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ABSTRACT

We introduce a parameterization method called Neural Bayes which allows comput-
ing statistical quantities that are in general difficult to compute and opens avenues
for formulating new objectives for unsupervised representation learning. Specifi-
cally, given an observed random variable x and a latent discrete variable z, we can
express p(x|z), p(z|x) and p(z) in closed form in terms of a sufficiently expres-
sive function (Eg. neural network) using our parameterization without restricting
the class of these distributions. To demonstrate its usefulness, we develop two
independent use cases for this parameterization:
1. Disjoint Manifold Separation: Neural Bayes allows us to formulate an objective
which can optimally label samples from disjoint manifolds present in the support
of a continuous distribution. This can be seen as a specific form of clustering where
each disjoint manifold in the support is a separate cluster. We design clustering
tasks that obey this formulation and empirically show that the model optimally
labels the disjoint manifolds.
2. Mutual Information Maximization (MIM): MIM has become a popular means for
self-supervised representation learning. Neural Bayes allows us to compute mutual
information between observed random variables x and latent discrete random
variables z in closed form. We use this for learning image representations and show
its usefulness on downstream classification tasks.

1 INTRODUCTION

We introduce a generic parameterization called Neural Bayes that facilitates unsupervised learning
from unlabeled data by categorizing them. Specifically, our parameterization implicitly maps samples
from an observed random variable x to a latent discrete space z where the distribution p(x) gets
segmented into a finite number of arbitrary conditional distributions. Imposing different conditions
on the latent space z through different objective functions will result in learning qualitatively different
representations.

Our parameterization may be used to compute statistical quantities involving observed variables and
latent variables that are in general difficult to compute (thanks to the discrete latent space), thus
providing a flexible framework for unsupervised learning. To illustrate this aspect, we develop two
independent use cases for this parameterization– disjoint manifold separation (DMS) and mutual
information maximization (Linsker, 1988), as described in the abstract. For the manifold separation
task, we show experiments on 2D datasets and their high-dimensional counter-parts designed as per
the problem formulation, and show that the proposed objective can optimally label disjoint manifolds.
For the MIM task, we experiment with benchmark image datasets and show that the unsupervised
representation learned by the network achieves performance on downstream classification tasks
comparable with a closely related MIM method Deep InfoMax (DIM, (Hjelm et al., 2019)). For both
objectives we design regularizations necessary to achieve the desired behavior in practice. All the
proofs can be found in the appendix.

2 RELATED WORK

Neural Bayes-DMS: Numerous recent papers have proposed clustering algorithm for unsupervised
representation learning such as Deep Clustering (Caron et al., 2018), information based clustering
(Ji et al., 2019), Spectral Clustering (Shaham et al., 2018), Assosiative Deep Clustering (Haeusser
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et al., 2018) etc. Our goal in regards to clustering in Neural Bayes-DMS is in general different from
such methods. Our objective is aimed at finding disjoint manifolds in the support of a distribution.
It is therefore a generalization of traditional subspace clustering methods (where the goal is to find
disjoint affine subspaces) (Ma et al., 2008; Liu et al., 2010), to arbitrary manifolds.

Another class of clustering algorithms include mixture models (such as kNNs). Our clustering
proposal (DMS) is novel compared to this class in two ways: 1. we formulate the clustering problem
as that of identifying disjoint manifold in the support of a distribution. This is different from assuming
K ground truth clusters, where the notion of cluster is ill-defined; 2. the DMS objective in proposition
1 is itself novel and we prove its optimality towards labeling disjoint manifolds in theorem 1.

Neural Bayes-MIM: Self-supervised representation learning has attracted a lot of attention in
recent years. Currently contrastive learning methods and similar variants (such as MoCo (He
et al., 2020), SimCLR (Chen et al., 2020), BYOL Grill et al. (2020)) produce state-of-the-art
(SOTA) performance on downstream classification tasks. These methods make use of handcrafted
image augmentation methods that exploit priors such as class information is typically associated
with object shape and is location invariant. However, since we specifically develop an easier
alternative to DIM (which also maximizes the mutual information between the input and the latent
representations), for a fair comparison, we compare the performance of our Neural Bayes-MIM
algorithm for representation learning only with DIM. We leave the extension of Neural Bayes MIM
algorithm with data augmentation techniques and other advanced regularizations similar to Bachman
et al. (2019) as future work. Our experiments show that our proposal performs comparably or slightly
better compared with DIM. The main advantage of our proposal over DIM is that it offers a closed
form estimation of MI due to discrete latent variables.

We note that the principle of mutual information maximization for representation learning was
introduced in Linsker (1988) and Bell & Sejnowski (1995), and since then, a number of self-supervised
methods involving MIM have been proposed. Vincent et al. (2010) showed that auto-encoder based
methods achieve this goal implicitly by minimizing the reconstruction error of the input samples
under isotropic Gaussian assumption. Deep infomax (DIM, Hjelm et al. (2019)) uses estimators
like MINE Belghazi et al. (2018) and noise-contrastive estimation (NCE, Gutmann & Hyvärinen
(2010)) to estimate MI and maximize it for both both local and global features in convolutional
networks. Contrastive Predictive Coding (Oord et al., 2018) is another approach that maximizes MI
by predicting the activations of a layer from the layer above using NCE.

We also point out that the estimation of mutual information due to Neural Bayes parameterization in
the Neural Bayes-MIM-v1 objective (Eq 8) turns out to be identical to the one proposed in IMSAT
(Hu et al., 2017). However, there are important differences: 1. we introduce regularizations which
significantly improve the performance of representations on downstream tasks compared to IMSAT
(cf table 3 in (Hu et al., 2017)); 2. we provide theoretical justifications for the parameterization used
(lemma 1) and show in theorem 2 why it is feasible to compute high fidelity gradients using this
objective in the mini-batch setting even though it contains the term Ex[Lk(x)]. On the other hand, the
justification used in IMSAT is that optimizing using mini-batches is equivalent to optimizing an upper
bound of the original objective; 3. we perform extensive ablation studies exposing the importance of
the introduced regularizations.

3 NEURAL BAYES

Consider a data distribution p(x) from which we have access to i.i.d. samples x ∈ Rn. We assume
that this marginal distribution is a union of K conditionals where the kth conditional’s density is
denoted by p(x|z = k) ∈ R+ and the corresponding probability mass denoted by p(z = k) ∈ R+.
Here z is a discrete random variable with K states. We now introduce the parameterization that
allows us to implicitly factorize any marginal distribution into conditionals as described above. Aside
from the technical details, the key idea behind this parameterization is the Bayes’ rule.

Lemma 1. Let p(x|z = k) and p(z) be any conditional and marginal distribution defined for
continuous random variable x and discrete random variable z. If Ex∼p(x)[Lk(x)] 6= 0 ∀k ∈ [K],
then there exists a non-parametric function L(x) : Rn → R+K for any given input x ∈ Rn with the
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property
∑K
k=1 Lk(x) = 1 ∀x such that,

p(x|z = k) =
Lk(x) · p(x)

Ex∼p(x)[Lk(x)]
, p(z = k) = Ex[Lk(x)], p(z = k|x) = Lk(x) (1)

Thus the function L can be seen as a form of soft categorization of input samples. In practice, we
use a neural network with sufficient capacity and softmax output to realize this function L. We
name our parameterization method Neural Bayes and replace L with Lθ to denote the parameters
of the network. By imposing different conditions on the structure of z by formulating meaningful
objectives, we will get qualitatively different kinds of factorization of the marginal p(x), and therefore
the function Lθ will encode the posterior for that factorization. In summary, if one formulates any
objective that involves the terms p(x|z), p(z) or p(z|x), where x is an observed random variable and
z is a discrete latent random variable, then they can be substituted with Lk(x)·p(x)

Ex[Lk(x)]
, Ex[Lk(x)] and

Lk(x) respectively.

On an important note, Neural Bayes parameterization requires using the term Ex[Lk(x)], through
which computing gradient is infeasible in general. A general discussion around this can be found in
the appendix D. Nonetheless, we show that mini-batch gradients can have good fidelity for one of the
objectives we propose using our parameterization. In the next two sections, we explore two different
ways of factorizing p(x) resulting in qualitatively different goals of unsupervised representation
learning.

4 DISJOINT MANIFOLD SEPARATION (DMS)

In many cases, the support of a distribution may be a set of disjoint manifolds. In this task, our goal
is to label samples from each disjoint manifold with a distinct value. This formulation can be seen as
a generalization of subspace clustering (Ma et al., 2008) where the goal is to identify disjoint affine
subspaces. To make the problem concrete, we first formalize the definition of a disjoint manifold.

Definition 1. (Connected Set) We say that a set S ⊂ Rn is a connected set (disjoint manifold) if for
any x,y ∈ S, there exists a continuous path between x and y such that all the points on the path
also belong to S.

To identify such disjoint manifolds in a distribution, we exploit the observation that only partitions that
separate one disjoint manifold from others have high divergence between the respective conditional
distributions while partitions that cut through a disjoint manifold result in conditional distributions
with low divergence between them. Therefore, the objective we propose for this task is to partition the
unlabeled data distribution p(x) into conditional distributions qi(x)’s such that a divergence between
them is maximized. By doing so we recover the conditional distributions defined over the disjoint
manifolds (we prove its optimality in theorem 1). We begin with two disjoint manifolds and extend
this idea to multiple disjoint manifolds in the appendix B.

Let J be a symmetric divergence (Eg. Jensen-Shannon divergence, Wasserstein divergence, etc), and
q0 and q1 be the disjoint conditional distributions that we want to learn. Then the aforementioned
objective can be written formally as follows:

max
q0,q1
π∈(0,1)

J(q0(x)||q1(x)) (2)

s.t.
∫
x

q0(x) = 1,

∫
x

q1(x) = 1, q1(x) · π + q0(x) · (1− π) = p(x).

Since our goal is to simply assign labels to data samples x corresponding to which manifold they
belong instead of learning conditional distributions as achieved by Eq. (2), we would like to learn a
function L(x) which maps samples from disjoint manifolds to distinct labels. To do so, below we
derive an objective equivalent to Eq. (2) that learns such a function L(x).

Proposition 1. (Neural Bayes-DMS) Let L(x) : Rn → [0, 1] be a non-parametric function for any
given input x ∈ Rn, and let J be the Jensen-Shannon divergence. Define scalars f1(x) := L(x)

Ex[L(x)]
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and f0(x) := 1−L(x)
1−Ex[L(x)]

. Then the objective in Eq. (2) is equivalent to,

max
L

1

2
· Ex

[
f1(x) · log

(
f1(x)

f1(x) + f0(x)

)]
+

1

2
· Ex

[
f0(x) · log

(
f0(x)

f1(x) + f0(x)

)]
+ log 2

s.t. Ex[L(x)] /∈ {0, 1}. (3)

Optimality: We now prove the optimality of the proposed objective towards discovering disjoint
manifolds present in the support of a probability density function p(x).
Theorem 1. (optimality) Let p(x) be a probability density function over Rn whose support is the
union of two non-empty connected sets (definition 1) S1 and S2 that are disjoint, i.e. S1 ∩ S2 = ∅.
Let L(x) ∈ [0, 1] belong to the class of continuous functions which is learned by solving the objective
in Eq. (3). Then the objective in Eq. (3) is maximized if and only if one of the following is true:

L(x) =

{
0 ∀x ∈ S1

1 ∀x ∈ S2
or L(x) =

{
1 ∀x ∈ S1

0 ∀x ∈ S2.

The above theorem proves that optimizing the derived objective over the space of functions L
implicitly partitions the data distribution into maximally separated conditionals by assigning a distinct
label to points in each manifold. Most importantly, the theorem shows that the continuity condition on
the function L(x) plays an important role. Without this condition, the network cannot identify disjoint
manifolds. Extension to multiple disjoint manifold case can be found in section B in appendix.

4.1 IMPLEMENTATION DETAILS

Prior Collapse: The constraint in proposition 1 is a boundary condition required for technical reasons
in lemma 1. In practice we do not worry about them because optimization itself avoids situations
where Ex[L(x)] ∈ {0, 1}. To see the reason behind this, note that except when initialized in a way
such that Ex[L(x)] ∈ {0, 1}, the log terms are negative by definition. Since the denominators of
f0 and f1 are Ex[L(x)] and 1− Ex[L(x)] respectively, the objective is maximized when Ex[L(x)]
moves away from 0 and 1. Thus, for any reasonable initialization, optimization itself pushes Ex[L(x)]
away from 0 and 1.

Smoothness of Lθ(.): As shown in theorem 1, the proposed objectives can optimally recover disjoint
manifolds only when the function Lθ(.) is continuous. In practice we found enforcing the function to
be smooth (thus also continuous) helps significantly. Therefore, after experimenting with a handful
of heuristics for regularizing Lθ, we found the following finite difference Jacobian regularization to
be effective (L(.) can be scalar or vector),

Rc =
1

B

B∑
i=1

‖Lθ(xi)− Lθ(xi + ζ · δ̂i)‖2

ζ2
(4)

where δ̂i := δi
‖δi‖2 is a normalized noise vector computed independently for each sample xi in a batch

of size B as δi := Xvi. Here X ∈ Rn×B is the matrix containing the batch of samples, and each
dimension of vi ∈ RB is sampled i.i.d. from a standard Gaussian. This computation ensures that
the perturbation lies in the span of data, which we found to be important. Finally ζ is the scale of
normalized noise added to all samples in a batch. In our experiments, since we always normalize the
datasets to have zero mean and unit variance across all dimensions, we sample ζ ∼ N (0, 0.12).

Implementation: We implement the binary-partition Neural Bayes-DMS using the Monte-Carlo
sampling approximation of the following objective,

min
θ

1

2
· Ex

[
f1(x) · log

(
1 +

f0(x)

f1(x)

)]
+

1

2
· Ex

[
f0(x) · log

(
1 +

f1(x)

f0(x)

)]
+ β · Rc (5)

where f1(x) := Lθ(x)
Ex[Lθ(x)]

+ ε and f0(x) := 1−Lθ(x)
1−Ex[Lθ(x)]

+ ε. Here ε = 10−7 is a small scalar used
to prevent numerical instability, and β is a hyper-parameter to control the continuity of L. The
multi-partition case can be implemented in a similar way. Due to the need for computing Ex[Lθ(x)]
in the objective, optimizing it using gradient descent methods with small batch-sizes is not possible.
Therefore we experiment with this method on datasets where gradients can be computed for a very
large batch-size needed to approximate the gradient through Ex[Lθ(x)] sufficiently well.
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4.2 EXPERIMENTS

Figure 1: Neural Bayes-DMS network prediction
on synthetic high dimensional data (lying on a 2D
plane) projected back to 2 dimensions for visual-
ization. The different colors denote the label pre-
dicted by the networkLθ(.) thresholded at 0.5. The
darker shades of colors denote predictions made at
training data points while the lighter shades denote
predictions on the rest of the space.

Clustering in general is an ill posed problem.
However, in our problem setup, the definition
is precise, i.e., our goal is to optimally label
all the disjoint manifolds present in the support
of a distribution. Since this is a unique goal
that is not generally considered in literature, as
empirical verification, we show qualitative re-
sults on 2D synthetic datasets in figure 1. Top
2 sub-figures have 2 clusters and the bottom 2
have 3 clusters. For all experiments we use a 4
layer MLP with 400 hidden units each, batch-
norm, ReLU activation, and last layer Softmax
activation. In all cases we train using Adam
optimizer with a learning rate of 0.001, batch
size of 400 and no weight decay, and trained
until convergence. Regularization coefficient β
was chosen from [0.5, 6] that resulted in optimal
clustering. For generality in these experiments,
these 2D datasets were projected to high dimen-
sions (512) by appending 510 dimensions of 0
entries to each sample and then randomly ro-
tated before performing clustering. The datasets were then projected back to the original 2D space
for visualizing predictions. Additional experiments can be found in the appendix C.

5 MUTUAL INFORMATION MAXIMIZATION (MIM)

Suppose we want to find a discrete latent representation z (with K states) for the distribution p(x)
such that the mutual information MI(x, z) is maximized (Linsker, 1988). Such an encoding z
demands that it must be very efficient since it has to capture maximum possible information about
the continuous distribution p(x) in just K discrete states. Assuming we can learn such an encoding,
we are interested in computing p(z|x) since it tells us the likelihood of x belonging to each discrete
state of z, thereby performing soft categorization which may be useful for downstream tasks. In the
proposition below, we show an objective for computing p(z|x) for a discrete latent representation z
that maximizes MI(x, z).

Proposition 2. (Neural Bayes-MIM-v1) Let L(x) : Rn → R+K be a non-parametric function for
any given input x ∈ Rn with the property

∑K
i=1 Lk(x) = 1 ∀x. Consider the following objective,

L∗ = arg max
L

Ex

[
K∑
k=1

Lk(x) log
Lk(x)

Ex[Lk(x)]

]
(6)

Then L∗k(x) = p(z∗ = k|x), where z∗ ∈ arg maxzMI(x, z).

The proof essentially involves expressing MI in terms of p(z|x), and p(z), which can be substituted
using Neural Bayes parameterization. However, the objective proposed in the above theorem poses a
challenge– the objective contains the term Ex[Lk(x)] for which computing high fidelity gradient in a
batch setting is problematic (see appendix D). However, we can overcome this problem for the MIM
objective because it turns out that gradient through certain terms are 0 as shown by the following
theorem.

Theorem 2. (Gradient Simplification) Denote,

J(θ) = −Ex

[
K∑
k=1

Lθk(x) log
Lθk(x)

Ex[Lθk(x)]

]
, Ĵ(θ) = −Ex

[
K∑
k=1

Lθk(x) log〈 Lθk(x)

Ex[Lθk(x)]
〉

]
(7)

where 〈.〉 indicates that gradients are not computed through the argument. Then ∂J(θ)
∂θ = ∂Ĵ(θ)

∂θ .
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The above theorem implies that as long as we plugin a decent estimate of Ex[Lθk(x)] in the objective,
unbiased gradients can be computed using randomly sampled mini-batches. Note that the objective
can be re-written as,

min
θ
− Ex

[
K∑
k=1

Lθk(x) log〈Lθk(x)〉

]
+

K∑
k=1

Ex[Lk(x)] log〈Ex[Lk(x)]〉 (8)

The second term is the negative entropy of the discrete latent representation p(z = k) := Ex[Lk(x)]
which acts as a uniform prior. In other words, this term encourages learning a latent code z such that all
states of z activate uniformly over the marginal input distribution x. This is an attribute of distributed
representation which is a fundamental goal in deep learning. We can therefore further encourage
this behavior by treating the coefficient of this term as a hyper-parameter. In our experiments we
confirm both the distributed representation behavior of this term as well as the benefit of using a
hyper-parameter as our coefficient.

5.1 IMPLEMENTATION DETAILS

Alternative Formulation of Uniform Prior: In practice we found that an alternative formulation of
the second term in Eq 8 results in better performance and more interpretable filters. Specifically, we
replace it with the following cross-entropy formulation,

Rp(θ) := −
K∑
k=1

1

K
log(Ex[Lk(x)]) +

K − 1

K
log(1− Ex[Lk(x)]) (9)

While both, the second term in Eq 8 as well asRp(θ) are minimized when Ex[Lk(x)] = 1/K, the
latter formulation provides much stronger gradients during optimization when Ex[Lk(x)] approaches
1 (see appendix F.1 for details); Ex[Lk(x)] = 1 is undesirable since it discourages distributed
representation. Finally, unbiased gradients can be computed through Eq 9 as long as a good estimate
of Ex[Lk(x)] is plugged in. Also note that the condition Ex[Lk(x)] /∈ {0, 1} in lemma 1 is met by
the Neural Bayes-MIM objective implicitly during optimization as discussed in the above paragraph
in regards to distributed representation.

Implementation: The final Neural Bayes-MIM-v2 objective is,

min
θ
− Ex

[
K∑
k=1

Lθk(x) log〈Lθk(x) + ε〉

]
+ (1 + α) · Rp(θ) + β · Rc (10)

where α and β are hyper-parameters,Rc is a smoothness regularization introduced in Eq. 4, ε = 10−7

is a small scalar used to prevent numerical instability. Qualitatively, we find that the regularization
Rc prevents filters from memorizing the input samples. Finally, we apply the first two terms in Eq
10 to all hidden layers of a deep network at different scales (computed by spatially average pooling
and applying Softmax). These two regularizations gave a significant performance boost. Thorough
implementation details are provided in the appendix E. For brevity, we refer to our final objective as
Neural Bayes-MIM in the rest of the paper.

On the other hand, to compute a good estimate of gradients, we use the following trick. During
optimization, we compute gradients using a sufficiently large mini-batch of size MBS (Eg. 500) that
fits in memory (so that the estimate of Ex[Lk(x)] is reasonable), and accumulate these gradients
until BS samples are seen (Eg. 2000), and averaged before updating the parameters to further reduce
estimation error.

5.2 EXPERIMENTS

Instead of aiming for state-of-the-art results on self-supervised learning tasks, our goal in this section
is to conduct experiments using Neural Bayes-MIM to understand the behavior of the algorithm, the
hyper-parameters involved, and compare performance with DIM, a closely related self-supervised
learning method. The use of data augmentation, additional architectures and other regularizations
similar to Bachman et al. (2019) is left as future work. Therefore, we use the following simple CNN
encoder architecture1 Enc in our experiments: C(200, 3, 1, 0)−P (2, 2, 0,max)−C(500, 3, 1, 0)−

1We use the following shorthand for a) conv layer: C(number of filters, filter size, stride size, padding); b)
pooling: P(kernel size, stride, padding, pool mode)

6



Under review as a conference paper at ICLR 2021

Figure 2: The effect of Neural Bayes-MIM hyper-parameters on the final test performance for
CIFAR-10. A CNN encoder is trained using Neural Bayes-MIM with different configurations–
hyper-parameters α, β and scaling of states on which the objective is applied. A one hidden layer
classifier (with 200 units) is then trained using labels on these frozen features to get the final test
accuracy. The plots show that performance is significantly worse when α = β = 0 and no scaling
is used, showing their important role as a regularizer. The best performing model reaches 83.59%.
Black dotted line is the baseline performance (67.97%) when a randomly initialized network (with
identical architecture) is used as encoder. Green and blue dotted lines are the average of all the green
and blue points respectively.

C(700, 3, 1, 0)− P (2, 2, 0,max)− C(1000, 3, 1, 0). For an input image x of size 32× 32× 3, the
output of this encoder Enc(x) has size 2× 2× 1000. The encoder is initialized using orthogonal
initialization (Saxe et al., 2013), batch normalization (Ioffe & Szegedy, 2015) is used after each
convolution layer and ReLU non-linearities are used. All datasets are normalized to have dimension-
wise 0 mean and unit variance. Early stopping in all experiments is done using the test set (following
previous work). We broadly follow the experimental setup of Hjelm et al. (2019). We do not use any
data augmentation in our experiments. After training the encoder, we freeze its features and train a 1
hidden layer (200 units) classifier to get the final test accuracy.

5.2.1 ABLATION STUDIES

Behavior of Neural Bayes-MIM-v1 (Eq 8) vs Neural Bayes-MIM (v2, Eq 9): The experiments
and details are discussed in the appendix F.2. The main differences are: 1. majority of the filters
learned by the v1 objective are dead, as opposed to the v2 objective which encourages distributed
representation; 2. the performance of v2 is better than that of the v1 objective.

Performance due to Regularizations and State Scaling: We now evaluate the effects of the various
components involved in the Neural Bayes-MIM objective– coefficients α and β, and applying the
objective at different scales of hidden states. We use the CIFAR-10 dataset for these experiments.

In the first experiment, for each value of the number of different scales considered, we vary α, β
and record the final performance, thus capturing the variation in performance due to all these three
components. We consider two scaling configurations: 1. no pooling is applied to the hidden layers; 2.
for each hidden layer, we spatially average pool the state using a 2× 2 pooing filter with a stride of 2.
For the encoder used in our experiments (which has 4 internal hidden layers post ReLU), this gives
us 4 and 8 states respectively (including the original un-scaled hidden layers) to apply the Neural
Bayes-MIM objective. After getting all the states, we apply the Softmax activation to each state along
the channel dimension so that the Neural Bayes parameterization holds. Thus for states with height
and width, the objective is applied to each spatial (x, y) location separately and averaged. Also, for
states with height (or width) less than the pooling size, we use the height (or width) as pooling size.

We train Neural Bayes-MIM on the full training set for 100 epochs using Adam with learning rate
0.001 (other Adam hyper-parameters are standard), mini-batch size 500 and batch size 2000, 0 weight
decay. In the first 32 experiments, α and β are sampled uniformly from [0, 10] and [0, 5] respectively.
In the next 5 experiments, α is set to be 0 while β is sampled uniformly. In the next 5 experiments, β
is set to be 0 while α is sampled uniformly. Thus in total we run 42 experiments for each number of
scaling considered.

Once we get a trained Enc(x), we train a 1 hidden layer (with 200 units) MLP classifier on the
frozen features from Enc(x) using the labels in the training set. This training is done for 100 epochs
using Adam with learning rate 0.001 (other Adam hyper-parameters are standard), batch size 128 and
weight decay 0.
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Encoder \Dataset CIFAR-10 CIFAR-100 STL-10

Random Network 67.97 42.97 53.91
DIM (Hjelm et al., 2019) 80.95 49.74 -

Neural Bayes-MIM 82.81 55.47 64.84

Table 1: Classification performance of a one hidden layer MLP classifier trained on frozen features
from the mentioned encoder models (trained using Neural Bayes-MIM) and datasets (no data
augmentation used in experiments we ran). STL-10 was resized to 32 × 32 in our runs instead of
64× 64 as in DIM due to memory restrictions. Performance reported from DIM paper are their best
numbers (omitting STL-10 due to difference in image size).

As a baseline for these experiments, we use a randomly initialed encoder Enc(x). Since there are no
tunable hyper-parameters in this case, we perform a grid search on the classifier hyper-parameters.
Specifically, we choose weight decay from {0, 1e− 5, 5e− 5, 1e− 4}, batch size from {128, 256},
and learning rate from {0.0001, 0.001}. This yields a total of 16 configurations. The test accuracy
from these runs varied between 58.59% and 67.97%. We consider 67.97% as our baseline.

The performance of encoders under the aforementioned configurations is shown in figure 2. It is
clear that both the hyper-parameters α and especially β play an important role in the quality of
representations learned. Also, applying Neural Bayes-MIM at different scales of the network states
significantly improves the average and best performance.

Filter visualization, convergence experiments and the effect of batch-size are shown in appendix F.3.

5.2.2 FINAL CLASSIFICATION PERFORMANCE

We compare the final test accuracy of Neural Bayes-MIM with 2 baselines– a random encoder
(described in ablation studies) and Deep Infomax (Hjelm et al., 2019) on benchmark image datasets–
CIFAR10 and CIFAR-100 (Krizhevsky, 2009) and STL-10 (Coates et al., 2011). Random Network
refers to the use of a randomly initialized network. The experimental details for them are identical to
those in the ablation above involving a hyper-parameter search over 16 configurations done for each
dataset separately.

DIM results are reported from Hjelm et al. (2019). We omit STL-10 number for DIM because we
resize images to a much smaller size of 32× 32 in our runs instead of 64× 64 as used in DIM.

The following describes the experimental details for Neural Bayes-MIM. We use α = 2 and β = 4
(chosen roughly by examining figure 2), and MBS=500, BS=4000 in all the experiments. Note
these values are not tuned for STL-10 and CIFAR-100. For CIFAR-10 and STL-10 each, we run 4
configurations of Neural Bayes-MIM over hyper-parameters learning rate ∈ {0.0001, 0.001} and
weight decay ∈ {0, 0.00001}. For each run, we then train a 1 hidden layer (200 units) classifier on
top of the frozen features with learning rate ∈ {0.0001, 0.001}. We report the best performance of
all runs. For CIFAR-100, we take the encoder that produces the best performance on CIFAR-10, and
train a classifier with the 2 learning rates and report the best of the 2 runs.

Table 1 reports the classification performance of all the methods. We note that all experiments
were done with CNN architecture without any data augmentation. Neural Bayes-MIM outperforms
baseline methods in general.

6 CONCLUSION

We proposed a parameterization method that can be used to express an arbitrary set of distributions
p(x|z), p(z|x) and p(z) in closed form using a neural network with sufficient capacity, which can in
turn be used to formulate new objective functions. We formulated two different objectives that use this
parameterization which were aimed towards different goals of unsupervised learning– identification
of disjoint manifolds in the support of continuous distributions and learning deep network features
using the infomax principle. We focused on theoretical analysis for both the objectives and presented
preliminary experiments supporting the theoretical claims.
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APPENDIX

A PROOFS FOR NEURAL BAYES-DMS (BINARY CASE)

Proposition 1. (Neural Bayes-DMS, proposition 2 in main text) Let L(x) : Rn → [0, 1] be a non-
parametric function for any given input x ∈ Rn, and let J be the Jensen-Shannon divergence. Define
scalars f1(x) := L(x)

Ex[L(x)]
and f0(x) := 1−L(x)

1−Ex[L(x)]
. Then the objective in Eq. (2) is equivalent to,

max
L

1

2
· Ex

[
f1(x) · log

(
f1(x)

f1(x) + f0(x)

)]
+

1

2
· Ex

[
f0(x) · log

(
f0(x)

f1(x) + f0(x)

)]
+ log 2

(11)
s.t. Ex[L(x)] /∈ {0, 1} (12)

Proof: Using the Neural Bayes parameterization from lemma 1 for binary case, we set,

q1(x) :=
L(x) · p(x)

Ex∼p(x)[L(x)]
q0(x) :=

(1− L(x)) · p(x)

1− Ex∼p(x)[L(x)]
(13)

These parameterizations therefore automatically satisfy the constraints in Eq. (2). Finally, using the
definition of JS divergence, the maximization problem in Eq. (2) can be written as,

max
q0,q1

1

2
·
∫
x

q1(x) log
q1(x)

0.5 · (q0(x) + q1(x))
+ q0(x) log

q0(x)

0.5 · (q0(x) + q1(x))
(14)

Substituting q0 and q1 with their respective parameterizations and using the definitions of f0(x) and
f1(x) completes the proof. �

Theorem 1. (optimality, Theorem 2 in main text) Let p(x) be a probability density function over Rn
whose support is the union of two non-empty connected sets (definition 1) S1 and S2 that are disjoint,
i.e. S1 ∩ S2 = ∅. Let L(x) ∈ [0, 1] belong to the class of continuous functions which is learned by
solving the objective in Eq. (3). Then the objective in Eq. (3) is maximized if and only if one of the
following is true:

L(x) =

{
0 ∀x ∈ S1

1 ∀x ∈ S2
or L(x) =

{
1 ∀x ∈ S1

0 ∀x ∈ S2
(15)

Proof: The two cases exist in the theorem due to symmetry. Recall the definition of f0(x) and f1(x)
in Eq. (3),

f1(x) :=
L(x)

Ex[L(x)]
f0(x) :=

1− L(x)

1− Ex[L(x)]
(16)

where L(x) ∈ [0, 1] and for a feasible L(x), and therefore π := Ex[L(x)] ∈ (0, 1) due to the
conditions specified in this theorem. Thus f1(x) ∈ [0, 1

π ] and f0(x) ∈ [0, 1
1−π ]. By design, the terms

log
(

f1(x)
f1(x)+f0(x)

)
and log

(
f0(x)

f1(x)+f0(x)

)
are non-positive. Thus, for any x ∈ S1 ∪ S2,

F (x) = f1(x) · log

(
f1(x)

f1(x) + f0(x)

)
+ f0(x) · log

(
f0(x)

f1(x) + f0(x)

)
(17)

is maximized only when L(x) = 0 or L(x) = 1 leading to F (x) = 0. Therefore, the objective in Eq.
(3) is maximized by setting L(x) = 0 or L(x) = 1 ∀x ∈ S1 ∪ S2.

Finally, since L(x) is a continuous function, @x1,x2 ∈ S1 such that L(x1) = 0 and L(x2) = 1.
We prove this by contradiction. Suppose there exists a pair (x1,x2) of this kind. Then along any
path connecting x1 and x2 within S1, there must exist a point where L(x) is not continuous since
L(x) = 0 or L(x) = 1 ∀x ∈ S1 ∪ S2 to satisfy the maximization condition. This is a contradiction.
By symmetry, the same argument can be proved for x1,x2 ∈ S2. Therefore one of the two cases
mentioned in the theorem must be the optimal solution for L(x) in Eq. (3). Thus we have proved the
claim. �
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B NEURAL BAYES-DMS: EXTENSION TO MULTIPLE PARTITIONS

In order to extend our proposal to multiple partitions (sayK), the idea is to find conditional distribution
qi (i ∈ [K]) corresponding to each of the K partitions such the divergence between conditional
distribution of every partition and the conditional distribution of the combined remaining partitions is
maximized. Specifically, we propose the following primary objective,

max
qk

πk 6=0,∀k∈[K]

1

K

K∑
k=1

J(qk(x)||q̄k(x)) s.t. (18)∫
x

qk(x) = 1 ∀k ∈ [K] (19)

K∑
k=1

qk(x) · πk = p(x) (20)

K∑
k=1

πk = 1 (21)

where q̄k(x) is the conditional distribution corresponding to the full data distribution excluding the
partition defined by qk(x). Formally,

q̄k(x) :=
p(x)− qk(x) · πk

1− πk
(22)

Then the theorem below shows an equivalent way of solving the above objective.

Theorem 2. Let L(x) : Rn → R+K be a non-parametric function for any given input x ∈ Rn with
the property

∑K
k=1 Lk(x) = 1 ∀x, and let J be the Jensen-Shannon divergence. Define scalars

fk(x) := Lk(x)
Ex[Lk(x)]

and f̄k(x) := 1−Lk(x)
1−Ex[Lk(x)]

. Then the objective in Eq. (18) is equivalent to,

max
Lk∀i∈[K]

1

2
· Ex

[
K∑
k=1

fk(x) · log

(
fk(x)

fk(x) + f̄k(x)

)
+ f̄k(x) · log

(
f̄k(x)

f̄k(x) + fk(x)

)]
+ log 2

(23)
s.t. Ex[Lk(x)] = πk

Here Lk(x) denotes the kth unit of L(x).

Proof: Similar to theorem 1, the main idea is to parameterize qk and q̄k as follows,

qk(x) :=
Lk(x) · p(x)

Ex∼p(x)[Lk(x)]
q̄k(x) :=

(1− Lk(x)) · p(x)

1− Ex∼p(x)[Lk(x)]
(24)

To verify that these parameterizations are valid, note that,∫
x

qk(x) =

∫
x

Lk(x) · p(x)

Ex∼p(x)[Lk(x)]
= 1 (25)

Similarly,
∫
x
q̄k(x) = 1. To verify that the second constraint is satisfied, we use the above parameter-

ization and substitute Ex[Lk(x)] = πk and get,

K∑
k=1

Lk(x) · p(x)

πk
· πk = p(x) ·

(
K∑
k=1

Lk(x)

)
(26)

= p(x) (27)

where the last equality uses the definition of L(x). Also notice that each πk ∈ [0, 1] and thus
Ex[Lk(x)] = πk is feasible for any arbitrary distribution qk(x) when Lk(x) ≥ 0.

2
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Finally, using the proposed parameterization we have,

q̄k(x) =
p(x)− qi(x) · πk

1− πk
(28)

= p(x) ·
1− Li(x)

Ex[Lk(x)]
· πk

1− πk
(29)

= p(x) · 1− Li(x)

1− Ex[Lk(x)]
(30)

= f̄k(x) · p(x) (31)

where we have used the fact that Ex[Lk(x)] = πk. Using the definition of JS divergence, the max
problem in Eq. (18) can be written as,

max
Lk∀i∈[K]

1

2
·
K∑
k=1

∫
x

qk(x) · log

(
qk(x)

0.5 · (qk(x) + q̄k(x))

)
+ q̄k(x) · log

(
q̄k(x)

0.5 · (q̄k(x) + qk(x))

)
(32)

Substituting qk and q̄k with their respective parameterizations and using the definitions of fk(x) and
f̄k(x) completes the proof. �

In terms of implementation, we propose to simply haveK output units in the label generating network
Lθ while sharing the rest of the network. Also, we use Softmax activation at the output layer to
satisfy the properties of L specified in the above theorem.

C ADDITIONAL NEURAL BAYES-DMS EXPERIMENTS

We run an experiment on MNIST. We randomly split the training set into 90% − 10% training-
validation set In this experiment, we train a CNN with the following architecture: C(100, 3, 1, 0)−
P (2, 2, 0,max)−C(100, 3, 1, 0)−C(200, 3, 1, 0)−P (2, 2, 0,max)−C(500, 3, 1, 0)−P (., ., ., avg)−
FC(10). Here P (., ., ., avg) denotes the entire spatial field is average pooled to result in 1× 1 height-
width, and FC(10) denotes a fully connected layer with output dimension 10. Finally, Softmax is
applied at the output and the network is trained using the Neural Bayes-DMS objective. We optimize
the objective using Adam with learning rate 0.001, batch size 5000, 0 weight decay for 100 epochs
(other Adam hyper-parameters are kept standard). We use β = 1 for the smoothness regularization
coefficient. Once this network is trained, we train a linear classifier on top of this 10 dimensional
output using Adam with identical configurations except a batch size of 128 is used. We early stop
on the validation set of MNIST and report the test accuracy using that model. The classifier reaches
99.22% test accuracy. This experiment shows that MNIST classes lie on nearly disjoint manifolds
and that Neural Bayes-DMS can correctly label them. As baseline, a linear classifier trained on
features from a randomly initialized identical CNN architecture reaches 42.97%.

D GRADIENT COMPUTATION PROBLEM FOR THE Ex[Lθ(x)] TERM

The Neural Bayes parameterization contains the term Ex[Lθ(x)]. Computing unbiased gradient
through this term is in general difficult without the use of very large batch-sizes even though the
quantity Ex[Lθ(x)] itself may have a good estimate using very few samples. For instance, consider
the scalar function ψ(t) = 1 + 0.01 sinωt. Consider the scenario when ω → ∞. The quantity
E[ψ(t)] can be estimated very accurately using even one example. Further, E[ψ(t)] = 1, hence
∂E[ψ(t)]
∂t = 0. However, when using a finite number of samples, the approximation of ∂E[ψ(t)]

∂t can
have a very high variance estimate due to improper cancelling of gradient terms from individual
samples.

In the case of Neural Bayes-MIM we found that gradients through terms involving Ex[Lθ(x)] were
0. This allows us to estimate gradients for this objective reliably in the mini-batch setting. But in
general it may be challenging to do so and solving objectives using Neural Bayes parameterization
may require a customized work-around for each objective.
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E IMPLEMENTATION DETAILS OF THE NEURAL BAYES-MIM OBJECTIVE

We apply the Neural Bayes-MIM objective (Eq 10) to all the hidden layers at different scales (using
average pooling). We now discuss its implementation details. Consider the CNN architecture
used in our experiments– C(200, 3, 1, 0) − P (2, 2, 0,max) − C(500, 3, 1, 0) − C(700, 3, 1, 0) −
P (2, 2, 0,max)− C(1000, 3, 1, 0). Denote hi (i ∈ {0, 1, 2, 3}) be the 4 hidden layer ReLU outputs
after the 4 convolution layers. For input of size 32 × 32 × 3, all these hidden states have height
and width dimension in addition to channel dimension. For a mini-batch B, these hidden states are
therefore 4 dimensional tensors. Let these 4 dimensions for the ith state be denoted by |B| × Ci ×
Hi ×Wi, where the dimensions denote batch-size, number of channels, height and width. Denote S
to be the Softmax function applied along the channel dimension, and P to be P (2, 2, 0, avg). Further,
denote hi := P(hi−4) (i ∈ {4, 5, 6, 7}) as the scaled version of the original states computed by
average pooling, and define numbers Ci, Hi,Wi accordingly. Then the total Neural Bayes-MIM
objective for this architecture is given by,

min
θ
− 1

|B|
∑
x∈B

1

8

7∑
i=0

1

HiWi

Hi,Wi∑
h,w=1

Ci∑
k=1

S(hik,h,w(x)) log〈S(hik,h,w(x)) + ε〉


+ (1 + α) · Rp(θ) + β · Rc (33)

where,

Rp(θ) := −1

8

7∑
i=0

1

HiWi

Hi,Wi∑
h,w=1

[
Ci∑
k=1

1

Ci
log

[
1

|B|
∑
x∈B
S(hik,h,w(x))

]
+
Ci − 1

Ci
log

[
1− 1

|B|
∑
x∈B
S(hik,h,w(x))

]]
(34)

and,

Rc =
1

|B|
∑
x∈B

‖P(h3
k(x))− P(h3

k(x + ζ · δ̂)‖2

ζ2
(35)

where δ̂ := δ
‖δ‖2 is a normalized noise vector computed independently for each sample x in the batch

B as,

δ := Xv. (36)

Here X ∈ Rn×B is the matrix containing the batch of samples, and each dimension of v ∈ RB
is sampled i.i.d. from a standard Gaussian. This computation ensures that the perturbation lies in
the span of data. Finally ζ is the scale of normalized noise added to all samples in a batch. In our
experiments, since we always normalize the datasets to have zero mean and unit variance across all
dimensions, we sample ζ ∼ N (0, 0.12). Note that for the architecture used, P(h3

k(x)) results in an
output with height and width equal to 1, hence the output is effectively a 2D matrix of size |B| × C3.
Finally, the gradient form this mini-batch is accumulated and averaged over multiple batches before
updating the parameters for a more accurate estimate of gradients.

F ADDITIONAL ANALYSIS OF NEURAL BAYES-MIM

F.1 GRADIENT STRENGTH OF UNIFORM PRIOR IN NEURAL BAYES-MIM-V1 (EQ 8) VS
NEURAL BAYES-MIM-V2 (9)

As discussed in the main text, the term,

Rv1p (θ) :=

K∑
k=1

Ex[Lk(x)] log〈Ex[Lk(x)]〉 (37)

acts as a uniform prior encouraging the representations to be distributed. However, gradients are
much stronger when Ex[Lk(x)] approaches 1 for the alternative cross-entropy formulation,

Rv2p (θ) := −
K∑
k=1

1

K
logEx[Lk(x)] +

K − 1

K
log(1− Ex[Lk(x)]) (38)
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Figure 3: MNIST filters learned using Neural Bayes-MIM-v1 objective (Eq 8) using the configuration
α = 4, β = 4. Majority of filters are dead. For comparison with filters from Neural Bayes-MIM-v2,
see figure 4 (bottom).

To see this, note that gradient forRv1p (θ) is given by,

∂Rv1p (θ)

∂θ
=

K∑
k=1

∂Ex[Lθk(x)]

∂θ
logEx[Lθk(x)]−

K∑
k=1

∂Ex[Lθk(x)]

∂θ
(39)

=

K∑
k=1

∂Ex[Lθk(x)]

∂θ
logEx[Lθk(x)]−

∂Ex[
∑K
k=1 Lθk(x)]

∂θ
(40)

=

K∑
k=1

∂Ex[Lθk(x)]

∂θ
logEx[Lθk(x)] (41)

where the last equality holds due to the linearity of expectation and because
∑K
k=1 Lθk(x) = 1 by

design. On the other hand, gradients forRv2p (θ) is given by,

∂Rv2p (θ)

∂θ
= −

K∑
k=1

1

K

(
1

Ex[Lk(x)]
− K − 1

1− Ex[Lk(x)]

)
∂Ex[Lθk(x)]

∂θ
(42)

When the representation being learned is such that the marginal p(z) peaks along a single state k, i.e.,
Ex[Lk(x)]→ 1 (making the representation degenerate), the gradient for the kth term for v1 is given
by,

∂Ex[Lθk(x)]

∂θ
logEx[Lθk(x)] ≈ 0 (43)

while that for v2 is given by,

− 1

K

(
1

Ex[Lk(x)]
− K − 1

1− Ex[Lk(x)]

)
∂Ex[Lθk(x)]

∂θ
≈ lim
c→0

1

c
· ∂Ex[Lθk(x)]

∂θ
(44)

whose magnitude approaches infinity as Ex[Lk(x)] → 1. Thus Rv2p (θ) is beneficial in terms of
gradient strength.

F.2 EMPIRICAL COMPARISON BETWEEN NEURAL BAYES-MIM-V1 (EQ 8) AND NEURAL
BAYES-MIM-V2 (9)

To empirically understand the difference in behavior of Neural Bayes-MIM objective v1 vs v2, we
first plot the filters learned by the v1 objective and compare it with those learned by the v2 objective.
The filters learned by the v1 objective are shown in figure 3 using the configuration α = 4, β = 4.
It can be seen that most filters are dead. We tried other configurations as well without any change
in the outcome. Since the v1 and v2 objective differ only in the formulation of the uniform prior
regularization, as explained in the previous section, we believe that v1 leads to dead filters because of
weak gradients from its regularization term.

In the second set of experiments, we train many models using Neural Bayes-MIM-v1 and Neural
Bayes-MIM-v2 objectives separately with different hyper-parameter configurations similar to the
setting of figure 2. The performance scatter plot is shown in figure 6. We find that Neural Bayes-
MIM-v2 has better average and best performance compared with Neural Bayes-MIM-v1.

5
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(a) α = 0, β = 4

(b) α = 4, β = 0

(c) α = 4, β = 4

Figure 4: MNIST filters learned using Neural Bayes-MIM objective Eq 10. Majority of filters are
dead when regularization coefficient α = 0. Filters memorize input samples when regularization
coefficient β = 0. Using both regularization terms results in filters that mainly capture parts of inputs
which are good for distributed representation.

MBS \BS 50 250 500 2000 3000

50 40.62 42.97 41.41 75 78.91
100 N/A 67.97 66.41 78.12 78.91
250 N/A 76.56 78.91 82.03 84.38
500 N/A N/A 82.03 78.91 79.69

Table 2: Effect of mini-batch size (MBS) and batch size (BS) on final test accuracy of Neural
Bayes-MIM on CIFAR-10. Gradients are computed using batches of size MBS and accumulated until
BS samples are seen before parameter update. As expected, a sufficiently large MBS is needed for
computing high fidelity gradients due to Ex[Lk(x)] term. Gradient accumulation using BS further
helps. All models are trained for the same number of epochs.

6
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Figure 5: Mean (solid line) and standard deviation (error band) of accuracy evolution during MLP
classifier training on CIFAR-10 using Neural Bayes-MIM encoder (blue) and random encoder (green).
Features learned by Neural Bayes-MIM allow training to start at a much higher value (∼ 65% on
average) and converge faster as opposed to a random encoder (∼ 47% on average).

Figure 6: Performance of Neural Bayes-MIM-v1 vs Neural Bayes-MIM-v2. A CNN encoder is
trained using Neural Bayes-MIM with different configurations– hyper-parameters α, β and scaling of
states on which the objective is applied. A one hidden layer classifier (with 200 units) is then trained
using labels on these frozen features to get the final test accuracy.Green and blue dotted lines are the
average of all the green and blue points respectively. Neural Bayes-MIM-v2 has better average and
best performance compared with Neural Bayes-MIM-v1.

F.3 ADDITIONAL EXPERIMENTS

Visualization of Filters: We visualize the filters learned by the Neural Bayes-MIM objective on
MNIST digits and qualitatively study the effects of the regularizations used. For this we train a deep
fully connected network with 3 hidden layers each of width 500 using Adam with learning rate 0.001,
batch size 500, 0 weight decay for 50 epochs (other Adam hyper-parameters are kept standard). We
train three configurations: 1. α = 0, β = 4; 2. α = 4, β = 0; 3. α = 4, β = 4. The learned filters
are shown in figure 3. We find that the uniform prior regularization (α > 0) prevents dead filters
while the smoothness regularization (β > 0) prevents input memorization.

Accuracy vs Epochs: Finally, we plot the evolution of accuracy over epochs for all the models
learned in the experiments of figure 2. For Neural Bayes-MIM we use the models with scaling (42 in
total), and all 16 models for the random encoder. The convergence plot (figure 5) shows that models
pre-trained with Neural Bayes-MIM quickly converge to a higher test accuracy compared to the
baseline.

Effect of Mini-batch size (MBS) and Batch size (BS): During implementation, we proposed to
compute gradients using a reasonably large mini-batch of size MBS and accumulate gradients until
BS samples are seen. This is done to overcome the gradient estimation problem due to the Ex[Lk(x)]
term in Neural Bayes-MIM. Here we evaluate the effect of these two hyper-parameters on the final test
performance. We choose MBS from {50, 100, 250, 500} and BS from {50, 250, 500, 2000, 3000}.

7
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For each combination of MBS and BS, we train the CNN encoder using Neural Bayes-MIM with
α = 2 and β = 4 (chosen by examining figure 2); the rest of the training settings are kept identical
to those used for figure 2 experiment. Table 2 shows the final test accuracy on CIFAR-10 for each
combination of hyper-parameters MBS and BS. We make two observations: 1. using very small MBS
(Eg. 50 and 100) typically results in poor (even worse than that of a random encoder (67.97%)), while
larger MBS significantly improves performance; 2. using a larger BS further improves performance
in most cases (even when MBS is small).

G PROOF OF LEMMA 1

Lemma 1. Let p(x|z = k) and p(z) be any conditional and marginal distribution defined for
continuous random variable x and discrete random variable z. If Ex∼p(x)[Lk(x)] 6= 0 ∀k ∈ [K],
then there exists a non-parametric function L(x) : Rn → R+K for any given input x ∈ Rn with the
property

∑K
k=1 Lk(x) = 1 ∀x such that,

p(x|z = k) =
Lk(x) · p(x)

Ex∼p(x)[Lk(x)]
, p(z = k) = Ex[Lk(x)], p(z = k|x) = Lk(x) (45)

and this parameterization is consistent.

Proof: First we show the existence proof. Notice that there exists a non-parametric function gk(x) :=
p(x|z=k)
p(x) ∀x ∈ supp(p(x)). Denote Gk(x) = p(z = k)gk(x). Then,

Ex[Gk(x)] = Ex[p(z = k)gk(x)] = p(z = k) (46)
and,

Gk(x)

Ex[Gk(x)]
=
p(z = k)gk(x)

p(z = k)
=
p(x|z = k)

p(x)
(47)

Thus Lk := Gk works. To verify that this parameterization is consistent, note that for any k,∫
x

p(x|z = k) =

∫
x

Lk(x) · p(x)

Ex∼p(x)[Lk(x)]
= 1 (48)

where we use the condition Ex∼p(x)[Lk(x)] 6= 0 ∀k ∈ [K]. Secondly, we note that,
K∑
k=1

p(x|z = k) · p(z = k) =

K∑
k=1

Lk(x) · p(x)

Ex[Lk(x)]
· Ex[Lk(x)] (49)

=

K∑
k=1

Lk(x) · p(x) (50)

= p(x) (51)

where the last equality is due to the conditions
∑K
k=1 Lk(x) = 1 ∀x. Thirdly,

K∑
k=1

p(z = k) =

K∑
k=1

Ex[Lk(x)] (52)

= Ex[

K∑
k=1

Lk(x)] (53)

= 1

Finally, we have from Bayes’ rule:

p(z = k|x) =
p(x|z = k) · p(z = k)

p(x)
(54)

=
Lk(x) · p(x)

Ex∼p(x)[Lk(x)]
·
Ex∼p(x)[Lk(x)]

p(x)
(55)

= Lk(x) (56)
where the second equality holds because of the existence and consistency proofs of p(x|z = k) :=
Lk(x)·p(x)

Ex∼p(x)[Lk(x)]
and p(z = k) := Ex[Lk(x)] shown above. �
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H PROOFS FOR NEURAL BAYES-MIM

Proposition 2. (Neural Bayes-MIM-v1) (proposition 1 in main text) Let L(x) : Rn → R+K be
a non-parametric function for any given input x ∈ Rn with the property

∑K
i=1 Lk(x) = 1 ∀x.

Consider the following objective,

L∗ = arg max
L

Ex

[
K∑
k=1

Lk(x) log
Lk(x)

Ex[Lk(x)]

]
(57)

Then L∗k(x) = p(z∗ = k|x), where z∗ ∈ arg maxzMI(x, z).

Proof: Using the Neural Bayes parameterization in lemma 1, we have,

MI(x, z) =

∫
x

K∑
k=1

p(x, z = k) log
p(x, z = k)

p(x)p(z = k)
(58)

=

∫
x

K∑
k=1

p(z = k|x)p(x) log
p(z = k|x)

p(z = k)
(59)

=

∫
x

K∑
k=1

Lk(x) · p(x) · log
Lk(x)

Ex[Lk(x)]
(60)

= Ex∼p(x)

[
K∑
k=1

Lk(x) log
Lk(x)

Ex[Lk(x)]

]
(61)

Therefore the two objectives are equivalent and we have a closed form estimate of mutual information.
Given z∗ is a maximizer of MI(x, z), since L is a non-parametric function, there exists L∗ such that
p(z∗ = k|x) = L∗k(x) due to lemma 1. �
Theorem 3. (Theorem 1 in main text) Denote,

J(θ) = −Ex

[
K∑
k=1

Lθk(x) log
Lθk(x)

Ex[Lθk(x)]

]
(62)

Ĵ(θ) = −Ex

[
K∑
k=1

Lθk(x) log〈 Lθk(x)

Ex[Lθk(x)]
〉

]
(63)

where 〈.〉 denotes gradients are not computed through the argument. Then ∂J(θ)
∂θ = ∂Ĵ(θ)

∂θ .

Proof: We note that,

J(θ) = −Ex

[
K∑
k=1

Lθk(x) log
Lθk(x)

Ex[Lθk(x)]

]
(64)

= −Ex

[
K∑
k=1

Lθk(x) logLθk(x)

]
+ Ex

[
K∑
k=1

Lθk(x) logEx[Lθk(x)]

]
(65)

Denote the first term by T1. Then due to chain rule,

−∂T1
∂θ

= Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logLθk(x)

]
− Ex

[
K∑
k=1

Lθk(x)

Lθk(x)
· ∂Lθk(x)

∂θ

]
(66)

= Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logLθk(x)

]
− Ex

[
K∑
k=1

∂Lθk(x)

∂θ

]
(67)

= Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logLθk(x)

]
− Ex

[
∂
∑K
k=1 Lθk(x)

∂θ

]
(68)

= Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logLθk(x)

]
(69)
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where the last equality holds due to the linearity of expectation and because
∑K
k=1 Lθk(x) = 1 by

design. Now denote the second term by T2. Then due to chain rule,

−∂T2
∂θ

= −Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logEx[Lθk(x)]

]
− Ex

[
K∑
k=1

Lθk(x)

Ex[Lθk(x)]
· ∂Ex[Lθk(x)]

∂θ

]
(70)

= −Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logEx[Lθk(x)]

]
−

K∑
k=1

Ex[Lθk(x)]

Ex[Lθk(x)]
· ∂Ex[Lθk(x)]

∂θ
(71)

= −Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logEx[Lθk(x)]

]
−

K∑
k=1

Ex

[
∂Lθk(x)

∂θ

]
(72)

= −Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logEx[Lθk(x)]

]
− Ex

[
∂
∑K
k=1 Lθk(x)

∂θ

]
(73)

= −Ex

[
K∑
k=1

∂Lθk(x)

∂θ
logEx[Lθk(x)]

]
(74)

where once again the last equality holds due to the linearity of expectation and because∑K
k=1 Lθk(x) = 1 by design. Thus the gradient for J is given by,

∂J(θ)

∂θ
= −Ex

[
K∑
k=1

∂Lθk(x)

∂θ
log

Lθk(x)

Ex[Lθk(x)]

]
(75)

which is the same as ∂Ĵ(θ)
∂θ . This concludes the proof. �
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