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ABSTRACT

Large language models (LLMs) have witnessed substantial growth in recent years.
To leverage convenient LLM cloud services, users are inevitable to upload their
prompts. Further, for tasks such as translation, reading comprehension, and sum-
marization, related files or contexts are inherently required to be uploaded, whether
they contain user privacy or not. Despite the rapid advancement of LLM capability,
there has been a scarcity of research focusing on preserving user privacy during
inference. To this end, this paper conducts a comprehensive study in this domain.
Firstly, we demonstrate that (1) the embedding space of tokens is remarkably sparse,
and (2) LLMs primarily function in the orthogonal subspace of embedding space,
these two factors making privacy extremely vulnerable. Then, we analyze the struc-
tural characteristics of LLMs and design a distributed privacy-preserving inference
paradigm which can effectively resist privacy attacks. Finally, we conduct a com-
prehensive evaluation of the defended models on mainstream tasks and find that
low-bit quantization techniques can be well combined with our inference paradigm,
achieving a balance between privacy, utility, and runtime memory efficiency.

1 INTRODUCTION

In recent years, LLMs have achieved substantial advancements, enabling machines to undertake
various tasks through instructions in natural language form (Radford et al., 2019; Touvron et al.,
2023). Despite the simple chatting uses, existing work has shown that supplying some extra prompts
is beneficial for fully unleashing the potential of LLMs (e.g., in-context learning) (Brown et al., 2020).
In particular, for some context-based tasks such as translation, reading comprehension and summary
extraction, users inherently need to supply relevant information (e.g., by using RAG (Lewis et al.,
2020)) from their personal databases as part of the prompt to the LLM APIs. A typical example is the
integration of the latest GPTs (GPT-4o, GPT-4-turbo) (Achiam et al., 2023) in Microsoft Word and
Excel, which are two widely used software across the globe. Users can simply select a portion of
text or data and GPT can automatically treat them as contexts for various effective operations such
as translation, continuation, or computation. This undoubtedly offers significant convenience to our
daily work routines. However, when the relevant text or data involves industry, business or personal
privacy—which we believe to be quite common in Word and Excel documents—the use of LLM
cloud services as an auxiliary tool poses a risk of privacy breaches.

It appears that we are trapped in a dilemma: to benefit from the convenient cloud services of LLMs,
we must compromise on privacy. A straightforward solution is to deploy LLMs on users’ personal
devices (Lin et al., 2024). However, not all LLM service providers are willing to do this. Further,
users may also lack the hardware resources necessary to deploy and run LLMs locally. There is
also another potentially viable method, i.e., differential privacy (DP) (Dwork, 2006), which ensures
privacy by carefully designed perturbations and has shown promise in several LLM training and
fine-tuning tasks (Li et al., 2023; Liu et al., 2024). However, Hu et al. (2024) argue that even a privacy
budget in DP that was originally sufficient for protecting privacy can lead to complete privacy leakage
when adversaries enhance the attacks, thus rendering the original privacy guarantees limiting.

In the inference phase, perturbation-based methods typically mitigate the leakage of privacy by per-
turbing or replacing the token embeddings (Zhang et al., 2024b; Edemacu & Wu, 2024). Nevertheless,
we hold a slightly negative outlook towards the direct use of these methods in LLMs’ inference phase.
In this paper, through a comprehensive analysis, we will demonstrate that only substantial perturba-
tions can effectively prevent adversaries from recovering the original data, while such perturbations
can lead to a significant decline in model utility on challenging tasks (e.g., math, and we believe there
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are scenarios where users upload files or data and let the LLMs perform some statistics or calculations
on the information contained within). In our perspective, a practical privacy-preserving method
should meet the following criteria: (1) it is effective in resisting advanced attacks; (2) it minimally
impacts the utility of LLMs; (3) it is easy to implement. Through an in-depth analysis of the structural
characteristics of mainstream open-source LLMs, this paper proposes a novel privacy-preserving
method that simultaneously fulfills these three requirements to a certain extent.

Our Contribution. We propose a privacy-preserving inference paradigm for LLM cloud services
and test its performance across various tasks including general benchmarks, common-sense reasoning,
mathematics, coding, and reading comprehension, with few-shot (Brown et al., 2020), zero-shot or
chain-of-thought (CoT) (Wei et al., 2022) settings. Our contributions can be summarized as follows:

• We find that the embedding space of tokens is incredibly sparse, with the embeddings of
different tokens maintaining a considerable “distance” from one another. In addition, LLMs
seldom alter the projection of hidden states within the embedding space in the shallow layers.
These two factors are the primary causes for the difficulty in safeguarding user privacy, also
for this reason, we demonstrate that simply perturbing the embeddings is insufficient to
effectively defend against privacy leakage attacks.

• Building upon the aforementioned two findings, and in conjunction with our analysis on
the model structure, we propose a distributed privacy-preserving inference paradigm. Our
method enhances the difficulty of attacks by employing a direction-maintained stochastic
scaling transformation of the hidden states along with an adaptive compensation mechanism,
thereby ensuring privacy without compromising utility.

• We validate the effectiveness and practicality of the proposed method through extensive
experiments. Additionally, we find that the proposed defense method exhibits strong com-
patibility with low-bit quantization techniques, without necessitating any post-quantization
calibrations. Our quantized defense strategy can further provide a balanced guarantee for
privacy, model utility, and memory efficiency.

2 RELATED WORK

Privacy in LLMs. Privacy-reconstruction attacks and defenses for AI models has been extensive
studied in recent years (Wen et al., 2022; Ye et al., 2023), with the majority of these efforts focusing
on traditional models. In the domain of LLMs, related research is still in its infancy. For protecting
privacy in the training or fine-tuning phase of LLMs, in addition to the widely studied federated
learning paradigm (Tian et al., 2022; Zhao et al., 2023), methods based on DP have also gained
attention. For instance, (Yue et al., 2022; Liu et al., 2024) propose to perturb the embeddings of the
original training text and then fine-tune the LLM either directly or using PEFT methods. As this
paper focuses on the inference, detailed introduction to these methods will not be provided here.

In the inference phase of LLMs, privacy-preserving for the Personally Identifiable Information (PII)
has been a subject of study. On the attack side, Kim et al. (2024) and Carlini et al. (2021) have
carefully designed the prompts and successfully obtained the PII information in training data of
LLMs. In terms of defense, Kan et al. (2023) and Chen et al. (2023) have proposed sanitization-based
methods to filter sensitive PII, thereby protecting user privacy. Moreover, other research, which aims
to protect all prompts, rather than just PII, has also emerged in recent years. For example, DP-based
methods (Zhang et al., 2024b) realize the protection of prompts by perturbing the embeddings or
mapping tokens to the nearby tokens. Specifically, Tong et al. (2023) and Mai et al. (2024) perturb the
embeddings of prompts before inputting them into the LLM. After the LLM returns a noisy output,
they use a local denoising module to correct the LLM’s output. In addition to the DP-based methods,
Zhang et al. (2024a) have proposed a novel interaction protocol where users send multiple tokens
(including real tokens) to the server each time to confuse the server and protect privacy. Differently,
Tang et al. (2024) treat the examples for in-context learning as privacy and assume the server as the
victim, proposing a method to protect server’s examples. Unfortunately, almost all of the studies
(most are preprints) mentioned above have not been tested on mainstream LLM benchmarks (e.g.,
reasoning, math, code, et al.) comprehensively, so their practicality remains to be further explored.
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Distributed paradigm in LLMs. The distributed paradigm here refers to the serial training or
inference of LLMs by multiple parties (akin to split learning (Gupta & Raskar, 2018; Kang et al.,
2023)). In relevant studies, Zhou et al. (2023) have proposed a user-server collaborative training
scheme, which aims to densify the representations of similar words within the user’s dataset, thereby
increasing the difficulty of privacy attacks. In addition, Wang et al. (2023) and Gao & Zhang (2024)
have employed LoRA (Hu et al., 2021) to fine-tune models in a distributed way, aiming to obtain
personalized LLMs without compromising privacy. While Borzunov et al. (2024) focus on the
scenario of limited hardware resources at the user-side, and have proposed a protocol to invoke
online idle GPUs to realize the distributed fine-tuning or inference serially. These works have all
demonstrated the feasibility of distributed inference, which can serve as the foundation for our study.

3 METHODOLOGY

3.1 THREAT MODEL

For the threat model, we assume the victims are users of LLM cloud services who want to obtain
the desired feedback by accessing the provided APIs with prompts. Concurrently, we consider the
adversary to be a potentially malicious service provider. The adversary aims to obtain users’ original
data through carefully designed attack strategies when privacy-preserving methods are adopted by
the users. Since the most commonly employed defense mechanism currently involves randomly
perturbing the token embeddings or hidden states (Edemacu & Wu, 2024), we assume that adversaries
are capable of adopting advanced attack strategies against perturbation-based defense mechanisms.
The overview of the threat model is shown in Fig. 1 (a).

Context: My name is Eric, born in the year 

2000, a graduate of XYZ University, and I 

currently reside in Hong Kong!"

Instruction: Give me some routes to Taipei.

Privacy Protection Module

Embeddings
Attention 

Blocks

Hidden States

Leakage: My name is Eric, born 

in the year 2000, a graduate 

of  XYZ  University,  and  I 

currently reside in Hong Kong…

Protected:  My  nombre  Linux  
Kirk  born  tongueFi8  fireworks 
Election403  fing  surveillance 
graduate belief dark University 
dříve  vš  currently  reside 

standards Nigerian# "

LLM

User Side Server Side

Inversion Attack

what the server can “see” after the 
user applies defense:

Context:  My  nombre  Linux   Kirk  born 
tongueFi8  fireworks  Election403  fing 
surveillance  graduate  belief  dark 

University dříve vš currently reside stan"
Instruction: Give me some routes to Taipei.

what the server replies:

(a) (b)

Reply:  Here  are  some  routes  to 
travel from Hong Kong to Taipei:
By  Air:  1.  Direct  Flight…;   2. 
Connecting Flight…
By Sea (Ferry): 3. High-Speed Ferry…

Figure 1: Overview of the threat model, where (a) users aim to obtain LLMs services while safeguard-
ing their privacy, whereas adversaries seek to obtain user privacy during the provision of services; (b)
shows the ideal scenario where the server can respond accurately without being able to see the data.

In Fig. 1 (a), users incorporate some text from personal database into the prompt as context (e.g.,
obtained by RAG (Lewis et al., 2020)). Ideally, the LLM should infer from this context that the
user is currently located in Hong Kong and proceed to design a route from Hong Kong to Taipei.
Concurrently, some small, segmented modules are deployed at the user’s end (Zhou et al., 2023;
Mai et al., 2024), to protect user privacy through the application of random perturbations to either
embeddings or hidden states. On the server side, an adversary, while interactively providing LLM
services, employs advanced inversion attack methods to reconstruct user’s original data (Qu et al.,
2021). The green box in Fig. 1 (a) indicates scenarios where the adversary is unable to reconstruct
the data, signifying that privacy is preserved; conversely, the red box denotes situations where privacy
is compromised. Fig. 1 (b) shows the goal of the defense (i.e., the goal of this paper): server can still
provide the accurate responses while being unable to obtain the privacy even using advanced attacks.

3.2 EMPIRICAL STUDY OF PRIVACY VULNERABILITIES IN LLMS

In this part, we will illustrate through two interesting findings why it is challenging to effectively
safeguard user data while maintaining the utility of LLMs, and without the in-depth analysis as well
as the careful design, user privacy is quite vulnerable in cloud service scenarios.

3.2.1 SPARSITY OF EMBEDDING SPACE

Currently, the tokenizer of open-source LLMs, represented by Llama (Dubey et al., 2024), has a
vocabulary size of more than 100,000 tokens, while Gemma (Team et al., 2024) boasts a vocabulary
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size of around 250,000 tokens. In the face of such a vast number of tokens, one might naturally
inquire: do the embeddings of these tokens cluster densely? Contrary to this intuition, the embeddings
of these tokens are, in fact, fairly sparsely distributed. In support of this, we design an experiment as
follows. Considering the (n− 1)-dimensional probability simplex whose vertices satisfy:{

w ∈ Rn|
n∑

i=1

wi = 1 and wi ≥ 0 for i = 1, · · · , n

}
(1)

Obviously, if embedding space is very dense, when convex combinations with different weights wi

are applied to different embeddings Ei (where Ei is the embedding vector of i-th token), the resulting
new vectors

∑n
i=1 wiEi are more likely to approximate other embeddings, rather than consistently

maintaining the closest proximity to {Ei}ni=1. In light of this perspective, we randomly select
embeddings from n distinct tokens and subsequently sample weight w from the (n− 1) -simplex.
For each vector

∑n
i=1 wiEi resulting from the random convex combination of {Ei}ni=1, we identify

the nearest token T̄ (i.e., the embedding of T̄ is closest to
∑n

i=1 wiEi) in the entire vocabulary list.
By repeating this random process N times, we calculate the average Inclusion Ratio (IR) as follows:

IR =
1

N

N∑
k=1

IΘ(k)(T̄ (k)), (2)

where Θ(k) is the set with n tokens selected in the k-th round for the convex combination, and T̄ (k) is
the identified nearest token in the k-th round. Indicator function I(·) returns 1 if T̄ (k) ∈ Θ(k) else 0.

We set N = 10, 000 for each n, and test on four
open-source LLMs: Mistral (Jiang et al., 2023),
Llama-3 (Dubey et al., 2024), Gemma-2 (Team et al.,
2024) and Phi-3 (Abdin et al., 2024). Results are
shown in Fig. 2. When n ≤ 8, for all randomly
sampled weights for convex combination, the token
closest to the resulting vector is almost included
within set Θ(k). Furthermore, except for Gemma,
such a phenomenon persists for the other three mod-
els when n is increased to 32. We contend that these
findings strongly demonstrate that the embedding
space is sparse, as a certain number of embeddings,
combined convexly in any manner, do not approxi-
mate any other tokens except themselves. This also
implies a high degree of discriminability among the
embeddings corresponding to distinct tokens.
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Mistral-7B Llama-3-8B Gemma-2-9B Phi-3-14B

Figure 2: Inclusion ratio of resulting vector
within the original token set, where each is
statistically obtained on 10,000 experiments.

3.2.2 PRIVACY BREACHES FROM DIRECTIONS

Indeed, in the preceding part, we left an unaddressed issue: how to match a given vector (e.g.,∑n
i=1 wiEi in above) to its nearest token. For an adversary, the fidelity of reconstructed tokens is

directly impacted by this process. Consequently, we need to explore which methods are more prone to
privacy breaches, as only then can we propose defensive strategies that are compelling. Unfortunately,
this topic has not been comprehensively discussed in existing related work.

Typically, in distance measurement methods, two most commonly employed metrics are Euclidean
distance and cosine distance. Prior studies (Qu et al., 2021; Zhang et al., 2024b) have predominantly
considered the Euclidean distance for embeddings; however, in this section, we empirically demon-
strate that the use of cosine distance is more advantageous for an adversary to match and reconstruct
users’ tokens with higher fidelity. To validate this, we randomly sample token embedding Ei and in-
troduce Laplacian noise with different scales of α ·max (abs(Ei)), where α ∈ {0, 25, 0.5, 1, 2, 3, 4}.
Subsequently, we employ Euclidean and cosine distance to match the perturbed embedding to its
nearest token. After conducting 10,000 random trials, we calculate the proportion of tokens correctly
recovered (i.e., the matched token is the original token), as detailed in Table 1.

In Table 1, regardless of the magnitude of noise scale, cosine matching consistently yields a higher
proportion of correctly recovered tokens (hence, we employ it in the experiments of Fig. 1). Addi-
tionally, Table 1 corroborates the sparsity of the embedding space, demonstrating that even with the
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Table 1: Proportion of correctly recovered tokens using Euclidean (l2) and cosine (cos) distance
matching metrics under Laplacian noise with scale of α ·max (abs(Ei)).

α = 0.25 α = 0.5 α = 1.0 α = 2.0 α = 3.0 α = 4.0
l2 cos l2 cos l2 cos l2 cos l2 cos l2 cos

Mistral-7B-v0.3 1.00 1.00 1.00 1.00 0.99 1.00 0.57 0.93 0.09 0.45 0.02 0.14
Llama-3-8B 1.00 1.00 1.00 1.00 0.99 1.00 0.52 0.92 0.06 0.37 0.01 0.09
Gemma-2-9B 0.91 0.99 0.45 0.68 0.11 0.26 0.00 0.02 0.00 0.00 0.00 0.00
Phi-3-14B 1.00 1.00 1.00 1.00 1.00 1.00 0.58 0.99 0.17 0.66 0.03 0.26

introduction of random noise at a scale twice the size of the maximum absolute value (i.e., α = 2),
the original tokens can be recovered with a high success rate for Mistral, Llama and Phi (Gemma is
lower due to its larger vocabulary size, leading embeddings more dense). Further, cosine distance is
insensitive to the magnitude, a feature that is absent in Euclidean distance. Next, we will show the
extreme vulnerability of privacy in LLMs under attacks based on cosine matching.

Shallow layers of LLMs change direction slightly in embedding space. Building upon the
preceding findings, we now adopt the perspective of an adversary to propose a practical attack method.
In this context, we do not consider the plaintext scenario (where users directly transmit data as
prompts) but rather the scenario where users only send the hidden states h ∈ Rl×d to the server,
where l is the length of the tokenized prompt and d is the size of hidden vector. The hidden states are
derived from several attention layers deployed on the user’s end, i.e., h = F (E) = fm◦· · ·◦f2◦f1(E),
where E is the ordered set of token embeddings from user prompt and fi represents the i-th layer
(Vaswani et al., 2017) in LLM. Then the optimization objective of the adversary can be expressed
similarly to (Li et al., 2023):

E∗ = argmin
E′

L (F (E ′), F (E)) , (3)

where L(·) measures the distance between the reconstructed hidden states h′ and the ground truth
h. Conventionally, we utilize gradient descent to update the dummy E ′ by minimizing the distance
specified in (3), thereby obtaining the optimal E∗. Subsequently, we apply the cosine matching, as
previously introduced, to reconstruct tokens by the optimized E∗. While we will later discuss the
performance of this attack, we first pose an intriguing question: What results might we obtain if we
hypothesize E∗ = h, followed by the direct application of cosine matching? That is, we hypothesize
that the user transmits hidden states h, processed through m attention blocks, to the server, while an
adversary directly assumes E∗ = h and performs cosine matching to obtain l tokens with the nearest
directions to h. We present experimental results for Llama in Table 2 (column “w/o”), reserving
more in-depth analysis for the subsequent section, which will inform the development of our defense
methods, and additional results for other models can be found in the Appendix C.1.

Table 2: Quantitative and qualitative results of attacks on Llama-3-8B with (column “opt”) or without
(column “w/o”) gradient-based optimization as user employs m attention layers.

m = 1 m = 5 m = 10 m = 15 m = 20 m = 25
w/o opt w/o opt w/o opt w/o opt w/o opt w/o opt

Rouge-1 1.00 1.00 0.96 1.00 0.88 0.91 0.67 0.93 0.40 0.84 0.23 0.84
Rouge-2 1.00 1.00 0.93 1.00 0.73 0.84 0.50 0.82 0.25 0.69 0.04 0.69
Rouge-L 1.00 1.00 0.96 1.00 0.88 0.91 0.67 0.93 0.40 0.84 0.23 0.84

Truth Apple Inc is an American multinational corporation and technology company headquartered in Cupertino,
California, in Silicon Valley. It is best known for its consumer electronics, software, and services.

m=10, w/o Apple Inc is an American multinational corporation and technology company headquartered in Cupertinouk
Californiashaw in Silicon Valley. It is best knownCA its consumer electronics, software,x and services.

m=10, opt Apple Inc is an American multinational corporation and technology company headquartered in CupertinoGray
Californiavirt in Silicon Valley. It is best known for its consumer electronics gating software0 and services.

m=25, w/o Apple battalionstatesAn American Milton_testing bezTechnology companygrad_levelsDemon\Web plaza NOT
vitamin Silicon,valueDean He reass best known tx consumerelectronics Gong software,$ produk,$Dean

m=25, opt Apple Inc is an American multinational companies AND technology companies headquartered in Cupertino’
California/ IN Silicon Valley. It is best known for its consumer electronics—for softwareTechnology and Services.

We use Rouge (Lin, 2004) to assess the similarity between reconstructed and original texts. As shown
in Table 2, even without any updates to E ′, the adversary can obtain nearly all private information
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by user’s hidden states h which is mapped through 10 attention blocks (blue text in Table 2). Such
a result strongly suggests that the shallow layers of LLMs only minimally alter the direction in
embedding space, thus making privacy susceptible to leakage. Moreover, when the adversary choose
to optimize E ′ by gradient descent, even after passing through more layers, the essence of the original
text is almost entirely reconstructed (see the last row in Table 2), which significantly underscores the
vulnerability of privacy. The details about the attack implementation can be found in Appendix B.1.

3.3 PRIVACY ENHANCEMENT AND UTILITY COMPENSATION

In this section, we will first elucidate why the hidden states processed through multiple attention
blocks can still directly leak privacy. Based on this understanding, we will design privacy-enhancing
method to effectively resist adversarial reconstruction attacks.

Nowadays, mainstream decoder-based LLMs share a similar backbone. The architecture of trans-
former with residual blocks allows the model to break traditional constraints on the number of layers
in neural networks, with the former providing scalability and the skip connections in the residual
blocks enabling the training of very deep networks. The function of layer i in decoder-based LLMs
(refer to Fig. 3) can be mathematically expressed as follows (Vaswani et al., 2017). Note that we do
not make a strict distinction between MHA and other attention mechanisms (e.g., GQA) here.

h− = h(i−1) + MHA
(

RMSNorm1(h
(i−1))

)
︸ ︷︷ ︸

J1

, h(i) = h− + FFN
(
RMSNorm2

(
h−))︸ ︷︷ ︸

J2

, (4)

where MHA(·) function as the multi-head attention
block and FFN(·) function as the feed forward net-
work. RMSNorm (Zhang & Sennrich, 2019) is adopted
in nearly all mainstream LLMs due to its compu-
tational efficiency, which satisfies RMSNorm(a) =
g⊙ a

RMS(a) , where g is the scaling parameters. We now
make the conjectures to elucidate the circumstances
under which the forward propagation of hidden states
would significantly leak privacy.

Proposition I. (Orthogonality) In the shallow layers,
the cumulative sum of J1 + J2 is always located near
the orthogonal subspace of token’s embedding space.

Appendix A.2 provides a validation and analysis for the
proposition, which could reveal the underlying causes
for the privacy vulnerabilities observed in different
LLMs. Obviously, with Proposition I, even after for-
ward propagation across several layers, the projections
of hidden states in embedding space will barely be
altered, leading to the direct leakage of privacy from
the inner product-based cosine matching.

Feed Forward

Add

Norm1

Add Norm2&

PrivScale

(a)  i-th layer, i < m 

Feed Forward

Add

Norm1

CompScale

(b)  m-th layer

h!i" h!m"

Add Norm2&

  
Multi-Head

Attention   
Multi-Head

Attention 

Figure 3: Architecture inside a transformer,
where (a) PrivScale module is adpoted by
user in the first m−1 layers and (b) Comp-
Scale module is adpoted in the m-th layer.

In the field of distributed learning, Ye et al. (2024) highlight from an optimization perspective
that increasing the non-linearity of the model architecture will enhance the difficulty of privacy
attacks. However, given the intricate nature of training LLMs, it is not feasible to redesign the model
architecture and retrain from scratch. Consequently, the satisfactory defense must be plug-and-play.
To achieve this requirement and effectively resist attacks, we propose to increase the proportion of J1

or J2 in Eq. (4), thereby amplifying the function of the nonlinear modules. However, adjusting J1 or
J2 without careful consideration would undoubtedly severely impact the model’s usability. Hence, we
have designed a novel method which realizes the aforementioned objectives by shrinking each hidden
state in h(i−1) (i.e., h(i−1)

j ∈ Rd, j = 1, · · · , l) in a direction-preserving manner. This method offers

two main benefits: first, after shrinking h
(i−1)
j , the internal RMSNorm1 of the MHA will restore

it to its original scale, minimizing the impact on MHA’s functionality; second, the shrinking of
h(i−1) will not alter the magnitudes of J1 and J2 significantly thanks to the normalization modules,
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thus leading to h− and h(i) being more dominated by the non-linear structures. The theoretical
analysis is provided in Appendix A.1, where it is demonstrated that our method causes the adversary’s
optimization objective less convex, making attacks harder to successfully implement.

Specifically, we apply a random scaling to the output of the first i-th layers (i.e., input of the (i+1)-th
layer where i < m). Finally, we compensate for the shrinking by applying a direction-preserving
amplification to the output of the m-th layer. Extensive experimental results will demonstrate that
this form of direction-preserving scaling is effective in resisting attacks while guaranteeing usability
of LLMs, including on several difficult tasks. The mathematical expression of our defense is given in
the follows, where the output h(i) ∈ Rl×d of i-th layer in Eq. 4 is re-expressed as:{

h(i) = (p−1 · 1T
d )⊙

[
h− + FFN

(
RMSNorm2

(
h−))] , if i < m

h(i) = (c · 1T
d )⊙

[
h− + FFN

(
RMSNorm2

(
h−))] , if i = m

(5)

where each entry in p ∈ Rl is randomly sampled from the uniform distribution pj ∼ U [1, 1 + δ] for
each token in a context of length l. And c = c · 1l is a constant vector with compensation scalar c. In
our experiments, scalar c is obtained as follows: We select the first 20 of training data from the math
task GSM8K (with CoT) and feed them into the privacy-enhanced inference model. Then we perform
a simple search for scalar c within a given range until we achieve the highest accuracy on these 20
math questions. This procedure is easy to execute and generally completes within a few minutes.

Overall, in our distributed inference paradigm designed to resist reconstruction attacks, a total of m
layers of privacy-enhancing and utility-compensating modules are deployed at the user-side. Further,
in next section, we will show that low-bit quantization can be directly applied to these m layers,
without necessitating post-quantization calibrations.

4 EXPERIMENTS

4.1 IMPLEMENTATION SETTINGS

Models, Tasks and Metrics. We use five instructed models to evaluate our method, including
Mistral-7B-v0.3, Llama-3-8B, Gemma-2-9B, Phi-3-14B and Llama-3-70B-AWQ, and use six tasks
for different privacy-preserving evaluations. Specifically, we protect all context for HellaSwag
(Zellers et al., 2019), BoolQ (Clark et al., 2019), GSM8K (Cobbe et al., 2021) and HumanEval (Chen
et al., 2021). In addition, we protect few-shot examples like Tang et al. (2024) for tasks which employ
few-shot learning, including MMLU (Hendrycks et al., 2021) and BBH (Suzgun et al., 2022). In
Appendix B.3, we present a clear depiction of the protected part in these tasks and encourage readers
to review. For evaluating the attack (with optimization), we use Rouge-1, Rouge-2 and Rouge-L (Lin,
2004), where Rouge-1 measures the word-level (1-gram) reconstruction capability while Rouge-2
measures phrase-level (2-gram) and Rouge-L measures Longest Common Subsequence (LCS).

Criteria for Parameter Selection. We investigate the influence of δ for p in (5) on the quality
of the reconstructions (we can search for the appropriate δ through conducting attack and defense
locally by the m local layers). We use contexts in typical reading comprehension task (BoolQ) as
targets and the statistical results are shown in Fig. 4 (a). Fig. 4 (b) proves that with the conditions of
Rouge-1 < 0.5,Rouge-2 < 0.3,Rouge-L < 0.5, it is sufficient for the reconstruction to compromise
a significant amount of privacy information from the original data (more results are in Appendix C.3).
According to this, as well as the results in Fig. 4 (a), we set δ to [0.30, 0.20, 0.35, 0.50, 0.425] for
Mistral-7B-v0.3, Llama-3-8B, Gemma-2-9B, Phi-3-14B and Llama-3-70B-AWQ, respectively.

Taking into account the requirement to counteract an adversary’s random guessing, as well as the
computational capabilities of user devices, we have configured the number of local layers m = 10.
With a total of 9 (i.e., m − 1) consecutive layers, each accompanied by a distinct random scaling
transformation applied to the hidden states corresponding to every token (and re-randomized for each
inference), we believe this setup is sufficient to prevent an adversary from accurately guessing the
specific scaling magnitude applied to the victim’s data. As for the compensation scalar c, the results
of rough search are shown in Fig. 4 (c), and based on this, the employed c is [1.5, 1.0, 1.5, 2.0, 2.0],
respectively. More about the experimental setup of Fig. 4 is given in the Appendix B.2. And in the
future, we will delve into the investigation of more refined strategies for noise insertion based on the
degree of module non-linearity, as well as explore configurations with smaller m.
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reconstruction: usesstats underarter Borderabc.", Кар The Indianapolis 
motor speed cos, which openeddate aument Multipleveis56 hinaus and 
houses IU auto Racingdes! Fame. The museum moved into its current 

building located in the inardon inD1 ago76. Also on the grounds is TheB brick 
Ford Cross pas g golf res resort selects which originally opened asThe 
speedwayextend golf cour course symbolThanksko92 underarter…

ground truth: On the grounds of the speedway is the Indianapolis Motor 
Speedway Museum, which opened in 1956, and houses the Auto Racing Hall 
of Fame. The museum moved into its current building located in the infield in 
1976. Also on the grounds is the Brickyard Crossing Golf Resort, which 
originally opened as the Speedway Golf Course in 1929…

Figure 4: Algorithm parameters selection, where (a) illustrates the Rouge scores with different noise
scale δ, with Rouge-1 < 0.5,Rouge-2 < 0.3,Rouge-L < 0.5 considered as privacy thresholds in this
paper; (b) presents an attack result with (Rouge-1, Rouge-2, Rouge-L)=(0.53,0.3,0.53); (c) shows
the accuracies on math task (first 20 training data of GSM8K) with different compensation c.

4.2 RESISTING ATTACKS

In this part, we assess the proposed method on resisting reconstruction attacks. The quantitative
results are presented in Table 3, and the qualitative results are given in Fig. 5. More experimental
results are given in Appendix C.2 and C.3, including the attack results without countermeasure, as
well as resisting attacks across various contexts from different datasets.

In Table 3, all Rouge scores meet the criteria out-
lined in the previous part. Furthermore, as indi-
cated in Fig. 5, our proposed defense method sig-
nificantly safeguards a substantial amount of pri-
vate information for all LLMs, even in cases (e.g.,
Llama-3-70B and Phi-3-14B) where, the Rouge-
1 and Rouge-L scores of these reconstructions
slightly over 0.5. These results substantiate the
efficacy of our method in resisting attacks.

Table 3: Rouge scores when using defense.

Rouge-1 Rouge-2 Rouge-L

Mistral-7B 0.48 0.24 0.47
Llama-3-8B 0.45 0.21 0.44
Gemma-2-9B 0.42 0.14 0.39
Phi-3-14B 0.49 0.29 0.49
Llama-3-70B 0.39 0.17 0.39

Ground Truth: On the grounds of the speedway is the Indianapolis Motor 
Speedway Museum, which opened in 1956, and houses the Auto Racing Hall 
of Fame. The museum moved into its current building located in the infield in 
1976. Also on the grounds is the Brickyard Crossing Golf Resort, which 
originally opened as the Speedway Golf Course in 1929…

Mistral-7B-v0.3: on groundsrian Park speedway is toile Indian Chicago 
motor MountCanvas Museum Court which opened in  two COVID risks6, 
and houses the auto Racing Hall Jah Museumrom The Museum moved into 
its current buildingsodio in ArabiaDishof inansionapis!66. also ionль! is 

TheB bacteriayal Crossler Golfsrops, which × started as the Square Square Golf 
incidentOpenrom stagiverseraid Normem…

Phi-3-14B: usesstats underarter Borderabc.", Кар The Indianapolis motor 
speed cos, which openeddate aument Multipleveis56 hinaus and houses IU 
auto Racingdes" Fame. The museum moved into its current building located 
in the inardon in●1 ago76. Also on the grounds is TheB brick Ford Cross pas 
g golf res resort selects which originally opened asThe speedwayextend golf 
cour course symbolThanksko92 underarter…

Llama-3-8B: on the fastest of the speed bridge townrepositories Indianapolis 
Motor Speedway Museum-city which open open open197 Fen("../../ andINST# 
Pratt mathematics Hall$ Museumexists The museum moving into its current 
building located in the infield_begin%%197ptaZW also on! campusि◌द the 

brick Land& golfформа zg which originally open as the Speedway 
proliferationHospitalVi notes192_PORT>')…

Gemma-2-9B: On grounds grounds local speed Speedwayesta MD 
Indianapolis Indianapolis Speedway Museumcock museum opensgb 
Stadiumley park RBTC park associate housed Ver Auto Racing Hall Hall 
Fame blog CN museum Move ONcam Current Building located park Area 
inffield azgeo Info win NL reminiscent Centre Also ON circuit Grounds Cer 
Centre Brickyard Crossing Golf golf park plus originally opens as National 
Speedway Golf Golf in Ela citypro golfmers…

Llama-3-70B-AWQ: On On grounds grounds the speed Speedway Conditions 
Homemade Indianapolis Motor Speedway Museum museum which případech 
případech případech19556.getOwnPropertyDescriptor and houses prostřednictvím 
Auto Racing Hallphi Fame fascination_$_ museum moved into эта current 
building located inτέρα infield !"""""""# 'она prostřednictvím"ส Also on' grounds is 

Kron Brickyard Crossing Golf Resort Neo which originallyRay případech "# 
Speedway_det-rays_det◌ेशक19229$…

R1,R2,RL = 0.48,0.26,0.48

R1,R2,RL = 0.52,0.26,0.52

R1,R2,RL = 0.34,0.15,0.34

R1,R2,RL = 0.53,0.30,0.53

R1,R2,RL = 0.46,0.20,0.46

Figure 5: Reconstructions of the attack on LLMs equipped with our defense. Best viewed zoomed in.
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4.3 IMPACT ON UTILITY

We now need to consider whether a LLM can still function effectively after the “protection” of critical
information, particularly in tasks involving math or code where content such as numbers and variables
are decisive for the answers. Consequently, we have to deeply evaluate the remaining performance of
models equipped with the proposed defense mechanism across various tasks. Simultaneously, we
investigate the impact on model performance of directly perturbing embeddings or replacing tokens
by nearest neighbors (see Appendix C.4 for details), with experimental results indicating that these
strategies severely compromise performance, especially in coding and mathematical tasks, even when
the perturbation scale is insufficient to counter reconstruction attacks.

Choice-based tasks. Choice-based tasks involve choosing the correct answer from multiple choices
(here we consider BoolQ (Clark et al., 2019) as a choice-based task, despite its responding with
True or False rather than an explicit choice). In HellaSwag (commonsense reasoning, 0-shot) and
BoolQ (reading comprehension, 0-shot), we apply privacy-preserving defenses to all context, which
serves as the direct basis for the model’s responses. In MMLU (57 subjects, 1-shot for Llama-70B
and 5-shot for others), we treat all examples as privacy like Tang et al. (2024) and protect them.
Experimental results are presented in Table 4. For all experiments within the same task, we use the
same prompts. Obviously, after applying defense, LLMs maintain quite good performance across
these choice-based tasks. We also showcase the performance of LLMs across four subcategories of
the MMLU. The results indicate that our method will not significantly degrade the performance of
LLMs on a particular category.

Table 4: Accuracies of different tasks, where: “w/o” not using defense, “def” using defense.

HellaSwag BoolQ MMLU ⋄ STEM ⋄ Human ⋄ Social ⋄ Other
w/o def w/o def w/o def w/o def w/o def w/o def w/o def

Mistral-7B 66.3 61.7 85.1 82.9 60.1 59.4 48.8 49.3 57.4 56.0 69.3 68.3 66.7 66.0
Llama-8B 66.7 65.4 84.3 83.0 65.8 65.2 55.8 54.6 60.9 60.5 76.0 75.5 73.3 72.9
Gemma-9B 81.9 80.1 89.2 87.7 72.2 72.1 65.7 65.0 66.1 67.2 83.5 82.7 76.8 76.5
Phi-14B 89.8 87.0 88.7 85.2 76.9 75.3 69.5 68.2 73.4 70.7 85.8 84.9 80.9 80.0
Llama-70B 85.1 83.0 89.7 83.2 77.7 74.0 71.6 70.5 72.8 67.3 86.6 82.2 82.4 79.8

Non choice-based tasks. In this part, we evaluate model’s performance on the math task GSM8K
(0-shot, with CoT) and the code task HumanEval (0-shot, pass@1). We apply protection directly to
the context upon which all responses in GSM8K and HumanEval rely (see Appendix B.3). Results
are presented in Table 5. Compared to choice-based tasks, there is a slightly greater performance
decline in math and coding tasks, due to these tasks being more granular in nature and we have
protected all their contexts. Even so, these LLMs remain effective, as that even after applying defense,
their performance is either superior or comparable to that of slightly smaller models.

Table 5: Accuracies under different settings: “d-8” and “d-4” for defense with 8-bit and 4-bit quanti-
zation, “L(α)” for perturbing embeddings following α = 0.5 in Table 1, “NR” for nearest replacing,
which performs extremely worse than BoolQ on math task GSM8K and code task HumanEval.

GSM8K (0-shot, CoT) HumanEval (pass@1) BoolQ (0-shot)
w/o def d-8 d-4 L(α) NR w/o def d-8 d-4 L(α) NR d-8 d-4 L(α) NR

Mistral-7B 54.8 46.8 46.6 43.4 2.1 3.5 38.4 34.1 39.0 38.4 5.5 3.0 82.6 82.8 42.6 73.1
Llama-8B 77.8 72.6 73.2 70.7 2.0 5.5 55.5 51.2 50.0 47.6 0 0 82.7 81.1 56.6 76.5
Gemma-9B 86.4 84.3 84.5 85.8 1.7 3.8 63.4 58.5 57.3 57.3 0 21.3 87.9 87.8 64.2 72.8
Phi-14B 91.1 85.2 85.2 78.1 2.3 4.5 70.1 64.6 63.4 58.5 4.9 4.3 84.7 82.8 70.5 76.5
Llama-70B 92.9 - - 86.4 1.5 7.2 78.7 - - 71.3 1.2 2.4 - 83.2 45.0 84.9

Impact on few-shot learning. BBH evaluates models using few-shot examples, and these examples
are crucial as they determine how LLMs organize chain-of-thought and generate responses. Different
from previous experiments, in this part, we demonstrate that for tasks where the performance is better
with 3-shot compared to 1-shot (not all tasks benefit from more examples), the addition of defense
to all 3 examples still yields superior performance over 1-shot without defense. This experiment is
designed to show that even with defense, LLMs can still effectively learn knowledge from examples.
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To this end, we only evaluate on a subset of tasks
from the BBH where 3-shot outperforms 1-shot
(details are in Appendix C.5). Obviously, in Table
6, after applying defense, these LLMs still “learn”
examples effectively and outperform those using
1-shot learning without defense. Owing to the
lengthy computation time, we only evaluate the
first 20 questions for each task in BBH for Llama-
70B, and this setting does not affect the analysis.

Table 6: Accuracies on selected tasks in BBH.

BIG-Bench Hard (CoT)
w/o(3-shot) def(3-shot) w/o(1-shot)

Mistral-7B 55.0 52.7 46.7
Llama-8B 68.2 67.5 57.4
Gemma-9B 77.8 75.6 71.2
Phi-14B 73.5 68.3 61.6
Llama-70B 77.7 72.3 63.2

Impact of quantization, perturbation and replacement. In this part, we select three representative
tasks—math, coding and reading comprehension—to investigate the influence of applying low-bit
quantization to the user-side modules when using our defense (see Table 5, note that the Llama-70B
we used is downloaded from Hugging Face (Wolf et al., 2020) and is already quantized to 4-bit by
AWQ). We also evaluate the impact on model utility by introducing perturbations to the embeddings,
as well as replacing each token with its nearest token in embedding space (column “NR” in Table 5).

In Table 5, using our defense with 8-bit quantization will not significantly compromise model
performance further. However, when using 4-bit quantization, there may be a noticeable performance
degradation on a few tasks (in red). In contrast, for the way of perturbing embeddings, we use the
setting with α = 0.5 as in Table 1, which almost completely fails to protect privacy, yet significantly
degrades usability, particularly in math and coding tasks. As for the nearest replacing, a similar result
is observed, which is comprehensible, as the performance of math and coding tasks is contingent upon
token-level granularity, whereas replacing tokens with the nearest neighbors has a relatively smaller
influence on text comprehension (comparison before and after nearest replacing is in Appendix C.4).

We also report the runtime GPU memory required
by the user when using different quantization pre-
cisions (see Table 7). We apply HQQ quantization
(Badri & Shaji, 2023) to all 10 local layers except
for Llama-70B-AWQ, which is already quantized
by AWQ (Lin et al., 2024). These 10 layers’ re-
quired GPU memory is shown in the middle part
of Table 7. The embedding layer of LLMs pri-
marily involves memory access operations rather
than dense floating-point computations, therefore,
whether to transfer it to GPU memory is optional.

Table 7: Memory required by the user in GB,
“embed” for embedding layer’s memory.

FP/BF16 8-bit 4-bit embed

Mistral-7B 4.06 2.03 1.02 0.25
Llama-8B 4.06 2.03 1.02 0.98
Gemma-9B 3.69 1.85 0.92 1.71
Phi-14B 6.35 3.17 1.59 0.31
Llama-70B - - 4.14 1.96

In Table 7, even the 70B model requires a memory size which is affordable for mobile devices.
With the advancement of on-device AI and the development of flagship AI chips (Tan & Cao, 2021;
Gerganov et al., 2023), we believe that the proof-of-concept proposed in this paper will help to
achieve a balance between privacy, utility, and memory efficiency for the future of on-device AI.

5 CONCLUSION AND FUTURE WORK

This paper exposes the significant vulnerability of user privacy when employing LLM cloud services,
and we contend that the attack method employed herein can serve as a benchmark for related research.
Meanwhile, to alleviate the privacy leakage, we introduce a plug-and-play distributed inference
paradigm. Extensive experimental results have demonstrated that our method can effectively resist
privacy attacks while maintaining the usability of the model.

However, our work has several limitations. Firstly, the coarse-grained nature of our privacy-preserving
shrinking operation on hidden states could be improved. Actually, a more granular strategy could
be designed based on the sequence length (hidden states closer to the end of the sequence are more
impacted due to the cumulation of preceding hidden states) and the non-linearity of modules, which
would further mitigate the compromise on model performance. Additionally, in a few scenarios,
performance degration may occur after directly quantizing model to 4-bit, where post-quantization
calibration might be helpful (Frantar et al., 2022). Moreover, our method requires local-server
collaboration for inference, implying the local device must have some computational capability. We
will focus on addressing these limitations in our future work.
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A ADDITIONAL ANALYSIS

A.1 BASIS FOR THE DEFENSE

Due to the non-convexity and parameter complexity of deep neural networks, the analysis of even
simple two-layer nonlinear networks for traditional machine learning problems such as learning
halfspaces heavily relies on prior assumptions. Consequently, we here simplify the analysis of attack
and defense without compromising the final conclusions, i.e., our approach will render attacks more
difficult to succeed.

Firstly, we simplify a part of layer functionality to h(x) = ζ · x + f(x), where x represents the
input data, f is the nonlinear module within this layer, ζ is a constant term, and the addition comes
from the skip connections in the residual block. Note that we can use x instead of ζ · x as the input
for function f(·), thanks to the capability of RMSNorm1 (see Eq. 4), which enables that the input
for f(·) is not affected by the scaling operation. We now simply assume the attacker’s objective
function to be l(x) = 1

2∥h(x)− h(t)∥22, where t is the target data. The attacker needs to iteratively
optimize x to minimize the l(x). Our proof objective is to demonstrate that as ζ increases, the
optimization objective function l(x) becomes closer to a convex function, thus possessing a more
favorable optimization landscape, which facilitates the convergence of x to t.

Sketch of Proof. For h(x) = ζx+ f(x) and l(x) = 1
2∥h(x)− h(t)∥22, we have:

∇l(x) = JT
h [h(x)− h(t)] =

[
ζ · Id×d + JT

f

]
[ζx+ f(x)− ζt− f(t)] , (6)

here we simplify the dimension of x to d, and Id×d is an identity matrix, Jh and Jf are Jacobian
matrixes corresponding to h(x) and f(x). Then the Hessian of the attack objective l(x) can be
calculated as:

Hl =
(
ζ · Id×d + JT

f

)
(ζ · Id×d + Jf ) +

d∑
i=1

[ζx+ f(x)− ζt− f(t)]i ·Hfi

=
[
ζ2 · Id×d + JT

f Jf + ζ(Jf + JT
f )

]
+

d∑
i=1

[ζx+ f(x)− ζt− f(t)]i ·Hfi︸ ︷︷ ︸
Ti

,

(7)

Notice that Hl contains a term ζ2, which means that as ζ increases, this term will significantly
contribute to the Hl. Since ζ2 > 0, this will make the Hl more likely to be positive definite (which is
the key property of l(x) being convex), as its each eigenvalue satisfies:

λk(Hl) = λk

[
JT
f Jf + ζ(Jf + JT

f )
]
+

d∑
i=1

[ζx+ f(x)− ζt− f(t)]i ·Hfi︸ ︷︷ ︸
Ti

+ ζ2, (8)

where λk(·) represents k-th eigenvalue of (·), and ζ2 directly contributes to it. Additionally, Hfi is
the Hessian of [f(x)]i, and since f(x) in neural network is usually non-convex, Hfi as well as the
tensor Ti in Eq. (8) are usually not positive semi-definite. However, as ζ increases, the ζ2 term will
dominate in the Hessian Hl, thus “masking” the non-convex nature from

∑d
i=1 Ti and (Jf + JT

f ).

Now we return to our defense. Based on the above conclusion, when we inversely scale down ζ (i.e,
p−1 in Eq. 4), the Hessian Hl is more likely to be dominated by non-positive definite terms. This, in
turn, makes attacker’s objective more prone to deviate from convexity, deteriorating the optimization
landscape, ultimately making it harder for the attack to converge to the target data t.

In fact, the above assumption h(x) refers to the network before the FFN layer. However, it is not
difficult to infer that if we are impossible to reconstruct the original data t from h(t), then we are also
impossible to reconstruct t from NN(h(t)) (NN represents the deeper parts of the network), since the
reconstruction process is propagated layer by layer in reverse. That is, to correctly reconstruct t from
NN(h(t)), one must implicitly and correctly infer h(t) first, and then could they correctly infer t by
h(t) implicitly. If it is hard to infer t from h(t), it is evident that the attacker would also be unable to
reconstruct t from NN(h(t)). Our defense strategy essentially involves applying the aforementioned
attack-hardening measures to m− 1 sub-modules within the network, thereby providing a certain
level of privacy safeguarding in optimization perspective.
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A.2 BASIS FOR THE PROPOSITION

This part demonstrates that the cumulative sum of J1+J2 (see Eq. 4) across shallow layers is always
located near the orthogonal subspace of token’s embedding space. Clearly, according to Eq. 4, the
output for each layer satisfies the following form: h(i) = E+ NN(i)(E), where E is the embeddings
of input tokens, NN(i)(·) mimics the functionality of the first i layers of the network, and this form
holds thanks to the residual structure within the network. Therefore, we calculated the angle between
NN(i)(E) (i.e., the cumulative sum of J1 + J2) and the embedding space for the shallow layers, in
order to verify that the LLMs primarily function in the orthogonal subspace of the embedding space.

Specifically, to estimate the angle between NN(i) and the embedding space, we randomly sample

1,000 tokens and input them to LLMs to obtain the set Ψi =
{

NN(i)(Ej)
}1,000

j=1
from layer i.

At the same time, we randomly chose 10,000 tokens and use their embeddings to construct set
Φ = {Ek}10,000k=1 . Finally, we calculate the average angles of each element in Ψi with respect to all
elements in Φ. Results are shown in Fig. 6.

Figure 6: Distribution of angles between NN(i)(E) and the embeddings, y-axis unit: degrees (◦).

Note that the results of Gemma differ slightly from the other models. We speculate that this is because
in the decoders of Gemma, additional RMSNorm(·) are applied to J1 and J2 in each layer. However,
it is clear that the angles between NN(i)(E) and token embeddings are centered near 90 degrees,
which leads to small projection for NN(i)(E) in the embedding space (even for the 100-degree
projection of NN(i)(E) in Gemma). In other words, the projection of h(i) in the embedding space
changes very little. Furthermore, based on our previous findings, the sparsity of the embedding space
leads the attack robust to certain perturbations (also sufficient to cope with the 100-degree projection
of NN(i)(E) from Gemma), allowing an attacker to easily match the original tokens in the embedding
space based on h(i).

B MORE EXPERIMENTAL CONFIGURATIONS

B.1 ATTACK IMPLEMENTATION

For the optimization-based attack, we use Adam optimizer to iteratively update E ′ in Eq. (3) with an
initial learning rate of 0.01. We perform a total of 200 optimization steps for each attack, and apply
linear decay to the learning rate, with a minimum learning rate of 0.002. For the Adam optimizer, we
set β1 = 0.9, β2 = 0.999, and use the default settings for all other parameters. As for the distance
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function L(·) in (3), since our defense method employs a direction-preserving random scaling
transformation, meaning the amplitude of the target vectors is randomly altered, using Euclidean
distance as the objective function for the attack obviously has significant bias. Therefore, we use the

hidden state-level cosine distance L (F (E ′), F (E)) = 1
l

∑l
i=1

[
1− ⟨Fi(E′),Fi(E)⟩

|Fi(E′)||Fi(E)|

]
as the objective

function (l is the length of the sequence, and Fi(E ′), Fi(E) are hidden states corresponding to i-th
token), which inherently has amplitude robustness, thereby achieving a higher-performance attack.
Note that using this objective function does not impede deriving conclusions similar to those of A.1.

B.2 SETTINGS FOR PARAMETER SELECTION

For the experiment in Fig. 4(a), we use the method introduced in B.1 as attack and BoolQ as the
target data, and gradually increase the noise scale δ within the range of 0 to 0.5 and recording the
corresponding average attack performance. We select the case that is closest to the privacy threshold
to display in Fig. 4(b). After selecting appropriate noise scales for all models based on Fig. 4(a), we
search for the optimal compensation coefficient c for layer m in the range of 0.5 to 3.0, choosing the
one where the model achieved the highest accuracy on the first 20 training samples in GSM8K after
being compensated with this coefficient. The results are presented in Fig. 4(c).

B.3 PROTECTED PART FOR DIFFERENT TASKS

In Fig. 7, we present a part of prompts for different tasks, along with the parts where we apply privacy
protection (in the green boxes).

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every 
morning and bakes muffins for her friends every day with four. She sells 
the remainder at the farmers' market daily for $2 per fresh duck egg. 
How much in dollars does she make every day at the farmers' market?

from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to 
each other than
    given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """

5-Example:  Here  are  some  examples  about  the 
interactions between user and assistant:

user: I have a question: Find all c in Z_3 such 
that Z_3[x]/(x^2 + c) is a field.

Choices:
A. 0
B. 1
C. 2
D. 3

assistant: The correct answer is: B.

user: I have a question: Statement 1 | If aH is 
an element of a factor group, then |aH| divides |
a|. Statement 2 | If H and K are subgroups of G 
then HK is a subgroup of G.

Choices:
A. True, True
B. False, False
C. True, False
D. False, True

assistant: The correct answer is: B.

{more examples}…

HumanEval (0-shot)

GSM8K (0-shot, CoT)

MMLU (5-shot)

3 or 1-Example: Here are some examples about the 
interactions between question Q and assistant A:

Evaluate  the  result  of  a  random  Boolean 
expression.

Q: not ( ( not not True ) ) is
A: Let's think step by step.
Remember that (i) expressions inside brackets are 
always evaluated first and that (ii) the order of 
operations  from  highest  priority  to  lowest 
priority is "not", "and", "or", respectively.
We first simplify this expression "Z" as follows: 
"Z = not ( ( not not True ) ) = not ( ( A ) )" 
where "A = not not True".
Let's evaluate A: A = not not True = not (not 
True) = not False = True.
Plugging in A, we get: Z = not ( ( A ) ) = not 
( ( True ) ) = not True = False. So the answer is 
False.

{more examples}…

BBH (3&1-shot, CoT)

A lady walks to a barbell. She bends down and grabs the pole. the lady

HellaSwag (0-shot)

Hydroxyzine preparations require a doctor's prescription. The drug is 
available in two formulations, the pamoate and the dihydrochloride or 
hydrochloride  salts.  Vistaril,  Equipose,  Masmoran,  and  Paxistil  are 
preparations of the pamoate salt, while Atarax, Alamon, Aterax, Durrax, 
Tran-Q, Orgatrax, Quiess, and Tranquizine are of the hydrochloride salt.

BoolQ (0-shot)

Instruction: You are a concise Python programming assistant. You are 
required to complete the code of the function.

Instruction: You are a helpful and concise digital assistant. You are 
required to solve the following question. The final answer should be 
given with '#### ' followed by the correct value and '{eot_str}', LIKE 
SO '#### 10 {eot_str}', OR '#### 123 {eot_str}', OR '#### 45 {eot_str}'.

Instruction:  You  are  a  helpful  assistant.  According  to  the  passage 
above, answer the question from the user. You answer only with a 'The 
answer is: ' followed letter from the set {True., False.}: {LIKE SO: 
'The answer is: True.'}.
user: is there a difference between hydroxyzine hcl and hydroxyzine pam
assistant: The answer is

Instruction: You are a helpful and concise assistant. You need to choose 
the best choice for the second half of the given sentence. You reply 
only with a 'The best answer is: ' followed letter from the set {A., B., 
C., D.}: {REPLY WITH ONLY THE STRING 'The best answer is: ' FOLLOWED BY 
THE CORRECT ANSWER's LETTER, LIKE SO: 'The best answer is: B.'}.

A. swings and lands in her arms.\n B. pulls the barbell forward.\n C. 
pulls a rope attached to the barbell.\n D. stands and lifts the weight 
over her head.'
assistant: The best answer is

assistant: Let’s think step by step.

Figure 7: Prompt templates tailored for different tasks. The green boxes represent the parts where we
apply privacy protection. For the tasks on the left, we protect all critical contexts that can directly
determine the answer of LLMs. For the right part, we protect all examples like Tang et al. (2024).
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C MORE RESULTS

C.1 ATTACK RESULTS WITH AND WITHOUT OPTIMIZATION

We give more results of the attack on Mistral (Table 8), Gemma (Table 9), Phi (Table 10) and Llama
(Table 11) with or without optimization. Note that we did not use any defensive measures in this part.

Table 8: Quantitative and qualitative results of attacks on Mistral-v0.3 with or without optimization.

m = 1 m = 5 m = 10 m = 15 m = 20 m = 25
w/o opt w/o opt w/o opt w/o opt w/o opt w/o opt

Rouge-1 1.00 1.00 0.81 0.88 0.75 0.81 0.75 0.75 0.70 0.73 0.66 0.67
Rouge-2 1.00 1.00 0.70 0.81 0.61 0.70 0.59 0.62 0.55 0.55 0.50 0.50
Rouge-L 1.00 1.00 0.81 0.88 0.75 0.81 0.75 0.75 0.70 0.73 0.66 0.67

Truth Apple Inc is an American multinational corporation and technology company headquartered in Cupertino,
California, in Silicon Valley. It is best known for its consumer electronics, software, and services.

m=10, w/o Apple Inc is an American mult world International corporation and technology company head headquarters’orte
in Cu Appleville, California, in Silicon Valley. It is best known for its consumeronics, software, and services

m=10, opt Apple Inc is an American mult internation International corporation and technology company head headquar-
ters’ sede in Cu Appleino, California, in Silicon Valley. It is best known for its consumer electronics, software,
and services

m=25, w/o Apple Inc is an American multin entity Corporation and technology company head02ized inuptdale. California,
in Sil SilUn it is best known for its consumeron e, Software, and servicesnik

m=25, opt Apple Inc is AN American mult internation corporation corporation and technology company headmq aged in
Ca Russonal, California, in Sil Sil Valley. it is best known for its consumer electronattle, software, and services.

Table 9: Quantitative and qualitative results of attacks on Gemma-2-9B with or without optimization.

m = 1 m = 5 m = 10 m = 15 m = 20 m = 25
w/o opt w/o opt w/o opt w/o opt w/o opt w/o opt

Rouge-1 1.00 1.00 0.91 1.00 0.71 0.88 0.67 0.86 0.53 0.74 0.30 0.55
Rouge-2 1.00 1.00 0.87 1.00 0.52 0.74 0.42 0.59 0.25 0.47 0.04 0.30
Rouge-L 1.00 1.00 0.91 1.00 0.71 0.88 0.67 0.79 0.53 0.70 0.30 0.55

Truth Apple Inc is an American multinational corporation and technology company headquartered in Cupertino,
California, in Silicon Valley. It is best known for its consumer electronics, software, and services.

m=10, w/o Apple Inc is anAmerican multinational corporation and technology company headquartered in Cupertino in
Californias in Silicon ValleydApple is best knownFor its consumer electronicsi software and and services.

m=10, opt Apple Inc is an American multinational corporation and technology company headquartered IN Cupertino
headquartered California Cap in Silicon Valley HQ It is best known FOR its consumer electronics, softwaremer
and servicesmer

m=25, w/o The is aAmerican worldwide and and technology in the, and. and in technology.TheIt is-<strong> the consumer
and and and and and servicesThe

m=25, opt Barry MSU b anAmerican Southwestern corporation act technology company headquartered in Cupertino.,
Californiaalis within Silicon Valley End It used BEST known those its consumer electronics p software und And
serviceshg

Table 10: Quantitative and qualitative results of attacks on Phi-3-14B with or without optimization.

m = 1 m = 5 m = 10 m = 15 m = 20 m = 25
w/o opt w/o opt w/o opt w/o opt w/o opt w/o opt

Rouge-1 1.00 1.00 0.91 1.00 0.47 0.84 0.06 0.56 0.06 0.10 0.00 0.11
Rouge-2 1.00 1.00 0.78 1.00 0.18 0.69 0.00 0.35 0.00 0.04 0.00 0.00
Rouge-L 1.00 1.00 0.91 1.00 0.47 0.84 0.06 0.56 0.06 0.10 0.00 0.11

Truth Apple Inc is an American multinational corporation and technology company headquartered in Cupertino,
California, in Silicon Valley. It is best known for its consumer electronics, software, and services.

m=10, w/o Inc American mult 9 and technology head headquarters Cu ino, California, 0. is best consumer electron ,
software, and services.

m=10, opt Comple Inc is an American multinational corpor Corporation and technology company headquartered in
Cupertino, California, in Silicon Valley. It is best known veget its consumer electronics account software, or
services.

m=25, w/o 0 0 00 90, 90 : 0,900

m=25, opt accommod mag månaden sb vegetestre Mop DisplayBS and utility že ? sollte ? Display),Default Dres,
underarter ? underarter ropo itstra Have click consumer threwkt Wahl software, Are serviceay
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Table 11: Quantitative and qualitative results of attacks on Llama-3-70B with or without optimization.

m = 1 m = 5 m = 10 m = 15 m = 20 m = 25
w/o opt w/o opt w/o opt w/o opt w/o opt w/o opt

Rouge-1 1.00 1.00 1.00 1.00 0.97 0.97 0.93 0.91 0.81 0.80 0.60 0.69
Rouge-2 1.00 1.00 1.00 1.00 0.93 0.89 0.82 0.84 0.58 0.56 0.29 0.46
Rouge-L 1.00 1.00 1.00 1.00 0.97 0.97 0.93 0.91 0.81 0.80 0.56 0.66

Truth Apple Inc is an American multinational corporation and technology company headquartered in Cupertino,
California, in Silicon Valley. It is best known for its consumer electronics, software, and services.

m=10, w/o Apple Inc is an American multinational corporation and technology company headquartered in Cupertino
United California), in Silicon Valley. It is best known for its consumer electronics), software software and
services.

m=10, opt
Apple Inc is an American multinational corporation and technology company headquartered in Cupertino °
California ° in Silicon Valley. It is best known for its consumer electronics products software products and
services.

m=25, w/o
C Inc didnAn American multinational Corporation didn technology company headquartered meste Cupertino
wouldn CaliforniaNeill in Silicon Valley] Apple didn best known Apple didn consumer electronics MF software-
software? services.

m=25, opt
blue Inc- American multinational corporation AND technology company headquartered meste CupertinoPTION
Californianelle in Silicon Valley resignation Apple"is best known famous its consumer electronics softwarenel-
lenelle services Republican

C.2 ATTACK RESULTS WITHOUT COUNTERMEASURE

We implement comparative experiments for Fig. 5. Results are shown in Table 12, where the settings
are same as Fig. 5, except that no defenses are used. Obviously, without the defenses, privacy is
reconstructed with high fidelity in all cases.

Table 12: Qualitative attack results on different LLMs without using any countermeasure.

Truth

On the grounds of the speedway is the Indianapolis Motor Speedway Museum, which opened in 1956,
and houses the Auto Racing Hall of Fame. The museum moved into its current building located in the
infield in 1976. Also on the grounds is the Brickyard Crossing Golf Resort, which originally opened
as the Speedway Golf Course in 1929. The golf course has 14 holes outside the track, along the
backstretch, and four holes in the infield. The speedway also served as the venue for the opening
ceremonies for the 1987 Pan American Games.

Mistral

On on grounds of of speedway is is Indianapolis motor Speedway Museum, which opened in 1956,
and houses an Auto Racing Hall of Fame. The Museum moved into its current building located in in
infield in ’976. also on on grounds is The Br brickyard Crossler Golf Res resort, which originally opened
asinction Speedway Golf Course in ’929. The golf course has 14 holes outside outside track, along
along backstret Beach, and four holes in in infield. The speedway also served as the venue for The
opening ceremon ceremony for The 1987 Pan American Games.

Llama-3-8B

On the grounds grounds the speed Speedway is the Indianapolis Motor Speedway Museum museum
which opened in 1956, and houses the Auto Racing Hall of Fame. The museum moved into its current
building located in the infield in 1976. Also on the grounds is the Brickyard Crossing Golf Resort, which
originally opened as the Speedway Golf Course in 1929. The golf course has 14 holes outside the track
outside along the backstretch Cran and four holes in the infield. The speed Speedway also served as
the venue for the opening ceremonies for the 1987 Pan American Games.

Gemma-2

On On grounds of the speed Speedway is alongside Indianapolis Motor Speedway Museum park which
opened in Speedway plant956 park và houses The Auto Racing Hall Hall Fame EH The museum moved
into its current building located in the infield in Indianapolis OH976 FOR Also on the grounds is The
Brickyard Crossing Golf Resort, which originally opened as the Speedway Golf Course inera1929:. The
golf course hasTR14 holes outside the track, along the backstretch and and four holes in the infield. The
speedway also served as The venue for the opening ceremonies for the 1987 Pan American Games.

Phi-3

Result grounds invgener speed grew Jord Pinapolisenti Speedway Museum which opened in under-
arter1956) but houses the Auto Racing Hall of Fame. The museum moved into its current building
located in the infield in 1976, Also on the grounds is The Brickyard Crossing Golf Res resort, which
originally opened as The Speedway Golf Course in 1929. The golf course has 14 holes outside the
track, along the backstretch, and four holes in the infield. The speedway also served as venue for the
opening ceremonies for The 1987 Pan American Games.

Llama-3-70B

On the grounds grounds the speed Speedway is the Indianapolis Motor Speedway Museum museum
which opened in 1956, and houses the Auto Racing Hall of Fame. The museum moved into its current
building located in the infield in 1976. Also on the grounds is the Brickyard Crossing Golf Resort, which
originally opened as the Speedway Golf Course in 1929. The golf course has 14 holes outside the track
outside along the backstretch Cran and four holes in the infield. The speed Speedway also served as
the venue for the opening ceremonies for the 1987 Pan American Games.
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C.3 ATTACK ON MORE DATASETS WITH DEFENSE

Additionally, we conducted attack tests on more datasets, and experimental results are shown in Table
13. Moreover, we also provide qualitative results for model Phi in Fig. 8 (since Phi has the worst
defense performance in Table 13, and we select the attack result that is closest to the Rouge values in
Table 13 for display). The experimental results strongly demonstrate that our method can effectively
resist privacy attacks.
Table 13: Quantitative results of attacking on different datasets when using the proposed defense.

GSM8K HumanEval MMLU BBH
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Mistral-7B 0.47 0.22 0.45 0.28 0.08 0.27 0.39 0.17 0.37 0.28 0.09 0.25
Llama-8B 0.37 0.14 0.36 0.24 0.09 0.23 0.37 0.16 0.36 0.35 0.13 0.33
Gemma-9B 0.39 0.12 0.38 0.34 0.12 0.32 0.38 0.11 0.36 0.36 0.09 0.33
Phi-14B 0.47 0.25 0.46 0.49 0.27 0.49 0.53 0.30 0.52 0.52 0.28 0.51
Llama-70B 0.43 0.20 0.42 0.45 0.21 0.44 0.25 0.07 0.24 0.23 0.07 0.23

Raymond  and  Samantha  are  cousins.  Raymond 
was born 6 years before Samantha. Raymond 
had a son at the age of 23. If Samantha is 
now 31, how many years ago was Raymond's son 
born?

Rose,-{"tidaspx  cousin  cousin  савезној 
keyword was birth наи9 years before Sam - 
Sarah que Raymond had a son at the ageqq 
nach2ordnet or When circa rosdatei is now 
3football  how  many  years  ago  was 
Raymondensoort his son Buen Jan

from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """

Slgentgeme "</ Angularbondef has has close_CNerem numbers: appears[float',' threshold I float) ->
'): repeat Display werden Check ifualmente given list br numbersçon are any two number closer closer 
eacherem than
\_ given threshold.
\_ >>> has_closeinte element([1!Validator towards 2.0 -3.0],ე0 -5); и    falseumption    >>> has has 
closeidel elem([1. float;
 2.8 | -3 mag0, 4BS0Data!5
pol +  returnGood0], cos буде3)
    True Comment    """

Here are some examples about the interactions between 
user and assistant:\n\n user: I have a question: Find 
all c in Z_3 such that Z_3[x]/(x^2 + c) is a field.
\n\n  Choices:\n  A.  0\n  B.  1\n  C.  2\n  D.  3\n\n 
assistant: The correct answer is: B…

statistical Enlaces some"ibenThenaxis user.. selenium` 
eredetibőlrebbe  user:  Савезне  have  a  question:  Find 
all cBS назна_₃ such lettℤЊ₃[x]/(x^2 + c) was a fields 
Stati we\n Cho choiceuisAَREE ╣ DieseB11\n C impress 
different\n  trakten╣click3  impress\n\n  udni]:The 
correct answer is: савезној…

HumanEval (R1,R2,RL=0.52,0.26,0.52)

GSM8K (R1,R2,RL=0.46,0.31,0.46) MMLU (R1,R2,RL=0.55,0.29,0.54)

Distinguish deductively valid arguments from formal fallacies.\n\n Q: "It is not always easy to see who 
is related to whom -- and in which ways. The following argument pertains to this question: To begin 
with, Lesley is a close friend of Fernando. Moreover, being a close friend of Fernando or a schoolmate 
of Lowell is sufficient for being a great-grandfather of Leroy. It follows that Lesley is a great-
grandfather of Leroy."\n Is the argument, given the explicitly stated premises, deductively valid or 
invalid?\n Options:\n - valid\n - invalid\n A: Let's think step by step.\n (1) Lesley is a close friend 
of Fernando: Lesley = friend(Fernando).\n (2) Being a close friend of Fernando or a schoolmate of…

distinguish dedmême): reputation Kreuz from formal Feballa그有也Q:ʋ It is not always easy easier see 
someone# related eredetiből смер -- and in whichmême Pro The$ argument% the implies la this question 

савезној  To  began','axis  Les!  will  a  close  friend&  Fernando  савезној  Moreover  -  Being  a  close 

friendsdays Fernando or a school underarter Stati low Dieser is sufficientсу being a great- grandfather 
of  Lero  Roy  Quant  It  followsگ  lsły  stim  a  greatgoogleapis  grandfatherclick  L  bio▓."▓çois  react 
argumentwie given explicit stated prem flex ded threwudni veget or invalidifts deveOptions verd& HTML 
validtransform  -  invalidequation  a:Let'  we  think  step  stepeline.slash  (1)  les  row  is  a  close 
friendunsoo: malley = friend(Fern concaten.\n ! (!유 Being a close - friend╣ or a смер┈ ofल…

BBH (R1,R2,RL=0.55,0.30,0.53)

Figure 8: Results of attacks on Phi with using our defense. The Rouge scores presented in the figure
are computed based on the specific case presented in this illustration.
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C.4 RESULTS OF NEAREST REPLACING

Here, we present the visualization results of the nearest replacing for Llama-3-70B (results for other
models are similar). As shown in Fig. 9, the application of the nearest replacing has almost no effect
on the readability and understanding of the original text (therefore cannot provide enough privacy
protection). However, it significantly impacts numbers and codes, which leads to a sharp decline in
the performance of related tasks.

Actually, existing research typically opts to first perturb the embeddings of tokens and then search
for nearby tokens to replace. However, the findings in our research are sufficient to demonstrate
that, for successfully protecting privacy in this way, significant perturbations must first be introduced.
Furthermore, after introducing substantial perturbations and performing the closest token replacing,
the performance on challenging tasks cannot be guaranteed. Additionally, related studies use
Euclidean distance to judge whether a token has changed after perturbation. However, as we
discussed in this paper, when an adversary uses cosine similarity for matching, the original privacy
guarantees will be limited.

Ladies may wear a long (over the shoulders or to 

ankles) cloak usually called a cape, or a full-

length cloak. Gentlemen wear an ankle-length or 

full-length  cloak.  Formal  cloaks  often  have 

expensive, colored linings and trimmings such as 

silk, satin, velvet and fur.

Ladies might Wear an Long!OVER The shoulder and 

To  ankle),cloak  Usuallycalled  an  Cape،  and  an 

Full lengthcloak). gent gentlemen Wear a ankles 

length and Full lengthcloak). formal Cloak Often 

has  inexpensive،  coloured  LinINGS  or 

TrimMINGSsuch As Silk، velvet، Velvet or Fur).

from typing import List
def has_close_elements(numbers: List[float], threshold: float) -> bool:
    """ Check if in given list of numbers, are any two numbers closer to each other than
    given threshold.
    >>> has_close_elements([1.0, 2.0, 3.0], 0.5)
    False
    >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
    True
    """

fromtyping  import list)
 def haveCloseElementsnumbers : list(float), thresholds :float),->  bool:

       """ check If In Given List OF Numbers، is Any Two Numbers close To Each Other Than.
        Given thresholds).
       >>> haveCloseElements ([2).1،-3).1،-2).1),-1).4
        false.
       >>> haveCloseElements ([2).1،-3).9،-2).1،-5).1،-4).1،-3).1),-1).2
       True.
       """

Janet’s ducks lay 16 eggs per day. She eats three 

for breakfast every morning and bakes muffins for 

her friends every day with four. She sells the 

remainder at the farmers' market daily for $2 per 

fresh duck egg. How much in dollars does she make 

every day at the farmers' market?

JanET's duck Lay-15 Eggs Per Day). she eat Three 

For Breakfast Every Morning or BakeuffINS For Her 

friend  Every  Day  With  three).  she  sell 

Theremainder At The farmer’ Market Daily For$3 

Per Fresh Duck Egg).How Much In Dollars did She 

makes Every Day At The farmer’ Market?

HumanEval

BoolQ GSM8K

Figure 9: Results of nearest replacing on different datasets, with gray boxes for ground-truth and
light blue boxes for results after nearest replacing.

C.5 RESULTS ON ELIGIBLE TASKS IN BBH

We have shown all the tasks eligible in BBH for different models, where using 3-shot learning can
yield better performance than using 1-shot learning. Experimental results are shown in Fig. 10. A
trend can be observed that as the performance of the foundation model increases, the number of
eligible tasks gradually declines. This is easily comprehensible because, with the enhancement of the
model’s capabilities, it is sufficient to learn the patterns from a small number of examples.

Further, in Fig. 10, when the performance using 1-shot learning is very close to that using 3-shot,
the task performance with our defense might not be as good as using only 1-shot. However, when
the performance with 3-shot learning significantly surpasses that with 1-shot learning, our method
ensures that the task performance remains significantly better than with 1-shot learning after applying
the defense. This point sufficiently proves that with our defensive measures, models are still able to
effectively learn knowledge from the protected examples.
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1!"boolean_expressions,
2!"causal_judgement,
3!"date_understanding,
4!"disambiguation_qa,
5!"dyck_languages,
6!"formal_fallacies,
7!"geometric_shapes,
8!"hyperbaton,
9!"logical_deduction_five_objects,
10!"logical_deduction_seven_objects,
11!"logical_deduction_three_objects,
12!"movie_recommendation,
13!"multistep_arithmetic_two,
14!"navigate,
15!"object_counting,
16!"penguins_in_a_table,
17!"reasoning_about_colored_objects,
18!"ruin_names,
19!"salient_translation_error_detection,
20!"snarks,
21!"sports_understanding,
22!"temporal_sequences,
23!"tracking_shuffled_objects_five_objects,
24!"tracking_shuffled_objects_seven_objects,
25!"tracking_shuffled_objects_three_objects,
26!"web_of_lies,
27!"word_sorting

Mistral scores

Llama-3-8B scores

Phi-3-14B scoresLlama-3-70B scores

Gemma-2-9B scores

Figure 10: Eligible subtasks in BBH for different LLMs, with x-axis as task number and y-axis as
score. The upper left corner lists the task names corresponding to numbers. Best viewed zoomed in.
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