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Abstract

A few-shot generative model should be able to generate data from a distribution
by only observing a limited set of examples. In few-shot learning the model is
trained on data from many sets from different distributions sharing some underlying
properties such as sets of characters from different alphabets or sets of images
of different type objects. We study a latent variables approach that extends the
Neural Statistician [8] to a fully hierarchical approach with an attention-based
point to set-level aggregation. We extend the previous work to iterative data sam-
pling, likelihood-based model comparison, and adaptation-free out of distribution
generalization. Our results show that the hierarchical formulation better captures
the intrinsic variability within the sets in the small data regime. With this work
we generalize deep latent variable approaches to few-shot learning, taking a step
towards large-scale few-shot generation with a formulation that readily can work
with current state-of-the-art deep generative models.

1 Introduction

Humans are exceptional few-shot learners able to grasp concepts and function of objects never
encountered before [23]. This is because we build internal models of the world so we can combine
our prior knowledge about object appearance and function to make well educated inferences from
very little data [47, 25, 49]. In contrast, traditional machine learning systems have to be trained tabula
rasa and therefore need orders of magnitude more data. In the landmark paper on modern few-shot
learning Lake et al. [24] demonstrated how hand-written symbols from different alphabets can be
distinguished one-shot, i.e. when a letter is shown for the first time.
Few-shot learning [53, 43, 10] and related approaches aiming at learning from little labelled data at test
time (meta and transfer learning [19]) have recently gained new interest thanks to modeling advances,
availability of large diverse datasets and computational resources. Building efficient learning systems
that can adapt at inference time is a prerequisite to deploy such systems in realistic settings. Much
attention has been devoted to supervised few-shot learning. The problem is typically cast in terms
of an adaptive conditional task, where a small support set is used to condition explicitly [11] or
implicitly [10] a learner, with the goal to perform well on a query set. The high-level idea is to train
the model with a large number of small sets, and inject in the model the capacity to adapt to new
concepts from few-samples at test time.
Comparatively less work has been developed on few-shot adaptation in generative models [8, 36, 2].
This is partially because of the challenging nature of learning joint distributions in an unsupervised
way from few-samples and difficulties in evaluating such models. Few-shot generation has been
limited to simple tasks, shallow and handcrafted conditioning mechanisms and as pretraining for
supervised few-shot learning. Consequently there is a lack of quantitative evaluation and progress in
the field.
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In this work we aim to solve these issues for few-shot generation in latent variable models. This class
of models is promising because provides a principle way to include adaptive conditioning using latent
variables. The setting we consider is that of learning from a large quantity of homogeneous sets, where
each set is an un-ordered collections of samples of one concept or class. At test time, the model will be
provided with sets of concepts never encountered during training and sets of different cardinality. We
consider explicit conditioning in a hierarchical bayesian formulation, where a global latent variable
carries information about the set at hand. A pooling mechanism aggregates information from the
set using a hard-coded (mean, max) or learned (attention) operator. The conditioning mechanism
is implemented in a shallow or hierarchical way: the hierarchical approach helps to learn better
representations for the input set and gradually merges global and local information between the
aggregated set and samples in the set. To handle input sets of any size the mechanism has to be
permutation invariant and non-parametric. Conditional hierarchical model can naturally represent
families of distributions where each conditioning set-level latent variable defines a different generative
model. Learning a full distribution over the input set increases the flexibility of the model. Our
contributions are the following:

1. We study latent variable models in the few-shot generation scenario. We perform quantita-
tive evaluation of previous proposed methods.

2. We explore forward and iterative sampling strategies for the marginal and the predictive
distributions implicitly defined by few-shot generative models.

3. We organize previously proposed latent variable models in the general class of hierarchical
few-shot generative models, increasing the input set expressivity through convolutions, a
learnable aggregation mechanism and hierarchical inference.

The paper is organized as follow: in Section 2 we summarize the Neural Statistician (NS). In Section
3 we extend the NS proposing a new class of hierarchical models - Hierarchical Few-Shot Generative
Models (HFSGM). In this section we also discuss sampling strategies and aggregation mechanisms
for the input set. In Section 4 we present empirical results on benchmark datasets, focusing on
I) few-shot generative capacities varying the input set cardinality, II) strategies for unconditional,
conditional and refined sampling and III) transfer properties on datasets of increasing complexity. In
Section 5 we survey related work and in Section 6 we conclude this work.

2 Neural Statistician
In this section we present the modeling background for the proposed few-shot generative models.
The Neural Statistician (NS, [8]) is a latent variable model for few-shot learning. Based on this
model, many other approaches have been developed [12, 2]. The NS is a hierarchical model where
two collections of latent variable are learned: a task-specific summary statistic c with prior p(c) and a
per-sample latent variable z with prior p(z|c):

p(X) =

∫
p(c)

S∏
s=1

[∫
p(xs|zs, c)p(zs|c)dzs

]
dc , (1)

where X = {x1, . . . , xS} assuming the data set size is S and p(z|c) in general is a hierarchy of latent
variables [44, 29]: p(z|c) = p(zL|c)

∏L−1
l=1 p(zl|zl+1, c) with z = {z1, . . . , zL}.

In the original NS model, the authors factorize the lower-bound wrt c and z as:

q(c,Z|X) = q(c|X)

S∏
s=1

q(zs|c, xs) , (2)

where Z = {z1, . . . , zS} and q(zs|xs, c) is in general a hierarchy of latent variables. In the NS
the moments of the conditioning distribution over c are computed using a simple sum/average
based formulation r =

∑S
s=1 h(xs),; and then r is used to condition q(c|r). This idea is simple

and straightforward, enabling efficient learning and a clean lower-bound factorization. But it has
limitations: I) with such formulation the model expressivity and capacity to extract information
from the set are limited. II) The invariance of q(c|X) with respect set permutation is achieved by
simple aggregation. The pooling mechanism assumes strong homogeneity in the context set and the
generative process. However the model formulation allows more advanced invariant aggregations
based on attention [51] and graph approaches [52]).
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Figure 1: Generation and inference for a Neural Statistician (left) and a Hierarchical Few-Shot Generative
Model (right). The generative model is composed by two collections of hierarchical latent variables, c for the
sets X = {xs}Ss=1 and zs for the samples xs. The generative process is repeated S times and the full model is
run on T different sets or tasks. The two variables are learned jointly, increasing expressivity and improving
sampling. The generative and inference models can share parameters.

In the general case we want to be able to learn more expressive few-shot generative models able
to deal with variety and complexity in the conditioning set. To go beyond these models in the
next section we propose: I) a learnable non-parametric representation for the context set; and II) a
hierarchical merging of information between conditioning c and sample z representations.

3 Hierarchical Few-Shot Generative Models
Notation.

Top Prior c: pθ(cL)

Top Prior z: pθ(zL | cL)

Prior c: pθ(cl | cl+1, Zl+1)

Prior z: pθ(zl | zl+1, cl)

Observation x: pθ(x | z1:L, c1:L)

Top Posterior c: qφ(cL |X)

Top Posterior z: qφ(zL | cL, x)

Posterior c: qφ(cl | cl+1, Zl+1, X)

Posterior z: qφ(zl | zl+1, cl, x)

Set Representation: hl

Our goal is to learn a generative model over sets, i.e. unordered collections of observations, able to
generalize to new datasets given few samples. In this model, c is a collection of latent variables that
represent a set X . We learn a posterior over z conditioned on c, able to generate samples accordingly
to queries xs. The model has to be expressive: I) hierarchical - to increase the functions that the
model can represent and improve the joint merging of set-level information c and sample information
z, and II) non-parametric - to handle input sets of any size and complexity, improving the way the
model extracts and organizes information in the conditioning set. A fundamental difference between
our proposal and previous models is the intrinsically hierarchical inference procedure over c and z.
Generative Model. The generative model factorizes the joint distribution p(X,Z, c). In particular
can be written as:

p(X|Z, c)p(cL)

[
p(ZL|cL)

L−1∏
l=1

p(Zl, cl|Zl+1, cl+1)

]
(3)

where Zl = {z1l , . . . , zSl } are latent for layer l in the model and sample s in the input set X =
{xs}Ss=1; cl is a latent for layer l in the model and the input set X . We factorize the likelihood and
prior terms over the set as:

p(X|Z, c) =

S∏
s=1

p(xs|zs, c)

p(Zl, cl|Zl+1, cl+1) =

S∏
s=1

p(zsl |zsl+1, cl) p(cl|cl+1, Zl+1).
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In this formulation the context p(cl|cl+1, Zl+1) is a distribution of the previous context representation
cl+1 and the previous latent representation for the samples Zl+1 as illustrated in Figure 1.
Approximate Inference. Learning in the model is achieved by amortized variational inference [20,
18]. The hierarchical formulation leverages structured mean-field approximation to increase inference
flexibility. The approximate posterior parameterizes a joint distribution between latent representation
for context and samples. We factorize q(c,Z|X) following the generative model:

q(cL|X)

[
q(ZL|cL, X)

L−1∏
l=1

q(Zl, cl|Zl+1, cl+1, X)

]
(4)

where we factorize the posterior using a top-down inference formulation [44], merging top-down
stochastic inference with bottom-up deterministic inference from the data. We factorize the posterior
terms over the set as:

q(Zl, cl|Zl+1, cl+1, X) =

S∏
s=1

q(zsl |zsl+1, cl, xs) q(cl|cl+1, Zl+1, X).

Lower-bound. In latent variable models [37, 22] we maximize a per-sample lower-bound over a
large dataset. In few-shot generative models we maximize a lower-bound over a large collection of
small sets. This detail is important because, even if the dataset of sets is iid by construction, learning
in the few-shot scenario relies explicitly on common structure within a small set. For example,
each small set can be an unordered collection of observations for a specific class or concept, like a
character or face; and we rely on common structure between these observations using aggregation
and conditioning on c. The variational lower bound for log p(X) is obtained using the variational
distribution q = q(c,Z|X):

log p(X) ≥ Eq

[
S∑
s=1

log p(xs|zs, c)

]
+

Eq

[
L−1∑
l=1

S∑
s=1

log
p(zsl |zsl+1, cl)

q(zsl |zsl+1, cl, xs)

]
+ Eq

[
S∑
s=1

log
p(zsL|cL)

q(zsL|cL, xs)

]
+

Eq

[
L−1∑
l=1

log
p(cl|cl+1, Zl+1)

q(cl|cl+1, Zl+1, X)

]
−KL(q(cL|X), p(cL)) .

(5)

The lower-bound can be split in three main components: an expected log likelihood term, divergences
over Z and over c. The final per-sample loss for T sets of size S then is L = Ep(XS)l(X) =

1/N
∑T
t=1 l(Xt), where l(Xt) is the negated lower-bound for set Xt and N = T S.

3.1 Sampling

Algorithm 1: Sampling
Data: Input set X;
single pass
cL ∼ q(cL|X);
z, c<L ∼ p(z, c<L|cL);
x ∼ p(x|z, c);
repeat

X̃ = [X,x];
Z̃, c ∼ q(Z̃, c|X̃);
X̃ ′ ∼ p(X̃ ′|Z̃, c);
x = x′;

until converged;
return x;

We may be interested in either sampling unconditionally
x ∼ p(x) or from the predictive distribution x ∼ p(x|X).
Unconditional sampling may be performed exactly us-
ing the generative model as illustrated in Figure 1: first
sample the hierarchical prior z, c ∼ p(z, c) and then sam-
ple the likelihood x ∼ p(x|z, c). Conditional sampling
x ∼ p(x|X) can be done approximately using the varia-
tional posterior q(Z, c|X) as a replacement for the exact
posterior p(Z, c|X) as outlined in Algorithm 1. In the sin-
gle pass approach (adapted from the NS) a sample from:∫

p(x|z, c)p(z, c<L|cL)q(cL|X)dzdc ≈ p(x|X) (6)

is generated. This approach is not ideal because c<L is
only modeled jointly with the latent z for the new sample
while omitting the latent Z for X . We can introduce this dependence in a Markov chain approach
adapted from the missing data imputation framework proposed in Appendix F of [37]. We augment
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X with the sample x generated in the single pass approach: X̃ = [X,x]. From this we can construct
a distribution p̂(Z̃, c|X̃), where Z̃ = [Z, z] is the corresponding augmented latent. From this
distribution and the likelihood we can construct a transition kernel:

p̂(x′|x,X) =

∫
p(X̃ ′|Z̃, c)p̂(Z̃, c|X̃)dX ′dZ̃dc .

If p̂(Z̃, c|X̃) = p(Z̃, c|X̃) then we can show that p(x|X) is an eigen-distribution for the transition
kernel and thus sampling the transition kernel will under mild conditions converge to a sample
from p(x|X). There are several ways to construct p̂(Z̃, c|X̃) from the hierarchical variational
and prior distributions. One possibility is shown in Algorithm 1. Alternatively, one may sample
cL, Z̃L ∼ q(cL, Z̃L|X̃), generate the remainder of the latent from the prior hierarchy and new
samples X ′, x′ from the likelihood. If the variational is exact, these approaches are equivalent and
exact. In the experimental section we report results for the different approaches.

3.2 Learnable aggregation (LAG)

Algorithm 2: LAG

Data: Input set X = {xs}Ss=1;
compute
{h(xs)}Ss=1;
r = 1/S

∑S
s=1 h(xs);

α(r, xs) ∝ sim(q(r), k(hs));
aggregate
rLAG =

∑S
s=1 α(r, xs) v(hs);

sample
c ∼ q(c|rLAG);

A central idea in few-shot generative models is to con-
dition the generative model with a permutation invariant
representation of the input set. For a NS such operator
is a hard-coded per-set statistic. This approach [8, 12]
maps each sample in X independently using {h(xs)}Ss=1

and then aggregating rL =
∑S
s=1 h(xs) to generate the

moments for q(cL|rL). This idea is simple and effective
when using homogeneous and small sets for conditioning.
Another choice is a relation network [46, 39] followed by
aggregation. However, the adaptation capacities of the
model are a function of how we represent the input set and
a more expressive learnable aggregation mechanism can
be useful. In the general scenario, a few-shot generative model should be able to extract information
from any conditioning set X in terms of variety and size. In this paper we consider a multi-head
attention-based learnable aggregation (LAG) inspired by [27] that can be used in each block of the
hierarchy over c (Figure 3). Using LAG we can account for statistical dependencies in the set, handle
variety between samples in the set and generalize better to input set dimensions. In the experimental
section we provide extensive empirical analysis of how using LAG improves the generative and
transfer capacity of the model.

4 Experiments
In this section we discuss experimental setup and results for our model. In particular for all the
models our interests are: I) Quantitative evaluation of few-shot generative capacities. II) Conditional
sampling from the model. III) Transfer of generative capacities to new datasets and input set size.
We perform experiments on binarized Omniglot [24] and CelebA [28]. We perform quantitative
evaluation on Omniglot, MNIST [26], DOUBLE-MNIST [45], TRIPLE-MNIST [45] and CelebA.
We follow the approach proposed in [8] for set creation. We create a large collection of small sets,
where each set contains all the occurrences for a specific class or concept in a dataset: a character for
Omniglot; the face of an identity for CelebA. Both datasets contain thousands of characters/identities
with an average number of 20 occurrences per class. For this reason they are a natural choice for
few-shot generation. Then we split the sets in train/val/test sets. Using these splits we can dynamically
create sets of different dimensions (2-5-10 samples per set from the same class), generating a new
collection of training sets at each epoch during training. For training we use the episodic approach
proposed in [53]. Our architecture is a close approximation of [8]. We describe relevant details in
Appendix C. We use a VAE - which does not explore set information - and the Neural Statistician
(NS) as baselines. We propose two main model variants. Such variants are characterized by different
design choices for the conditioning mechanism. A Convolutional Neural Statistician (CNS) where
the latent space is shaped with convolutions at a given resolution; and a Convolutional Hierarchical
Few-shot Generative Model (CHFSGM) where an additional hierarchy over c is employed. For all
the models we consider standard aggregation mechanism (MEAN, MAX pooling) and learnable ones
(LAG). Each input set is a homogeneous (one concept or class) collection of samples. During training
the input set size is always between 2 and 10.
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Generative. With these experiments we test the generalization properties of the model on few-shot
generation. We explore the behavior of the model increasing the input size. Evaluation of generative
properties is performed using the lower-bound and approximating the log-marginal likelihood with
1000 importance samples. In Table 1 we compare generalization in Omniglot on disjoint classes with
a set size of 5. Our focus is on improving the model through c. In Table 1, NS-MEAN is the original

Table 1: Generalization on disjoint Omniglot classes trained on set size 5 for a VAE, NSs with
mean/max/learnable aggregation (MEAN/MAX/LAG) convolutional variants (C) and for a HFSGM with
a hierarchy over c. We report minus the 1-sample lower-bound (NELBO), minus expected log likelihood (minus
term 1 in Equation (5)), z KL terms (minus term 2 and 3), c KL terms (minus term 4 and 5) and minus the 1k
importance sample lower bound (MLL).

MODEL AGG NELBO NLL KLz KLc MLL PARAMS (M)

VAE - 102.54 68.49 34.05 - 97.47 7.5

NS MAX 97.52 66.82 26.29 4.41 90.23 7.9
NS MEAN 97.52 67.04 25.75 4.73 90.21 7.9
NS MEAN 96.28 65.64 25.95 4.87 90.07 14.9

CNS MEAN 93.71 59.83 28.97 5.22 88.15 7.3
CNS (ours) LAG 93.24 58.97 29.23 5.04 88.21 7.4

CHFSGM (ours) MEAN 92.58 59.04 28.72 4.81 87.37 9.2
CHFSGM (ours) LAG 92.59 58.14 30.00 4.44 87.43 9.5

NS with mean aggregation. The NS-MAX is the same model with max aggregation. NS-LAG uses
an attention-based learnable aggregation, that builds an adaptive aggregation mechanism for each
set. Then we report results for a hierarchical formulation over c with CHFSGM and we use the
same two aggregation mechanisms. The proposed methods improve perform in terms of likelihood
and reconstruction with a gain in performance for the learnable aggregation mechanism and the
hierarchical formulation for c. In Figure 2 we show the models behavior increasing the input set
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Figure 2: Set Cardinality. All models are trained with homogeneous (one concept) sets.
(Left): Lower-bounds for models trained with input set size 5 varying the test set cardinality from 1 to 20 on
Omniglot. All the models improve the generative properties increasing the input set size. We see how the
convolutional latent space is fundamental for performance improvement, increasing the expressivity of the model.
Adding learnable attention and hierarchical inference over c improves the generative metrics in a monotonic
way, showing how our proposed models can effectively adapt to different input set size.
(Center): Lower-bounds for models trained with varying input set size (2, 5, 10). We notice how training a CNS
with input set size 2 gives better performance than a VAE for size 1 and tends to plateau and slightly decrease
performance for larger context (10-20). The model trained with input set size 10 under-performs for small
context size. The model trained with input set 5 gives us the best balance between expressivity and adaptability
to different input set size.
(Right): Lower-bounds for models trained with input set size 5 varying the test set cardinality from 1 to 20
on CelebA. All the models struggle with set size larger than 10 because of the large variety in each set (age,
perspective, general look). We can see that learnable aggregation and hierarchical inference both help in
modeling the dataset.

cardinality at test time. All the models are trained with input sets of size 5 on Omniglot. Then at
test time we vary the size of the context set between 1 and 20. All the models improve performance
in terms of ELBO (left plot) and learn a better posterior for c with KL(c) (right plot). For small
input sets (1-2 samples) a VAE baseline performs better because there is no enough information
to aggregate in c. Increasing the set (2-20), the NS-style models can aggregate more and more
information learning a better model for the data. This is the desired behavior for a model learning
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Figure 4: Sampling. Different ways to sample the model.
(Top): Refined samples obtained using Algorithm 1. Given a small set from an unknown character (right on
black background), we sample the model and then refine iteratively using the inference model. We show 20
iterations from left to right. We can see how the generative process refines its guess at each iteration improving c
and z in a joint manner.
(Middle and Bottom): Stochastic reconstruction, input sets, conditional sampling using the NS approach,
conditional sampling using refinement, and unconditional sampling (sometimes referred to as imagination). The
models are trained on subsets of Omniglot and CelebA and tested on disjoint identities.

from sets and more generally from permutation invariant data. All the aggregation mechanisms
(hard-coded and learned in a shallow or hierarchical fashion) respects this property and can exploit
additional data in input.
Sampling. In latent variable models like VAEs we can only perform unconditional sampling.

Figure 3: Attention. Sample formation in a
Convolutional Neural Statistician with learn-
able aggregation. For each sample (black
background) we plot the attention bars over
the input sets (in white background) for four
different heads.

In a NS we have different ways of sampling as explained in
Section 3.1. In particular two main sampling approaches
can be used: I) conditional sampling, where we sample
the predictive distribution p(x|X) relying on the infer-
ence model. II) unconditional sampling, sampling p(X)
through c ∼ p(c) and then p(z|c). In Figure 4 we show
(from left to right) stochastic reconstructions, input sets,
samples obtained sampling like in a NS, refined samples,
and unconditional samples. For simple characters there
is almost no difference between conditional and refine-
ment sampling. However when the model is challenged
with a new complex character (third and ninth row) the
refinement procedure greatly improves the adaptation ca-
pacities and visual quality of the generated samples. In
the rightmost column we see fully unconditional samples.
The model, given a set representation c, generates consis-
tent symbols, corroborating the assumption that the model
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learns a different distribution for each c, greatly increasing the model flexibility and representation
capacities.
Transfer. With these experiments we explore few-shot generation in the context of transfer learning.
We use the same models we trained on Omniglot and we test on unseen classes in a different dataset.
We use MNIST test set (10 classes), DOUBLE-MNIST test set (20 classes) and TRIPLE-MNIST
test set (200 classes). The datasets increase in complexity and in size. We expect relatively good
performance on the simple one and worse performance on the more complex one. We resize all the
datasets to 28x28 pixels using BOX resizing. In Table 2 we report likelihoods for input set 5 on
the three datasets. Our models perform better on all three datasets. Attention-based aggregation
is essential for good performance on few-shot transfer. The same general behavior can be seen in
Figure 5 where we explore transfer increasing the input set size. Again our models perform better
than the baselines and attention-based aggregation is important for good performance on concepts
from different datasets. In Appendix B, we report out of distribution classification performance
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Figure 5: Transfer. Model trained on Omniglot with set size 5 and tested on MNIST, DOUBLE-MNIST and
TRIPLE-MNIST (from left to right) with different set size. We can see how our models perform better than a
plain CNS. In particular models with learnable aggregation (LAG) can adapt better to the new datasets.

Table 2: Transfer. We test the model transfer capacities on scenarios of increasing complexity, using a subset of
disjoint classes from simple out-distribution on MNIST and more challenging out-distribution generalization on
MNIST variants with 20 and 200 classes. Lower is better. Models trained on Omniglot with input set size 5.

MODEL AGG MNIST DOUBLE-MNIST TRIPLE-MNIST

VAE - 124.71 98.13 104.75
NS MEAN 119.92 96.28 100.71
CNS MEAN 115.76 91.85 97.24
CNS (ours) LAG 115.22 91.63 96.68
CHFSGM (ours) MEAN 114.72 91.84 97.83
CHFSGM (ours) LAG 114.27 91.09 97.48

for the three approaches described in Section 3. The models are trained on Omniglot for context
size 5 and tested on MNIST also for context size 5 (so in total 50 data points) without adapting the
distributions to the MNIST data.

5 Conclusion
Leveraging recent advances in deep latent variable models, we propose a new class of hierarchical
latent variable models for few-shot generation. We ground our formulation in hierarchical inference
and a learnable non-parametric aggregation. We show how simple hierarchical inference is a viable
adaptation strategy. We perform extensive empirical evaluation in terms of generative metrics,
sampling capacities and transfer properties. The proposed formulation is completely general and
we expect there is large potential for improving performance by combining it with state of the art
VAE architectures. Since benchmarks often come with grouping information, using a hierarchical
formulation is a generic approach to improve generative capabilities.
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A Related Work

Learning from Sets. In recent years a large corpus of work studied the problem of learning from
sets [56], and more generally learning in exchangeable deep models [7, 4, 3]. These models can
be formulated in a variety of ways, but they all have in common a form of permutation invariant
aggregation (or pooling mechanism) over the input set. Deep Sets [56] formalized the framework of
exchangeable models. The Neural Statistician [8] was the first model proposing to learn from sets in
the variational autoencoder framework and used a simple and effective mean pooling mechanism
for aggregation. The authors explored the representation capacities of such model for clustering and
few-shot supervised learning. Generative Query Networks performs neural rendering [9] where the
problem of pooling views arises. The Neural process family [12, 21], where a set of point is used
to learn a context set and solve downstream tasks like image completion and few-shot learning. Set
Transformers [27] leverages attention to solve problems involving sets. PointNet [33] models point
clouds as a set of points. Graph Attention Networks [52] aggregate information from related nodes
using attention. Associate Compression Network [14] can be interpreted in this framework, where a
prior for a VAE is learned using the top-knn retrieved in latent space. In this work we build on ideas
and intuitions in these works, with a focus on generative models for sets.
Few-Shot Generative Models. Historically the machine learning community has focused its atten-
tion on supervised few-shot learning, solving a classification or regression task on new classes at
test time given a small number of labeled examples. The problem can be tackled using metric based
approaches [53, 43, 31], gradient-based adaptation [10], optimization [35] and more. More generally,
the few-shot learning task can be recast as bayesian inference in hierarchical modelling [13, 34].
In such models, typically parameters or representation are conditioned on the task, and conditional
predictors are learned for such task. In [55] an iterative attention mechanism is used to learn a
query-dependent task representation for supervised few-shot learning. Modern few-shot generation
in machine learning was introduced in [24]. The Neural Statistician [8] is one of the first few-shot
learning models in the context of VAEs. However the authors focused on downstream tasks and not on
generative modeling. The model has been improved further increasing expressivity for the conditional
prior using powerful autoregressive models [16], a non-parametric formulation for the context [54]
and exploiting supervision [12]. [38] proposed a recurrent and attentive sequential generative model
for one-shot learning based on [15]. Powerful autoregressive decoders and gradient-based adaptation
are employed in [36] for one-shot generation. The context c in this model is a deterministic variable.
In GMN [2] a variational recurrent model learns a per-sample context-aware latent variable. Similar
to our approach, GMN learns a non-parametric context, learning an attention based kernel that can
handle generic datasets. However the context-aware representation scales linearly with the input
size, there is no separation between global and local information in latent space, The input set is
processed in an arbitrary autoregressive order, and not in a permutation invariant manner. They
use recurrent models where we use hierarchical models. Finally, recent large-scale autoregressive
language models [5] exhibit non-trivial few-shot capacities.
Adaptation as Inference. A large corpus of works has been proposed for learning to learn techniques
and fast adaptation in multitask learning [41, 42, 17, 48, 1]. Currently gradient-based adaptation [10]
dominates the field of meta-learning. As shown by [13], such approaches can be seen as maximum
a posteriori inference in a hierarchical model, where the global parameters of a model are adapted
by few-steps of gradient descent on a support set. In this setting, meta-learning is a local weight
update around a global set of parameters. Following these ideas, [34] proposed a fully amortized
bayesian formulation, where the posterior distribution is adapted by gradient-based optimization and
outputs a distribution over per-task model parameters. It is not obvious that few-shot generalization
can be achieved through hierarchical amortized inference. In this work we focus mostly on exploring
adaptation through the lens of hierarchical inference using amortized variational Bayes [12]. However
the problem can be approached in a completely different way, and in particular in terms of gradient-
based weight updates [10]. The outer and inner loop present in such methods can be seen as the
conditioning q(c|X) and hierarchical inference steps q(z|x, c) in our formulation. The parallel
between hierarchical inference and gradient-based adaptation is clearer when we partition the task
dataset in a support set for conditioning q(c|Xs) and a query set for inference and generation
q(Zq|Xq, c). Each inference layer in the hierarchy can be seen as changing the base conditional
distribution. A relevant difference between the approaches is that we adapt representations and latent
variables, where gradient-based adaptation is typically focused on the model parameters.
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Code : https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models
Page : https://georgosgeorgos.github.io/hierarchical-few-shot-generative-models/

Notation :

• Bold → all layers
• CAPITALIZED→ ALL SAMPLES

◦ Bold CAPITALIZED: all layers, ALL SAMPLES Z = {zsl }S,Ls=1,l=1.

◦ Bold: all layers, one sample zs = {zsl }Ll=1.

◦ CAPITALIZED: one layer, ALL SAMPLES Zl = {zsl }Ss=1.

Top Prior c: pθ(cL)

Top Prior z: pθ(zL | cL)

Prior c: pθ(cl | cl+1, Zl+1)

Prior z: pθ(zl | zl+1, cl)

Observation x: pθ(x | z1:L, c1:L)

Top Posterior c: qφ(cL |X)

Top Posterior z: qφ(zL | cL, x)

Posterior c: qφ(cl | cl+1, Zl+1, X)

Posterior z: qφ(zl | zl+1, cl, x)

Set Representation: hl
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Figure 6: Generation and Inference for a Neural Statistician (left) and a Hierarchical Few-Shot Generative
Model (right)
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B Model Derivation
In this section we derive the generative model, inference model and lower-bound for a Basic Neural
Statistician (bNS), a Neural Statistician (with hierarchy over z, this is the model used as baseline in
the paper) (NS), and a Hierarchical Few-Shot Generative Model (HFSGM) with hierarchy over z and
c. Doing so we can underline similarities and differences among the formulations.

Per-Set Marginal. Our goal is to model a distribution p(X) =
∏S
s=1 p(xs) where X{xs}Ss=1 is in

general a small set ranging from 1 to 20 samples. We sample these sets from a common process. The
Neural Statistician [8] introduces a global latent variable c for a set X:

p(X) =

∫
p(X, c) dc =

∫
p(c) p(X|c) dc =

∫
p(c)

S∏
s=1

p(xs|c) dc. (7)

Then we can introduce a per-sample latent variable z:

p(X) =

∫
p(c)

[∫
p(X,Z|c)dZ

]
dc =

∫
p(c)

S∏
s=1

[∫
p(xs, zs|c)dzs

]
dc

=

∫
p(c)

S∏
s=1

[∫
p(xs|zs, c)p(zs|c)dzs

]
dc,

(8)

where X = {xs}Ss=1 is a set of images, c is a latent variable for the set, Z = {zs}Ss=1 are latent
variable for the samples in the set. The formula above is the basic marginal for all the NS-like model.

B.1 Generative Model

We can think of the model as composed of three components: a hierarchical prior over z, a hierarchical
prior over c, and a render for x. For each hierarchical prior, the top distribution is not autoregressive
and act as an unconditional prior for c and a conditional prior for z. In the following all the latent
distributions are normal distributions with diagonal covariance. Given the hierarchical nature of our
model, these assumptions are not restrictive, because from top to down in the hierarchy we build
an expressive structured mean field approximation. The decoder is Bernoulli distributed for binary
datasets. In the following equation we use Z = {zs}Ss=1, Z = {zs}Ss=1, zs = {zsl }Ll=1, c = {cl}Ll=1.
Each of these equation can be written per-set or per-sample (similar to Eq.2 in the Appendix). We
choose to write everything in a compact format writing per-set equations.
bNS. In this setting both z and c are shallow latent variables.

p(X,Z, c) = p(X|Z, c)p(c)
[
p(Z|c)

]
(9)

NS. z is a hierarchy.

p(X,Z, c) = p(X|Z, c)p(c)

[
p(ZL|c)

L−1∏
l=1

p(Zl|Zl+1, c)

]
(10)

HFSGM. Both z and c are a hierarchy. We increase the model flexibility.
Using such hierarchy we can:

• learn a structured mean field approximation for c;

• jointly learn c and Z, informing different stages of the learning process;

• incrementally improve c through layers of inference.

p(X,Z, c) = p(X|Z, c)p(cL)

[
p(ZL|cL)

L−1∏
l=1

p(Zl, cl|Zl+1, cl+1)

]
p(Zl, cl|Zl+1, cl+1) = p(Zl|Zl+1, cl) p(cl|cl+1, Zl+1).

(11)
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B.2 Inference Model

We learn the model using Amortized Variational Inference. In a NS-like model, inference is intrinsi-
cally hierarchical: the model encodes global set-level information in c using q(c|X).
bNS.

q(c, Z|X) = q(c|X)
[
q(Z|c,X)

]
(12)

NS.
q(c,Z|X) = q(c|X)

[
q(Z|c,X)

]
(13)

HFSGM.

q(c,Z|X) = q(cL|X)

[
q(ZL|cL, X)

L−1∏
l=1

q(Zl, cl|Zl+1, cl+1, X)

]
q(Zl, cl|Zl+1, cl+1, X) = q(Zl|Zl+1, cl, X) q(cl|cl+1, Zl+1, X).

(14)

B.3 Lower-bound

We learn the model by Amortized Variational Inference similarly to recent methods. However we are
in presence of two different latent variables, and we need to lower-bound wrt both.
bNS.

log p(X) ≥ Eq(c,Z|X)

[
log

p(X,Z, c)

q(c, Z|X)

]
=

Eq

[
S∑
s=1

log p(xs|zs, c)

]
+ Eq

[
S∑
s=1

log
p(zs|c)

q(zs|c, xs)

]
−KL(q(c|X), p(c)) = −L(X).

(15)

NS.

log p(X) ≥ Eq(c,Z|X)

[
log

p(X,Z, c)

q(c,Z|X)

]
=

Eq

[
S∑
s=1

log p(xs|zs, c)

]
+ Eq

[
L−1∑
l=1

S∑
s=1

log
p(zsl |zsl+1, c)

q(zsl |zsl+1, c, xs)

]
+ Eq

[
S∑
s=1

log
p(zL|c)

q(zL|c, xs)

]
− KL(q(c|X), p(c)) = −L(X).

(16)

HFSGM.

log p(X) ≥ Eq(c,Z|X)

[
log

p(X,Z, c)

q(c,Z|X)

]
=

Eq

[
S∑
s=1

log p(xs|zs, c)

]
+ Eq

[
L−1∑
l=1

S∑
s=1

log
p(zsl |zsl+1, cl)

q(zsl |zsl+1, cl, xs)

]
+ Eq

[
S∑
s=1

log
p(zL|cL)

q(zL|cL, xs)

]
+

Eq

[
L−1∑
l=1

log
p(cl|cl+1, Zl+1)

q(cl|cl+1, Zl+1, X)

]
−KL(q(cL|X), p(cL)) = −L(X).

(17)

B.4 Loss

The final loss for all the models is computed per-sample. Given a distribution of T sets (or tasks) of

size S, the training loss is: L =
1

ST

∑
T L(Xt).
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B.5 Evaluation

For VAEs we evaluate the models approximating the log marginal likelihood using S importance
samples:

MLL(x) = log
1

IS

IS∑
is=1

p(x, zs)

q(zis|x)
zis ∼ q(z|x). (18)

For hierarchical models like the NS we use:

MLL(X) = log
1

IS

IS∑
is=1

p(X,Zis, cis)

q(Zis, cis|X)
Zis ∼ q(Z|c,X), cis ∼ q(c|X). (19)

B.6 Learnable Aggregation

In this subsection we describe more explicitly the aggregation mechanism. Given a setX , embeddings

for samples in the set hs = fφ(xs), and aggregated statistics r =
1

S

∑S
s=1 hs, we can compute

attention weights for a NS-LAG as follows:

α(r, hs) =
exp(sim(q(r), k(hs)))∑
s′ exp(sim(q(r), k(hs′)))

rLAG =

S∑
s=1

α(r, hs) v(hs)

qφ(c|X) = N (c|µ(rLAG),Σ(rLAG)),

(20)

where q, k and v are linear layers and sim is the dot-product scaled by the square root of the
representations dimensionality. This approach is inspired by [27] and resembles self-attention with a
fundamental difference: instead to map from S samples to S samples, we map from S samples to a
per-task learnable aggregation. The query input is a handcrafted aggregation (mean, max pooling).
We improve the query scoring the handcrafted aggregation with the samples in the set.
For a full HFSGM-LAG, we can similarly write:

r =
1

S

S∑
s=1

fφ(hs, zs, c)

α(r, hs, zs, c) =
exp(sim(q(r), k(hs, zs, c)))∑
s′ exp(sim(q(r), k(hs′ , zs′ , c)))

rlLAG =

S∑
s=1

α(r, hs, zs, c) v(hs, zs, c)

qφ(cl|cl+1, Zl+1, X) = N (cl|µ(rlLAG),Σ(rlLAG)),

(21)
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B.7 Sampling Algorithms

Algorithm 3: Conditional Sampling NS
Data: Input set X;
c ∼ q(c|X);
z ∼ p(z|c);
x ∼ p(x|z, c);
return x;

Algorithm 4: Refined Sampling NS
Data: Input set X;
single pass
c ∼ q(c|X);
z ∼ p(z|c);
x ∼ p(x|z, c);
repeat

X̃ = [X,x];
Z̃, c ∼ q(Z̃, c|X̃);
X̃ ′ ∼ p(X̃ ′|Z̃, c);
x = x′;

until converged;
return x;

Algorithm 5: Conditional Sampling HFSGM
Data: Input set X;
single pass
cL ∼ q(cL|X);
z, c<L ∼ p(z, c<L|cL);
x ∼ p(x|z, c);
return x;

Algorithm 6: Refined Sampling HFSGM
Data: Input set X;
single pass
cL ∼ q(cL|X);
z, c<L ∼ p(z, c<L|cL);
x ∼ p(x|z, c);
repeat

X̃ = [X,x];
Z̃, c ∼ q(Z̃, c|X̃);
X̃ ′ ∼ p(X̃ ′|Z̃, c);
x = x′;

until converged;
return x;
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C Additional Experiments

C.1 Generative Metrics

In the paper we follow the approach suggested in the NS for sets creation. We report additional
experiments on the original Omniglot test set in Table 3. In this setting test time sets are from new
characters and unknown alphabets. This setting is even harder and a good generalization benchmark
for our approach. We use the preprocessed and statically binarized version proposed in [2]. Again
our approaches using learnable aggregation and hierarchical inference perform consistently better in
terms of likelihood and reconstruction.

Table 3: Generative Metrics. Omniglot testing on new characters from unknown alphabets. Static binarization.
All models share the same architecture.

MODEL AGG NELBO NLL KLz KLc MLL PARAMS (M)

VAE - 102.56 54.86 47.71 - 91.90 7.5
NS MEAN 91.98 47.88 39.00 5.10 80.85 14.9

CNS MEAN 84.96 39.90 39.72 5.35 75.32 7.3
CNS (Ours) LAG 83.67 37.97 40.55 5.16 74.87 7.4
CHFSGM (Ours) MEAN 83.03 35.95 42.54 4.54 74.01 9.2
CHFSGM (Ours) LAG 83.80 36.86 42.34 4.60 74.15 9.5

C.2 KLs vs Input Set Cardinality

In Figure 7 we report KLs behaviour varying the input set dimension from 1 to 20 on Omniglot.
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Figure 7: Set Cardinality. Lower-bound and average KL c increasing the set cardinality. Models trained with
homogeneous (one concept) sets. All the models improve the generative properties with more data available and
learn a better posterior for c.

C.3 Classification

In this paper our main interest is in improving few-shot generation specifically through the lens of
hierarchical inference and learnable aggregation. However is natural to ask how the model perform on
downstream tasks, in particular on the supervised few-shot learning task. Here we focus on a simple
experiment: we train the models on Omniglot and test on MNIST without any form of adaptation.
We consider different ways to approximate a classifier.

Adaptation-free Bayes classifier. We can use the fitted generative model as part of a few-shot
Bayes classifier: p(y|x,X) =

p(y)p(x|Xy)∑
y′ p(y′)p(x|Xy′ )

, where X = {X1, . . . , XC} is the set of datasets
for the C classes. In Appendix B we investigate two approaches that approximate the predictive
distribution p(x|Xy) and one based on q(c|X):

I) ELBO difference: log p(x|Xy) = log p(x,Xy)− log p(Xy) ≈ ELBO(x,Xy)− ELBO(Xy).

II) Equation (6): Sample q(cL|Xy) and hierarchy p(z, c<L|cL) and evaluate p(x|z, c) and
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III) The classification approach of [8]: argmaxy KL(q(cy|Xy), q(c|x)).
In Table 4 we report preliminary results for a simple few-shot classification task.

Table 4: Metrics on few-shot classification. Models trained on Omniglot and tested on binarized MNIST. Input
set dimension 5. For consistency with the KL classifier used in NS, we use only one layer of posterior, the one
closer to the data.

AGG ELBO [x|X] KL [qX , qx] Eq [log p(x|c, z)]
NS MEAN 0.46 0.73 0.74
CNS MEAN 0.41 0.76 0.76
CNS LAG 0.33 0.75 0.76
CHFSGM MEAN 0.52 0.71 0.75
CHFSGM LAG 0.29 0.71 0.74

C.4 Layer-wise KL contribution

In Figure 8 and 9 we plot the KL contribution for baselines and our models through the hierarchy for
Omniglot and CelebA. We notice how models with hierarchy over c and learnable aggregation can
better distribute information in latent space.
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Figure 8: KL per layer for Omniglot
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Figure 9: KL per layer for CelebA

C.5 In-homogeneous Sets

In the paper we considered only small homogeneous sets, i.e. one class (character, face, concept) per
set, where the set has dimension between 2 and 20. In Figure 10 we test the model behavior when
presented with an in-homogeneous input set, i.e. sets with multiple characters.
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Reconstruction Sets Conditional Samples Refined Samples Unconditional Samples

Figure 10: In-homogeneous Sets. Sampling for a CNS-LAG trained on Omniglot. The model is presented with
5 classes per set at test time.

C.5.1 Qualitative Transfer

Another interesting property for a NS-like model is the possibility to condition on samples and classes
from different datasets. In the paper we reported quantitative evaluation for generative metrics on
transfer. In Figure 11 we report qualitative results on MNIST using a CHFSGM-LAG. We see that
the posterior over c can extract relevant information from the set and sample consistently with the
conditioning set. The refinement process still helps to improve sample consistency and quality.

Reconstruction Sets Conditional Samples Refined Samples Unconditional Samples

Figure 11: Transfer Sets. Sampling for a CHFSGM with LAG trained on Omniglot and tested on MNIST.

C.6 Additional Samples

In Figure 12 13 and we show stochastic reconstruction, input sets, conditional sampling using the
NS approach, conditional sampling using mcmc refinement, and unconditional sampling (sometimes
referred as imagination). The model is trained on binarized Omniglot and tested on disjoint classes.
We can see how the refinement is particularly effective with complex signs and concept, better
extracting the global structure of the concept at hand.
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NS
Reconstruction Sets Conditional Samples MCMC Samples Unconditional Samples

NS-LAG
Reconstruction Sets Conditional Samples MCMC Samples Unconditional Samples

HFSGM
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Figure 12: Omniglot Sampling for models without convolutional latent space.
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CNS
Reconstruction Sets Conditional Refined Unconditional

CNS-LAG
Reconstruction Sets Conditional Refined Unconditional

CHFSGM
Reconstruction Sets Conditional Refined Unconditional

CHFSGM-LAG
Reconstruction Sets Conditional Refined Unconditional

Figure 13: Omniglot Sampling. Sampling for models with convolutional latent space.
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Table 5: Relevant Hyperparameters

Omniglot CelebA

Number classes 1623 6349
Classes Train 1000 4444
Classes Val 200 635
Classes Test 423 1270

α 1÷2 1÷2
α step 0.5÷0.98 0.5÷0.98
Batch norm True True
Batch size 100 50
Channels latent c 64 64
Channels latent space 128 128÷256
Channels latent z 32 32
Classes per set 1 1
Epochs 400 600
Heads 4 4
Input set size 2÷20 2÷20
Learning rate 0.001 0.0001
Schedule plateau/step -
Likelihood Bernoulli Discretized Mixture Logistics
Loss VLB VLB
Optimizer Adam Adam
Residual layers 3 3
Resolution latent space 4 4
Stochastic layers 3 3÷9
Weight decay 0.00001 0.00001

D Details
The base model is a close approximation of the Neural Statistician adapted from: https://github.
com/conormdurkan/neural-statistician. The images are encoded using a shared encoder
with 3x3 convolutions plus batch normalization. resolution is halved using stride 2. The decoder
is the same, with resolution doubled using transposed convolutions. More powerful and expressive
decoders can be employed [30, 40] or multi-resolution deep latent variable models [29, 50, 6].
However our goal is to improve c for a generic architecture. We do not use sample dropout (removing
random samples from the input set and use the set statistics as additional features). For our model
the latent space is convolutional with a resolution of 4. Latent space with multiple resolutions in the
latent space can be used to improve sample quality and learn from high-dimension images. However
to reduce training time and isolate the source of complexity in the model (how to improve c) we
decided to use a latent space with single resolution. This approach simplifies merging information
between c, z and x.
The loss is a weighted negative lower-bound: −L = VLB(α) = (1+α)REC+(KLz+KLc)/(1+α)
where alpha is annealed decreasing at each epoch α = α ∗ αstep, with αstep < 1 at the beginning of
training. This re-weighting tends to magnify the importance of the likelihood term and reduce the
risk of posterior collapse at the beginning of training. Learning is slower but typically the model and
posterior learned are better.

Modulation. The way we condition the prior and generative model greatly enhances the adaptation
capacities of the model. Other than conditioning the representations through direct concatenation or
summation, we can condition directly the features and activations in the residual blocks. FiLM is a
modulation module used in transfer learning and large-scale class conditional generation. Given an
input c and a feature map f with H channels, FiLM [32] learns an affine transformation with 2H
modulation parameters (γh, βh)Hh=1 for each input c:

FiLM(z, c) = γ(c)f(z) + β(c).

This affine transformation can be applied in different part of the prior and generative model. In
the main paper we use a simplification of such approach, applying c to z using only the bias term,
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i.e. γ(c) = I and β(c) = c. For simple tasks with a unique concept, like sets of characters and
sets of faces, this approach is good enough. For more complex sets with multiple concepts or more
variability, a more expressive adaptive conditioning mechanism based on FiLM or attention can be
useful.
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