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ABSTRACT

Maintainable and general software allows developers to build robust applications
efficiently, yet achieving these qualities often requires refactoring specialized
solutions into reusable components. This challenge becomes particularly relevant
as code agents become used to solve isolated one-off programming problems. We
investigate code agents’ capacity to refactor code in ways that support growth
and reusability. We first investigate what makes a good refactoring, finding via
asymptotics analysis and a human study that Minimum Description Length best
aligns with developer preferences for code refactoring quality. We then present
both a benchmark and a method for refactoring: MINICODE, a benchmark where
multiple files must be refactored into a shared library, and LIBRARIAN, a sample-
and-rerank method for generating reusable libraries. We compare LIBRARIAN to
state-of-the-art library generation methods, and study it on real-world code bases.

1 INTRODUCTION

Writing code is mainly a matter of rewriting code: debugging, refactoring, optimizing, and other
activities within the software engineering lifecycle. But poor rewrites incur technical debt, with
such debt costing up to $2 trillion annually (Tews). This problem will likely worsen as language
models become increasingly responsible for generating code, because they excel at solving isolated
programming problems, but their context length demands a myopic view of the codebase. It is
therefore valuable to understand not just the ability of language models to solve programming
problems, but also their ability to rewrite and refactor code in ways that support growth and reuse.

Effective code refactoring at scale is a design problem whose concerns center on re-usability and
maintainability. A classic example illustrates this design challenge: Human programmers often create
overly-specialized, redundant solutions to similar problems and would benefit from redesigning
specialized solutions into a shared library. This consolidation requires careful design decisions about
the right level of abstraction — neither too specific nor too general — and appropriate interfaces that
balance flexibility with usability.

Here we focus on refactoring multiple files into a reusable software library, which raises two questions:
(1) How should we quantify the quality of a library refactoring, and (2) To what extent can LLMs
generalize code into reusable libraries? To answer those question, we develop a new method and a
benchmark. This goes beyond past work (Wong et al., [2021; |Stengel-Eskin et al., 2024; [Ellis et al.}
2021; Bowers et al.|, 2023} |Dechter et al.| 2013} |Grand et al., 2023} |Liang et al., |2010b) in library
learning that synthesized subroutines across small programs in i.e. A-calculus, instead tackling the
more naturalistic problem of redesigning code written in contemporary high-level languages, such as
Python, producing classes, methods, and helper functions in the style of a human-written library. We
develop a method, LIBRARIAN (Figure ), which samples possible code rewrites and then reranks
those samples based on criteria designed to capture a good refactoring. To generate potential rewrites,
we develop methods for clustering pieces of code together that share common structure so that a
succinct prompt can rewrite them jointly into their refactored form. To find strong criteria for ranking
potential rewrites, we study a variety of metrics across machine learning and software engineering,
both on programming benchmarks and via a human study.

To evaluate our method and systematically assess the capability of current agents to generate libraries,
we introduce a new benchmark, MINICODE, which addresses three key desiderata missing from
existing benchmarks. First, open-ended design: unlike SWE-Bench (Jimenez et al.| 2024), Commit0
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Figure 1: Overview of the refactoring problem. A refactoring task comprises a set of files. We refactor
the files by designing a new library. Candidate refactorings are evaluated based on a refactoring
metric, and are expected to maintain correctness of the original code sources (pass rate). We explore
several refactoring metrics in this paper.

(Zhao et al.,|2025), and RefactorBench (Gautam et al., |2025) which primarily focus on functional
correctness, MINICODE presents an unconstrained library design problem. Agents create a library
that can be imported back into a repository, with complete freedom to design the interface and
implementation from scratch—optimizing for software engineering objectives like reusability and
maintainability. Second, verifiability: we ensure objective evaluation by retaining the unit tests from
all repositories that will import the designed library, allowing us to verify that the solutions work
correctly across multiple use cases. Third, large context: agents must understand and synthesize infor-
mation from multiple code sources (files) simultaneously to design a unified library that consolidates
specialized code sources into a general interface.

We contribute the following:

1. Study of different metrics for library creation via a user study and program synthesis benchmarks,
with the surprising finding that neural language models offer a stronger signal of refactoring quality
than classic metrics from the software engineering community.

2. A new benchmark, MINICODE, covering both competition programming and real-world machine
learning programs from the Transformers and Diffusers libraries.

3. A new algorithm, LIBRARIAN, which outperforms prior library learners on existing benchmarks
and scales to complex codebases.

4. Refactorings of real-world codebases widely used in the machine learning community. Our method
successfully refactors the Transformers and Diffusers libraries from Huggingface to be shorter and
more reusable. To the best of our knowledge this is the first time library learning has have been
successfully applied to real-world software projects.

2 RELATED WORK

Library Learning. Systems which perform library learning research discover shared abstractions
across a large number of small programs, which they use to automatically define new subroutines.
Systems such as DreamCoder (Ellis et al., 2021), Trove (Wang et al.| [2024), LiLo (Grand et al.,
2023)), and REGAL (Stengel-Eskin et al.}|2024) automatically construct such libraries with the goal of
making future program synthesis tasks easier to solve, once the learned library is in hand. Our work
is closest to REGAL (Stengel-Eskin et al., [2024), which clusters related code and refactors using
language models. However, existing library learning approaches have primarily been demonstrated in
small-scale, constrained domains, limiting their applicability to typical software engineering tasks,
such as consolidating multiple repositories into cohesive libraries. By framing library learning within
the context of realistic, large-scale code repository development, we expand the relevance of library
learning to everyday software engineering practice.

Repo-level coding benchmarks. Recent work has explored the application of language models to
repository-level software engineering tasks. Existing benchmarks include SWE-bench (Jimenez et al.
2024), which evaluates models on their ability to resolve real-life GitHub issues, and Commit-0 (Zhao
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et al.,|2025), which requires agents to fill in function definitions. Such benchmarks primarily evaluate
functional correctness via unit tests, without assessing the quality or maintainability of the resulting
codebase. RefactorBench (Gautam et al.l 2025) takes a step in this direction by benchmarking the
ability to follow specific refactoring instructions. Our work differs by requiring models to perform a
more open-ended task: Redesigning code to be more modular and compact by discovering reused
abstractions, while retaining verifiability by re-using downstream unit tests. Additionally, libraries
must be created without any scaffolding limitations such as preexisting function definitions affording
more design freedom than Commit-0.

Program optimization. While our goal is to optimize the quality of libraries, other works focus on
improving execution speed through correctness-preserving transformations (Waghjale et al.| 2024}
Ouyang et al.| [2025} Schkufza et al.| 2013)). Both forms of program optimization, compression
and speed, are more open-ended than optimizing only for correctness, as there does not exist a
ground-truth answer. Prior work on program optimization benchmarks study code at the file level.
We propose a benchmark that transforms programs at a larger scale, across multiple code files.

3 PROBLEM STATEMENT

Given N related files { pn}nNzl, the goal is to create a library £ that captures shared abstractions. The
original files { pn}g:l, which define the refactoring problem, we call a task. The new library must
support all original use cases in the task by extracting latent shared abstractions. This is accomplished
by searching for refactorings that are both correct and ‘natural’. Correctness is straightforward to

define via unit tests, but naturalness is more challenging to quantify.

Shorter code is potentially simpler and less redundant. One potential metric is to count the number
of tokens, lines-of-code, or syntax tree nodes in the proposed library and refactored code (Dechter
et al.l 2013} |[Polozov & Gulwani, 2015} Bowers et al., 2023} |Cao et al., 2023). But minimizing
program size has obvious failure modes: code should also be understandable and extensible, which
can be in tension with merely finding the shortest programﬂ Other work in program synthesis
(Liang et al.| | 2010a} |[Solomonoff], [1964; [Ellis et al.,|2021) instead optimizes Minimum Description
Length (MDL), or negative log probability under a reference distribution. In the software engineering
community, other metrics such as cyclomatic complexity and maintainability index have been defined
for similar purposes: These are more complex metrics that examine the syntax tree, call graph, and
other statically-analyzable structures (McCabel [1976). What metric should we use? We revisit this
question in Section[6] where we empirically compare candidate metrics and human preferences before
fixing our choice for the rest of the paper.

For now assume a placeholder metric M measuring refactoring quality; we seek to minimize M

while preserving correctness. Given a task comprising files { pn}gzl, we output both a new library £,
as well as rewritten refactorings of the original files, {p;}fy:l. We define the pass rate 7(p,,) as the
set of unit tests p,, passes, and consider both refactoring several files (/N > 1) and also refactoring a
single large file (N = 1). We optimize the following objective, which prefers passing at least the

same tests as the original programs and minimizing the chosen metric M:

5(57 {p;l}) — {Z(ﬁa {p;z}) Vpn,T(pn) C T(p;) N

otherwise

4 MINICODE—LIBRARY DESIGN AND REFACTORING BENCHMARK

MINICODE presents systems with a task comprising a set of files, then asks them to refactor the
files into a unified library alongside refactorings of the original files. There are two key desiderata
for benchmark tasks: They should have related files sharing latent abstractions, and should also be
verifiable, to measure how well refactored files preserve functional correctness. We source a variety
of problems (Table [T)).

'Perl Golflis a game where participants attempt to write the shortest Perl program accomplishing a given
task. The resulting code is famously incomprehensible, even by the standards of Perl.


https://wiki.c2.com/?PerlGolf
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Table 1: MINICODE Statisics

Domain Files Tasks AvgLoC Avg Tests/ file
Code Contests (Li et al.,[2022b) 300 10 87 10
Transformers (Wolf et al., [2020) 10 1 538 181
Diffusers (von Platen et al.,[2022) 11 2 685 75

Logo (Wong et al.,2021) 300 1 10 1

Date (Srivastava et al., [2023) 246 1 14 1

CodeContests. Competition problems are crafted with specific variations of algorithmic approaches
in mind, resulting in both shared latent concepts and the required test cases. As a result, competition
coding is both verifiable, and ready to refactor. We therefore take solutions, prompts, and tests from
CODECONTESTS (Li et al.l 2022a)), a competition programming dataset.

Huggingface Transformers Library. We test refactoring across implementations of large
language and vision-language models from the Huggingface transformers repository
(modelling_<name>.py files, e.g., Qwen2, LLaMA, DeepSeek-V3). Unlike competition coding,
these sources are production-scale and Huggingface requires that all changes pass an extensive suite
of integration tests before merging into the main branch. A refactoring is only deemed correct if
it passes the unmodified Transformers test suite, making this a high-stakes setting that requires
correctness and compatibility.

Huggingface Diffusers Library. We test refactoring across implementations of diffusion models
from the Huggingface diffusers repository (unet_<name>.py and scheduler_<name>.py files,
e.g., Stable Diffusion UNet, DDPMScheduler), yielding two distinct tasks. Like Transformers,
Diffusers requires that all changes pass a comprehensive suite of integration tests before merging into
the main branch.

Logo & Date. The library learning literature already has existing benchmarks: Typically they seek
to learn a single library from a task comprising many sources, and then test that library on holdout
program synthesis tasks. Logo and Date were used in the recent related work REGAL (Stengel-Eskin
et al.| 2024)), which we incorporate wholesale to understand how our new method compares to
state-of-the-art library learning. The associated programming problems were created by humans, but
their solutions were generated by gpt-3.5-turbo.

5 LIBRARIAN: REFACTORING CODE TO CREATE LIBRARIES

LIBRARIAN generates a new library from a set of files, while migrating the files to use that new
library (Figure|[T), following a sample-and-rerank framework: Prompting a backend LLM or agent to
sample K candidates, and picking the one minimizing the loss ¢. Naively,

LA{p,} = arg min (L, {p,}) 2)

L.{pyeSaMPLEK ({pn})

for metric M and sampling budget K. But this cannot work for large tasks with many programs,
which would not fit into the context of most LLMs. Even long context models cannot process the
entirety of e.g the Linux kernel, and even if they could, it is not clear that such a strategy is the most
efficient way of focusing the language model’s attention. To address this, we wrap sample-and-rerank
with a clustering algorithm that decomposes the task into manageable chunks, described next.

Clustering. Meaningful abstractions arise when programs share underlying functionality or struc-
ture. To surface these, we cluster the task’s files into small groups that are likely to share reusable
structure, and refactor each cluster separately from the rest. This decomposition shrinks the prompt
size, and gives independent searches for the best per-cluster refactoring, which may be more tractable.

LIBRARIAN’s clustering extends REGAL (Stengel-Eskin et al., |2024), which clusters programs
by assuming each program is paired with a natural language description of the problem it solves,
and clustering embeddings of those descriptions. Since similar problems need not imply similar
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solution code, we instead prompt a model to summarize each file and cluster by these summaries.
Specifically, we define CLUSTERg ({p, }) as performing agglomerative clustering (Ward Jr,|1963)
on the task’s files {p,, } to produce a set of set of files, each of which is a cluster of size S. We use
text-embedding-ada-002 to embed descriptions of code sources for clustering.

Combining clustering with sample-and-rerank. The simplest approach is to refactor each cluster
independently and take the union (concatenation) of each cluster’s library:

L= U L, 3)

c€CLUSTERs ({pn })

/ / Ic|
{pn} = U {pc,i i=1 (4)

c€CLUSTERs ({pn })

Le, {p’“}lil = arg min 14 (Lﬁ, {p'“}‘;‘l) , for each ¢ € CLUSTERs({p,}) (5)
ﬁ,{péwi}LZIGSAMPLEK(c)

The approach above ignores the fact that library abstractions discovered in one cluster might be useful
in another cluster. A more sophisticated approach accumulates a library across clusters, and when
refactoring a cluster, adds the accumulated library to the prompt. This lets abstractions discovered
earlier carry forward across the collection. Appendix [A]describes this extension.

6 WHAT MAKES A GOOD REFACTORING?

We compare different metrics M measuring the quality of a refactoring:

Tokens measures the total number of tokens in the refactored files and in the library. It minimizes
program size, but not at the expense of creating a bloated library: Simply replacing every program
with a its own monolithic library function would not improve the tokens metric, because it measures
library size as well. Concretely, Miokens (£, {9}, }) = TOKENS(L) + ), TOKENS(py,).

Minimum Description Length (MDL) evaluates the negative log probability under a reference dis-
tribution, taking into account both the library and refactored sources. Concretely, Mypr(L, {p},}) =
—logpim(L) + >, —logpim(p), | L£), where prar(pl,|L) is concatenating the library and the
program into one prompt, but only counting the perplexity of the later program tokens. This has a
Bayesian justification: The MDL library is the maximum aposteriori estimate of £ given conditionally-
independent code sources. We use Qwen-2.5-3B as our reference language model, as it is modern,
open, and has publicly-available endpoints for querying logits, which is required for scoring refactor-
ings. To confirm that our MDL optimization results are not model specific, we computed MDL values
for 15 Code Contests clusters, each of 50 valid refactoring candidates, using Qwen and Llama-3.2-3B
models. We found a 94% agreement in the minimum MDL candidates from both models.

Cyclomatic Complexity (CC) is a longstanding metric from the software engineering commu-
nity which measures the number of linearly independent paths through a program’s control flow
graph (McCabe} [1976). Smaller programs often have lower cyclomatic complexity. It is equivalent to
defining Mcc(L, {0, }) = CC(L) + 3, cc(pl,) and cc(p) = E(p) — N(p) + 2P(p), where E, N,
and P measure the number of control flow edges, nodes, and connected components, respectively.

Maintainability Index (MI) is a modern software engineering metric combining several other
metrics, including lines-of-code, cyclomatic complexity, and Halstead volume into a single score.
Higher MI values are intended to indicate easier-to-maintain code, so we define My (L, {p!,}) =

6.1 ASYMPTOTIC BEHAVIOR OF METRICS IN LARGE-SAMPLE REGIME

Are these metrics equally effective at encouraging modular and reusable libraries? To answer
this question, we run LIBRARIAN on 15 CodeContests (each of three files) using MDL, tokens,
maintainability index, and cyclomatic complexity, while varying the inference-time sample budget K
(Figure2). We use Best@k estimator for the expected value of metrics for all k£ < K (we describe
the estimator and prove its correctness in Appendix [F]). Tokens and MDL separate cleanly from
classic software engineering metrics: Optimizing tokens/MDL, both of which essentially compress
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the original programs, does not yield steady improvements in MI/CC, and vice-versa. To understand
whether these libraries expose shared abstractions, we examine the average number of times that each
library routine is used, and the average number of library invocations per library function. This teases
apart tokens and MDL: Optimizing MDL yields more more reusable libraries (used about 8 per
task), with each function called more often (called about 2.2 per function)—exceeding the other
metrics we consider. See also Appendix Figure [7)for the raw libary metrics and CC results.
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Figure 2: (A) Asymptotic behavior of metrics for scoring libraries and refactorings (columns) varying
refactoring budget (horizontal axes). (B) Comparing metrics via proxies of downstream library
quality (total library usage and average calls per library function), for which MDL >Tokens>MI. All
results are estimated using Best@k. See also Appendix Figure[7]

Studying these metrics at large k allows understanding E 15 —— MDL Ratio +1 SEM
their inference-time scaling behavior. While the underly- € -20

ing metric itself improves (with diminishing returns), this 2

was not to be taken for granted: The backend language 5 -25

model must produce sufficient diversity to steadily im- é

prove these metrics. Prior state-of-the-art, such as[Stengel] £ —30

Eskin et al.| (2024)), instead take a single sample, but the “g’v

results here suggest benefit from further test-time search, g 35

and indeed, real-world repos benefit from steady improve- & 40

5 10

ment with increased samples (Figure[3). But our proxies
Sample Budget (K)

of library utility plateau much earlier, around k£ = 20
samples, suggesting large k is unnecessary in practice: )
Effective library building benefits from test-time compute, Figure 3: Best@K MDL ratio. Increas-
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Transformers.
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6.2 HUMAN EVALUATION OF REFACTORING METRICS

Given the strong separation between compression
metrics (MDL/tokens) and software engineering met-
rics (MI/CC), we perform a human study to corrob-
orate the findings of Section [6.I]using the exact same
CodeClusters clusters. Our human study compares
tokens, MDL, and Maintainability Index by (1) refac-
toring CodeContest tasks into libraries, (2) presenting
human participants with the original sources and their
refactorings under pairs of metrics, and (3) eliciting
pairwise preferences from human participants.

Humans strongly prefer the compression-based met-
rics (MDL/tokens) and disprefer the metrics devel-
oped within the software engineering community, but
show no statistically significant difference between
MDL and tokens given only N = 12 human partici-
pants (Figure[). Although MDL and tokens measure
different things, they often—but not always—prefer
similar libraries, making it challenging to achieve the

] 0.61
75% T 0.56

| _i_ _|No preference

50% -t - [

25% A

P(First metric preferred)

0% n=12p

(] T T T
MDL Tokens MDL
vs M| vs MI vs Tokens

Figure 4: Human evaluation of different refac-
toring objectives. Judges compare pairs of
refactorings that both pass all test cases. MDL
aligns best with human preferences.

statistical power needed to tease them apart with a reasonable number of human subjects. Figure[3]
illustrates the kinds of corner-cases where MDL and tokens disagree: Although such cases are
uncommon, we believe basically every human coder would prefer the MDL-minimizing program.

We therefore adopt M,y as the primary objective in the remainder of this paper: Our human
study lacked enough participants to separate tokens from MDL, but (1) Bayesian arguments support
MDL; (2) corner cases in the style of ‘Perl golf’ provide existence proofs of the liability of merely
minimizing tokens; and (3) reasonable proxies for library reuse favor MDL (Section [6.1).

from ..shared_library import (
rotate_half,
apply_rotary_pos_emb,
repeat_kv,
eager_attention_forward,
RMSNorm,
BaseMLP,
BaseRotaryEmbedding,
BaseAttention,
BaseDecoderLayer,

)

class LlamaRMSNorm(RMSNorm) :

class LlamaRotaryEmbedding(BaseRotaryEmbedding):

class LlamaMLP(BaseMLP):
def __init__(self, config):
super().__init__(
config,
mlp_bias=config.mlp_bias

)

class LlamaAttention(BaseAttention):
def __init__(self, config: LlamaConfig,
layer_idx: int):

super().__init__(
config=config,
layer_idx=layer_idx,
attn_bias=config.attention_bias,
sliding_window=None

from ..shared_library import rotate_half,
apply_rotary_pos_emb, repeat_kv,
eager_attention_forward,RMSNorm as R,
BaseMLP as M,BaseRotaryEmbedding as E,
BaseAttention as A,BaseDecoderlLayer as
Y
class Z(R):...
class I(E):...
class J(M):
def __init__(s,g):
super().__init__(g,mlp_bias=g.mlp_bias)
class H(A):
def __init__(s,g:F,i:int):
super().__init__(
config=g,layer_idx=i,
attn_bias=g.attention_bias,
sliding_window=None)
class V(Y):
def __init__(s,g:F,i:int):
super().__init__(
config=g,layer_idx=i,
norm_class=Z,
mlp_class=J,
attention_class=H)

Figure 5: Example where tokens and MDL diverge: Obfuscating the original library definitions (left)
by shortening variable names (right) reduces tokens but increases MDL.



Under review as a conference paper at ICLR 2026

7 WHAT WE LEARN FROM RUNNING LIBRARIAN ON MINICODE

We empirically study LIBRARIAN on MINICODE with the goal of understanding (1) the degree to
which library abstractions are reused across programs, (2) how our method compares to state-of-
the-art library learning on existing datasets, and (3) whether LIBRARIAN holds value for real-world
repos.

LI]?:R.ARIAN discovel:s reusable functions.for COM- ol 2. Results for LIBRARIAN (K =
petition programming-but some functions are 8,5 = 3) on 10 Code Contests tasks
only called once. We test on CodeContests with -

a cluster size of S = 3 and a sample budget of Metric Value
K = 8 draws from o4-mini, as reasoning models Pass Rate 90.67% +1.88
perform well on competition programming Table Pass Rate Improvement 6.33% +1.41
shows that the resulting refactors and libraries approx- MDL Ratio 0.53 £0.03
imately halve the MDL, which incidentally reduces Token Ratio 0.66 +0.04
program size as well (44% relative reduction in token Library Functions 10.30 £1.41

Avg Calls per Function 5.17 £1.08

count). Pass rate modestly improves as an incidental
consequence of sampling and filtering with test cases.
Libraries average 10 functions, each heavily reused:
Averaging 5 uses per function within tasks comprising only 10 programs. But almost 40% of library
functions are only used once. Why is that?

% Single Use Functions  38.03% +4.88

A signature of the MDL objective is a preference for whatever a language model assigns high
apriori probability to. Although a single-use function does not reduce line count or tokens —the
function could simply be inlined—it improves MDL if it yields a more natural decomposition of the
target programs. Indeed, human-written libraries sometimes include functions that are seldom used,
provided they serve as a conceptually modular abstraction. We therefore see single-use functions as a
feature, not a bug. See Appendix [J|for an example refactoring candidate on CodeContests.

Are these libraries useful for solving new, un-

seen programming problems? For more than

a decade library learning has sought to learn li- Table 3: Solving holdout test program synthesis
braries from training programs which then help tasks using learned libraries

solve new unseen program synthesis tasks. The —potacot Model Pass Rate

Logo and Date datasets fit within this paradigm.

Recently REGAL improved the state-of-the-art REGAL (gpt-3.5-turbo)  49.3% +1.1

Logo
on these library learning datasets. Because our & LIBRARIAN (3.5-turbo)  69.9% +0.9
clustering is heavily inspired by REGAL, for REGAL (gpt-3.5-turbo)  90.2% +0.5
fair comparison, we keep exactly their cluster- ~ Date LIBRARIAN (3.5-turbo)  94.7% +0.7

ing setup but add MDL-based reranking using

K = 5 samples. Despite the simplicity of these

datasets, we find value in our more complicated method. Table [3|shows that sampling and reranking
by MDL yields up to a 41.8% relative improvement in solve rate on unseen programming problems,
and that even when the gains are more modest, we still improve upon the state-of-the-art. But these
are relatively simple problems solvable with about ten lines of code—does this work in the real
world?

Real-World Refactoring. The HuggingFace Transformers library is used by nearly 400k GitHub
projects. We deploy LIBRARIAN to 10 source files, using Claude Code to sample K = 15 refactorings
per cluster of size S = 5, believing an agent such as Claude Code would excel at repo-level edits.
LIBRARIAN distilled repeated abstractions such as MLPs, Attention, Decoder classes, RoPE helper
functions, etc., achieving an MDL 67% of its original value while still passing all integration tests.
The top-3 refactorings based on MDL have an average of 18 4 4.4 abstractions (functions, classes)
in the library, each of which is called on average 4.59 £ 0.39 times in the refactored models. For
Diffusers, scheduler clusters yielded top-3 MDL refactorings with an average of 12.3 4= 1.6 functions
and 3.0 £ 0.4 calls per function, while UNet refactorings produced richer abstractions with an average
of 17.0 & 5.6 functions/classes and 3.43 £ 0.67 calls each. Refactoring at scale proved expensive:
Each refactoring took approximately 30 minutes to generate and test. But this is a one-off cost, and

2Code agents such as Codex, Claude Code, and others underperformed o4-mini (Appendix
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in our view, the refactored Transformers and Diffusers sources are much cleaner, and the new library
is transparently reusable (Figure[6). To the best of our knowledge, this is the first time any library
learning algorithm has been successfully applied to real-world software projects.

ORIGINAL PROGRAMS EXTRACTED LIBRARY % REFACTORED PROGRAMS
def apply_: K, cos ) ‘ def ?:m, ) SHARED FUNCTION from (1ibrary)import (

mentation

BaseAttention,
BaseDecoderlayer,
apply_rotary_pos_emb) )

SHARED CLASS

tion(nn.Module) "
~ 1f, config, layer_idx):

# NoTE for a, k, v
self.q_proj = nn.Linear(..., bias=True)
self.k_proj = nn.Linear( , bias=True)
self.v_proj = nn.Linear(..., bias=True)
self.o_proj nn.Linear( , bias:
# NOTE: Quen2-specific sliding window
self.sliding_window = config.sliding_.

# Direct reuse of a core component
Quen2Attention = BaseAttention ———— DIRECT CLASS
REUSE
# Compositional reuse of the decoder
class Qwen2DecoderlLayer(BaseDecoderLayer)
def __init__(self, config, layer_idx)
super().__init__(

config, Enables 'sliding_window'
layer_idx, (RoPE)
attention_class=Qwen2Attention,

mlp_class=BaselLP, )

refactored_llama.py ( - 296 LOC)

from(. library) import (
BaseAttention,
BaseDecoderLayer,
apply_rotary_pos_emb, ...)

# Direct reuse of a core component

LlamaAttention = BaseAttention INHERITANCE

# Compositional reuse of the decoder )_J
class LlamaDecoderLayer (BaseDecoderLayer
def __init__(self, config, layer_idx)
super().__init__(
config
layer_idx,
attention_class=LlamaAttention,
mlp_class=BaseMLP, ...)

Standard Attention

Figure 6: Representative result for refactoring HuggingFace Transformers using LIBRARIAN

Learned libraries from these real-world codebases are useful for unseen downstream refactoring
tasks. When a library learned on one cluster of Transformer files (5 models) is applied to refactor a
second cluster, LIBRARIAN reduces the unseen cluster’s MDL to 73% of the its original value, with
an average of 3.0 calls per library function. This demonstrates that LIBRARIAN learned libraries that
can be repurposed to more compactly rewrite unseen real-world code sources.

8 CONCLUSION

We introduce a new benchmark MINICODE and method LIBRARIAN for compressing files through
reusable abstractions. We highlight the challenges of producing modular and maintainable libraries,
then present an effective method for using LLMs to do this task. By framing refactoring as an
optimization problem, our work opens new directions for building more general and scalable code
understanding and generation systems. In particular, the structure of MINICODE lends itself well
to reinforcement learning, where training would entail synthesizing collections of repositories to
refactor then computing rewards based on MDL or other metrics.

Limitations. We evaluate on synthetic toy problems (Logo and Date), and on competition pro-
gramming problems, neither of which are naturalistic, although this is partly counterbalanced by
our study of real-world refactoring. Compression, whether measured by tokens or MDL, may not
always correlate with reuse, a limitation we sought to address through our experiments on down-
stream programming problems, and on holdout Transformers files: But investigating reuse on unseen
app-building problems for real-world repo-level refactors remains open.
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