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Abstract

Variational Bayesian Monte Carlo (VBMC) is a sample-efficient method for approximate
Bayesian inference with computationally expensive likelihoods. While VBMC’s local sur-
rogate approach provides stable approximations, its conservative exploration strategy and
limited evaluation budget can cause it to miss regions of complex posteriors. In this work,
we introduce Stacking Variational Bayesian Monte Carlo (S-VBMC), a method that con-
structs global posterior approximations by merging independent VBMC runs through a
principled and inexpensive post-processing step. Our approach leverages VBMC’s mixture
posterior representation and per-component evidence estimates, requiring no additional
likelihood evaluations while being naturally parallelisable. We demonstrate S-VBMC’s
effectiveness on two synthetic problems designed to challenge VBMC’s exploration capabil-
ities and two real-world applications from computational neuroscience, showing substantial
improvements in posterior approximation quality across all cases.1

1. Introduction

Bayesian inference provides a powerful framework for parameter estimation and uncer-
tainty quantification, but it is usually intractable, requiring approximate inference tech-
niques (Brooks et al., 2011; Blei et al., 2017). Many scientific and engineering problems
involve black-box models (Sacks et al., 1989; Kennedy and O’Hagan, 2001), where likelihood
evaluation is time-consuming and gradients cannot be easily obtained, making traditional
approximate inference approaches computationally prohibitive.

A promising approach to tackle expensive likelihoods is to construct a statistical sur-
rogate model that approximates the target distribution, similar in spirit to surrogate ap-
proaches to global optimisation using Gaussian processes (Williams and Rasmussen, 2006;
Garnett, 2023). However, attempting to build a single global surrogate model may lead to
numerical instabilities and poor approximations when the target distribution is complex or
multi-modal, without ad hoc solutions (Wang and Li, 2018; Järvenpää et al., 2020; Li et al.,
2024). Local or constrained surrogate models, while more limited in scope, tend to be more
stable and reliable in practice (El Gammal et al., 2023; Järvenpää and Corander, 2024).

Variational Bayesian Monte Carlo (VBMC; Acerbi, 2018) exemplifies this local ap-
proach, using active sampling to train a Gaussian process surrogate for the unnormalised
log-posterior on which it performs variational inference. VBMC adopts a conservative ex-
ploration strategy that yields stable, local approximations (Acerbi, 2019). Compared to
other surrogate-based approaches, the method offers a versatile set of features: it returns
the approximate posterior as a tractable distribution (a mixture of Gaussians); it provides
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a lower bound for the model evidence (ELBO) via Bayesian quadrature (Ghahramani and
Rasmussen, 2002), useful for model selection; and it can handle noisy log-likelihood evalua-
tions (Acerbi, 2020), which arise in simulator-based models through estimation techniques
such as inverse binomial sampling (van Opheusden et al., 2020) and synthetic likelihood
(Wood, 2010; Price et al., 2018). However, VBMC’s limited sampling budget combined
with its local exploration strategy can leave it vulnerable to potentially missing regions of
the target posterior – particularly for distributions with distinct modes or long tails.

In this work, we propose a practical, yet effective approach to constructing global surro-
gate models while overcoming the limitations of standard VBMC by combining multiple lo-
cal approximations. We introduce Stacking Variational Bayesian Monte Carlo (S-VBMC),
a method for merging independent VBMC inference runs into a coherent global posterior
approximation. Our approach leverages VBMC’s unique properties – its mixture poste-
rior representation and per-component Bayesian quadrature estimates of the ELBO – to
combine and reweigh each component through a simple post-processing step.

Crucially, our method requires no additional evaluations of either the original model
or the surrogate. This approach is easily parallelisable and naturally fits existing VBMC
pipelines that already employ multiple independent runs (Huggins et al., 2023). While
our method could theoretically extend to other variational approaches based on mixture
posteriors, VBMC is uniquely suitable for it as re-estimation of the ELBO would otherwise
become impractical with expensive likelihoods (see Section 3).

We first introduce variational inference and VBMC (Section 2), then present our algo-
rithm for stacking VBMC posteriors (Section 3). We demonstrate the effectiveness of our
approach through experiments on two synthetic problems and two real-world applications
that are challenging for VBMC (Section 4). We conclude with closing remarks (Section 5).
Appendix A contains supplementary materials, including a discussion of related work (A.1).

2. Background

Variational Inference. Consider a model with prior p(θ) and likelihood p(D|θ), where
θ ∈ RD is a vector of model parameters and D a specific dataset. Variational inference
(Blei et al., 2017) approximates the true posterior p(θ|D) with a parametric distribution
qϕ(θ) by maximising the evidence lower bound (ELBO):

ELBO(ϕ) = Eqϕ [log p(D|θ)p(θ)] +H [qϕ(θ)] , (1)

where the first term is the expected log joint distribution (the joint being likelihood times
prior) and the second term the entropy of the variational posterior. Maximising Eq. 1
is equivalent to minimising the Kullback-Leibler divergence between qϕ(θ) and the true
posterior. The ELBO provides a lower bound on the log model evidence log p(D), with
equality when the approximation matches the true posterior.

Variational Bayesian Monte Carlo (VBMC). VBMC is a sample-efficient technique
to obtain a variational approximation with only a small number of likelihood evaluations,
often of the order of a few hundreds. VBMC uses a Gaussian process (GP) as a surrogate of
the log-joint, Bayesian quadrature to calculate the expected log-joint, and active sampling
to decide which parameters to evaluate next (see Acerbi, 2018, 2020 for details). Crucially,
VBMC performs variational inference on the surrogate, instead of the true, expensive model.
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In VBMC, the variational posterior is defined as

qϕ(θ) =

K∑
k=1

wkqk,ϕ(θ), (2)

where qk is the k-th component (a multivariate normal) and wk its mixture weight, with∑K
k=1wk = 1 and wk ≥ 0. Plugging in the mixture posterior, the ELBO (Eq. 1) becomes:

ELBO(ϕ) =

K∑
k=1

wkEqk,ϕ [log p(D|θ)p(θ)] +H [qϕ(θ)] =

K∑
k=1

wkIk +H [qϕ(θ)] (3)

where we defined the k-th component of the expected log-joint as:

Ik = Eqk,ϕ [log p(D|θ)p(θ)] ≈ Eqk,ϕ [f(θ)] , (4)

with f(θ) ≈ log p(D|θ)p(θ) the GP surrogate of the log-joint. Eq. 4 has a closed-form
Gaussian expression via Bayesian quadrature, which yields posterior mean Ik and covari-
ance matrix Jkk′ (Acerbi, 2018). The entropy of a mixture of Gaussians does not have
an analytical solution, but gradients can be estimated via Monte Carlo. Thus, using the
posterior mean of Eq. 4 as a plug-in estimator for the expected log-joint of each component,
Eq. 3 can be efficiently optimised via stochastic gradient ascent (Kingma and Ba, 2014).

3. Stacking VBMC

In this work, we introduce Stacking VBMC (S-VBMC), a novel approach to merge different
variational posteriors obtained from different runs on the same model and dataset.

Given M independent VBMC runs, one obtains M variational posteriors qϕm(θ), each
with Km Gaussian components, as defined in Eq. 2, as well as M different Im vectors, as
per Eq. 4. Our approach consists of “stacking” the Gaussian components of all posteriors
qϕm(θ) leaving all individual components parameters (means and covariances) unchanged,
and reoptimising all the weights. Thus, given the stacked posterior

qϕ̃(θ) =
M∑

m=1

Km∑
k=1

w̃m,kqk,ϕm(θ), (5)

we optimise the global evidence lower bound with respect to the weights w̃,

ELBOstacked(w̃) =

M∑
m=1

Km∑
k=1

w̃m,kIm,k +H
[
qϕ̃(θ)

]
. (6)

Notably, this optimisation can be performed as a pure post-processing step, requiring neither
evaluations of the original likelihood p(D|θ) nor of the surrogate models fm, only that the
estimates Im,k are stored, as in current implementations (Huggins et al., 2023).

Our stacking method hinges on the key feature of VBMC of providing accurate estimates
Im,k. While in principle Eq. 6 could apply to any collection of variational posterior mixtures,
without an efficient way of calculating each Ik (Eq. 4), optimisation of the stacked ELBO
would require many likelihood evaluations, which would be prohibitive for problems with
expensive, black-box likelihoods. Figure 1 shows an example of two separate posteriors and
the stacked result. In the following, we demonstrate the efficacy of this approach.
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Figure 1: Two separate VBMC posteriors (left) and stacked posterior after running S-
VBMC (right) for a neuronal model with real data (see Section 4); showing the
marginal distribution of two out of the 5 model parameters.

4. Experiments

Procedure. We tested our method on two synthetic problems, designed to be particularly
challenging for VBMC, as well as on two real-world datasets and models (see Appendix A.2
for full descriptions). We considered both noiseless problems (exact estimation) and noisy
problems where Gaussian noise with σ = 3 is applied to each log-likelihood measurement,
emulating what practitioners might find when estimating the likelihood via simulation (van
Opheusden et al., 2020). For each benchmark, we performed 100 VBMC converging runs
with default settings and random uniform initialisation within plausible parameter bounds
(Acerbi, 2018). To investigate the effect of combining a different number of posteriors, we
then randomly sampled and stacked with S-VBMC a varying number of runs (between 2
and 40) ten times each, and computed the median and interquartile range for all metrics.

Following Acerbi (2020); Li et al. (2024), we use three main metrics for evaluating
the posterior approximation of our algorithm: the absolute difference between the true
log marginal likelihood (LML) and its variational approximation (the ELBO); the mean
marginal total variation distance (MMTV) between the approximate posterior and ground
truth; and the “Gaussianised” symmetrised KL divergence (GsKL) between variational
posterior and ground truth (see Appendix A.3 for a detailed description).

We used black-box variational inference (BBVI; Ranganath et al., 2014) as a baseline for
all our benchmark problems. The target density evaluation budget for BBVI is 2000(D +
2) for noiseless problems and 3000(D + 2) for noisy problems, which correspond to the
maximum number of evaluations used in total by 40 VBMC runs (see Appendix A.4).

Our results are described below and reported in full in Appendix A.5, with example
visualisations of posterior approximations in Appendix A.6. Computational costs are briefly
discussed in Appendix A.7.

Synthetic problems. The first synthetic target consists of a 2D Gaussian mixture model
(GMM) with 20 components clustered around four distant centroids. We expected VBMC
to discover only one of the clusters in each run. The second synthetic target (ring) consists
of a very narrow ring-shaped distribution in two dimensions. We expected VBMC to only
cover part of it in each run due to the limited budget (50) of Gaussian components.

Results in Figure 2 and Table A.1 show that merging more posteriors leads to a steady
improvement in the GsKL and MMTV metrics, which measure the quality of the posterior
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approximation. Remarkably, S-VBMC proves to be robust to noisy targets, with minimal
differences between noiseless and noisy settings. S-VBMC outperforms the BBVI baseline
and regular VBMC on the ring-shaped synthetic target. The BBVI baseline performs well
and only marginally worse compared to S-VBMC only on the GMM problem, where it
effectively managed to capture the four clusters (see Figure A.1 for a visualisation). As
expected by design, individual VBMC runs tended to explore the two synthetic target dis-
tributions only partially. Still, the random initialisations allowed different runs to discover
different portions of the posterior, allowing the merging process to cover the whole target
(see Figure A.1).

Finally, we observe that, in noisy settings, while the ELBO keeps increasing, the ∆LML
error (difference between ELBO and true log marginal likelihood) initially decreases but
then increases again as further components are added, a point which we will discuss later.
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Figure 2: Synthetic problems. Metrics plotted as a function of the number of VBMC runs
stacked (median and interquartile range). Likelihood evaluations are noiseless
(blue) or noisy with σ = 3 log-likelihood noise (orange). The best BBVI results
for noiseless and noisy likelihood are shown in green and purple. The black
horizontal line in the ELBO panels represents the ground-truth LML while the
dashed lines on ∆LML, MMTV and GsKL denote desirable thresholds for each
metric (good performance is below the threshold; see Appendix A.3).

Real-world problems. Finally, we tested VBMC on two real-world models and datasets.
First, we fitted the 5 biophysical parameters of a morphologically detailed neuronal model of
hippocampal pyramidal cells (similar to Szoboszlay et al., 2016 for cerebellar Golgi cells) to
experimental data consisting of a detailed three-dimensional reconstruction and electrophys-
iological recordings (Golding et al., 2005) of one of such cells. Then, we fitted a 6-parameter
model of multisensory causal inference (Körding et al., 2007) to human behavioural data
from a visuo-vestibular task (subject S1 from Acerbi et al., 2018), assuming log-likelihood
measurement noise (σ = 3). This model describes how participants judge whether visual
and vestibular motion cues share a common cause, incorporating sensory noise parameters
and decision rules to account for participant responses in different experimental conditions.
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(a) Neuronal model (D = 5)
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Figure 3: Real-world problems. Metrics plotted as a function of the number of VBMC
runs stacked (median and interquartile range). Metrics plotted as a function of
the number of VBMC runs stacked (median and interquartile range). Likelihood
evaluations are noiseless (blue) or noisy with σ = 3 log-likelihood noise (orange).
The best BBVI results for noiseless and noisy likelihood are shown in green and
purple. See Figure 2 caption for additional details.

The results in Figure 3 and Table A.2 confirm our earlier findings of improvements across
the posterior metrics. We also find that S-VBMC is robust to noisy targets for real data,
with performance that improves with increasing number of stacked runs in the multisensory
model problem, and consistently better than standard VBMC and the BBVI baseline.

ELBO estimation bias. Our results show that, with noisy log-likelihood problems, merg-
ing more VBMC runs leads to a positive bias build-up in the estimated ELBO. This likely
occurs because all Im,k are noisy estimates of the true expected log-joint contributions,
causing S-VBMC to overweigh the most overestimated mixture components – an effect that
increases with the number of components M (see Appendix A.8). This explanation is sup-
ported by the fact that we do not observe ELBO bias in noiseless log-likelihood problems,
where the amount of noise in the aforementioned estimates is negligible. While this bias sur-
prisingly does not affect other posterior quality metrics, which keep improving (or plateau)
with increasing M , it should be considered when using ELBOstacked for model comparison.
Future work should investigate bias sources and potential debiasing techniques.

5. Conclusions

In this work, we introduced S-VBMC, an approach for merging independent VBMC runs
in a principled way to yield a global posterior approximation. We showed its effectiveness
on challenging synthetic and real-world problems, as well as its robustness to noise. We
briefly discussed the positive bias in the ELBO estimation introduced (or amplified) by the
stacking process, leaving further investigation for future work.
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Appendix A.

This appendix provides additional details and analyses to complement the main text, in-
cluded in the following sections:

• A brief overview of relevant existing work, A.1

• Model descriptions, A.2

• Metrics description, A.3

• Black-box variational inference implementation, A.4

• Additional experiment results, A.5

• Example posterior visualisations, A.6

• A brief discussion on the computational overhead of S-VBMC, A.7

• Further discussion of the ELBO bias mentioned in Section 4, A.8

A.1. Related work

Our work addresses the challenge of building global posterior approximations by combining
local solutions from the VBMC framework (Acerbi, 2018, 2019, 2020). While the idea of
combining posterior distributions has been explored before, previous approaches differ sub-
stantially in their goals and methodology. Yao et al. (2022) propose a similar “stacking”
approach, but focus on optimising predictive performance through a leave-one-out strategy,
whereas S-VBMC optimises the ELBO on the full dataset, allowing treatment of the log-
joint as a black box. Other relevant approaches include variational boosting (Guo et al.,
2016; Miller et al., 2017; Campbell and Li, 2019), which sequentially builds a mixture poste-
rior by running variational inference multiple times on the whole dataset, and embarrassingly
parallel Markov Chain Monte Carlo (MCMC) (Neiswanger et al., 2013; Wang et al., 2015;
Scott et al., 2022; De Souza et al., 2022), which combines parallel “sub-posteriors” obtained
from data subsets. Our method differs from variational boosting through its inherent paral-
lel and surrogate-based approach, offering significant computational advantages, and from
embarrassingly parallel inference methods by using the complete dataset in each run, thus
remaining robust to individual run failures.

A.2. Model descriptions

GMM target. Our synthetic GMM target consists of a mixture of 20 bivariate Gaussian
components arranged in four distinct clusters. The cluster centroids were positioned at
(−8,−8), (−7, 7), (6,−6) and (5, 5). Around each centroid, we placed five Gaussian compo-
nents with means drawn from N (µc, I), where µc is the respective cluster centroid and I is
the 2×2 identity matrix. Each component was assigned unit marginal variances and a cor-
relation coefficient of ±0.5 (randomly selected with equal probability). This configuration
produces an irregular mixture structure that requires a substantial number of components
to approximate accurately. All components were assigned equal mixing weights of 1/20.
The resulting distribution is illustrated in Figure A.1 (top panels).
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Ring target. Our second synthetic target is a ring-shaped distribution defined by the
probability density function

pring(θ1, θ2) ∝ exp

(
−(r −R)2

2σ2

)
(A.1)

where r =
√
(θ1 − c1)2 + (θ2 − c2)2 represents the radial distance from centre (c1, c2), R

is the ring radius, and σ controls the width of the annulus. We set R = 8, σ = 0.1, and
centred the ring at (c1, c2) = (1,−2). The small value of σ produces a narrow annular
distribution that challenges VBMC’s exploration capabilities. The resulting distribution is
shown in Figure A.1 (bottom panels).

Neuronal model. Our first real-world problem involved fitting five biophysical param-
eters of a detailed compartmental model of a hippocampal CA1 pyramidal neuron. The
model was constructed based on experimental data comprising a three-dimensional morpho-
logical reconstruction and electrophysiological recordings of neuronal responses to current
injections. The deterministic neuronal responses were simulated using the NEURON simu-
lation environment (Hines and Carnevale, 1997; Hines et al., 2009), applying current step
inputs that matched the experimental protocol. The model’s parameters characterise key
biophysical properties: intracellular axial resistivity (θ1), leak current reversal potential
(θ2), somatic leak conductance (θ3), dendritic conductance gradient (θ4, per µm), and a
dendritic surface scaling factor (θ5). Based on independent measurements of membrane po-
tential fluctuations, observation noise was modelled as a stationary Gaussian process with
zero mean and a covariance function estimated from the data. The covariance structure was
captured by the product of a cosine and an exponentially decaying function. For a similar
approach applied to cerebellar Golgi cells, see Szoboszlay et al. (2016).

Multisensory causal inference model. Perceptual causal inference involves determin-
ing whether multiple sensory stimuli originate from a common source, a problem of partic-
ular interest in computational cognitive neuroscience (Körding et al., 2007). Our second
real-world problem involved fitting a visuo-vestibular causal inference model to empirical
data from a representative participant (S1 from Acerbi et al., 2018). In each trial, partici-
pants seated in a moving chair reported whether they perceived their movement direction
(svest) as congruent with an experimentally-manipulated looming visual field (svis). The
model assumes participants receive noisy sensory measurements, with vestibular informa-
tion zvest ∼ N (svest, σ

2
vest) and visual information zvis ∼ N (svis, σ

2
vis(c)), where σ2

vest and
σ2
vis represent sensory noise variances. The visual coherence level c was experimentally ma-

nipulated across three levels (clow, cmed, chigh). The model assumes participants judge the
stimuli as having a common cause when the absolute difference between sensory measure-
ments falls below a threshold κ, with a lapse rate λ accounting for random responses. The
model parameters θ comprise the visual noise parameters σvis(clow), σvis(cmed), σvis(chigh),
vestibular noise σvest, lapse rate λ, and decision threshold κ (Acerbi et al., 2018).

A.3. Metrics description

Following Acerbi (2020); Li et al. (2024), we evaluate our method using three metrics:
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1. The absolute difference between true and estimated log marginal likelihood (∆LML),
where values < 1 are considered negligible for model selection (Burnham and Ander-
son, 2003).

2. The mean marginal total variation distance (MMTV), which measures the average
(lack of) overlap between true and approximate posterior marginals across dimensions:

MMTV(p, q) =
1

2D

D∑
d=1

∫ ∞

−∞
|pd(xd)− qd(xd)| dxd, (A.2)

where pd and qd denote the marginal distributions along the d-th dimension.

3. The “Gaussianised” symmetrised KL divergence (GsKL), which evaluates differences
in means and covariances between the approximate and true posterior:

GsKL(p, q) =
1

2D
[DKL (N [p]||N [q]) +DKL(N [q]||N [p])] , (A.3)

where N [p] denotes a Gaussian with the same mean and covariance as p.

We consider MMTV < 0.2 and GsKL < 1
8 as target thresholds for reasonable posterior

approximation (Li et al., 2024). Ground-truth values are obtained through numerical inte-
gration, extensive MCMC sampling, or analytical methods as appropriate for each problem.

A.4. Black-box variational inference implementation

Our implementation of black-box variational inference (BBVI) follows Li et al. (2024). For
gradient-free black-box models, we cannot use the reparameterisation trick (Kingma and
Welling, 2013) to estimate ELBO gradients. Instead, we employ the score function estimator
(REINFORCE; Ranganath et al., 2014) with control variates to reduce gradient variance.

The variational posterior is parameterised as a mixture of Gaussians (MoG) with either
K = 50 orK = 500 components, matching the form used in VBMC. We initialise component
means near the origin by adding Gaussian noise (σ = 0.1) and set all component variances
to 0.01. We optimise the ELBO using Adam (Kingma and Ba, 2014) with stochastic
gradients, performing a grid search over Monte Carlo sample sizes {1, 10, 100} and learning
rates {0.01, 0.001}. We select the best hyperparameters based on the estimated ELBO.

For fair comparison with VBMC, we set the target evaluation budget to 2000(D + 2)
and 3000(D + 2) evaluations for noiseless and noisy problems respectively, matching the
maximum evaluations used by 40 VBMC runs in total.

12
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A.5. Additional experiment results

We present a comprehensive comparison of S-VBMC against VBMC and BBVI in Tables A.1
and A.2, complementing the visualisations in Figures 2 and 3. For both synthetic problems
(Table A.1) and real-world problems (Table A.2), S-VBMC generally demonstrates consis-
tently improved posterior approximation metrics compared to both baselines. However, we
observe an increase in ∆LML error with larger numbers of stacked runs in problems with
noisy targets. This increase likely stems from the accumulation of ELBO estimation bias,
a phenomenon we analyse in detail in Appendix A.8.

Benchmarks

GMM Ring

Algorithm ∆LML MMTV GsKL ∆LML MMTV GsKL

Noiseless

BBVI, MoG (K = 50) 0.059 [0.030,0.072] 0.059 [0.038,0.077] 0.0083 [0.0015,0.014] 8.0 [7.2,9.5] 0.51 [0.48,0.53] 0.72 [0.70,0.92]

BBVI, MoG (K = 500) 0.053 [0.032,0.10] 0.052 [0.044,0.069] 0.0087 [0.0030,0.013] 8.3 [7.2,10.] 0.47 [0.46,0.49] 0.67 [0.58,0.79]

VBMC 0.72 [0.7,1.4] 0.4 [0.36,0.56] 7.9 [5.8,15] 1.2 [1.1,1.5] 0.53 [0.44,0.64] 9.8 [4.3,33]

S-VBMC (10 runs) 0.011 [0.006,0.015] 0.035 [0.03,0.042] 0.0017 [0.00092,0.002] 0.15 [0.055,0.2] 0.16 [0.14,0.18] 0.019 [0.0015,0.032]

S-VBMC (20 runs) 0.0054 [0.0017,0.012] 0.028 [0.024,0.031] 0.00061 [0.00027,0.0014] 0.024 [0.017,0.031] 0.14 [0.14,0.14] 0.0017 [0.0014,0.0028]

Noisy (σ = 3)

BBVI, MoG (K = 50) 0.23 [0.13,0.34] 0.13 [0.097,0.17] 0.030 [0.010,0.095] 4.3 [3.6,4.7] 0.51 [0.48,0.54] 1.1 [0.73,1.3]

BBVI, MoG (K = 500) 0.27 [0.082,0.40] 0.10 [0.097,0.12] 0.019 [0.012,0.031] 4.7 [4.1,5.4] 0.93 [0.92,0.94] 48. [32.,49.]

VBMC 1 [0.71,1.4] 0.46 [0.41,0.59] 10 [7.6,18] 1.3 [0.89,1.8] 0.62 [0.49,0.69] 38 [5,1.9e+02]

S-VBMC (10 runs) 0.29 [0.18,0.42] 0.11 [0.098,0.14] 0.012 [0.0044,0.018] 0.38 [0.33,0.48] 0.22 [0.2,0.22] 0.0097 [0.0047,0.014]

S-VBMC (20 runs) 0.57 [0.49,0.62] 0.083 [0.071,0.089] 0.0028 [0.0019,0.0061] 0.68 [0.56,0.71] 0.17 [0.17,0.18] 0.0053 [0.0027,0.0079]

Table A.1: Comparison of S-VBMC, VBMC, and BBVI performance on synthetic bench-
mark problems. Values show median with interquartile ranges in brackets. Bold
entries indicate best median performance; multiple entries are bolded when in-
terquartile ranges overlap with the best median.

Benchmarks

Multisensory model (σ = 3) Neuronal model

Algorithm ∆LML MMTV GsKL ∆LML MMTV GsKL

BBVI, MoG (K = 50) 1.7 [1.6,4.3] 0.11 [0.098,0.13] 0.17 [0.16,0.20] 44. [35.,1.0e+02] 0.60 [0.57,0.63] 20. [18.,23.]

BBVI, MoG (K = 500) 1.8 [1.6,2.3] 0.31 [0.28,0.32] 0.53 [0.50,0.54] 1.7e+02 [1.4e+02,2.4e+02] 0.67 [0.65,0.69] 21. [18.,25.]

VBMC 0.32 [0.17,0.48] 0.18 [0.15,0.21] 0.21 [0.14,0.27] 3 [2.9,3.2] 0.32 [0.31,0.33] 1.4e+02 [75,3.8e+02]

S-VBMC (10 runs) 0.94 [0.85,0.98] 0.1 [0.089,0.11] 0.048 [0.037,0.057] 1.8 [1.7,1.9] 0.15 [0.13,0.19] 0.79 [0.35,1.5]

S-VBMC (20 runs) 1.2 [1.1,1.3] 0.079 [0.073,0.081] 0.037 [0.033,0.039] 1.5 [1.5,1.6] 0.13 [0.11,0.14] 0.52 [0.34,0.65]

Table A.2: Comparison of S-VBMC, VBMC, and BBVI performance on neuronal and mul-
tisensory causal inference models.

A.6. Example posterior visualisations

Figure A.1 illustrates how S-VBMC significantly improves the result of a single VBMC run,
capturing a larger portion of the target posterior mass as more runs are stacked together.
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Figure A.1: Examples of overlap between the ground truth and the posterior when combin-
ing different numbers of VBMC runs. The red points indicate samples from the
posterior approximation, with the target density depicted with colour gradients
in the background.

We further use ‘corner plots’ (Foreman-Mackey, 2016) to visualise exemplar posterior
approximations from different algorithms, including S-VBMC, VBMC and BBVI. These
plots depict both one-dimensional marginal distributions and all pairwise two-dimensional
marginals of the posterior samples. Example results are shown in Figures A.2, A.3, A.4, and
A.5, where orange contours and points represent posterior samples obtained from different
algorithms while the black contours and points represent ground truth samples. S-VBMC
consistently improves the posterior approximations over standard VBMC and generally
outperforms BBVI, showing a closer alignment with the target posterior.
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Figure A.2: GMM (D = 2) example posterior visualisation.
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Figure A.3: Ring (D = 2) example posterior visualisation.
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(b) S-VBMC (20 runs)
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Figure A.4: Neuronal model (D = 5) example posterior visualisation.

20



Stacking Variational Bayesian Monte Carlo

12

18

x 2

16

24

32

x 3

5

10

x 4

0.1

0.2

x 5

5 10

x1

18

21

24

x 6

12 18

x2

16 24 32

x3

5 10

x4

0.1 0.2

x5

18 21 24

x6

(a) VBMC

12

18

x 2

16

24

32

x 3

5

10

x 4

0.1

0.2

x 5

5 10

x1

18

21

24

x 6

12 18

x2

16 24 32

x3

5 10

x4

0.1 0.2

x5

18 21 24

x6

(b) S-VBMC (20 runs)
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(c) BBVI, MoG (K = 50)
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Figure A.5: Multisensory model (D = 6, σ = 3) example posterior visualisation.
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A.7. Computational overhead

In this appendix we present details about the additional computational cost (quantified as
compute time) introduced by S-VBMC on top of VBMC.

Figure A.6 illustrates how S-VBMC introduces a relatively small computational over-
head, even when comparing the post-process cost of S-VBMC with the average cost of one
VBMC run, under the idealized condition where the M VBMC runs happen all in parallel.2

In particular, running our algorithm with M ≈ 10 – which vastly improves the resulting
posterior, as shown in Section 4 and Appendices A.5 and A.6 – still adds a small amount
of post-processing time to VBMC for all our benchmark problems (≈ 5-15% overhead).

Put together, our results confirm that S-VBMC yields high returns in terms of inference
performance at a very marginal cost in terms of compute time.
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Figure A.6: Compute time of a single VBMC run (red) and post-processing time (i.e. com-
putational overhead) of S-VBMC (blue) plotted as a function of the number of
VBMC runs stacked (median and interquartile range). Each subplot represents
a different benchmark problem. The compute times values plotted here were
taken as we performed the experiments described in Section 4.

2. In practice, completing M VBMC runs will be more expensive due to additional parallelisation costs,
making S-VBMC’s relative overhead even smaller than what we report here.
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A.8. ELBO bias

Here we analyse the ELBO overestimation observed in our results through a simplified
example that illustrates one potential mechanism for this bias. While other factors may
contribute, this analysis provides insight into why the bias tends to increase with the number
of merged VBMC runs.

Consider M VBMC runs that return identical posteriors each with a single component.
The stacked posterior takes the form:

qϕ̃(θ) =
M∑

m=1

w̃mqm(θ). (A.4)

For each single-component posterior, the expected log-joint is approximated as

Im = Eqϕm [log p(D|θ)p(θ)] ≈ Eqϕm
[fm(θ)] (A.5)

where fm(θ) is the surrogate log-joint from the m-th VBMC run. Since all posteriors share
identical parameters, their entropies are equal:

H [qϕ1(θ)] = H [qϕ2(θ)] = ... = H [qϕM
(θ)] . (A.6)

The stacked posterior is thus a mixture of identical components with different associated
values Im. The optimal mixture weights w̃ depend solely on the noisy estimates of Im:

Îm = Eqϕm
[fm(θ)] = Eqϕm

[log p(D|θ)p(θ)] + ϵm (A.7)

where ϵm ∼ N (0, Jm) represents estimation noise with variance Jm. Since all posteriors
are identical and derived from the same data and model, differences in expected log-joint
estimates arise purely from noise deriving from the Gaussian process surrogates fm.

Given that entropy remains constant under merging, optimising ELBOstacked reduces to
selecting the posterior with the highest expected log-joint estimate. If we denote Îmax =
maxm Îm, the optimal ELBO becomes

ELBO∗
stacked = Îmax +H

[
qϕ̃(θ)

]
. (A.8)

Since the true expected log-joint is identical across posteriors, the optimisation selects the
most overestimated value. The magnitude of this overestimation increases with both M and
the observation noise for fm, introducing a positive bias in ELBO∗

stacked that grows with the
number of stacked runs and is more substantial for surrogates of noisy log-likelihoods.

While this simplified scenario does not capture the complexity of practical applications
– where posteriors have multiple, non-overlapping components – it illustrates a fundamental
issue: if we model each Îm,k as the sum of the true Im,k and noise, the merging process will
favour overestimated components, biasing the final ELBOstacked estimate upward.

This hypothesis is substantiated by our results, as we only observe a noticeable bias
in problems with noisy targets, where levels of noise in the VBMC estimation of Im,k are
non-negligible (note that VBMC outputs an estimate of such noise, see Section 2). Further
work is needed to develop debiasing techniques to counteract this tendency.
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