those assigned activities, typically either independently or in smaller
groups. With groups of homogeneous agents, it becomes possible to use shared experience learning
using population policy-bank, making it feasible to learn handling very large fires as shown in the
two-phase algorithms in this figure.

Figure 7 shows shared learning performance using three prominent strategies. Weighted-N strategy
performed the best reaching an average 34% improvement. The ANOVA test yielded a F-statistic of
13.92 and p-value of 0.0000221 < 0.05, indicating a statistically significant difference between the
means of the three merge trajectory strategies contributing to a significant time improvement. The
table 1 shows a low KL divergence for Weighted-N strategy indicating high stability. Furthermost,
with a low adaptation KL divergence the Weighted-N strategy is resilient to adversarial environment
changes and its low adaptation iteration signifies quick adaptation to diverse new conditions.

These results show that the two-phase multi-agent approach is very effective and scalable in perform-
ing large, unpredictable tasks using groups of homogeneous agents.

5 CONCLUSION

In this paper, we presented a novel approach to effectively learn how to best perform a dynamic task
with multiple groups of homogeneous agents in complex environments. The novel two-phase refocus,
refine, repeat approach where phase one evaluates how to best assign the agents to accomplish the
task, and phase two refines the performance of the task by using the collective intelligence of the
agents to learn an optimal RL policy performs well for such tasks. We demonstrated this approach
works quite well with an exemplary system where a large number of drones learn to fight forest fires
and tested it using both simulations and with actual drones. This approach can be used in many other
applications including fighting fires in urban settings, providing medical assistance in urban settings,
and many disaster relief scenarios.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

This paper contributes an approach for performing complex tasks with a large number of agents. We
fully described our proposed approach in section 3 with additional details in A.2 Exemplary Phase
Two Algorithms on algorithm implementations. Theorem 1, Prepositions 1 and 2, and Lemma 1.1
give a theoretical basis and are proven in Appendix A.1 Two Phase Approach Proofs . Section 4 and
Appendix A.3 Experiment Details gives details on obtaining the results. This constitutes complete
details on reproducing the work presented in this paper.

REFERENCES

National Interagency Fire Center. National interagency fire center data portal, 2025.

Janice L. Coen, Marques Cameron, John Michalakes, Edward G. Patton, Philip J. Riggan, and
Kara M. Yedinak. Wrf-fire: Coupled weather–wildland fire modeling with the weather research
and forecasting model. Journal of Applied Meteorology and Climatology, 52(1):16–38, January
2013. ISSN 1558-8432. doi: 10.1175/jamc-d-12-023.1. URL http://dx.doi.org/10.
1175/JAMC-D-12-023.1.

Thomas G. Dietterich. Hierarchical reinforcement learning with the maxq value function decomposi-
tion. Journal of Artificial Intelligence Research, 13:227–303, 2000.

Fantineh. Next day wildfire spread. Kaggle, 2023. URL https://www.kaggle.com/
datasets/fantineh/next-day-wildfire-spread.

Yifan Gu, Qi Sun, and Xinye Cai. Multiagent reinforcement learning for combinatorial optimization.
In International Conference on Neural Computing for Advanced Applications, pp. 23–34. Springer,
2020.

Jayesh K. Gupta, Maxim Egorov, and Mykel J. Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS) Workshop, pp. 66–83, 2017.

Richard Hansen. Estimating the amount of water required to extinguish wildfires under different
conditions and in various fuel types. International Journal of Wildland Fire, 21(5):525, 2012. doi:
10.1071/wf11022.

Bryce Alexander Hopkins. Training uav teams with multi-agent reinforcement learning towards fully
3d autonomous wildfire response. Master’s thesis, Clemson University, 2024.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural information
processing systems, pp. 1008–1014, 2000.

Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat,
David Silver, and Thore Graepel. A unified game-theoretic approach to multiagent reinforcement
learning, 2017. URL https://arxiv.org/abs/1711.00832.

Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierarchies
with hindsight. In Proceedings of the 7th International Conference on Learning Representations
(ICLR), 2019.

Shuo Li, Chen Wang, Yuan Zhu, and Hongcheng He. Hierarchical multi-agent reinforcement learning
for multi-domain task allocation. IEEE Access, 9:121580–121593, 2021.

Jiaxin Liang, Haotian Miao, Kai Li, Jianheng Tan, Xi Wang, Rui Luo, and Yueqiu Jiang. A review of
multi-agent reinforcement learning algorithms. Electronics, 14(4), 2025. ISSN 2079-9292. doi:
10.3390/electronics14040820. URL https://www.mdpi.com/2079-9292/14/4/820.

Miguel S. E. Martins, João M. C. Sousa, and Susana Vieira. A systematic review on reinforcement
learning for industrial combinatorial optimization problems. Applied Sciences, 15(3), 2025a. ISSN
2076-3417. doi: 10.3390/app15031211. URL https://www.mdpi.com/2076-3417/15/
3/1211.

10

http://dx.doi.org/10.1175/JAMC-D-12-023.1
http://dx.doi.org/10.1175/JAMC-D-12-023.1
https://www.kaggle.com/datasets/fantineh/next-day-wildfire-spread
https://www.kaggle.com/datasets/fantineh/next-day-wildfire-spread
https://arxiv.org/abs/1711.00832
https://www.mdpi.com/2079-9292/14/4/820
https://www.mdpi.com/2076-3417/15/3/1211
https://www.mdpi.com/2076-3417/15/3/1211

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Miguel SE Martins, João Sousa, and Susana Vieira. A systematic review on reinforcement learning
for industrial combinatorial optimization problems. Applied Sciences (2076-3417), 15(3), 2025b.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Does hierarchy help? Bidirectional
data flow for hierarchical reinforcement learning. In Proceedings of the 33rd Annual Conference
on Neural Information Processing Systems (NeurIPS), pp. 5508–5518, 2019.

Dung Nguyen, Erin J. Belval, Yu Wei, Karen C. Short, and David E. Calkin. Dataset of united states
incident management situation reports from 2007 to 2021. Scientific Data, 11(1), Jan 2024. doi:
10.1038/s41597-023-02876-8.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder de Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning. In Proceedings of the 35th International Conference on Machine Learning
(ICML), pp. 4292–4301, 2018.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. In Proceedings of
the 33rd International Conference on Machine Learning (ICML) Workshop, 2016.

Mikayel Samvelyan, Tabish Rashid, Christian S. Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Fred Rudin, Chia-man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. In Proceedings of the 33rd Annual Conference on Neural
Information Processing Systems (NeurIPS), pp. 2186–2196, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Samriddhi Singla, Tina Diao, Ayan Mukhopadhyay, Ahmed Eldawy, Ross Shachter, and Mykel
Kochenderfer. Wildfiredb: A spatio-temporal dataset combining wildfire occurrence with relevant
covariates. In 34th Conference on Neural Information Processing Systems (NeurIPS 2020), 2020.

Yee Whye Teh, Victor Bapst, Wojciech M. Czarnecki, Razvan Pascanu, Raia Hadsell, and Nicolas
Heess. Distral: Robust multitask reinforcement learning. In Proceedings of the 31st Annual
Conference on Neural Information Processing Systems (NeurIPS), pp. 4499–4509, 2017.

XiaoLong Wei, WenPeng Cui, XiangLin Huang, LiFang Yang, XiaoQi Geng, ZhuLin Tao, and Yan
Zhai. Hierarchical rnns with graph policy and attention for drone swarm. Journal of Computational
Design and Engineering, 11(2):314–326, 03 2024. ISSN 2288-5048. doi: 10.1093/jcde/qwae031.
URL https://doi.org/10.1093/jcde/qwae031.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

Le Zheng, Jiaxu Yang, Han Cai, Ming Zhou, Wensheng Zhang, and Jun Wang. Magent: A many-agent
reinforcement learning platform for artificial collective intelligence. In Proceedings of the 32nd
AAAI Conference on Artificial Intelligence (AAAI), pp. 8222–8229, 2018.

11

https://doi.org/10.1093/jcde/qwae031

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 TWO PHASE APPROACH PROOFS

A.1.1 PROPOSITION 1

Proposition (Convergence Acceleration via Merged Learning). If p homogeneous agents merge the
top and bottom n % of the combined trajectories, the policy learns 2pn times faster than for a single
agent learning using all its trajectories.

Proof. Since p agents are homogeneous, all trajectories Z = {ζ1, ζ2, ...ζn} are interchangeable.
Therefore, if we were originally getting s trajectories for an agent, we are now getting sp trajectories
which are all interchangeable. However, we are only choosing 2n % trajectories to train the policy,
resulting in 2nsp total trajectories. This means if the original training took t time-steps, the new
training only takes t/2pn timesteps, which is 2pn times faster than a single agent.

A.1.2 LEMMA 1.1

Lemma (Policy Update through Experience Merging). Updating policy πwjk
through experience

merging with best and worst n% trajectories ζ across all homogeneous agents ensures improvement
in expected task performance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt)]

Proof. The policy gradient theorem states ∇θJ(θ) = Eτ∼pθ
[R(τ)∇θ log pθ(τ)] . Since we select

the policies with n% highest and lowest returns, let there be indicator function 1sel(τ), which
is 1 if τ is in the top or bottom n%. Since Eτ∼pθ

1 = 2n, the expectation of the estimator is:

∇θJ(θ) = Eτ∼pθ

[
1sel(τ)

R(τ)
2n ∇θ log pθ(τ)

]
. With J ← J + α∇θJ(θ), it results in improvement

of J by α∇θJ(θ). Thus the 2n samples result in expected improvement of α
2n∇θJ(θ).

A.1.3 PROPOSITION 2

Proposition (Two-Phase Task Optimization). Let J(W (t), Xt,Bg) be the task performance function,
where Bg is the policy bank. The iterative execution of phase one and phase two ensures the task
policy converges to an optimal solution as the iterations progress if

1. Task decomposition and assignment are comprehensive: (W ∗(t) and X∗
t), and

2. Policy update through experience merging ensures improvement in expected task perfor-
mance: E[J(W ∗(t), X∗

t ,Π
′
wjt

)] ≥ E[J(W ∗(t), X∗
t ,Πwjt

)]

Proof. Since all homogeneous agents ai ∈ A use a particular policy πwjt
, all trajectories Z =

{ζ1, ζ2, ...ζn} are interchangeable and therefore can be treated equivalently. According to Lemma
1.1, if the top and bottom n% policies from each ζi ∈ Z are merged, the E(J(W ∗(t), X∗

t ,Π
′
wjt

))
increases and therefore, the policy improves. Since the two-phase process is continuously repeated,
the E(J(W ∗(t), X∗

t ,Π
′
wjt

)) continually improves.

A.1.4 THEOREM 1

Theorem (Task Learning). If there is a dynamic taskW(t) decomposed and assigned comprehen-
sively as (W ∗(t), X∗

t) as described in section 3.1, the taskW(t) can be effectively distributed and
learned among agents ai ∈ A.

Proof. Since the task W(t) is decomposed and assigned comprehensively i.e. (W ∗(t), X∗
t), the

constraints
∑N

i=1 xij ≥ r(wjt) and
∑Mt

j=1 xij ≤ κ(ai) hold true. This ensures that each activity is
adequately assigned enough agents and that the agents are not overworked and are capable to work
on their assigned activity.

Each activity has an assigned policy from the policy bank and at least r(wjt) agents have trajectories
for the activity. By proposition 1, a policy with r agents taking the top and bottom n % of trajectories

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

learns 2rn times faster than a single agent. So if r > 1
2n , distributing learning across multiple

agents as done in phase two leads to faster learning. Since r ≥ 1 and r > 1
2n , by proposition 2 the

system continuously learns by merging the policies, allowing for continual evolution and optimal
learning.

A.2 EXEMPLARY PHASE TWO ALGORITHMS

An operateAgent procedure allows a homogeneous agent ai ∈ Ag to execute an activity πwjt
. This

procedure is invoked from Algorithm 1. A variety of single-agent on-policy algorithms like ones
based on PPO and Actor-Critic and off-policy algorithms like ones based on DQN can be used for
operateAgent procedure that executes activity πwjt

. A sample algorithm based on PPO (Schulman
et al., 2017) is shown by algorithm 3

For the forest fire fighting with drones application, the state is the current representation of the drone
and its relation with the fire, including location, fire intensity, wind speed, wind direction, humidity,
distance of nearest settlement, distance to body of water, etc. The action is the discrete actions
the drones can do, including moving in a certain direction, spraying water in a certain direction or
intensity, or creating a controlled fire. Since the number of states and actions is reasonable for each
particular policy due to the distributed approach, it is able to learn it in a reasonable timeframe.

Algorithm 3 operateAgent: Proximal Policy Optimization (PPO)

Require: Agent identifier ai, starting policy Πk
i (b)

Ensure: Returns a set of trajectories (ht
i, a

t
i, r

t
i , h

t+1
i)

1: Initialize actor network π with parameters ϕ
2: Initialize critic network V with parameters θ
3: Initialize policy π ← Πk

i (b)
4: Initialize empty trajectories set Di

5: for each episode do
6: for time step t = 0, 1, 2, . . . do
7: Observe current state ht

i
8: Sample action ati ∼ π(·|ht

i;ϕ)
9: Apply action ati; observe reward rti and next state ht+1

i

10: Di = Di ∪ ⟨ht
i, a

t
i, r

t
i , h

t+1
i ⟩

11: πβ(a
t
i|ht

i)← π(ati|ht
i;ϕ)

12: for epoch e = 1, . . . , Ne do
13: Importance sampling ratio: ρ(ht

i, a
t
i)←

π(at
i|h

t
i;ϕ)

πβ(at
i|ht

i)

14: N -step: Adv(ht
i, a

t
i) =

∑N−1
τ=0 γτR(ht+τ

i , at+τ
i , ht+τ+1

i) + γNV (ht+N
i)− V (ht

i)

15: Target: yti ←
∑N−1

τ=0 γτrt+τ
i + γNV (ht+N

i)
16: Entropy regularization: H(π(·|ht

i;ϕ)) =
∑

a∈A π(a|ht
i;ϕ) log π(a|ht

i;ϕ)

17: Actor loss: L(ϕ)← −min
[
ρ(ht

i, a
t
i) ·Adv(ht

i, a
t
i),

clip(ρ(ht
i, a

t
i), 1− ϵ, 1 + ϵ)

·Adv(ht
i, a

t
i)
]
− αH(π(·|ht

i;ϕ))

18: Critic loss: L(θ)← (yti − V (ht
i; θ))

2

19: Update parameters ϕ by minimizing actor loss L(ϕ)
20: Update parameters θ by minimizing critic loss L(θ)
21: end for
22: end for
23: end for
24: return Di

A set of trajectories ζ is selected across the group of agents Ag to merge shared experiences back to
the policy πwjt

before placing it back in the policy bank. The updateSharedLearning procedure is
invoked by Algorithm 2 to merge shared learning across the agents. A variety of single-agent on-
policy algorithms like ones based on PPO and Actor-Critic and off-policy algorithms like ones based

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

on DQN can be used for updateSharedLearning procedure alongside corresponding operateAgent
procedure. Here, we illustrate an updateSharedLearning algorithm based on actor-critic (Konda &
Tsitsiklis, 2000) to merge a selection of trajectories Z = {ζ1, · · · , ζn} obtained from homogeneous
agents ai ∈ Ag while they executed activity wjt using policy πwjt

.

Algorithm 4 updateSharedLearning: On-Policy Experience Sharing

Require: Shared policy Πk(b), shared experience buffer {Dshared}
Ensure: Updated shared policy Πk(b) with off-policy corrections

1: Initialize temporary policy Πk
temp(b)← Πk(b)

2: for each epoch e = 1, . . . , Ne do
3: for each mini-batch of transitions (hk, ak, rk, hk+1) sampled from Dshared do
4: for each agent i do
5: Importance sampling ratio correcting off-policy updates: ρ(hk

i , a
k
i)←

π(ak
i |h

k
i ;ϕi)

πβ(ak
i |hk

i)

6: N-step Adv: Adv(hk
i , a

k
i) =

∑N−1
τ=0 γτR(hk+τ

i , ak+τ
i , hk+τ+1

i) + γNV (hk+N
i ; θi) −

V (hk
i ; θi)

7: Target: yki ← rki + γmaxa′
i∈Ai

Q(hk+1
i , a′i; θ̄i)

8: Corrected actor loss: L(ϕi) = −ρ(hk
i , a

k
i)

(
rk + γV (hk+1; θi)− V (hk; θi)

)
log π(aki |hk

i ;ϕi)

9: Critic loss: L(θi)← 1
B

∑B
k=1(y

k
i −Q(hk

i , a
k
i ; θi))

2

10: Update actor parameters ϕi by minimizing L(ϕi)
11: Update critic parameters θi by minimizing L(θi)
12: end for
13: end for
14: end for
15: Update shared policy Πk(b)← Πk

temp(b) using aggregated policy updates
16: return Updated shared policy Πk(b)

A.3 EXPERIMENT DETAILS

A.3.1 SETUP AND PARAMETERS

Various aspects of the two-phase approach were tested with experiments using an exemplary forest-
fighting system disclosed in section 4.1. A simulated agent was operated using a set of test fire-
images and corresponding sensor data for that image. Inputs from many agents are reported to a
task distributor that performs the task distribution. A real agent is an actual fire-fighting drone that
captures the fire-image using its camera and acquire current sensor data using its on-board sensors to
correspond with the captured image. This data is periodically sent to a task distributor to reassign
activities to each agent. The test fire-images were input to the image pipeline and the sensor data
were input to the sensor pipeline as shown in Figure 2a. The task distribution result assigns a hotspot
or an edge to an agent. Such assignment is reported to the agent as an activity assignment. An agent
continuously performs its assigned activity as shown in the Figure 2b. A reassignment of a different
activity by the task distributor results in the agent preempting its current assigned activity and moving
to the new assigned activity. Best and worst trajectories across similar agents performing an activity
get used for merging their shared experiences to their shared policy persisted in the policy bank.

A real agent is a Raspberry-Pi based drone exemplary agent that is a X-Configuration Quadcopter
UAV with a PixHawk 2.4.8 flight controller driving A2212/KV930 motors with 8038 propellers and
SimonK 10A ESC, a GPS M8N and Matek Optical Flow sensor for positioning along with Benewake
TFmini Plus LIDAR sensor. Drone captures temperature, humidity, pressure, wind speed, and wind
direction using onboard sensors along with image frames using Raspberry Pi Camera and reports
them for task distribution by default every 15 seconds. Image resolution defaults to 384 x 384. It
communicates directly with a ground control station using onboard WiFi, and falls back to radio
telemetry if WiFi is out of range.

Simulated agents are pure software components that ran on multiple servers with 32 core, 128GB
RAM, 1TB storage medium end servers. These agents use a pre-captured stream of image and
sensor data with around 4800 samples for different fire scenarios. The task distribution uses multiple

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

16GB vRAM GPUs depending on the number of agents and fire analysis request frequency for each
experiment.

Different fire scenarios are simulated based on the actual fire dataset. In a virtual agent, the duration
and frequency of spray operation is recorded to determine the effect of the fire extinguisher in
changing the fire based on modeling guidelines in Hansen (2012). This change helps in computing the
reward for the current action of the agent. When using a real-agent, it is also necessary to precisely
recreate a test environment so that the performance of a real-agent can be evaluated in conditions
close to that of a real forest fire. Based on an actual fire sample from the fire dataset, a forest-fire
mock layout is created on the ground using different fire-colored fabric pieces as shown in 10. The
fabric is moved to simulate changes in the fire condition. Images captured by a real-agent is processed
using a CNN model that is trained on these forest-fire mock layouts. A point-laser device operated
by the real-agent is used to simulate the spraying of fire-extinguisher. The duration and frequency
of this laser operation is recorded and using modeling guidelines in Hansen (2012), the effect of
the fire extinguisher is determined to guide altering the fire status on ground. In order to streamline
results with real and virtual agents, a fire-unit is used to represent one unit of fire. By default one
fire-unit maps to one square kilometer of a real forest-fire and this is typically equivalent to one
square centimeter of the forest-fire mock layout. Fire unit is used to represent the size of fire for all
results in section 4.2.

A.3.2 CONTAINMENT PERFORMANCE STUDY

This experiment evaluated the performance of the two-phase approach against a baseline of actual
fire-fighters. It evaluates the improvement of the containment time and fire-extinguisher resources
needed to reach that containment against the baseline. A fire was sampled from the dataset and
based on its size, groups of homogeneous agents are used to with fleet comprising of 50% small
capacity drones, 35% medium capacity drones, and 15% large capacity drones. The drones used a
pre-trained population policy-bank. The containment time included the time since the drones are
armed to the time the entire fire is extinguished. Moreover, each drone recorded the total amount of
fire-extinguisher used and these were compared against the baseline of real fire-fighters. The test was
repeated for fires of different size and hotspots. The same test was repeated for multiple trials on
samples with 10 and 30 hotspots.

A.3.3 ABLATION STUDY

The task distribution is performed during phase one processing and it can have a profound impact on
the overall performance. Since there are multiple components for performing this task distribution,
an ablation study was performed to determine the necessary components for optimal task distribution.
The transformer was replaced by image-analysis based hotspot detector, the A* component was
replaced by a rule-based task assigner, and the edge-progression component was replaced by a
contour-based edge processing. A component was swapped out and the evaluation return was
recorded to identify which components provide optimal performance.

A.3.4 TWO-PHASE ALGORITHMS STUDY

Upon assignment of an activity, each agent loads a policy from the population policy-bank and
performs activity steps under the guidance of this policy. The efficacy of this algorithm directly
impacts the efficacy of the overall approach and therefore, different algorithms are evaluated to
determine which algorithms provide optimal performance. The policies are not pre-trained - the
test uses the evaluation returns to as agents learn policies and execute activity steps using these
policies. On-policy PPO was evaluated with clipping epsilon of 0.1 with a policy gradient actor
and critic models with two layers of 128 nodes. The actor-critic policy also used models with
two layers of 128 nodes and DQN used a Q and target networks with two layers of 128 nodes.
A shared experience with weighted-N trajectory merging strategy was used to merge experiences
of homogeneous agents sharing similar activities. Traditional MARL Algorithms tested include
Centralized Training Decentralized Execution Actor-Critic, PPO, and DQN Algorithms. Since
traditional MARL algorithms do not perform well, this testing was done using 25 agents to compare
the efficacy of two-phase algorithm versus traditional MARL algorithms. The tests were performed
for different environment timesteps ranging from 2000 to 20000 time steps.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3.5 MULTIAGENT SCALABILITY STUDY

The two-phase algorithms study was further extended to evaluate performance with different number
of agents. Each agent was assigned a hotspot spanning a fire-unit and allowed to perform the activity
for a total of 2000 time-steps. Upon completion, the amount of fire extinguished across all agents is
computed to determine effective total number of fire-units that were collectively extinguished across
these agents. The number 2000 time-steps was chosen to allow an agent sufficient time to extinguish
a large portion of the fire. It must be noted that since traditional MARL does not scale well beyond
around 30 agents, the tests were conducted with only two-phase algorithms beyond 30 agents.

For trajectory merge test as in Table 1, KL divergence shows the difference in the probability
distributions. For this paper, it is used to show the improvement of policy refinement through
trajectory merging. Stability KL Divergence is the difference in the distributions between the current
stable distribution and minor perturbances affecting that stability. Adaptation KL Divergence is the
difference in the distributions between the original distribution and a restabilized distribution that
has undergone major perturbances such as drastic changes in wind speeds and humidity. Adaptation
Iterations is the number of phase-one -> phase-two cycle iterations that it takes to reach the accuracy
of the current domain, to see how quickly the system can adapt to different environments.

A.3.6 SHARED EXPERIENCE LEARNING STUDY

This experiment was conducted to study the efficacy of merged experience learning using trajecto-
ries from homogeneous agents with similar capabilities performing a similar activity. Unlike the
conventional population-based training for policy space response oracle (PSRO) as in Lanctot et al.
(2017) for non-cooperative tasks, here, the cooperating agents learn by sharing their experiences
upon completion of an activity and the goal is to determine an optimal way to merge the experiences
captured in the trajectory of these agents. Trajectories are compared based on a reward for a step in
the trajectory. The best-N strategy was tested by selecting only N-best trajectories from the reporting
agents, N typically set to one-fourth of total homogeneous agents reporting their trajectories. However,
worst experiences also teach what not to do and therefore, a hybrid-N strategy was also tested with
best-N and worst-N trajectories. Another variant of hybrid strategy is the weighted-N strategy where
the best and worst strategies are given the highest weight among the best-N and worst-N trajectories.
More weight causes a trajectory to be repeatedly used that many times for experience learning and
each of the N best and worst trajectories are weighted based on their ranking. A policy gets saved in
the population policy bank upon shared learning and this policy gets distributed across agents, serving
as a critical means to communicate and share experiences across the agents. Therefore, efficacy of
shared experience learning forms an important aspect of the two phase learning approach.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A.4 FIRE-FIGHTING WITH DRONES

Optical
LASER

8'' 8038 Propellers

Pixhawk Flight Controller

Benewake-LIDAR
TF-mini Sensor

PM02 Power Module

Pi Camera

 Agent PI SBC

M8N GPS Module FS-iA10B Receiver

Figure 9: Drone top view

Fire Hotspot
Fire

Autonomous Drone Agents

Figure 10: Drones in action

17

	Introduction
	Related Work
	Proposed Approach
	Task Decomposition, Assignment, and Execution policy
	Two-Phase Approach
	Phase One - Task Decomposition and Assignment
	Phase Two - Policy Execution and Learning

	Exemplary system

	Results and Discussion
	Experimental Setup
	Comparisons and Analysis

	Conclusion
	Two Phase Approach Proofs
	Proposition 1
	Lemma 1.1
	Proposition 2
	Theorem 1

	Exemplary Phase Two Algorithms
	Experiment Details
	Setup and Parameters
	Containment Performance Study
	Ablation Study
	Two-Phase Algorithms Study
	Multiagent Scalability Study
	Shared Experience Learning Study

	Fire-fighting with Drones

