
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REFACTORING CODEBASES THROUGH
LIBRARY DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

Maintainable and general software allows developers to build robust applications
efficiently, yet achieving these qualities often requires refactoring specialized
solutions into reusable components. This challenge becomes particularly relevant
as code agents become used to solve isolated one-off programming problems. We
investigate code agents’ capacity to refactor code in ways that support growth
and reusability. We first investigate what makes a good refactoring, finding via
asymptotics analysis and a human study that Minimum Description Length best
aligns with developer preferences for code refactoring quality. We then present
both a benchmark and a method for refactoring: MINICODE, a benchmark where
multiple files must be refactored into a shared library, and LIBRARIAN, a sample-
and-rerank method for generating reusable libraries. We compare LIBRARIAN to
state-of-the-art library generation methods, and study it on real-world code bases.

1 INTRODUCTION

Writing code is mainly a matter of rewriting code: debugging, refactoring, optimizing, and other
activities within the software engineering lifecycle. But poor rewrites incur technical debt, with
such debt costing up to $2 trillion annually (Tews). This problem will likely worsen as language
models become increasingly responsible for generating code, because they excel at solving isolated
programming problems, but their context length demands a myopic view of the codebase. It is
therefore valuable to understand not just the ability of language models to solve programming
problems, but also their ability to rewrite and refactor code in ways that support growth and reuse.

Effective code refactoring at scale is a design problem whose concerns center on re-usability and
maintainability. A classic example illustrates this design challenge: Human programmers often create
overly-specialized, redundant solutions to similar problems and would benefit from redesigning
specialized solutions into a shared library. This consolidation requires careful design decisions about
the right level of abstraction — neither too specific nor too general — and appropriate interfaces that
balance flexibility with usability.

Here we focus on refactoring multiple files into a reusable software library, which raises two questions:
(1) How should we quantify the quality of a library refactoring, and (2) To what extent can LLMs
generalize code into reusable libraries? To answer those question, we develop a new method and a
benchmark. This goes beyond past work (Wong et al., 2021; Stengel-Eskin et al., 2024; Ellis et al.,
2021; Bowers et al., 2023; Dechter et al., 2013; Grand et al., 2023; Liang et al., 2010b) in library
learning that synthesized subroutines across small programs in i.e. λ-calculus, instead tackling the
more naturalistic problem of redesigning code written in contemporary high-level languages, such as
Python, producing classes, methods, and helper functions in the style of a human-written library. We
develop a method, LIBRARIAN (Figure 1), which samples possible code rewrites and then reranks
those samples based on criteria designed to capture a good refactoring. To generate potential rewrites,
we develop methods for clustering pieces of code together that share common structure so that a
succinct prompt can rewrite them jointly into their refactored form. To find strong criteria for ranking
potential rewrites, we study a variety of metrics across machine learning and software engineering,
both on programming benchmarks and via a human study.

To evaluate our method and systematically assess the capability of current agents to generate libraries,
we introduce a new benchmark, MINICODE, which addresses three key desiderata missing from
existing benchmarks. First, open-ended design: unlike SWE-Bench (Jimenez et al., 2024), Commit0

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ORIGINAL CODE FILES LIBRARY
REFACTORINGS

File 1 File 3File 2 import ...

Func A

Class A

Func B

Similar
Functions

Similar
Classes

Similar
Functions

Distill

Abstractions

Rewrite

Sources Source 3

Source 2

Source 1

LIBRARY

Figure 1: Overview of the refactoring problem. A refactoring task comprises a set of files. We refactor
the files by designing a new library. Candidate refactorings are evaluated based on a refactoring
metric, and are expected to maintain correctness of the original code sources (pass rate). We explore
several refactoring metrics in this paper.

(Zhao et al., 2025), and RefactorBench (Gautam et al., 2025) which primarily focus on functional
correctness, MINICODE presents an unconstrained library design problem. Agents create a library
that can be imported back into a repository, with complete freedom to design the interface and
implementation from scratch—optimizing for software engineering objectives like reusability and
maintainability. Second, verifiability: we ensure objective evaluation by retaining the unit tests from
all repositories that will import the designed library, allowing us to verify that the solutions work
correctly across multiple use cases. Third, large context: agents must understand and synthesize infor-
mation from multiple code sources (files) simultaneously to design a unified library that consolidates
specialized code sources into a general interface.

We contribute the following:

1. Study of different metrics for library creation via a user study and program synthesis benchmarks,
with the surprising finding that neural language models offer a stronger signal of refactoring quality
than classic metrics from the software engineering community.

2. A new benchmark, MINICODE, covering both competition programming and real-world machine
learning programs from the Transformers and Diffusers libraries.

3. A new algorithm, LIBRARIAN, which outperforms prior library learners on existing benchmarks
and scales to complex codebases.

4. Refactorings of real-world codebases widely used in the machine learning community. Our method
successfully refactors the Transformers and Diffusers libraries from Huggingface to be shorter and
more reusable. To the best of our knowledge this is the first time library learning has have been
successfully applied to real-world software projects.

2 RELATED WORK

Library Learning. Systems which perform library learning research discover shared abstractions
across a large number of small programs, which they use to automatically define new subroutines.
Systems such as DreamCoder (Ellis et al., 2021), Trove (Wang et al., 2024), LiLo (Grand et al.,
2023), and REGAL (Stengel-Eskin et al., 2024) automatically construct such libraries with the goal of
making future program synthesis tasks easier to solve, once the learned library is in hand. Our work
is closest to REGAL (Stengel-Eskin et al., 2024), which clusters related code and refactors using
language models. However, existing library learning approaches have primarily been demonstrated in
small-scale, constrained domains, limiting their applicability to typical software engineering tasks,
such as consolidating multiple repositories into cohesive libraries. By framing library learning within
the context of realistic, large-scale code repository development, we expand the relevance of library
learning to everyday software engineering practice.

Repo-level coding benchmarks. Recent work has explored the application of language models to
repository-level software engineering tasks. Existing benchmarks include SWE-bench (Jimenez et al.,
2024), which evaluates models on their ability to resolve real-life GitHub issues, and Commit-0 (Zhao

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al., 2025), which requires agents to fill in function definitions. Such benchmarks primarily evaluate
functional correctness via unit tests, without assessing the quality or maintainability of the resulting
codebase. RefactorBench (Gautam et al., 2025) takes a step in this direction by benchmarking the
ability to follow specific refactoring instructions. Our work differs by requiring models to perform a
more open-ended task: Redesigning code to be more modular and compact by discovering reused
abstractions, while retaining verifiability by re-using downstream unit tests. Additionally, libraries
must be created without any scaffolding limitations such as preexisting function definitions affording
more design freedom than Commit-0.

Program optimization. While our goal is to optimize the quality of libraries, other works focus on
improving execution speed through correctness-preserving transformations (Waghjale et al., 2024;
Ouyang et al., 2025; Schkufza et al., 2013). Both forms of program optimization, compression
and speed, are more open-ended than optimizing only for correctness, as there does not exist a
ground-truth answer. Prior work on program optimization benchmarks study code at the file level.
We propose a benchmark that transforms programs at a larger scale, across multiple code files.

3 PROBLEM STATEMENT

Given N related files {ρn}Nn=1, the goal is to create a library L that captures shared abstractions. The
original files {ρn}Nn=1, which define the refactoring problem, we call a task. The new library must
support all original use cases in the task by extracting latent shared abstractions. This is accomplished
by searching for refactorings that are both correct and ‘natural’. Correctness is straightforward to
define via unit tests, but naturalness is more challenging to quantify.

Shorter code is potentially simpler and less redundant. One potential metric is to count the number
of tokens, lines-of-code, or syntax tree nodes in the proposed library and refactored code (Dechter
et al., 2013; Polozov & Gulwani, 2015; Bowers et al., 2023; Cao et al., 2023). But minimizing
program size has obvious failure modes: code should also be understandable and extensible, which
can be in tension with merely finding the shortest program.1 Other work in program synthesis
(Liang et al., 2010a; Solomonoff, 1964; Ellis et al., 2021) instead optimizes Minimum Description
Length (MDL), or negative log probability under a reference distribution. In the software engineering
community, other metrics such as cyclomatic complexity and maintainability index have been defined
for similar purposes: These are more complex metrics that examine the syntax tree, call graph, and
other statically-analyzable structures (McCabe, 1976). What metric should we use? We revisit this
question in Section 6, where we empirically compare candidate metrics and human preferences before
fixing our choice for the rest of the paper.

For now assume a placeholder metric M measuring refactoring quality; we seek to minimize M

while preserving correctness. Given a task comprising files {ρn}Nn=1, we output both a new library L,
as well as rewritten refactorings of the original files, {ρ′n}

N
n=1. We define the pass rate τ(ρn) as the

set of unit tests ρn passes, and consider both refactoring several files (N > 1) and also refactoring a
single large file (N = 1). We optimize the following objective, which prefers passing at least the
same tests as the original programs and minimizing the chosen metric M :

ℓ (L, {ρ′n}) =
{
M(L, {ρ′n}) ∀ρn, τ(ρn) ⊆ τ(ρ′n)

∞ otherwise
(1)

4 MINICODE—LIBRARY DESIGN AND REFACTORING BENCHMARK

MINICODE presents systems with a task comprising a set of files, then asks them to refactor the
files into a unified library alongside refactorings of the original files. There are two key desiderata
for benchmark tasks: They should have related files sharing latent abstractions, and should also be
verifiable, to measure how well refactored files preserve functional correctness. We source a variety
of problems (Table 1).

1Perl Golf is a game where participants attempt to write the shortest Perl program accomplishing a given
task. The resulting code is famously incomprehensible, even by the standards of Perl.

3

https://wiki.c2.com/?PerlGolf

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: MINICODE Statisics
Domain Files Tasks Avg LoC Avg Tests / file
Code Contests (Li et al., 2022b) 300 10 87 10
Transformers (Wolf et al., 2020) 10 1 538 181
Diffusers (von Platen et al., 2022) 11 2 685 75
Logo (Wong et al., 2021) 300 1 10 1
Date (Srivastava et al., 2023) 246 1 14 1

CodeContests. Competition problems are crafted with specific variations of algorithmic approaches
in mind, resulting in both shared latent concepts and the required test cases. As a result, competition
coding is both verifiable, and ready to refactor. We therefore take solutions, prompts, and tests from
CODECONTESTS (Li et al., 2022a), a competition programming dataset.

Huggingface Transformers Library. We test refactoring across implementations of large
language and vision–language models from the Huggingface transformers repository
(modelling_<name>.py files, e.g., Qwen2, LLaMA, DeepSeek-V3). Unlike competition coding,
these sources are production-scale and Huggingface requires that all changes pass an extensive suite
of integration tests before merging into the main branch. A refactoring is only deemed correct if
it passes the unmodified Transformers test suite, making this a high-stakes setting that requires
correctness and compatibility.

Huggingface Diffusers Library. We test refactoring across implementations of diffusion models
from the Huggingface diffusers repository (unet_<name>.py and scheduler_<name>.py files,
e.g., Stable Diffusion UNet, DDPMScheduler), yielding two distinct tasks. Like Transformers,
Diffusers requires that all changes pass a comprehensive suite of integration tests before merging into
the main branch.

Logo & Date. The library learning literature already has existing benchmarks: Typically they seek
to learn a single library from a task comprising many sources, and then test that library on holdout
program synthesis tasks. Logo and Date were used in the recent related work REGAL (Stengel-Eskin
et al., 2024), which we incorporate wholesale to understand how our new method compares to
state-of-the-art library learning. The associated programming problems were created by humans, but
their solutions were generated by gpt-3.5-turbo.

5 LIBRARIAN: REFACTORING CODE TO CREATE LIBRARIES

LIBRARIAN generates a new library from a set of files, while migrating the files to use that new
library (Figure 1), following a sample-and-rerank framework: Prompting a backend LLM or agent to
sample K candidates, and picking the one minimizing the loss ℓ. Naively,

L, {ρ′n} = argmin
L,{ρ′

n}∈SAMPLEK({ρn})
ℓ (L, {ρ′n}) (2)

for metric M and sampling budget K. But this cannot work for large tasks with many programs,
which would not fit into the context of most LLMs. Even long context models cannot process the
entirety of e.g the Linux kernel, and even if they could, it is not clear that such a strategy is the most
efficient way of focusing the language model’s attention. To address this, we wrap sample-and-rerank
with a clustering algorithm that decomposes the task into manageable chunks, described next.

Clustering. Meaningful abstractions arise when programs share underlying functionality or struc-
ture. To surface these, we cluster the task’s files into small groups that are likely to share reusable
structure, and refactor each cluster separately from the rest. This decomposition shrinks the prompt
size, and gives independent searches for the best per-cluster refactoring, which may be more tractable.

LIBRARIAN’s clustering extends REGAL (Stengel-Eskin et al., 2024), which clusters programs
by assuming each program is paired with a natural language description of the problem it solves,
and clustering embeddings of those descriptions. Since similar problems need not imply similar

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

solution code, we instead prompt a model to summarize each file and cluster by these summaries.
Specifically, we define CLUSTERS ({ρn}) as performing agglomerative clustering (Ward Jr, 1963)
on the task’s files {ρn} to produce a set of set of files, each of which is a cluster of size S. We use
text-embedding-ada-002 to embed descriptions of code sources for clustering.

Combining clustering with sample-and-rerank. The simplest approach is to refactor each cluster
independently and take the union (concatenation) of each cluster’s library:

L⋆ =
⋃

c∈CLUSTERS({ρn})

Lc (3)

{ρ′n} =
⋃

c∈CLUSTERS({ρn})

{
ρ′c,i

}|c|
i=1

(4)

Lc,
{
ρ′c,i

}|c|
i=1

= argmin
L,{ρ′

c,i}|c|i=1
∈SAMPLEK(c)

ℓ
(
L,

{
ρ′c,i

}|c|
i=1

)
, for each c ∈ CLUSTERS({ρn}) (5)

The approach above ignores the fact that library abstractions discovered in one cluster might be useful
in another cluster. A more sophisticated approach accumulates a library across clusters, and when
refactoring a cluster, adds the accumulated library to the prompt. This lets abstractions discovered
earlier carry forward across the collection. Appendix A describes this extension.

6 WHAT MAKES A GOOD REFACTORING?

We compare different metrics M measuring the quality of a refactoring:

Tokens measures the total number of tokens in the refactored files and in the library. It minimizes
program size, but not at the expense of creating a bloated library: Simply replacing every program
with a its own monolithic library function would not improve the tokens metric, because it measures
library size as well. Concretely, Mtokens(L, {ρ′n}) = TOKENS(L) +

∑
n TOKENS(ρ′n).

Minimum Description Length (MDL) evaluates the negative log probability under a reference dis-
tribution, taking into account both the library and refactored sources. Concretely, MMDL(L, {ρ′n}) =
− log pLM(L) +

∑
n− log pLM(ρ′n | L), where pLM (ρ′n|L) is concatenating the library and the

program into one prompt, but only counting the perplexity of the later program tokens. This has a
Bayesian justification: The MDL library is the maximum aposteriori estimate ofL given conditionally-
independent code sources. We use Qwen-2.5-3B as our reference language model, as it is modern,
open, and has publicly-available endpoints for querying logits, which is required for scoring refactor-
ings. To confirm that our MDL optimization results are not model specific, we computed MDL values
for 15 Code Contests clusters, each of 50 valid refactoring candidates, using Qwen and Llama-3.2-3B
models. We found a 94% agreement in the minimum MDL candidates from both models.

Cyclomatic Complexity (CC) is a longstanding metric from the software engineering commu-
nity which measures the number of linearly independent paths through a program’s control flow
graph (McCabe, 1976). Smaller programs often have lower cyclomatic complexity. It is equivalent to
defining MCC(L, {ρ′n}) = CC(L) +

∑
n CC(ρ′n) and CC(ρ) = E(ρ)−N(ρ) + 2P (ρ), where E, N ,

and P measure the number of control flow edges, nodes, and connected components, respectively.

Maintainability Index (MI) is a modern software engineering metric combining several other
metrics, including lines-of-code, cyclomatic complexity, and Halstead volume into a single score.
Higher MI values are intended to indicate easier-to-maintain code, so we define MMI(L, {ρ′n}) =
−MI(L) +

∑
n−MI(ρ′n).

6.1 ASYMPTOTIC BEHAVIOR OF METRICS IN LARGE-SAMPLE REGIME

Are these metrics equally effective at encouraging modular and reusable libraries? To answer
this question, we run LIBRARIAN on 15 CodeContests (each of three files) using MDL, tokens,
maintainability index, and cyclomatic complexity, while varying the inference-time sample budget K
(Figure 2). We use Best@k estimator for the expected value of metrics for all k ≤ K (we describe
the estimator and prove its correctness in Appendix F). Tokens and MDL separate cleanly from
classic software engineering metrics: Optimizing tokens/MDL, both of which essentially compress

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the original programs, does not yield steady improvements in MI/CC, and vice-versa. To understand
whether these libraries expose shared abstractions, we examine the average number of times that each
library routine is used, and the average number of library invocations per library function. This teases
apart tokens and MDL: Optimizing MDL yields more more reusable libraries (used about 8× per
task), with each function called more often (called about 2.2× per function)—exceeding the other
metrics we consider. See also Appendix Figure 7 for the raw libary metrics and CC results.

Figure 2: (A) Asymptotic behavior of metrics for scoring libraries and refactorings (columns) varying
refactoring budget (horizontal axes). (B) Comparing metrics via proxies of downstream library
quality (total library usage and average calls per library function), for which MDL>Tokens>MI. All
results are estimated using Best@k. See also Appendix Figure 7.

5 10
Sample Budget (K)

40

35

30

25

20

15

%
 C

ha
ng

e
fro

m
 N

on
-R

ef
ac

to
re

d

MDL Ratio ±1 SEM

Figure 3: Best@K MDL ratio. Increas-
ing sample budget improves MDL on
Transformers.

Studying these metrics at large k allows understanding
their inference-time scaling behavior. While the underly-
ing metric itself improves (with diminishing returns), this
was not to be taken for granted: The backend language
model must produce sufficient diversity to steadily im-
prove these metrics. Prior state-of-the-art, such as Stengel-
Eskin et al. (2024), instead take a single sample, but the
results here suggest benefit from further test-time search,
and indeed, real-world repos benefit from steady improve-
ment with increased samples (Figure 3). But our proxies
of library utility plateau much earlier, around k = 20
samples, suggesting large k is unnecessary in practice:
Effective library building benefits from test-time compute,
but does not demand an exorbitant amount of it.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6.2 HUMAN EVALUATION OF REFACTORING METRICS

Figure 4: Human evaluation of different refac-
toring objectives. Judges compare pairs of
refactorings that both pass all test cases. MDL
aligns best with human preferences.

Given the strong separation between compression
metrics (MDL/tokens) and software engineering met-
rics (MI/CC), we perform a human study to corrob-
orate the findings of Section 6.1 using the exact same
CodeClusters clusters. Our human study compares
tokens, MDL, and Maintainability Index by (1) refac-
toring CodeContest tasks into libraries, (2) presenting
human participants with the original sources and their
refactorings under pairs of metrics, and (3) eliciting
pairwise preferences from human participants.

Humans strongly prefer the compression-based met-
rics (MDL/tokens) and disprefer the metrics devel-
oped within the software engineering community, but
show no statistically significant difference between
MDL and tokens given only N = 12 human partici-
pants (Figure 4). Although MDL and tokens measure
different things, they often—but not always—prefer
similar libraries, making it challenging to achieve the
statistical power needed to tease them apart with a reasonable number of human subjects. Figure 5
illustrates the kinds of corner-cases where MDL and tokens disagree: Although such cases are
uncommon, we believe basically every human coder would prefer the MDL-minimizing program.

We therefore adopt MMDL as the primary objective in the remainder of this paper: Our human
study lacked enough participants to separate tokens from MDL, but (1) Bayesian arguments support
MDL; (2) corner cases in the style of ‘Perl golf’ provide existence proofs of the liability of merely
minimizing tokens; and (3) reasonable proxies for library reuse favor MDL (Section 6.1).

from ..shared_library import (
rotate_half,
apply_rotary_pos_emb,
repeat_kv,
eager_attention_forward,
RMSNorm,
BaseMLP,
BaseRotaryEmbedding,
BaseAttention,
BaseDecoderLayer,

)

class LlamaRMSNorm(RMSNorm):
...

class LlamaRotaryEmbedding(BaseRotaryEmbedding):
...

class LlamaMLP(BaseMLP):
def __init__(self, config):

super().__init__(
config,
mlp_bias=config.mlp_bias

)

class LlamaAttention(BaseAttention):
def __init__(self, config: LlamaConfig,

layer_idx: int):
super().__init__(

config=config,
layer_idx=layer_idx,
attn_bias=config.attention_bias,
sliding_window=None

)
...

from ..shared_library import rotate_half,
apply_rotary_pos_emb,repeat_kv,
eager_attention_forward,RMSNorm as R,
BaseMLP as M,BaseRotaryEmbedding as E,
BaseAttention as A,BaseDecoderLayer as
Y

class Z(R):...
class I(E):...
class J(M):
def __init__(s,g):
super().__init__(g,mlp_bias=g.mlp_bias)

class H(A):
def __init__(s,g:F,i:int):
super().__init__(
config=g,layer_idx=i,
attn_bias=g.attention_bias,
sliding_window=None)

class V(Y):
def __init__(s,g:F,i:int):
super().__init__(
config=g,layer_idx=i,
norm_class=Z,
mlp_class=J,
attention_class=H)

...

Figure 5: Example where tokens and MDL diverge: Obfuscating the original library definitions (left)
by shortening variable names (right) reduces tokens but increases MDL.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

7 WHAT WE LEARN FROM RUNNING LIBRARIAN ON MINICODE

We empirically study LIBRARIAN on MINICODE with the goal of understanding (1) the degree to
which library abstractions are reused across programs, (2) how our method compares to state-of-
the-art library learning on existing datasets, and (3) whether LIBRARIAN holds value for real-world
repos.

Table 2: Results for LIBRARIAN (K =
8, S = 3) on 10 Code Contests tasks.

Metric Value

Pass Rate 90.67% ±1.88
Pass Rate Improvement 6.33% ±1.41
MDL Ratio 0.53 ±0.03
Token Ratio 0.66 ±0.04
Library Functions 10.30 ±1.41
Avg Calls per Function 5.17 ±1.08
% Single Use Functions 38.03% ±4.88

LIBRARIAN discovers reusable functions for com-
petition programming–but some functions are
only called once. We test on CodeContests with
a cluster size of S = 3 and a sample budget of
K = 8 draws from o4-mini, as reasoning models
perform well on competition programming.2 Table 2
shows that the resulting refactors and libraries approx-
imately halve the MDL, which incidentally reduces
program size as well (44% relative reduction in token
count). Pass rate modestly improves as an incidental
consequence of sampling and filtering with test cases.
Libraries average 10 functions, each heavily reused:
Averaging 5 uses per function within tasks comprising only 10 programs. But almost 40% of library
functions are only used once. Why is that?

A signature of the MDL objective is a preference for whatever a language model assigns high
apriori probability to. Although a single-use function does not reduce line count or tokens —the
function could simply be inlined—it improves MDL if it yields a more natural decomposition of the
target programs. Indeed, human-written libraries sometimes include functions that are seldom used,
provided they serve as a conceptually modular abstraction. We therefore see single-use functions as a
feature, not a bug. See Appendix J for an example refactoring candidate on CodeContests.

Table 3: Solving holdout test program synthesis
tasks using learned libraries

Dataset Model Pass Rate

Logo REGAL (gpt-3.5-turbo) 49.3% ±1.1
LIBRARIAN (3.5-turbo) 69.9% ±0.9

Date REGAL (gpt-3.5-turbo) 90.2% ±0.5
LIBRARIAN (3.5-turbo) 94.7% ±0.7

Are these libraries useful for solving new, un-
seen programming problems? For more than
a decade library learning has sought to learn li-
braries from training programs which then help
solve new unseen program synthesis tasks. The
Logo and Date datasets fit within this paradigm.
Recently REGAL improved the state-of-the-art
on these library learning datasets. Because our
clustering is heavily inspired by REGAL, for
fair comparison, we keep exactly their cluster-
ing setup but add MDL-based reranking using
K = 5 samples. Despite the simplicity of these
datasets, we find value in our more complicated method. Table 3 shows that sampling and reranking
by MDL yields up to a 41.8% relative improvement in solve rate on unseen programming problems,
and that even when the gains are more modest, we still improve upon the state-of-the-art. But these
are relatively simple problems solvable with about ten lines of code—does this work in the real
world?

Real-World Refactoring. The HuggingFace Transformers library is used by nearly 400k GitHub
projects. We deploy LIBRARIAN to 10 source files, using Claude Code to sample K = 15 refactorings
per cluster of size S = 5, believing an agent such as Claude Code would excel at repo-level edits.
LIBRARIAN distilled repeated abstractions such as MLPs, Attention, Decoder classes, RoPE helper
functions, etc., achieving an MDL 67% of its original value while still passing all integration tests.
The top-3 refactorings based on MDL have an average of 18± 4.4 abstractions (functions, classes)
in the library, each of which is called on average 4.59 ± 0.39 times in the refactored models. For
Diffusers, scheduler clusters yielded top-3 MDL refactorings with an average of 12.3± 1.6 functions
and 3.0±0.4 calls per function, while UNet refactorings produced richer abstractions with an average
of 17.0± 5.6 functions/classes and 3.43± 0.67 calls each. Refactoring at scale proved expensive:
Each refactoring took approximately 30 minutes to generate and test. But this is a one-off cost, and

2Code agents such as Codex, Claude Code, and others underperformed o4-mini (Appendix I)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

in our view, the refactored Transformers and Diffusers sources are much cleaner, and the new library
is transparently reusable (Figure 6). To the best of our knowledge, this is the first time any library
learning algorithm has been successfully applied to real-world software projects.

EXTRACTED LIBRARY

original_llama.py
 (505 LOC)

original_qwen2.py
 (498 LOC)
original_qwen2.py

ORIGINAL PROGRAMS
library.py
 (372 LOC)

SHARED FUNCTION

SHARED CLASS

SHARED CLASS
refactored_llama.py
 (→ LOC)
505 296

refactored_qwen2.py
 (→ LOC)
489 294

DIRECT CLASS

REUSE

DIRECT CLASS

REUSE

INHERITANCE

REFACTORED PROGRAMS

Enables 'sliding_window'

 (RoPE)

Standard Attention

Figure 6: Representative result for refactoring HuggingFace Transformers using LIBRARIAN

Learned libraries from these real-world codebases are useful for unseen downstream refactoring
tasks. When a library learned on one cluster of Transformer files (5 models) is applied to refactor a
second cluster, LIBRARIAN reduces the unseen cluster’s MDL to 73% of the its original value, with
an average of 3.0 calls per library function. This demonstrates that LIBRARIAN learned libraries that
can be repurposed to more compactly rewrite unseen real-world code sources.

8 CONCLUSION

We introduce a new benchmark MINICODE and method LIBRARIAN for compressing files through
reusable abstractions. We highlight the challenges of producing modular and maintainable libraries,
then present an effective method for using LLMs to do this task. By framing refactoring as an
optimization problem, our work opens new directions for building more general and scalable code
understanding and generation systems. In particular, the structure of MINICODE lends itself well
to reinforcement learning, where training would entail synthesizing collections of repositories to
refactor then computing rewards based on MDL or other metrics.

Limitations. We evaluate on synthetic toy problems (Logo and Date), and on competition pro-
gramming problems, neither of which are naturalistic, although this is partly counterbalanced by
our study of real-world refactoring. Compression, whether measured by tokens or MDL, may not
always correlate with reuse, a limitation we sought to address through our experiments on down-
stream programming problems, and on holdout Transformers files: But investigating reuse on unseen
app-building problems for real-world repo-level refactors remains open.

ACKNOWLEDGEMENTS

LLMs were used to polish phrasing of some parts of the paper.

REFERENCES

Anthropic. Claude code: An agentic coding tool that lives in your terminal. https://github.com/
anthropics/claude-code, 2025. An agentic coding tool that lives in your terminal, understands

9

https://github.com/anthropics/claude-code
https://github.com/anthropics/claude-code

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

your codebase, and helps you code faster by executing routine tasks, explaining complex code, and
handling git workflows - all through natural language commands.

Matthew Bowers, Theo X. Olausson, Lionel Wong, Gabriel Grand, Joshua B. Tenenbaum, Kevin Ellis,
and Armando Solar-Lezama. Top-down synthesis for library learning. Proc. ACM Program. Lang.,
7(POPL), January 2023. doi: 10.1145/3571234. URL https://doi.org/10.1145/3571234.

David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and Nadia Polikarpova.
Babble: Learning better abstractions with e-graphs and anti-unification. POPL, 2023. doi:
10.1145/3571207. URL https://doi.org/10.1145/3571207.

Eyal Dechter, Jon Malmaud, Ryan P. Adams, and Joshua B. Tenenbaum. Bootstrap learning via
modular concept discovery. In IJCAI, 2013.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt, Luc
Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. Dreamcoder: Bootstrapping inductive
program synthesis with wake-sleep library learning. In PLDI, 2021. doi: 10.1145/3453483.
3454080. URL https://doi.org/10.1145/3453483.3454080.

Dhruv Gautam, Spandan Garg, Jinu Jang, Neel Sundaresan, and Roshanak Zilouchian Moghaddam.
Refactorbench: Evaluating stateful reasoning in language agents through code. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=NiNIthntx7.

Gabriel Grand, Li Siang Wong, Matthew Bowers, Theo X. Olausson, Muxin Liu, Joshua B. Tenen-
baum, and Jacob Andreas. Lilo: Learning interpretable libraries by compressing and documenting
code. ArXiv, abs/2310.19791, 2023. URL https://api.semanticscholar.org/CorpusID:
264806856.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal,
Alexey Cherepanov, James Molloy, Daniel Mankowitz, Esme Sutherland Robson, Pushmeet Kohli,
Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code generation with
alphacode. arXiv preprint arXiv:2203.07814, 2022a.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level code
generation with alphacode. Science, 378(6624):1092–1097, 2022b. doi: 10.1126/science.abq1158.
URL https://www.science.org/doi/abs/10.1126/science.abq1158.

Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchical bayesian approach.
In ICML, 2010a.

Percy Liang, Michael I Jordan, and Dan Klein. Learning programs: A hierarchical bayesian approach.
In ICML, volume 10, pp. 639–646, 2010b.

T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):308–320,
1976. doi: 10.1109/TSE.1976.233837.

OpenAI. Introducing o3 and o4 mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2024. Accessed: 2025-05-13.

Anne Ouyang, Simon Guo, Simran Arora, Alex L. Zhang, William Hu, Christopher Ré, and Azalia
Mirhoseini. Kernelbench: Can llms write efficient gpu kernels?, 2025. URL https://arxiv.
org/abs/2502.10517.

10

https://doi.org/10.1145/3571234
https://doi.org/10.1145/3571207
https://doi.org/10.1145/3453483.3454080
https://openreview.net/forum?id=NiNIthntx7
https://openreview.net/forum?id=NiNIthntx7
https://api.semanticscholar.org/CorpusID:264806856
https://api.semanticscholar.org/CorpusID:264806856
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://www.science.org/doi/abs/10.1126/science.abq1158
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://arxiv.org/abs/2502.10517
https://arxiv.org/abs/2502.10517

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program synthesis.
ACM SIGPLAN Notices, 50(10):107–126, 2015.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Proceedings of
the Eighteenth International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pp. 305–316, New York, NY, USA, 2013. Association
for Computing Machinery. ISBN 9781450318709. doi: 10.1145/2451116.2451150. URL
https://doi.org/10.1145/2451116.2451150.

Ray J Solomonoff. A formal theory of inductive inference. Information and control, 7(1):1–22, 1964.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imitation
game: Quantifying and extrapolating the capabilities of language models. Transactions on machine
learning research, 2023.

Elias Stengel-Eskin, Archiki Prasad, and Mohit Bansal. Regal: refactoring programs to discover
generalizable abstractions. In Proceedings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org, 2024.

Shane Tews. Inside tech’s $2 trillion technical debt | american enterprise in-
stitute - aei. URL https://www.aei.org/technology-and-innovation/
inside-techs-2-trillion-technical-debt/.

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, Dhruv Nair, Sayak Paul, William Berman, Yiyi Xu, Steven Liu, and Thomas Wolf.
Diffusers: State-of-the-art diffusion models. https://github.com/huggingface/diffusers,
2022.

Siddhant Waghjale, Vishruth Veerendranath, Zora Zhiruo Wang, and Daniel Fried. Ecco: Can
we improve model-generated code efficiency without sacrificing functional correctness? arXiv
preprint arXiv:2407.14044, 2024.

Zhiruo Wang, Daniel Fried, and Graham Neubig. Trove: Inducing verifiable and efficient toolboxes
for solving programmatic tasks, 2024. URL https://arxiv.org/abs/2401.12869.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
statistical association, 58(301):236–244, 1963.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. Association for
Computational Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.
6.

Catherine Wong, Kevin Ellis, Joshua B. Tenenbaum, and Jacob Andreas. Leveraging language
to learn program abstractions and search heuristics. In International Conference on Machine
Learning, 2021.

Wenting Zhao, Nan Jiang, Celine Lee, Justin T Chiu, Claire Cardie, Matthias Gallé, and Alexander M
Rush. Commit0: Library generation from scratch. In The Thirteenth International Conference on
Learning Representations, 2025. URL https://openreview.net/forum?id=MMwaQEVsAg.

11

https://arxiv.org/abs/2412.15115
https://doi.org/10.1145/2451116.2451150
https://www.aei.org/technology-and-innovation/inside-techs-2-trillion-technical-debt/
https://www.aei.org/technology-and-innovation/inside-techs-2-trillion-technical-debt/
https://github.com/huggingface/diffusers
https://arxiv.org/abs/2401.12869
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://openreview.net/forum?id=MMwaQEVsAg

	Introduction
	Related work
	Problem Statement
	MiniCode—Library Design and Refactoring Benchmark
	Librarian: Refactoring Code to Create Libraries
	What Makes a Good Refactoring?
	Asymptotic behavior of metrics in large-sample regime
	Human evaluation of refactoring metrics

	What we learn from running Librarian on MiniCode
	Conclusion

