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Abstract
Persistent Homology is a widely used topological
data analysis tool that creates a concise descrip-
tion of the topological properties of a point cloud
based on a specified filtration. Most filtrations
used for persistent homology depend (implicitly)
on a chosen metric, which is typically agnostically
chosen as the standard euclidean metric on Rn.
Recent work has tried to uncover the “true” met-
ric on the point cloud using distance-to-measure
functions, in order to obtain more meaningful per-
sistent homology results. Here we propose an
alternative look at this problem: we posit that
information on the point cloud is lost when re-
stricting persistent homology to a single (correct)
distance function. Instead we show how by vary-
ing the distance function on the underlying space
and analysing the corresponding shifts in the per-
sistence diagrams, we can extract additional topo-
logical and geometrical information. Finally, we
numerically show that non-isotropic persistent ho-
mology can extract information on orientation,
orientational variance, and scaling of randomly
generated point clouds with good accuracy.

1. Introduction
Over the last decades, topological data analysis (TDA) has
proven to provide a valuable toolkit for extracting infor-
mation out of complex data sets. Most notably, persistent
homology (PH) provides a straight-forward way to extract
topological information across different scales from a point
cloud. The resulting persistence diagrams and persistence
barcodes form a metric spaces and have been used for
many interesting applications, see for example (Edelsbrun-
ner et al., 2008).

In order to form the simplicial filtration used for comput-
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ing PH, we need to specify a distance function on the point
cloud, which is typically chosen as a metric on Rn; most
often the standard ℓ2 metric on Rn is used. As in algebraic
topology virtually all reasonable metrics on Rn are equiva-
lent and induce the same topology, it would seem that the
choice of metric for PH is irrelevant. However, this is not
true: Because the metric controls the birth-time of simplices,
changing the metric alters the birth and death times of the
topological features of the constructed simplicial complexes.
A change in metric may even eradicate certain topological
features or introduce new topological features. The role of
the underlying metric for PH is often not further investigated,
even though it has been acknowledged in recent work such
as (Anai et al., 2020). However, this influence is treated
by the authors as a problem that they attempt to fix by in-
troducing an improved euclidean distance making PH more
robust to outliers. Stated differently, the aim is to construct
a single metric that leads to the “best possible” simplicial
filtration that provides an accurate topological description
of the underlying space (point cloud).

In this work, we take a different perspective on the in in-
fluence of the choice of a metric on PH. Rather than try-
ing to find the best possible metric, we ask: how does PH
change as we vary the metric, and can we exploit the in-
duced changes in PH to extract additional information from
the data? We name this approach non-isometric persistent
homology (NIPH) — see Figure 1. Note that NIPH not only
provide us with a means to assess how robust (sensitive)
the results of PH are to changes in the metric. In addition,
non-isometric persistent homology (NIPH) harvests the rich
information of how the persistence diagram of a point cloud
changes when we change the underlying metric, to extract
new information that is not apparent from any single PH
analysis. This may be seen as analogous to cases in physics,
where taking the derivative of one important physical quan-
tity often yields another physical quantity of interest. In the
next section, we will demonstrate how these rich features
can be used to extract information on the preferred orien-
tation, local orientational variance, and scaling factors of
different dimensions of point clouds.

1.1. Related Work

Anai et al. (2020) introduced distance-to-measure filtrations
to adapt the distance function of the point cloud to reduce
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Figure 1. Schematic of Non-Isotropic Persistent Homology (NIPH). Step 1. Produce different versions of the input point cloud by
applying directional scaling in direction u and scaling-factor α according to elements in input set D. Step 2. Compute PH of desired
degree (the diagram displays 0th persistent homology) for input point cloud and each of the scaled point clouds. Step 3. Compute
optimal transport between weighted death time distributions of input point cloud and each of the scaled point clouds. Step 4. Compute
multiplicative factor of shift for each death time. Extract maxima and use optimisation problem to compute preferred orientations,
scaling-factor, and orientational variance of point cloud, as seen in the illustrations on the right. Orientation. Two point clouds with
similar 0-dimensional PH. Left: The point cloud has additional structure: a preferred orientation. Right: There is no preferred orientation
in the point cloud. NIPH can detect the differences in the amount of orientation in both point clouds across arbitrary scales. Orientational
variance. Two point clouds with similarly structured 0-dimensional PH. Both have additional structure and a preferred dimension. Left:
There is a comparably large variance in the local preferred direction. Right: The alignment of the point data with the preferred direction is
very strong. NIPH can detect the differences in the amount of variance of orientation in both point clouds. Scaling factor. Two point
clouds with similarly structured 1-dimensional PH. Both have additional structure and are scaled along the same preferred dimension. The
ellipses of the left point cloud are scaled differently than the ellipses on the right. NIPH can detect and distinguish different scaling-factor
along different dimensions. The above three properties cannot be extracted by using ordinary PH alone.

Figure 2. Data features not captured by standard PH Left: Per-
sistent homology will not distinguish circles and ellipses by their
death time ε. Right: Persistent homology cannot distinguish orien-
tations and orientational variances of the data set by death times ε.

the effect of outliers. There has also been work on extract-
ing geometric information using persistent homology, such
as the persistent homology transform (Turner et al., 2014).
However, this work focussed on extracting shapes of 2d
surfaces and 3d objects in 3d space, whereas we focus on
local geometric information encoded in point clouds. In
(Hofer et al., 2019) and (Carriere et al., 2021), the authors
come up with notions of differentiating persistent homology
diagrams. However, their goal is to utilize this differentiabil-
ity to make PH accessible to machine learning tasks, rather
than to extract geometrical information on the point cloud.

2. Methods
An important motivation for our work is to combine the
robust topological descriptors PH provides of (point-cloud)
data with more refined geometric notions of orientation and
preferred dimensions.

2.1. Introductory Example

As an introductory example, we can consider the following
class of metrics on R2:
Definition 2.1. For real α, β > 0, we define the associated
metric dα,β on R2 as follows:

dα,β :

((
x1

x2

)
,

(
y1
y2

))
7→

√
α (x1 − y1)

2 + β (x2 − y2)
2,

which is the standard euclidean distance for α = β = 1.
Picking α and β amounts to (de-)prioritising the x- and
y-axis for our metric. When choosing α ≫ β, the distance
between two points is almost entirely determined by the
distance of their x-values. When choosing β ≫ α, the
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Algorithm 1 Non-isotropic persistent homology (NIPH)

Input: Point cloud X , list of directions and scale-factors
D
Compute persistent homology diagram P of X
for d ∈ D do

Compute scaled data set Xd according to d = (u, α).
Compute persistent homology Pd of Xd.
Solve optimal transport from P to Pd.
Compute mult. shift diagram MSd associated to d

end for
Solve optimisation problem for best orientation ϕ, scaling-
factor s, and orientational variance V matching the max-
ima of MSd.
Output: ϕ, s, V

distance between two points is almost entirely determined
by the distance of their y-values, and differences in the
x-coordinate have almost no influence.

To build some intuition, assume that we compute ordinary
1-dimensional PH with α = β = 1 first and compare it with
PH associated to dα,β for α = 0.5 and β = 1. On a data set
consisting of points sampled from circles with radius ε/2,
the death times would remain almost constant: although
points are now farther apart in the x-axis, simplices with
edge length of ε are enough to cover all circles in the y-
direction. On the other hand, if the data set consisted of
ellipses stretched along the y-axis the persistent homology
would change with the change in metric. Because the change
of the metric is orthogonal to the orientation of the ellipses,
their death times will double (Figure 2).

This simple example motivates why looking at the change
of PH under different metrics can be a powerful tool to en-
rich the standard tools of persistent homology with notions
of orientation and preferred directions. We give a more
rigorous account of our mathematical models below.

2.2. General Method

NIPH is sensitive to the presence or absence of a preferred
orientation, variance of the orientation, and the scaling
factor along the different preferred dimensions, see the right
part of Figure 1. NIPH takes as input a point cloud X ∈ Rn

and a set of scaling directions (see Algorithm 1).

The distance function For every direction of n-
dimensional space given by a unit vector u we can pick
an orthonormal basis with first basis vector u. Let U be the
associated base transformation matrix. For a scaling-factor
α > 0 we can define the scaling function

Su,α : x 7→ U−1 diag((α, 1, . . . , 1))Ux.

Definition 2.2. We compute the distance function du,α

associated to the pair (u, α) as follows:

du,α : (x1, x2) 7→ ∥Su,α(x1)− Su,α(x2)∥2.

We note that this definition generalises Definition 2.1 given
in the introduction.
Definition 2.3. Let X be a point cloud in n-dimensional
space X ⊂ Rn, u ∈ Rn a unit vector and α > 0 a real
scaling-factor. We denote by Xu,α the scaled data-set

Xu,α := {Su,α(x) | x ∈ X}.

It is easy to see that (Xu,α, d) is isometric to (X, du,α)
where d is the euclidean distance on Rn.

Computing persistence diagrams We compute the per-
sistence diagrams P and Pu,α on the point clouds X and
(X, du,α) for all (u, α) ∈ D using a Vietoris-Rips filtration
on X and Xu,α.

Death distributions In many cases, the death of homol-
ogy classes carries more structural information than their
birth time. This is because birth time is mainly controlled by
point densities, whereas death times measure the distance
between clusters or the size of loops. Hence we transform
the persistence diagrams to density plots over the death time.
In the case of 1-dimensional homology, we can weigh the
points according to the difference or quotient of death and
birth time, i.e., longer lived loops carry more weight. We
denote by D and D(u,α) the vectors of death times.

Computing the multiplicative shift We are interested in
how persistent homology and the death distributions change
when changing the metric of the underlying data set. Hence
we propose to compute an optimal transport based matching
between the death distribution diagrams of X and of the
Xu,α. We can then compute for every point in the original
persistence diagram the factor by which the death time was
multiplied in the optimal transport matching. We can then
present these multiplicative death shift factors as another
density plot (See Figure 3):
Definition 2.4 (Multiplicative Death Shift). Let T (u,α) de-
note the solution transport matrix of optimal transport be-
tween P and P(u,α). We denote by the i-th multiplicative
death shift msu,αi associated to scaling u, α for 1 ≤ i ≤ |P|
the following expression

msu,αi (X) := exp

∑
j

Tu,α
i,j (X) lnDu,α

j (X)/Di(X)

 .

Now let w denote a weight vector for the vector of homo-
logical features of X in PH. Then we denote by MSu,α the
multiplicative death shift, given by the density diagram

MSu,α(X) := density {(msu,αi (X), wi) | 1 ≤ i ≤ |P|} .
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Figure 3. The multiplicative death shift diagram. The under-
lying point cloud consists of points sampled from ellipses with
a scaling-factor of 2, where the size of the large half-axis varies
between 0.2 and 2 with an orientation of 88◦, and α = 2. The
orange curve represents scaling parallel to the directional scaling
of the ellipses. Thus there is no change in the death times and the
peak of the curve is at ∼ 1.0. The blue curve represents scaling
in a direction almost orthogonal to the scaling of the data points,
hence the death times are multiplied by the factor of the scaling.
This is represented by the peak of the curve almost reaching 2.0.
The red and green curve represent scaling roughly at a direction of
47◦ and 43◦ to the original scaling in the point cloud.

We furthermore denote the x-value of the maximum of
MSu,α(X) by peaku,α(X).

Extracting the orientations The multiplicative death
shift density diagrams obtained in the previous step are
an interesting object in their own right. However, we here
simply concentrate on extracting information on orientations
and preferred dimensions from these shift diagrams

Definition 2.5 (Expected Peak). Let EPu,α(ϕ, V, s) be a
function such that for a point cloud Y sampled from rect-
angles with scaling factor s, orientation ϕ and orientational
variance V we have that MSu,α(Y ) takes it maximum value
at EPu,α(ϕ, V, s).

EP has an analytic description, but can be determined via
sampling as well. NIPH solves the optimisation problem

min
ϕ,V,s

∑
d∈D

(EPd(ϕ, V, s)− peakd(X))
2

to obtain an estimated orientation ϕ, orientational variance
V , and scaling factor α of the point cloud X where D is the
set of sampling directions and scalings given as an input.

3. Experiments
We ran experiments on synthetic data to verify that NIPH
can indeed infer information on the orientation, scaling,

std(ϕ)
√

MSE ϕ
√

MSE scaling
√

MSE std(ϕ)

0◦ 0.3◦ 0.09 0.26
5◦ 0.8◦ 0.11 0.18

10◦ 1.6◦ 0.15 0.12
15◦ 2.3◦ 0.18 0.08
20◦ 3.0◦ 0.19 0.07
25◦ 4.0◦ 0.19 0.07
30◦ 5.1◦ 0.19 0.08
35◦ 6.2◦ 0.20 0.08
40◦ 8.0◦ 0.20 0.08

Table 1. Quantitative performance analysis of NIPH. We have
run NIPH on a point cloud sampled from 200 oriented rectangles
with different orientational variances. We show the root of the
mean squared error of the orientation (ϕ), orientational variance
(std(ϕ)), and scaling factor as predicted by NIPH depending on the
orientational variance of the point cloud.

and variance inside a data set, see Table 1. We note that
even with high orientational variance in the synthetic data,
NIPH is able to predict orientation, scaling and orientational
variance with good accuracy.

4. Conclusion
We have introduced NIPH, a novel method building on top
of persistent homology. NIPH extracts additional topolog-
ical and geometrical information by varying the distance
function on the underlying space and analysing the cor-
responding shifts in the persistence diagrams. We have
verified the performance of NIPH on a synthetic data set.

References
Anai, H., Chazal, F., Glisse, M., Ike, Y., Inakoshi, H., Tinar-

rage, R., and Umeda, Y. Dtm-based filtrations. In Topo-
logical Data Analysis: The Abel Symposium 2018, pp.
33–66. Springer, 2020.

Carriere, M., Chazal, F., Glisse, M., Ike, Y., Kannan, H., and
Umeda, Y. Optimizing persistent homology based func-
tions. In International conference on machine learning,
pp. 1294–1303. PMLR, 2021.

Edelsbrunner, H., Harer, J., et al. Persistent homology—a
survey. Contemporary mathematics, 453(26):257–282,
2008.

Hofer, C., Kwitt, R., Niethammer, M., and Dixit, M.
Connectivity-optimized representation learning via persis-
tent homology. In International Conference on Machine
Learning, pp. 2751–2760. PMLR, 2019.

Turner, K., Mukherjee, S., and Boyer, D. M. Persistent
homology transform for modeling shapes and surfaces.
Information and Inference: A Journal of the IMA, 3(4):
310–344, 2014.

4


