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Preserving Label Correlation for Multi-label Text Classification
by Prototypical Regularizations

Anonymous Author(s)

Abstract
Multi-label text classification (MLTC) aims to assign multiple rele-
vant labels to a given sentence. An inherent challenge of MLTC is
capturing label correlations compared with multi-class text classifi-
cation. Existing MLTC models primarily focus on leveraging corre-
lation information but often overlook the common issue of over-
fitting. Meanwhile, plug-and-play regularization methods struggle
to preserve correlations effectively. In this paper, we distinguish
two types of label correlations: explicit co-occurring correlation
and implicit semantic correlations, and propose two regularization
methods based on prototypical label embeddings for two correla-
tion preservation, respectively. Specifically, we first generate the
prototypical label embedding of multiple co-occurred labels as an
intermediate. We then apply a prototypical label regularization on
the distance between the sentence embedding and corresponding
prototypical label embedding to alleviate the over-alignment issue
caused by binary cross entropy loss and facilitate explicit correla-
tion preservation. We finally extend the vanilla Mixup, which solely
mixes multi-hot labels, on prototypical label embedding mixing to
promote implicit correlation preservation. Empirical studies show
the effectiveness of our regularization methods.
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1 Introduction
Multi-label text classification (MLTC) aims to assign multiple la-
bels to a text instance, attracting increasing research interests in
recent years [12, 14, 21, 31, 33, 35, 37]. Compared with the standard
multi-class text classification, MLTC is inherently more challenging
due to the correlations of its intrinsic labels [23, 35]. Numerous

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

graph-based [21, 36] and attention-based [29, 33] methods are in-
troduced to inject this correlation into dense label embeddings.
When training data is abundant and each label is well-represented
by numerous instances, these models can effectively learn label
correlations on their own. However, in real-world scenarios, acquir-
ing thorough multi-label annotations is significantly more difficult
compared to single-label annotations [5]. This practical difficulty
of MLTC prevents the model from fully capturing the semantic
correlations among labels, leading overfitting problem. Common
plug-and-play regularization methods, such as weight decay [15],
Dropout [26], and layer normalization [2], typically address overfit-
ting but tend to overlook the crucial label correlation information
in MLTC. To overcome this limitation, we propose an innovative
regularization framework specifically designed to preserve label
correlations while more effectively mitigating overfitting in MLTC.

Notably, label correlations in MLTC can be divided into two
categories: explicit intra-instance correlations and implicit inter-
instance semantic correlations. Explicit correlation refers to rela-
tionships between labels associated with the same sentence (label
co-occurrence), whereas implicit correlation involves labels that
are not linked to the same sentence but share semantic associations.
For example, as shown in Figure 1, ‘Machine Learning’ and ‘Image
Classification’ are associated with the same sentence, reflecting
explicit correlation. On the other hand, ‘Image Classification’ and
‘Text Classification’ do not appear in the same sentence but are
semantically related, indicating implicit correlation.

In this paper, we aim to simultaneously preserve both types
of correlations while addressing the overfitting problem. We uti-
lize prototypical embeddings of co-occurring labels as a bridge and
apply two regularization methods based on this embedding to main-
tain explicit and implicit correlations separately. Note that label
relationships in MLTC can be preserved through distributed label
embeddings. Previous MLTC models [10, 32] improve label embed-
dings using prototypes, which are typically computed by averaging
related text embeddings, with each prototypical embedding vector
representing a single label. In contrast, we argue that correlations
among labels are maintained within the prototypical embedding
of co-occurring labels—the subset of label embeddings for a given
sentence. Compressing co-occurring labels into one prototypical
label embedding not only preserves explicit correlations but also en-
ables the application of Mixup [8, 34], which can effectively exploit
implicit correlations.

More precisely, existing training objectives fail to preserve ex-
plicit correlation because they use multiple binary cross-entropy
(BCE) losses, which may push incorrect label embeddings away
from their cluster while forcing correct label embeddings to align
with their corresponding sentence representations, leading to an
over-alignment problem. To mitigate this, we propose applying 𝐿2
regularization on the distance—also known as mean squared error
(MSE)—between the prototypical label embedding and its sentence
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Figure 1: The illustration of ProtoMix, featuring two sentences with labels 𝑦2, 𝑦3, 𝑦5, and labels 𝑦2, 𝑦4, respectively. In this case,
𝑦2, 𝑦3 and 𝑦5 are related to the same sentence, enjoying explicit correlation. Similarly, 𝑦2 and 𝑦4 are as well. Considering the label
semantic information, such as ‘Image Classification’ and ‘Text Classification’, although the pairs 𝑦4 and 𝑦3, as well as 𝑦4 and 𝑦5,
are not directly linked to the same sentence, they still possess an implicit correlation. Noted, ‘Proto’ represents ‘Prototypical’.

embedding. Our theoretical analysis (detailed in Section 4.2) demon-
strates that our new loss can be decomposed into two terms: one
that introduces a repelling force among the ground-truth labels
within the same cluster, and another that is similar to the origi-
nal BCE loss. This design helps maintain separation among label
embeddings, preventing collapse or over-alignment. By balancing
the attraction and repelling forces with the BCE loss, the model
can enrich the diversity of labels and preserve the correct explicit
correlation among related labels.

For implicit correlation preservation, we apply Mixup-based
regularization techniques. Mixup generates in-between samples
by linearly interpolating both input representations and labels,
showing promising results in capturing implicit correlations [9, 27].
Applying vanilla Mixup to MLTC, which interpolates multi-hot
label embeddings, may reduce overfitting but often fails to capture
the interdependence among labels. To tackle this, we extend the
vanilla Mixup framework from label mixing to label representation
mixing, i.e. prototypical label mixing, for MLTC tasks. In particular,
given a mixing ratio 𝜆 drawn from a Beta distribution, we apply
Mixup to the sentence embeddings and their corresponding pro-
totypical label embeddings by linear interpolation. This approach
generates in-between samples that enhance the preservation of
implicit semantic label correlations.

These two regularization methods, namely 𝐿2 regularization and
Mixup, are applied to prototypical label embeddings for correlation
preservation, forming a flexible regularization framework named
ProtoMix. Figure 1 illustrates this framework. The contributions of
our ProtoMix are outlined below:

• We analyze the over-alignment problem induced by BCE
loss and justify the use of MSE loss on prototypical label
embeddings, which promotes increased diversity among
co-occurred labels and leverages explicit label correlation.

• To the best of our knowledge, ProtoMix is the first attempt
at exploiting Mixup in MLTC, which applies Mixup on both
multi-hot label embedding and prototypical label embed-
ding to preserve the implicit label correlation.

• Empirical studies on the three benchmarkingMLTC datasets
using various encoders, as well as other analyses confirm
the effectiveness of our proposed ProtoMix model.

2 Related Work
There exist many MLTC models, and most of them mainly focus
on learning enhanced label representation to formulate label cor-
relations to improve classification performance. We divide these
methods into three categories: attention-based models, graph-based
models, and other representative models.

Attention-based Methods for MLTC. This kind of model utilizes
the attention mechanism to capture label-specific document rep-
resentation, which formulates the relationship between texts and
labels explicitly. [4] combines word-vector self-attention with Au-
toEncoder to capture label and feature dependencies. [6] introduces
attention to qualitative matching signals between textual contents
and the classes to enhance label representation. [29] incorporates
the self-attention mechanism to identify label-specific text repre-
sentations based on the content information. [35] learns correlation-
guided representation by jointly learning words and labels in the
same space, so as to capture high-order label-label and context-label
correlations for MLTC.

Graph-based Methods for MLTC. Capturing label correlation is a
key challenge and an essential factor for MLTC. Since label depen-
dencies can be represented as a graph, some graph-based methods
have been proposed to address this issue. [36] utilizes deep random
walk to establish the label representation via the label co-occurrence
graph. [21] constructs a dual graph convolution network to cap-
ture adaptive interactions of label representation. [33] generates a
shallow and wide probabilistic label tree (PLT) to handle millions
of labels, especially for tail labels.

Other Representative Methods for MLTC. In addition to these two
kinds of methods, many novel models effectively solve MLTC tasks.
[31] applies a sequence generation model with a novel decoder
structure for MLTC. [28] employs contrastive learning enhanced
nearest neighbor mechanism for MLTC problem. [32] utilizes a
prototypical network to model input instances for label embedding
generation. [30] proposes a Head-to-Tail Network to transfer the
meta-knowledge from the data-rich head labels to data-poor tail
labels. [37] proposes a variational continuous label distribution
learning framework, enabling the extraction of hidden information
within the observable logical labels.
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3 Preliminaries
Consider a training set 𝐷 = {(X𝑖 ,Y𝑖 )}𝐼𝑖=1 with 𝐼 instances. Let X𝑖 =
[𝑤1,𝑤2, ...,𝑤𝑁 ] be a sentence of 𝑁 words, and let Y𝑖 = {0, 1}𝐾 ∈
R𝐾 be a multi-hot vector, where 𝐾 is the total number of labels. In
a typical multi-label text classification (MLTC) model, the sentence
X𝑖 is encoded into a sentence embedding S𝑖 ∈ R𝐻 . The encoding
process can be performed using various sentence encoding models
𝐸, defined as:

S𝑖 = 𝐸 (X𝑖 ) . (1)
The model then uses a fully-connected layer with parameter

W ∈ R𝐻×𝐾 to determine the label of sentence as Ŷ𝑖 , which is
formulated as follows:

Ŷ𝑖 = 𝜎 (S⊤𝑖 W), (2)

where 𝜎 is the sigmoid activation function, and Ŷ𝑖 is the output
of a fully connected (FC) classification layer qualifying the match-
ing and interaction between sentence and label representations.
In mathematical terms, the FC layer’s parameter matrix W can be
interpreted as label representations, where each column is associ-
ated with a specific label, also known as label embeddings [6]. As a
result, the FC classifier’s operation is also interpreted via the dot
product mechanism.

Conventional MLTC models treat this task as a multiple binary
classification problem and compute the BCE loss for the prediction
Ŷ𝑖 in relation to Y𝑖 . The overall loss is defined by the summation
of individual BCE losses for each one-hot label, as shown below:

L𝐶 (Y𝑖 , Ŷ𝑖 ) = −
𝐾∑︁
𝑘=1

Y[𝑘 ]
𝑖

log(Ŷ[𝑘 ]
𝑖

) + (1 − Y[𝑘 ]
𝑖

) log(1 − Ŷ[𝑘 ]
𝑖

), (3)

where [·] denotes the element selection function, for example, Y[𝑘 ]
𝑖

and Ŷ[𝑘 ]
𝑖

denote the 𝑘th element (or one-hot vector without ambi-
guity) of vector Y𝑖 and Ŷ𝑖 , respectively.

4 ProtoMix
In the MLTC task, capturing label correlation is essential for effec-
tive label representation, particularly when compared to multi-class
text classification [36]. This correlation should not be neglected in
the development of regularization techniques. In our framework,
we distinguish between two types of label relationships: explicit
co-occurring correlations and implicit semantic correlations. To
preserve both types of correlation information, we introduce two
regularization methods that utilize intermediate prototypical label
embeddings.

Firstly, we generate prototypical label embeddings for sets of
co-occurring labels. Concretely, we propose a sentence-attentive
mechanism to construct these prototypical label embeddings, taking
into account the intrinsic semantic relationships between sentences
and labels. We then apply a 𝐿2 regularization on the distance be-
tween the prototypical label embeddings and sentence embeddings
to mitigate the over-alignment issue caused by BCE loss, therefore
preserving explicit label correlations. Additionally, we extend the
vanilla Mixup technique by transitioning from multi-hot label mix-
ing to prototypical label embedding mixing. This method leverages
implicit label correlations by generating interpolated samples.

4.1 Prototypical Label Gerneration
In few-shot text learning scenarios, Prototypical Network [25] rep-
resents class prototype embeddings as the geometric centroid of
the corresponding sentence cluster in the embedding space. This
centroid serves as a better representation as it considers all related
sentences of a class. In the context of MLTC, a sentence is associ-
ated with a collection of labels, and the centroid derived from these
co-occurring labels can significantly enhance label representation
by effectively capturing label correlation. Therefore, prototypical
label embeddings provide an elegant solution for label represen-
tation in the MLTC task. In the remaining of this subsection, we
first introduce a basic average centroid approach for prototypical
label embeddings, and then design sentence-attentive prototypical
label embeddings to better capture the correlations between the
sentences and their corresponding multiple labels.

4.1.1 Average Prototypical Label Embedding. Averaging is a simple
yet effective way to obtain prototype representations. Hence, we
average the subset of labels associated with a sentence to preserve
label co-occurrence. Formally, we define a one-hot label embedding
function 𝑓𝜔 : R𝐾 → R𝐻 with learnable parameters 𝜔 , mapping
each label into a joint space with the corresponding text. Given a
sentence X𝑖 and its multi-hot label vector Y𝑖 ∈ R𝐾 , the correspond-
ing prototypical label embedding P𝑖 ∈ R𝐻 is calculated as:

P𝑖 =
1

|K𝑖 |
∑︁
𝑘∈K𝑖

𝑓𝜔 (Y[𝑘 ]
𝑖

), (4)

where K𝑖 is the set of indices for the ground truth one-hot labels
associated with X𝑖 , and |K𝑖 | denotes the cardinality of this set.

Recall the FC layer defined in Eq.2, Ŷ𝑖 = 𝜎 (S⊤
𝑖
W). We view

W ∈ R𝐻×𝐾 as the label embedding matrix, where each column
vectorW·𝑘 ∈ R𝐻 is the embedding of the 𝑘th label. The logits inside
the sigmoid function result from the dot product operation S⊤

𝑖
W ∈

R𝐾 between the sentence embedding and all 𝐾 label embeddings.
For a specific sentence X𝑖 in multi-class classification, the label
embedding can be retrieved by taking the dot product of its one-hot
label Y[𝑘 ]

𝑖
with the weight matrix W, i.e., WY[𝑘 ]

𝑖
. Similarly, for the

multi-label case, we define the prototypical label embedding P𝑖 of
X𝑖 and its multi-hot label Y𝑖 as:

P𝑖 =
1∑

𝑘∈K𝑖
Y[𝑘 ]
𝑖

WY𝑖 =
1

|K𝑖 |
∑︁
𝑘∈K𝑖

W·𝑘 . (5)

Thus, this approach leverages the average of the label embeddings
associated with X𝑖 , providing an improved representation that
captures the intrinsic correlations within the label set.

4.1.2 Sentence-attentive Prototypical Label Embedding. The afore-
mentioned average prototypical label embedding approach equally
weights each label for a given sentence, while different labels may
contribute differently to the classification of that sentence. This
inspires us to assign different weights to individual label repre-
sentations based on their relationship with the sentence when
constructing prototypical label embedding.

To achieve the above objective, we analyze the MLTC learning
process, where establishing the semantic connection between labels
and sentences is crucial. Previous models [4, 6, 29, 33, 35] use the at-
tention mechanism to construct label-specific text representations.

3
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Figure 2: The overall process of ProtoMix. The orange and green colors of inputs and labels indicate two samples. Gradient
colors represent the Mixup operation of input feature space or prototypical label embedding space.

In particular, they integrate the label information into text repre-
sentations, ensuring that the relative semantic relationships are
preserved. These representations are then utilized for classification
tasks. The effectiveness and adaptability of this approach have been
validated in many relevant studies, suggesting its potential to also
enhance the generation of better prototypical label embeddings.

Building on this, we propose a sentence-attentive method to
enhance the prototypical label embedding by strengthening the
semantic relationship between the sentence and its correspond-
ing ground-truth label. Specifically, to extract the corresponding
semantics related to each sentence, we utilize a sentence-guided
attention mechanism to learn the prototypical label embedding.
After calculating the cosine similarity between each sentence em-
bedding with its associated multiple label embeddings, we utilize
the softmax function to normalize these similarities to obtain the
relative semantic relationship weights, and then generate the atten-
tive prototypical label embedding by combining these weights with
the label embeddings. The overall process is formalized as follows:

K[𝑘 ]
𝑖

=
exp𝑔(S𝑖 ,W·𝑘 )∑

𝑘
′ ∈K𝑖

exp𝑔(S𝑖 ,W·𝑘 ′ )
, (6)

P𝑖 =
∑︁
𝑘∈K𝑖

K[𝑘 ]
𝑖

W·𝑘 , (7)

where 𝑔(·, ·) denotes the cosine similarity between the sentence
embedding S𝑖 and the label embeddingW·𝑘 ′ , and P𝑖 is the weighted
sum of the embeddings of all related labels.

4.2 Prototypical Label Regularization
Previously, we project the multiple labels into a single point, i.e. the
prototypical label embedding, within a dense and compact latent
label semantic space. Inspired by the idea that a label represents
a view of a sentence, and that multiple labels in MLTC represent
multiple views of the sentence [3], we assume that the prototypical
label embedding serves as the centroid of these views for a specific
sentence. Hence, the sentence embedding should be aligned with
its corresponding prototypical label embedding in the latent space.

To achieve this alignment, we apply 𝐿2 regularization (i.e. MSE
loss) on the distance between the prototypical label embedding
P𝑖 and the sentence embedding S𝑖 . We refer to this constraint as
prototypical label regularization, which is defined as follows:

L𝑀 (S𝑖 , P𝑖 ) = ∥S𝑖 − P𝑖 ∥22 =
1
𝐻

𝐻∑︁
ℎ=1

(S[ℎ]
𝑖

− P[ℎ]
𝑖

)2 . (8)

To further explore the impact of MSE loss on prototypical label
embeddings and to model the relationships between co-occurrence
labels, we conveniently take average prototypical label embedding
into account. Through substituting the average prototypical embed-
ding from Eq. 5 into Eq. 8, and normalizing the sentence embedding
S𝑖 and label embeddingW·𝑘 , the MSE loss expands to:

L𝑀 (S𝑖 , P𝑖 ) = ∥S𝑖 −
1

|K𝑖 |
∑︁
𝑘∈K𝑖

W·𝑘 ∥
2

2

= 1 − 2
|K𝑖 |

S⊤𝑖
∑︁
𝑘∈K𝑖

W·𝑘 +
1

|K𝑖 |2
∥
∑︁
𝑘∈K𝑖

W·𝑘 ∥22 .
(9)

From this equation, there are only two terms left for L𝑀 , since
the first term ∥S𝑖 ∥2 = 1 as S𝑖 is normalized. For the second term
S⊤
𝑖

∑
𝑘∈K𝑖

W·𝑘 , it approximately has the same optimization di-
rection as part of BCE loss, which force the co-occurring labels
W·𝑘 all align to sentence embedding S𝑖 . In contrast, minimizing
∥∑𝑘∈K𝑖

W·𝑘 ∥22 leads to the labels repelling each other, therefore,
encouraging the diversity of co-occurring labels and preventing
over-alignment problem.

More precisely, notice that the second term in Eq.9, similar to
the BCE loss, first drives the ground-truth labels to align with the
sentence embedding and clusters the embeddings of co-occurring
labels together. Then it pushes incorrect labels away from this
cluster. However, there is no explicit mechanism to prevent the
co-occurring labels from converging too closely, which could lead
to an over-alignment issue. Consequently, the discriminative rela-
tionships among co-occurring labels should be implicitly learned
through iterative training with sufficient training instances.
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The last term of MSE loss in Eq.9 emphasizes the diversity of
label embeddings within the same cluster by explicitly separating
these labels. By imposing MSE loss on both the prototypical la-
bel embedding and the sentence embedding, we maintain explicit
label correlations and increase the spread of co-occurring labels.
Compared to using only BCE loss, incorporating MSE loss regular-
ization introduces a trade-off between alignment and diversity in
the representation of co-occurring labels, thereby facilitating the
preservation of explicit label correlations.

The prototypical label regularization can be added to L𝐶 in Eq.3
using a hyper-parameter 𝛽 :

L𝑃 = L𝐶 + 𝛽L𝑀 . (10)

Later on in our experiments, we refer to this prototypical label
regularization model as ‘Proto’ (or +Proto), which uses L𝑃 as its
loss function for optimization.

4.3 Prototypical Label Mixup
4.3.1 Vanilla Mixup for MLTC Task. Mixup [34] is a data augmen-
tation and data-dependent regularization approach, which applies
linear interpolation in both the input feature space and the corre-
sponding label space. It can be formulated as:

X̃ = (1 − 𝜆)X𝑖 + 𝜆X𝑗 ,
Ỹ = (1 − 𝜆)Y𝑖 + 𝜆Y𝑗 ,

(11)

where the interpolation ratio 𝜆 is drawn from a Beta distribution
with parameter 𝛼 , denoted as 𝜆 ∼ Beta(𝛼, 𝛼).

When applied to MLTC, vanilla Mixup generates new training
instances by linearly interpolating the features X𝑖 and X𝑗 and
their corresponding multi-hot labels Y𝑖 and Y𝑗 using the same
interpolation ratio. In our experiments, we refer to this technique
as ‘Mix’ (or +Mix) and denote L𝐶_𝑀𝑖𝑥 as its loss function:

L𝐶_𝑀𝑖𝑥 = L𝐶 (Ỹ, Ŷ(X̃)) . (12)

4.3.2 Prototypical Label Embedding Mixup. Given prototypical em-
beddings P𝑖 and P𝑗 of two sentences X𝑖 and X𝑗 , with a mixing ratio
𝜆, Mixup on prototypical embeddings can be naturally defined as:

S̃ = (1 − 𝜆)S𝑖 + 𝜆S𝑗 ,
P̃ = (1 − 𝜆)P𝑖 + 𝜆P𝑗 ,

(13)

where S̃ is the mixed sentence embedding, and P̃ is the mixed pro-
totypical label embedding. By generating in-between samples, this
approach captures the implicit semantic correlations between labels
associated with different sentences. Then, the loss for the mixed
sentence embedding and its corresponding mixed prototypical label
embedding is defined as:

L𝑀_𝑀𝑖𝑥 = L𝑀 (̃S, P̃) . (14)

4.3.3 ProtoMix for MLTC Task. Our general Mixup method, Pro-
toMix, mixes both multi-hot label and distributed prototypical label
representation to preserve label correlations. Therefore, the overall
loss function contains two components, formulated as:

L = L𝐶_𝑀𝑖𝑥 + 𝛽L𝑀_𝑀𝑖𝑥 . (15)

In our experiments, we refer to this approach as ProtoMix, which
uses L as its loss function.

5 Experiment
5.1 Datasets and Evaluation Metrics
We evaluate our model on the three most widely-used benchmark-
ing MLTC datasets, including EUR-Lex [20], AAPD [31] and
RCV1 [16]. The statistics of these datasets are shown in Table 1.

We follow previous works [19, 21, 29, 30, 33] on MLTC and adopt
six widely used metrics, including P@K and nDCG@K (K = 1,3,5),
to evaluate the model performance. It is worth noting that P@1
and nDCG@1 are equal, so we omit nDCG@1 in experiments.

Table 1: Statistics of three benchmark datasets. 𝑁 is the num-
ber instance, 𝐿 is the number of label, 𝐿 is the average number
of label per instance, and 𝐼 is the average number of instances
per label.

𝑁𝑡𝑟𝑎𝑖𝑛 𝑁𝑡𝑒𝑠𝑡 𝐿𝑡𝑟𝑎𝑖𝑛 𝐿𝑡𝑒𝑠𝑡 𝐿𝑡𝑟𝑎𝑖𝑛 𝐿𝑡𝑒𝑠𝑡 𝐼𝑡𝑟𝑎𝑖𝑛

RCV1 23149 781265 101 103 3.18 3.24 729.67
AAPD 54840 1000 54 54 2.41 2.42 2444.31
EUR-Lex 15449 3865 3801 2628 5.32 5.29 21.64

5.2 Baseline Models
To demonstrate the effectiveness of our proposed model, we adopt
several representative baseline models for comparison, including
XML-CNN [19], SGM [31], DXML [36], Rank-AE [4], Atten-
tionXML [33], EXAM [6], LSAN [29], EHTTN [30], LDGN [21],
and VCLDL [37]. Detailed introductions of these baselines are
shown in Appendix A.

5.3 Implementation Details
For themain comparison, we use the pre-trained BERT-base-uncased1
model with the default initialization network parameters as the
encoder. AdamW [13] is exploited as the optimizer, with its learning
rates chosen from [0.0001, 0.00002]. The Mixup rate 𝛼 is chosen
from [0.05, 1.5] and the ProtoMix’s hyper-parameter 𝛽 is chosen
from [0.0005, 0.05]. Note that the small value of 𝛽 does not indicate
that L𝑀_𝑀𝑖𝑥 is not important, but due to the numerical scales of
the MSE loss is much larger than the BCE loss.

To comprehensively investigate the adaptability of ProtoMix, we
also implement models based on other two representative encoders,
CNN and BiLSTM. For both CNN and BiLSTM models, we use the
300-dimension pre-trained GloVe embedding [24] to initialize the
word embedding, and choose Adam as the optimizer with learning
rates from [0.0001, 0.0005] for different datasets. CNN-based models
contain 256 filters with filter sizes ranging from [2, 4, 8]. BiLSTM-
based models set hidden dimensions as 512 and the number of
layers as 2.

Besides, we observe that supervised fine-tuning large language
models have demonstrated convincing performance on multi-class
text classification [18]. Following that, we fine-tune the typical
large language model LLaMA-3-8B [7] by using the last hidden
state as the sentence embedding to train the model. And we utilize
LoRA [11], with the rank selected from {16, 32, 64}, for parameter-
efficient fine-tuning.
1https://github.com/huggingface/transformers
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Table 2: Overall performance of ProtoMix. Since the com-
parison metrics are different from the original paper, for
XML-CNN, DXML, SGM and EXAM, the results are borrowed
from [29]. The results in italics represent that we reproduced
by published code from [18, 33]. And other compared results
are borrowed from its original paper. The bolded results are
the best performance for each metric.

EUR-Lex

Model P@1 P@3 P@5 nDCG@3 nDCG@5

XML-CNN 70.40 54.98 44.86 58.62 53.10
SGM 70.45 60.37 43.88 60.72 55.24
DXML 75.53 60.13 48.65 63.96 57.60
Rank-AE 79.52 65.14 53.18 68.76 62.33

AttentionXML 85.87 73.85 61.76 77.08 71.22
EXAM 74.40 61.93 50.98 65.12 59.43
LSAN 79.17 64.99 53.67 68.32 62.47
EHTTN 81.14 67.62 56.38 70.89 64.42
LDGN 81.03 67.79 56.36 71.81 66.09
VCLDL 85.38 72.13 60.06 75.53 69.67

ProtoMix 87.75 74.86 62.15 78.34 72.03

AAPD

Model P@1 P@3 P@5 nDCG@3 nDCG@5

XML-CNN 74.38 53.84 37.79 71.12 75.93
SGM 75.67 56.75 35.65 72.36 75.35
DXML 80.54 56.30 39.16 77.23 80.99
Rank-AE - - - - -

AttentionXML 84.90 61.06 41.76 80.42 84.43
EXAM 83.26 59.77 40.66 79.10 82.79
LSAN 85.28 61.12 41.84 80.84 84.78
EHTTN 83.84 59.92 40.79 79.27 82.67
LDGN 86.24 61.95 42.29 83.32 86.85
VCLDL 86.40 62.33 42.16 82.15 85.53

ProtoMix 86.83 62.72 42.75 82.67 86.49

RCV1

Model P@1 P@3 P@5 nDCG@3 nDCG@5

XML-CNN 95.75 78.63 54.94 89.89 90.77
SGM 95.37 81.36 53.06 91.76 90.69
DXML 94.04 78.65 54.38 89.83 90.21
Rank-AE 90.90 72.82 52.05 89.29 89.75

AttentionXML 96.75 82.36 57.40 93.18 93.90
EXAM 93.67 75.80 52.73 86.85 87.71
LSAN 96.81 81.89 56.92 92.83 93.43
EHTTN 95.86 78.92 55.27 89.61 90.86
LDGN 97.12 82.26 57.29 93.80 95.03
VCLDL - - - - -

ProtoMix 97.48 83.24 57.82 94.12 94.64

We ran experiments five times using different random seeds
and reported the average results for comparison. All evaluating
experiments are completed on NVIDIA V100, costing about 500s
per epoch for BERT for the medium-scale training dataset RCV1.

5.4 Overall Performance
The overall performance on three benchmark datasets is reported
in Table 2. As the absence of datasets AAPD and RCV1 in the
original AttentionXML paper, we re-run and report the results of
AttentionXML. For a fair comparison, we don’t adopt the model
ensemble strategy for AttentionXML while re-producing.

It can be observed that ProtoMix outperforms baseline models on
12 metrics out of 15 metrics. Despite ProtoMix achieving lower per-
formance than the SOTA LDGN model on nDCG@3 and nDCG@5
of AAPD and nDCG@5 of RCV1, ProtoMix achieves larger im-
provements on other metrics, especially on the EUR-Lex dataset.
These results confirm the efficiency of our mixing framework on
prototypical label embedding for the MLTC task.

5.5 Analysis of Parameters
5.5.1 Sensitivity of 𝛼 . 𝛼 is the important parameter of Mixup that
controls Beta Distribution, which further influences the Mixup ratio
𝜆. To evaluate the impact of 𝛼 , we pick 𝛼 from a wide range {0.05,
0.1, 0.5, 1, 1.5} and list the performance on EUR-Lex in Table 3. From
the Table, we find that under most parameter settings, ProtoMix
shows improvements relative to the Base model, which further
demonstrates the stability of ProtoMix.

5.5.2 Sensitivity of 𝛽 . To observe the impact of 𝛽 for the overall
loss L, we choose 𝛽 from {0.0001, 0.0005, 0.001, 0.005, 0.01} for
comparison. The results of EUR-Lex are reported in Figure 3. As
shown in the Figure, the overall performance of Mix surpasses
the Base model, which confirms the effectiveness of Mix. The per-
formances of Proto and ProtoMix first increase and then decrease
when varying 𝛽 . The sweet points are acquired at 0.001 or 0.005, and
all of them surpass their respective baselines. This phenomenon
shows that 𝛽 affects the results and the MSE-based loss L𝑀_𝑀𝑖𝑥
contributes to the overall loss L.

Table 3: Results of ProtoMix on EUR-Lex via different 𝛼 .

𝛼 P@1 P@3 P@5 nDCG@3 nDCG@5

0.05 86.36 74.29 61.76 77.52 71.35
0.1 86.62 74.32 62.12 77.64 71.71
0.5 87.37 74.99 62.39 78.35 72.17
1 87.81 75.05 62.14 78.46 72.04
1.5 87.94 74.70 62.16 78.21 72.00

5.6 Analysis of Ablation Study
Since ProtoMix is a framework that can be directly employed in
many basic MLTC models with different encoders, to evaluate the
flexibility and adaptability of the framework, we choose two other
representative encoders, CNN and BiLSTM, and a popular decoder,
LLaMA, as the base model (described in Section 5.3). Moreover, to
evaluate the effectiveness of different variants, we conduct ablation
studies for ProtoMix based on these basic models. Specially, the
comparison includes Base (the basic model for each encoder, or
decoder), +Proto (Base model enhanced by the prototypical label
embedding regularization method), +Mix (Base model enhanced
by vanilla Mixup method), and +ProtoMix (Base model enhanced
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Figure 3: Performance on EUR-Lex via different 𝛽 .
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Figure 4: Performance on sparse data of EUR-Lex via different downsampling ratios.

Table 4: Performance on diverse basicmodels and correspond-
ing ablation study of EUR-Lex.

Method P@1 P@3 P@5 nDCG@3 nDCG@5

CNN 74.75 60.89 50.23 64.39 58.91
+Proto 76.35 62.23 51.77 65.81 60.53
+Mix 75.55 63.05 52.14 66.35 60.86

+ProtoMix 77.10 63.42 52.96 66.88 61.68

BiLSTM 78.78 65.30 54.13 68.77 63.06
+Proto 81.91 68.38 56.26 71.93 65.71
+Mix 79.51 66.91 55.99 70.13 64.77

+ProtoMix 82.87 69.31 57.30 72.78 66.69

BERT 85.95 74.04 61.93 77.27 71.40
+Proto 86.59 74.54 61.97 77.82 71.63
+Mix 85.69 74.66 61.96 77.74 71.52

+ProtoMix 87.75 74.86 62.15 78.34 72.03

LLaMA 77.32 63.19 51.47 66.85 60.53
+Proto 79.35 63.55 51.96 67.49 61.20
+Mix 78.12 64.01 52.10 67.68 61.27

+ProtoMix 79.09 64.25 52.26 68.04 61.55

Table 5: Comparison of different data augmentationmethods.

Method P@1 P@3 P@5 nDCG@3 nDCG@5

Base 85.95 74.04 61.93 77.27 71.40
+EDA 85.12 73.89 61.82 76.99 71.13
+BT 85.25 72.94 60.87 76.31 70.40
+LLM 86.00 73.85 61.49 77.13 71.03

+ProtoMix 87.75 74.86 62.15 78.34 72.03

by prototypical label embedding Mixup method). To differentiate,
we employ specific names of basic models, such as CNN, BiLSTM,
BERT, LLaMA, instead of the generic term Base. The results on
EUR-Lex are shown in Table 4, and results on AAPD and RCV1 are
shown in Appendix B.

From the Table, we find that all variants surpass the Base model
in the majority of comparable metrics, which proves the effective-
ness of these regularization methods. Comparing all Proto models
with their corresponding Base models, or ProtoMix models with
their corresponding Mix models, Proto and ProtoMix achieve better
performance on almost all evaluation metrics. This indicates that
our presented MSE-based prototypical label regularization is effec-
tive. Additionally, ProtoMix models consistently outperform Proto
and Mix on all datasets and various basic models. These results
demonstrate the superiority and indicate the adaptability of our
prototypical label embedding Mixup framework.

It is worth noting that LLaMA performs somewhat worse than
BERT on EUR-Lex, but delivers comparable results on AAPD and
RCV1. More precisely, as the number of labels increases in a dataset,
LLaMA’s performance worsens.We guess that this is becauseMLTC
tasks rely more heavily on the expressive power of sentence embed-
dings than multi-class text classification does, posing challenges for
LLMs with a decoder architecture. This issue becomes increasingly
pronounced with a higher number of labels, leading to notably poor
performance on EUR-Lex, which contains the most labels.

5.7 Analysis of Model Regularization
5.7.1 Performance on Sparse Data. As ProtoMix is a regulariza-
tion method, to further analyze the robustness in sparse settings,
we downsample the training data with ratio 75%, 50%, 25% for
evaluation. Specifically, we use the sparse datasets training these
regularization methods and report the results on EUR-Lex in Figure
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Figure 5: The 2D visualization of the minima of the empirical risk selected by four variants on EUR-Lex.

4, AAPD and RCV1 in Appendix C. From the Figure, we can observe
that almost all regularization methods show improvements in the
sparse dataset. As the dataset size decreases, all performance tends
to decline. However, the decrease for ProtoMix is smaller compared
to Proto and Mix. This observation shows the effectiveness of our
prototypical label Mixup framework.

5.7.2 Comparison of Data Augmentation Methods. Since Mixup is
also a data augmentation method, we evaluate three popular data
augmentation techniques, easy data augmentation (EDA), back
translation (BT), and large language model (LLM) for comparison.
For LLM, we use ‘Rewrite the sentence: ’ as the prompt based on
ChatGPT gpt-3.5-turbo [22]. We implement these methods based
on the same Base model consistent with ProtoMix. We report the
results on EUR-Lex in Table 5, and AAPD and RCV1 in Appendix C.
From Table 5, we find ProtoMix achieves better performance than
other plug-and-play methods, which demonstrates the effectiveness
of our proposed data augmentation method.

5.7.3 Visualization of Loss Landscape. In order to evaluate the
generalization ability of the models, we adopt visualization tech-
nique [17] to analyze the loss landscape around the minima of the
empirical risk selected by the comparable methods. Specially, we
compute the landscape by:

L(𝜃∗ + 𝛿𝑥d𝑥 + 𝛿𝑦d𝑦) . (16)

where d𝑥 and d𝑦 are the random directions of the optimal param-
eter 𝜃∗, and 𝛿𝑥 and 𝛿𝑦 are the step sizes along with d𝑥 and d𝑦
respectively. It has been shown in [17] that flatter minima and
wider regions of apparent convexity imply better generalization.

The 2D visualization of the training set of EUR-Lex are shown
in Figure 5, and AAPD and RCV1 are shown in Appendix C. The
sparser the contours in the central area are, the flatter the minima
are. We observe that Proto, Mix, and ProtoMix achieve better gen-
eralization than the Base model. This result demonstrates that all
compared regularization approaches improve MLTC performance.
We then discover that Proto and ProtoMix have flatter minima than
Base and Mix respectively. This confirms the effectiveness of our
proposed prototypical label regularization. We finally find ProtoMix
has the flattest minima compared with other variants shown in Fig-
ure 5, which indicates ProtoMix achieves the best generalization
capability among all variants.

5.8 Analysis of Label Correlation
Singular Value Decomposition (SVD) [1] is basically a matrix fac-
torization technique, which is widely used in data dimensionality
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Figure 6: The diversity of label embedding matrix. 𝑆 repre-
sents the singular value.

reduction. The magnitude of the singular values reveals the statis-
tical significance, or, the correlation between data. Therefore, we
adopt SVD on the label embedding matrix to study the diversity
of label embedding for verifying the tolerance of over-alignment
by these regularization methods. We rank the singular values from
high to low and plot the cumulative sum of squares of the values
in Figure 6. The slower the curve increases, the more diverse the
label embedding vectors that our model learns.

As shown in Figure 6, Proto/ProtoMix performs better than
Base/Mix on all datasets respectively, indicating that the prototyp-
ical label embedding regularization mitigates the over-alignment
issue and behaves better in prompting label diversity. We also find
that the gap between Proto/ProtoMix and Mix/Base of EUR-Lex is
larger than AAPD. The reason might be that EUR-Lex has more
labels and fewer instances for each label compared with AAPD,
leading to over-alignment being more severe in EUR-Lex. Further-
more, ProtoMix exhibits the slowest rate of increase, demonstrating
that the label embeddings it learns are more diverse. This indicates
that ProtoMix is more effective at mitigating the over-alignment
issue and, consequently, better at preserving label correlation.

6 Conclusion and Future Work
To alleviate the overfitting problem and preserve explicit and im-
plicit label correlation on MLTC, we first generate a sentence-
attentive prototypical label embedding as a bridge. We then present
a prototypical label regularization between prototypical label em-
bedding and sentence embedding to preserve explicit co-occurring
label correlation. We finally propose a prototypical label embed-
ding Mixup method to preserve implicit semantic label correlation.
Empirical studies confirm the effectiveness of our model. In future
work, we may adapt our regularization method to improve the
generalization of the extreme multi-label text classification, where
labels are usually sparse and long-tailed distributed.
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A Baselines
XML-CNN [19] adopts multiple convolutional kernels and dy-
namic pooling to extract high-level sentence features for MLTC.
This approach also considers multi-label co-occurrence patterns in
both the optimization objective and the network architecture.
SGM [31] formulates MLTC as a sentence generation model and
takes relation correlation and word contribution into account. It
simultaneously captures the correlations between labels and selects
the most informative words while predicting different labels.
DXML [36] introduces explicit label co-occurrence graph to MLTC
and uses deep walk algorithm to encode label embedding on this
graph for label interaction. It also establishes non-linear embedding
in both feature and label spaces to increase the performance.
Rank-AE [4] combinesword-vector-based self-attentionwithAuto-
Encoder to model the inter-label dependencies and the feature-label
dependencies simultaneously. And it exploits a margin-based rank-
ing loss for efficient training and noisy labeled data handling.
AttentionXML [33] utilizes the attention mechanism to capture
the label-specific information and generate a shallow and wide
probabilistic label tree to handle millions of labels. We focus on
standard MLTC rather than extreme MLTC, thus eliminating label
clustering and model ensemble in comparison.
EXAM [6] treats the parameters of the classifier as label embedding
and utilizes attention to characterize the relation between words
and classes. It leverages the interaction mechanism to explicitly
compute the word-level interaction signals for text classification.
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Table 6: Performance on diverse basicmodels and correspond-
ing ablation study.

AAPD

Method P@1 P@3 P@5 nDCG@3 nDCG@5

CNN 82.90 59.60 41.10 78.77 83.04
+Proto 83.90 60.23 40.56 79.61 82.86
+Mix 83.50 60.70 40.82 79.82 83.04

+ProtoMix 84.60 61.63 41.26 81.00 84.09

BiLSTM 83.00 60.03 41.26 79.11 83.23
+Proto 83.90 60.13 41.10 79.50 83.44
+Mix 84.89 60.69 41.82 80.21 84.47

+ProtoMix 85.40 61.40 41.66 81.17 84.80

BERT 84.90 61.60 42.11 80.99 84.99
+Proto 85.20 61.90 42.53 81.57 85.85
+Mix 85.50 62.76 42.54 82.49 86.15

+ProtoMix 86.83 62.72 42.75 82.67 86.49

LLaMA 87.90 64.69 43.72 84.91 88.46
+Proto 88.70 64.43 43.46 84.81 88.35
+Mix 88.50 64.86 43.44 85.19 88.43

+ProtoMix 89.10 65.06 43.52 85.45 88.59

RCV1

CNN 94.93 78.21 54.91 89.15 90.34
+ Proto 95.21 78.52 54.93 89.51 90.53
+ Mix 94.84 77.84 54.57 88.85 89.90

+ ProtoMix 95.54 79.28 55.23 90.29 91.07

BiLSTM 94.88 78.36 54.90 89.29 90.34
+ Proto 95.33 78.42 54.87 89.51 90.50
+ Mix 94.49 78.31 54.84 89.17 90.20

+ ProtoMix 95.63 79.35 55.32 90.35 91.16

BERT 97.02 83.22 57.87 93.94 94.53
+Proto 97.41 83.19 57.81 94.01 94.55
+Mix 96.67 83.26 57.95 93.97 94.58

+ProtoMix 97.48 83.24 57.82 94.12 94.64

LLaMA 96.33 80.71 56.44 91.65 92.62
+Proto 96.49 80.97 56.61 92.01 92.91
+Mix 96.41 81.02 56.65 92.07 92.96

+ProtoMix 96.31 81.17 56.74 92.13 93.01

LSAN [29] leverages label semantic information to establish the
relationship between labels and documents, and further incorpo-
rates a self-attention mechanism to identify label-specific document
representations based on the content information of the documents.
EHTTN [30] transfers the meta-knowledge of high-frequency la-
bels to low-frequency labels for improving the long-tail label repre-
sentation performance.
LDGN [21] integrates category information to extract label-specific
components from documents. It utilizes a dual Graph Convolution
Network (GCN) to capture comprehensive and adaptive interactions
among these components.

Table 7: Comparison of different data augmentationmethods
on AAPD and RCV1.

AAPD

Method P@1 P@3 P@5 nDCG@3 nDCG@5

Base 84.90 61.60 42.11 80.99 84.99
+EDA 86.70 62.06 42.46 82.23 86.26
+BT 85.60 61.90 42.38 81.61 85.72
+LLM 85.40 62.20 42.30 81.92 85.81

+ProtoMix 86.83 62.72 42.75 82.67 86.49

RCV1

Base 97.02 83.22 57.87 93.94 94.53
+EDA 97.12 82.44 57.34 93.35 93.97
+BT 97.27 82.60 57.40 93.51 94.07
+LLM 97.38 82.91 57.66 93.81 94.39

+ProtoMix 97.48 83.24 57.82 94.12 94.64

VCLDL [37] proposes a variational continuous label distribution
learning framework, which establishes a theoretical connection be-
tween the feature space and the label space, enabling the extraction
of hidden information within the observable logical labels.

B Analysis of Ablation Study on AAPD and
RCV1

Performance on diverse encoders and corresponding ablation study
for AAPD and RCV1 are shown in Table 6.

C Analysis of Model Regularization on AAPD
and RCV1

Performance on sparsify AAPD and RCV1 are shown in Figure 7.
And the comparison of data augmentation methods on AAPD and
RCV1 is reported in Table 7. Consistent conclusion with that in
Section 5.7 shows the robustness and scalability of ProtoMix.

The 2D visualization on AAPD and RCV1 is shown in Figure 8.
ProtoMix achieves the flattest minima compared with Proto and
Mix, which is consistent with that in EUR-Lex. Besides, it is worth
noting that the generalization performance of EUR-Lex is much bet-
ter than of AAPD, we think this is because EUR-Lex enjoys larger-
scaling labels leading to much diversity of label embedding through
regularization methods. This phenomenon can be explained in Sec-
tion 5.8.
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Figure 7: Performance on sparse data via different downsampling ratios.
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Figure 8: The 2D visualization of the minima of the empirical risk selected by four variants.
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