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ABSTRACT

In this work, we explore the mechanism of in-context learning (ICL) on out-of-
distribution (OOD) tasks that were not encountered during training. To achieve
this, we conduct synthetic experiments where the objective is to learn OOD mathe-
matical functions through ICL using a GPT-2 model. We reveal that Transformers
may struggle to learn OOD task functions through ICL. Specifically, ICL perfor-
mance resembles implementing a function within the pretraining hypothesis space
and optimizing it with gradient descent based on the in-context examples. Addi-
tionally, we investigate ICL’s well-documented ability to learn unseen abstract
labels in context. We demonstrate that such ability only manifests in the scenarios
without distributional shifts and, therefore, may not serve as evidence of new-task-
learning ability. Furthermore, we assess ICL’s performance on OOD tasks when
the model is pretrained on multiple tasks. Both empirical and theoretical analy-
ses demonstrate the existence of the low-test-error preference of ICL, where it
tends to implement the pretraining function that yields low test error in the testing
context. We validate this through numerical experiments. This new theoretical
result, combined with our empirical findings, elucidates the mechanism of ICL in
addressing OOD tasks.

1 INTRODUCTION

Pretrained large language models (LLMs) can perform in-context learning (ICL) (Brown, 2020),
where providing a few examples of input-output pairs and a query example improves the model’s
ability to generate the desired output, compared to zero-shot predictions. Understanding ICL’s abil-
ity to learn out-of-distribution (OOD) input-output relationships, which are unseen during training,
has recently gained significant attention.

Recent studies have demonstrated that ICL can tackle seemingly new tasks. For instance, Garg
et al. (2022); Raventós et al. (2023); Zhang et al. (2023a); Akyürek et al. (2023) found that ICL can
learn new linear regression weights after pretraining on a large set of weight vectors. Moreover, Pan
(2023); Kossen et al. (2024); Vacareanu et al. (2024) revealed that real-world LLMs like Llama-2
(Touvron et al., 2023) and GPT-4 (Achiam et al., 2023) are capable of solving artificially constructed
tasks likely unseen in their pretraining data, such as a classification task with abstract labels.

However, another line of research (Yadlowsky et al., 2023; Ahuja & Lopez-Paz, 2023) has raised
a contrasting view, showing that ICL struggles to generalize to OOD tasks where there are distri-
butional shifts in either the input distribution P (X) or the input-label mapping P (Y |X). These
findings raise several important questions:

Can ICL really learn new input-output mappings from the context? What under-
lying mechanism of ICL determines its performance on OOD tasks?

In this work, we aim to consolidate previous findings by addressing these questions. First, we
empirically show that when pretrained on a specific function class, the OOD performance of ICL
approaches that of a model from the same function class optimized via gradient descent. This
suggests that ICL tends to implement functions encountered during pretraining, which could explain
its failure on OOD tasks that significantly deviate from the training distribution. Furthermore, we
reproduce the widely observed phenomenon that ICL can perform classification with abstract labels.
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We find that solving such tasks requires retrieving similar labels from the context, a capability that
can be acquired through pretraining on analogous tasks. This implies that success in such tasks of
ICL may not indicate an inherent ability to learn new tasks. Finally, we explore scenarios in which
the model is pretrained on multiple tasks, empirically uncovering the algorithm selection mechanism
for OOD tasks. Building on the work of Lin & Lee (2024), we also provide a comprehensive
theoretical framework for understanding the ICL mechanism.

Our contributions are summarized as follows:

1. We empirically show that ICL tends to implement the pretraining function based on the
downstream task context, highlighting its limitation in solving OOD tasks (Section 2.1).

2. We further investigate ICL’s ability to perform classification with unseen abstract labels.
Although this appears to be evidence of ICL learning OOD tasks, we find that such tasks
can be solved by retrieving similar examples from the context. This retrieval ability
can arise from training on tasks with more diverse abstract labels (Section 3.1) and only
emerges when the testing function is in distribution (Section 3.2). Additionally, we find
that pretrained Llama-3-8B (Dubey et al., 2024) and Llama-2-7B fails to learn OOD func-
tions through ICL in a synthetic word classification task (Section 3.3), further confirming
ICL’s limitations in OOD scenarios.

3. Finally, we explore the ICL’s behavior when trained on multiple tasks, and observe that
the algorithm selection mechanism broadly occurs in OOD scenarios. We theoretically
prove the low-test-error preference of ICL prediction, i.e., the ICL prediction prefers to
implement the pretraining function with lower test error (Section 4.1). We also validate our
theory with numerical experiments (4.2).

2 EXPLORING THE ICL PERFORMANCE ON OOD TASKS

2.1 GPT-2 IMPLEMENTS FUNCTIONS CLASSES SEEN DURING ICL PRETRAINING

Evaluating GPT-2 on unseen mathematical function classes. To investigate the ICL performance
on new tasks that are unseen during training, following Garg et al. (2022), we train a GPT-2 (Radford
et al., 2019) from scratch on some simple functions and evaluate it on functions different from the
training ones. Denote the Transformer model parameterized by θ as Mθ. The pretraining objective
is:

min
θ

1

T

T∑
i=1

Ef∼F [∥Mθ(Si ⊕ xi+1)− f(xi+1)∥22], (1)

where Si = [x1 ⊕ y1 ⊕ x2 ⊕ y2 ⊕ ... ⊕ xi ⊕ yi] ∈ Rd×2i is the context of length i, ⊕ denotes
concatenation. xi ∈ Rd are sampled from a standard Gaussian distribution N (0, 1) with dimension
d = 20. Let yi = f(xi) represent the labels, with F denoting the hypothesis class to which
f belongs. We train three separate GPT-2 models on three different function classes F : linear
regression, quadratic regression (element-wise square followed by linear regression), and a 2-layer
ReLU network (detailed descriptions are in Appendix C.1). We then evaluate their ICL performance
on these three tasks. Note that even when the testing and training functions are i.i.d. sampled from
the same task, the specific instances of the testing functions remain unseen during training. For
comparison, we also train models within the corresponding F with gradient descent (GD) using the
testing in-context examples (details in Appendix C.1).

Observations. We plot the test error on the three tasks in Figure 1 and observe that: 1) (an existing
finding in Garg et al. (2022)) when evaluated on the same task F as pretraining, ICL can reach
near-zero test error. 2) (our novel finding) when evaluated on a new task, ICL performs similarly to
the corresponding model of the pretraining function class optimized by GD given enough in-context
examples. This indicates that the ICL prediction implicitly implements function classes seen during
pretraining. 3) (our novel finding) The models trained on linear and quadratic regression exhibit
a double descent error curve (Nakkiran, 2019), characterized by a high error when given exact
d examples and evaluated on a new task, which has been theoretically and empirically revealed
under the noisy linear regression setting by Nakkiran (2019) and Garg et al. (2022), respectively.
This further demonstrates that ICL implements the linear regression pretraining task, as the double
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descent curve is a distinctive phenomenon unique to linear regression models. We leave an existing
theoretical result of Zhang et al. (2023a) that offers a similar insight in Appendix D.
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Figure 1: The ICL test error of Transformers trained on different function classes (solid lines) and the
performance of the models from the corresponding pretraining functions classes trained by gradient
descent (GD) using the in-context examples (dashed lines). Y-axis: test square error. X-axis: context
length. The evaluation tasks are (a) linear regression, (b) quadratic regression, and (c) 2-layer ReLU
network regression. In all sub-figures, we observe that as the test context length increases, the ICL
performance of the Transformer pretrained on a particular function class closely approaches that of
the model from this function class trained by GD.

2.2 WILL GENERALIZATION CAPABILITIES EMERGE FROM INCREASING THE NUMBER OF
TRAINING TASKS?

Recent work by Raventós et al. (2023) empirically demonstrates that when both the training and
test tasks are linear regression, and the number of training vectors exceeds a certain ”task diversity
threshold” (approximately 214 ∼ 215), ICL can generalize from a finite training set sampled biasedly
from N (0, 1) to the test distribution Ptest = N (0, 1) (see Appendix A.3 for details). We investigate
whether similar phenomena persist for test tasks with larger distributional shifts. We train models
using varying numbers of linear regression vectors and evaluate them on quadratic and ReLU neural
network regression tasks. In Figure 2, we find that training on a vast number of in-distribution (ID)
functions does not yield any improvements, providing further evidence that ICL may struggle to
achieve OOD generalization.
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Figure 2: The ICL test error of models trained on different numbers of linear regression vectors.
Even if the number of training vectors (up to 1, 000, 000 ≈ 220) surpasses the threshold (214 ∼ 215)
reported by Raventós et al. (2023), no model exhibits generalization to OOD function classes.

2.3 PRETRAINED LLMS TEND TO MAKE IN-DISTRIBUTION PREDICTIONS DURING ICL

In this section, we will demonstrate how the tendency of ICL to perform ID predictions manifests in
real-world LLMs. To this end, we designed a task involving predicting labels with letters reversed.
In some basic tasks like outputting antonyms or translating from English to French, all the letters of
the original labels are reversed (e.g., “positive”→“evitisop”). We found that in this task, a pretrained
Llama-3-8B (Dubey et al., 2024) tend to output the reversed result of the query word rather than first
predicting the correct label and then reversing it. Although both reversal tasks are uncommon,
directly outputting the reversed version of a word is relatively more common than first reasoning
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and then outputting the reversed prediction. Therefore, this result reflects to some extent that LLMs,
when performing ICL, are more inclined to make predictions within the pretraining distribution. See
Appendix C.2 for more details.
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Figure 3: The top-1 accuracy of predicting the reversed query word and predicting the reversed
target label word. The accuracy of predicting the reversed query word is higher than outputting the
reversed target, indicating ICL makes ID predictions.

3 LEARNING ABSTRACT LABELS MAY NOT BE A NEW-TASK-LEARNING
ABILITY

3.1 CLASSIFICATION TASKS WITH UNSEEN ABSTRACT LABELS

Recent works (Pan, 2023; Kossen et al., 2024) have shown that LLMs can perform classification
tasks in which the labels are “abstract symbols” with no semantic meaning. For instance, in the
SST-2 binary classification task, the labels “positive” and “negative” are substituted with abstract
terms like “foo” and “bar”, respectively. These tasks are likely not seen during pretraining. Pan
(2023) refer to this ability of ICL to perform such classification as “task learning” (TL). In this
section, we explore whether the TL ability really reflects a new-task-learning capability of ICL or if
it merely stems from the model having learned similar tasks during pretraining.

The retrieval ability can be gained by pretraining on a retrieval task with diverse input-label
mappings. The classification of abstract labels can be approached by first retrieving an example
with semantics similar to the query and then outputting the label of that example, as empirically
demonstrated in previous research (Wang et al., 2023; Yu & Ananiadou, 2024). Therefore, the
retrieval ability is a crucial prerequisite for performing abstract-label classification. We design a
retrieval task to investigate whether ICL’s retrieval capability can emerge from training on similar
tasks. Specifically, we generate a predefined word embedding E ∈ RN×d and randomly sample
xi ∈ Rd from the first 5 rows of E. Each vector xi corresponds to the Ixi -th row of E, i.e.,
xi = EIxi

. To generate the labels yi, we follow these steps: First, map the index Ixi to a new one
Iyi ∈ [N ] using the mapping rule Iyi = Ixi + s, where s ∈ N is randomly sampled. Second, we
set yi = EIyi

. All in-context examples in a sequence share the same mapping rule defined by s. To
succeed in this task, the model must retrieve the same token as the query example from the context
and output its subsequent token. All models are trained with 200,000×64 sequences, where 200,000
is the number of training steps and 64 is the batch size.

We train three models with three different ranges of s: s ∼ U(50, 150), s ∼ U(50, 250), and
s ∼ U(50, 450) and evaluate on s ∼ U(50, 150), s ∼ U(10, 20), and s ∼ U(500, 600), where U
denotes the uniform distribution. We plot the test error in Figure 4.

Observations. In Figure 4, all three models perform well when labels are in distribution (a). When
the labels are OOD, the ICL performance improves with the number of label vectors (random map-
pings) encountered during training. This demonstrates that retrieval ability can emerge from training
on diverse retrieval tasks. These findings may also offer new insights into how real-world LLMs de-
velop in-context retrieval capabilities: when autoregressive pretraining includes numerous instances
requiring the model to retrieve tokens from previous contexts, such abilities can emerge. We further
validate this finding by observing the transition of the attention scores in Appendix B.1.

The ability to perform linear regression and then retrieval can also be gained by pretraining
on a similar task. To further reproduce the emergence of the abstract label learning ability of
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Figure 4: The ICL test error of Transformers trained on the retrieval task with different numbers of
label tokens. “Eval” denotes “evaluated on”. Note that the indices of training label tokens Iyi

∈
[50, 455), so the labels in (a) are ID while (b) and (c) are OOD.

real-world LLMs, we design a task that emulates the natural language classification with abstract
labels like “foo” and “bar”. The task function is defined as follows: yi = f(xi) = EIxi

, where
Ixi

= floor(0.4 ∗ (w⊤xi)) + s, with E being the predefined word embedding and s ∈ N+ shared
in the same sequence. Here, xi, w ∼ N (0, 1) ∈ Rd. Each xi is mapped to yi according to w
and s. 1 In this task, estimating w and calculating w⊤xi simulates predicting the original label
(“positive” and “negative”) based on the semantics in the natural language task, while retrieving the
abstract labels from in-context examples that share the same floor(0.4 ∗ (w⊤xi)) as the query from
the context resembles identifying the abstract labels (“foo” and “bar”).

Again, we train three models on different ranges of mappings: s ∼ U(100, 200), s ∼ U(100, 1000),
and s ∼ U(100, 2000), and evaluate on s ∼ U(100, 200), s ∼ U(500, 600), and s ∼ U(3000, 3100).
The test error is plotted in Figure 5.
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Figure 5: The ICL test error of Transformers trained and tested on the linear regression + retrieval
task with different numbers of label tokens. “Eval” denotes “evaluated on”. Only the model trained
on the largest number of tasks exhibits generalization to unseen label tokens.

Observations. In Figure 5, the generalization ability to unseen labels also improves as the
number of labels encountered during training increases. Notably, only the model trained with
s ∼ U(100, 2000) performs well on the unseen labels. This suggests that as long as the LLM
has been exposed to sufficiently many similar tasks during training, it can effectively address ar-
bitrary OOD labels retrievable from context through ICL. Therefore, the ability of ICL to perform
abstract label classification may not serve as evidence of learning new tasks.

3.2 ABSTRACT LABEL CLASSIFICATION CAN ONLY BE ACHIEVED ON ID TASKS

A retrieval task with OOD testing functions & observations. One might question whether, once
the target labels appear in the context, ICL can generalize beyond the training function class by
retrieving the target label from the context. To investigate this, we conduct the same predict-then-
retrieval task as in Figure 5 but replace the testing functions with quadratic regression while pre-

1In our experimental setup, given a sufficiently long context (≈ 50), the label of the query is highly likely to
appear in the context, as the number of the possible classes is far less than the number of in-context examples.
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serving linear regression as the pretraining task. The results in Figure 6 show that the generalization
doesn’t improve with training on more ID functions. Combining observations from Figure 5, we
conclude that ICL can only solve classification with unseen labels over ID test function classes.
Once the underlying task function is OOD, ICL fails even if the target label appears in the con-
text. This finding highlights a limitation in improving an LLM’s performance through in-context
examples. While providing examples with shared labels may seem helpful, this approach may fail
if the underlying prediction rule is too OOD for the LLM to learn. We leave an intuitive Bayesian
interpretation of the findings in Section 3.1 and 3.2 in Appendix A.4.
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Figure 6: The ICL test error of Transformers evaluated on a quadratic regression + retrieval task.
Different colors denote models trained on the linear regression + retrieval task with different num-
bers of label tokens. “Eval” denotes “evaluation”. The model trained on s ∼ U(100, 2000) doesn’t
generalize better than the other two models.

3.3 REAL-WORLD LLMS MAY NOT NECESSARILY IN-CONTEXT LEARN NEW TASKS

Evaluating Llama-3 on an OOD synthetic word classification task. In this section, we assess
whether real-world LLMs can tackle OOD tasks through ICL. We select the pretrained Llama-3-8B
and evaluate it on a synthetic word classification task. To ensure the task is far from the pretraining
distribution, we randomly sample xi ∈ Rd from the word embedding of Llama-3-8B (denoted as
Ellama) and generate random linear mappings W ∈ Rd×C as task functions (where C = 10).
The label words are created by mapping xi to one of the ten label vectors in Ellama using W .
Experimental details are in Appendix C.4. To complete this task, the model must learn W in context.

For comparison, we also evaluate the ICL performance of Llama-3-8B on a retrieval version of this
task. Concretely, we first randomly sample C = 10 different vectors from Ellama as xi and compute
yi in the same way as the above classification task to get S = [x1,y1, ...,xC ,yC ]. Then we repeat
S 20 times to construct the input sequence S′ = [S ⊕ S ⊕ ...⊕ S], where ⊕ denotes concatenation
operation. The goal is to predict the next token given a prefix of S′. To succeed in this task, the
model has to retrieve the same token as the query token (the last xi of S′) from the context and
output its subsequent token yi. The results of these two tasks are presented in Figure 7.
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Figure 7: The ICL accuracy of Llama-
3-8B on the synthetic tasks. For the
retrieval task, we only plot the results
within the context length 200 since the
performance has saturated rapidly.

Observations. From Figure 7, we observe that the ICL
performance on the synthetic classification task is close to
random guessing (10% accuracy), while performance on
the retrieval task is significantly better. Considering that
the input and label distributions of the two tasks are very
similar (similar results also hold for Llama-2-7B in Ap-
pendix B.3), we have reason to believe that LLMs strug-
gle to learn new input-output mappings from context; in-
stead, ICL appears to be more adept at retrieval tasks. To
show that the failure in the synthetic word classification
task is mainly due to its OOD nature instead of some other
factors that make it difficult to learn, we train a GPT-2 to
perform the same task in Appendix B.2 and find that the
task can be well addressed after training.
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4 THE ALGORITHM SELECTION MECHANISM EXISTS BROADLY WHEN
EVALUATED ON OOD TASKS

Real-world LLMs are pretrained on a huge corpus that could contain massive tasks. Bai et al. (2023);
Yadlowsky et al. (2023) have empirically found that the ICL performance of Transformers trained
on multiple tasks approaches the optimal pretraining function when evaluated on one of the training
tasks. In this section, we will show that this algorithm-selection phenomenon of ICL persists even
when evaluated on OOD tasks, regardless of the distribution of the testing functions, and provide a
theoretical characterization of the algorithm-selection mechanism.

The Model pretrained on a single task vs. the model pretrained on multiple tasks. In Figure
8, we compare the performance of GPT-2 models trained on a single task—linear regression (LR),
quadratic regression (QR), 2-layer ReLU network (ReLU NN) regression—against the model trained
on all three tasks when encountering four kinds of OOD tasks. We also plot the error of a 2-layer
ReLU NN trained by GD (dashed blue line). The results are in Figure 8.
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Figure 8: The ICL performance of models trained on the individual task: linear regression (LR),
quadratic regression (QR), 2-layer ReLU network (ReLU NN) regression, and the model trained on
the mixture of the three tasks (LR+QR+ReLU NN). The evaluation functions are (a) square root,
(b) cubic, (c) linear+quadratic, and (d) 2-layer Sigmoid network (details in Appendix C.1). The
performance of the model trained on the mixed tasks is comparable to that of the model trained on
the single task that performs the best on the evaluation task.

Observations. 1) the ICL performance of the model trained on mixed tasks (LR+QR+ReLU NN)
is comparable to the performance of the model trained on a single task with the lowest test error on
the evaluation task. This suggests that ICL can automatically select the best pretraining functions
according to the downstream context. 2) ReLU NN consistently performs the best on all four OOD
test functions. Moreover, the performance of the ReLU model trained by GD aligns well with
the ICL performance of the GPT-2 trained on the same function class. This demonstrates that our
findings in Section 2.1 still hold when the transformer is trained on a mixture of multiple tasks.

4.1 THEORETICALLY REVEALING THE MECHANISM OF ALGORITHM SELECTION

In this section, we will provide theoretical insight into the working mechanism of the algorithm
selection of ICL. We find there simultaneously exist two parallel mechanisms: the Low-test-error
preference and the Similar-input-distribution preference.

A mixed Gaussian pretraining dataset of multiple tasks. In this section, we theoretically analyze
the algorithm selection mechanism of ICL on OOD tasks, based on the theoretical framework of
Lin & Lee (2024). Consider a noisy linear regression pretraining dataset with the inputs and task
weights following the mixed Gaussian distribution:

Assumption 4.1. (Mixed Gaussian pretraining data) Input distribution: P (x|µ) = N (x|µ, σ2
xI),

label distribution: P (y|x,w) = N
(
y|⟨x,w⟩, σ2

y

)
. The input means and task weights are sampled

from a mixed Gaussian distribution: P (µ,w) =
∑M

m=1 πmN (µ;µm, σ2
µI) · N

(
w;wm, σ2

wI
)
,

where
∑M

m=1 πm = 1, 0 < πm < 1 and ∥µm∥ = ∥wm∥ = 1,∀m. Define δµ =
σ2
µ

σ2
x

and δw =
σ2
w

σ2
y

.
Each training sequence ST = [x1 ⊕ y1 ⊕ ... ⊕ xT ⊕ yT ] is constructed by first sampling the input
mean and the task weight according to P (µ,w) and then sampling xi and yi according to P (x|µ)
and P (y|x,w), respectively. Denote this pretraining distribution as Ptr.
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The lemma below states that the closed-form prediction of the model trained on the pretraining
data under Assumption 4.1, given the testing context, remains a Gaussian mixture of the reweighted
pretraining task weights.

Lemma 4.2. (Corollary 2. of Lin & Lee (2024), closed-form ICL prediction of the pretrained
model) Denote the model M∗ that minimizes the risk on the pretraining data of Assumption 4.1, i.e.,
M∗ ∈ argmin 1

T

∑T−1
i=0 E

Si∼Ptr

[
∥M (Si ⊕ xi+1)− yi+1∥2

]
, then the prediction on any sequence

Si ⊕ xi+1 by M∗ is as follows: M∗ (Si ⊕ xi+1) =
〈
xi+1,

∑M
m=1 π̃mw̃m

〉
. where π̃m, and w̃m

depending on both the pretraining task and the downstream context example are given in Lemma 1
of Lin & Lee (2024).

Based on the closed-form ICL prediction, we now analyze how the downstream context affects π̃,
which determines how ICL selects the pretraining functions. First, we introduce Lemma 4.3 that
characterizes the ratio of the reweighted weight of two pretraining tasks:

Lemma 4.3. (Appendix H.1 of Lin & Lee (2024)) Consider any two different pretraining component
α and β, given a testing context ST ⊕ xT+1 and the well-pretrained model M∗, the ratio between
the weights of the two task priors π̃α/π̃β in M∗’s ICL prediction can be decomposed into two terms:
π̃α/π̃β = πα

πβ
exp (Ψµ(α, β) + Ψw(α, β)), where

Ψµ(α, β) =

(
T+1∑
i=1

∥µβ − xi∥2 −
T+1∑
i=1

∥µα − xi∥2
)
/
(
2σ2

x (1 + (T + 1)δµ)
)
. (2)

Further, assuming the testing in-context examples xi ∼ N (µ∗, τ2xI), if ∥µβ−µ∗∥2−∥µα−µ∗∥2 ≥
0 holds, then as the context length T → ∞, the first term Ψµ(α, β) → (∥µβ − µ∗∥2 − ∥µα −
µ∗∥2)/2σ2

µ ≥ 0.

However, Lin & Lee (2024) didn’t analyze how the second term Ψw(α, β) would evolve given any
downstream task, which we will demonstrate to play an important role in the algorithm selection
mechanism. In the following theorem, we prove that Ψw(α, β) converges to a non-negative value
when the pretraining function class α performs better on the downstream context than β.

Theorem 4.4. (ICL prediction favors the pretraining function with low error on the context) Given
the context ST , if the empirical risk of implementing a function of the pretraining task α is less than
that of β, i.e., 1

T

∑T
i=1 |wβxi − yi|2 − |wαxi − yi|2 ≥ 0, then, under some mild Assumptions E.2

on the distribution of ST , we have Ψw(α, β) ≥ 0.

Combining Lemma 4.3, if the downstream inputs xi, xi ∼ N (µ∗, τ2xI) and ∥µβ − µ∗∥2 − ∥µα −
µ∗∥2 ≥ 0 hold, then as T → ∞, we have π̃α/π̃β ≥ πα/πβ .

Summary of the algorithm-selection mechanism. 4.3 and Theorem 4.4 together elucidate the
algorithm-selection mechanism of ICL. According to Lemma 4.2, the ICL prediction of the model
pretrained on the mixed Gaussian data will be a reweighted combination of the pretraining task vec-
tors wi. Whether the ratio between the weights of two pretraining tasks, π̃α/π̃β , given a downstream
context, exceeds the original ratio πα/πβ depends on two factors: 1) whether the pretraining input
distribution of α is closer to the downstream input distribution than that of β; 2) whether the task
function of α induces lower test error in downstream context than that of β. When both conditions
are met, we have π̃α/π̃β ≥ πα/πβ , indicating that ICL prefers α over β in its predictions. We leave
the discussions of the advantage of our theory result in Appendix A.5 and offer an intuitive Bayesian
interpretation of the algorithm selection in Appendix A.4.

4.2 EMPIRICAL VALIDATION OF THE ALGORITHM-SELECTION MECHANISM OF ICL

Now we validate our theoretical findings regarding ICL’s algorithm-selection mechanism in OOD
tasks by conducting numerical experiments following Lin & Lee (2024). In Figure 9a and 9b,
the training data is a Gaussian mixture with four components (see Assumption 4.1), while the test
function is a two-layer ReLU network (Appendix C.1). Both the training and the test data are
in ICL format. We compute the test error of using each pretraining task function to predict the
downstream function (the first row of Figure 9a and 9b), the weights for each pretraining function
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during ICL inference (the second row), and the test error of the pretrained ICL model with the
closed form prediction derived in Lemma 4.2 (the third row). We evaluate five different noise levels
(δx = δw ∈ {1/81, 9/1, 1, 9, 81}) and consider two settings described below.
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(a) Numerical verification of the low-test-error preference
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(b) Numerical verification of the similar-input-distribution preference

Figure 9: Empirical validation of the algorithm-selection mechanism of ICL. The first rows: the test
error of the four pretraining functions. The mid rows: the weights of each pretraining function in
the closed-form downstream ICL prediction (given by Lemma 4.2). The last rows: the test error of
the pretrained ICL model with the closed form prediction derived in Lemma 4.2. Observations. 1)
In the first two rows of Figure 9a, the value of the task weight π̃i is negatively correlated with the
test error of pretraining task i. 2) In the first two rows of Figure 9b the task weights are negatively
correlated with the distance between the training and testing input distribution.

Low-test-error preference of ICL. To validate Theorem 4.4, we ensure that the distributional dis-
tances between the inputs of each training task and the test data remain consistent. Specifically, all
xi in both training and test data are sampled from N ([0, 0, 0]⊤, σ2

xI). The task weights for different
pretraining tasks vary, as detailed in the top half of Table 1. In this setup, only the test error of
the pretraining functions influences algorithm selection. From the top two rows of Figure 9a, we
can observe a clear negative correlation between the ICL performance and the test error of the task
weight. This result supports Theorem 4.4, confirming that ICL prefers the pretraining functions with
a low test error in the downstream context. Also, it’s consistent with the observations in Figure 8.

Similar-input-distribution preference of ICL. We also empirically validate Lemma 4.3 in Figure
9b. In this case, the distributional distances between the input of different pretraining tasks and
that of the test context vary: the distances of different tasks are ordered from largest to smallest
as 1 > 2 > 3 > 4, while the test errors of different pretraining functions are almost the same
(detailed setup is in the bottom half of Table 1). As shown in the bottom two rows in Figure 9b,
the task weight π̃i is positively correlated with the similarity between the training and testing input

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

distribution. This is consistent with Lemma 4.3 which demonstrates that ICL prefers to select the
pretraining function whose input distribution is close to the downstream one.

Table 1: Experiment setting of Figure 9a and Figure 9b. “PT” and “DS” are short for “pretraining”
and “downstream”, respectively.

Experiment DS inputs PT task id PT input distribution PT task functions PT-DS input distance

Figure 9a N ([0, 0, 0]⊤, σ2
xI)

1 N ([0, 0, 0]⊤, σ2
xI) N ([5, 5, 5]⊤, σ2

wI) 0
2 N ([0, 0, 0]⊤, σ2

xI) N ([−5, 5, 5]⊤, σ2
wI) 0

3 N ([0, 0, 0]⊤, σ2
xI) N ([−5, 5,−5]⊤, σ2

wI) 0
4 N ([0, 0, 0]⊤, σ2

xI) N ([−5,−5,−5]⊤, σ2
wI) 0

Figure 9b N ([−4,−4,−4]⊤, σ2
xI)

1 N ([5, 5, 5]⊤, σ2
wI) N ([1, 1, 1]⊤, σ2

wI) 15.59
2 N ([−5, 5, 5]⊤, σ2

wI) N ([1, 1, 1]⊤, σ2
wI) 12.77

3 N ([−5, 5,−5]⊤, σ2
wI) N ([1, 1, 1]⊤, σ2

wI) 9.11
4 N ([−5,−5,−5]⊤, σ2

wI) N ([1, 1, 1]⊤, σ2
wI) 1.73

4.3 VERIFYING THE ALGORITHM-SELECTION MECHANISM ON REAL-WORLD LLMS

In this section, we investigate whether real-world LLMs can perform algorithm selection through
ICL. To achieve this, we design an ambiguous sentence classification task, in which each sentence
can be classified based on one of three aspects: “sentiment”, “type”, or “location”. For each ICL
sequence, we select one of the aspects as the classification criterion and map the label words to
meaningless strings. For instance, if we choose to classify each sentence according to its sentiment,
then “positive,” “neutral,” and “negative” are mapped to “RqF,” “IwZ,” and “SdK,” respectively.
Detailed experimental setups are in Appendix C.5. We compute the top-5 accuracy of different
classification criteria. The results in Figure 10 show that as the context length increases, the LLM
finds the most appropriate criterion, exhibiting the low-test-error preference.
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Figure 10: The top-5 accuracy of using (a)“sentiment”, (b)“type”, or (c)“location” as the classifica-
tion criterion for in-context examples in a test prompt. The accuracy of using the true underlying
criterion to predict is significantly higher than the other two. This suggests that LLMs can perform
algorithm selection in natural language tasks.

5 CONCLUSION

In this work, we empirically find that Transformers struggle to generalize beyond the pretraining
function classes when given downstream in-context examples of OOD tasks. Instead, ICL tries
to seek a near-optimal solution within the pretraining function classes. However, ICL performs
well in retrieval tasks where the shift in the input-label mapping is only caused by replacing the
in-context label tokens with new ones while the underlying function distribution retains. We also
examine ICL’s performance on OOD tasks after pretraining on multiple tasks. Our theoretical and
empirical analysis reveals ICL’s preference for low-test-error functions, i.e., ICL tends to implement
pretraining function classes with low test error in the test context. This finding, alongside previous
work (Lin & Lee, 2024), highlights two key factors that determine how ICL will implement the
prediction function based on the testing context and pretraining tasks: the distance between the
training and testing input distributions, and the ability of a pretraining function to solve the test task.
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A COMPARISON WITH RELATED WORKS AND ADDITIONAL DISCUSSIONS

A.1 THE CAPABILITY OF ICL TO LEARN NEW TASKS

Besides studies indicating that ICL can learn new weights of linear regression (Garg et al., 2022;
Raventós et al., 2023; Zhang et al., 2023a; Akyürek et al., 2023), other research has found that
LLMs can tackle tasks that are unlikely to have been encountered during pretraining. For exam-
ple, Pan (2023) showed that LLMs perform better than random guessing on classification tasks with
meaningless labels. Kossen et al. (2024) demonstrate that ICL can identify authorship based on writ-
ing style in private communication messages not included in the pretraining corpus. Additionally,
Vacareanu et al. (2024) found that large-scale LLMs can learn various linear and non-linear func-
tions from context. We argue that these findings do not contradict our work. While the LLMs may
not have seen exactly the same tasks, there is no guarantee that they haven’t encountered tasks from
a similar distribution in their pretraining corpus. For instance, the LLMs could have been pretrained
on a corpus containing authorship identification tasks or on statistical data encompassing different
functions. Our work does not claim that ICL cannot generalize to new task instances; rather, it
highlights the limitation in generalizing to an unseen input-label distribution. Additionally, Yad-
lowsky et al. (2023) finds that ICL struggles to generalize to testing function classes that are unseen
during training (e.g., convex combinations or extreme versions of the pretraining functions). They
didn’t delve into how ICL behaves on OOD data, while we reveal that it implements the pretraining
functions.

A.2 THE ALGORITHM-SELECTION MECHANISM OF ICL

Recent works by Bai et al. (2023); Wang et al. (2024) have uncovered the algorithm selection phe-
nomenon, demonstrating that Transformers pretrained on both linear regression and classification
tasks perform well when presented with the context of either task during ICL inference. Theo-
retically, they show that a Transformer with specific parameters can achieve algorithm selection.
Yadlowsky et al. (2023) empirically found that ICL selects the optimal pretraining function class
after observing in-context examples from a function class present in the pretraining data mixture.
However, the algorithm selection experiments in these studies are limited to scenarios where the test
functions are among the training functions. In this work, we empirically and theoretically demon-
strate that the algorithm selection phenomenon broadly occurs when given downstream context from
arbitrary function classes. To the best of our knowledge, we are the first to reveal the factors that
determine the selection process.

A.3 THE BAYESIAN-OPTIMAL PERSPECTIVE FOR UNDERSTANDING ICL

Many studies have found that ICL makes Bayes-optimal predictions (Xie et al., 2022; Wies et al.,
2024; Zhang et al., 2023b; Lin & Lee, 2024). However, these works have certain limitations that
may reduce their practical applicability in predicting ICL behavior in general scenarios. 1) Limited
empirical verification. Wies et al. (2024) and Zhang et al. (2023b) lack empirical verification of
their theory on real deep transformer models; 2) Limited theoretical settings: in-distribution tasks.
Wies et al. (2024) assumes the downstream tasks are components of the pretraining distribution; Xie
et al. (2022) assumes that the latent concept of the test task θ∗ is within the pretraining task set Θ; In
Lin & Lee (2024), the training and testing tasks are all linear regression with weights sampled from
Gaussian distribution. 3) Limited implications of the theoretical results: although Xie et al. (2022);
Zhang et al. (2023b) prove that ICL can infer a task concept θ based on the downstream test context
Stest, they don’t reveal how Stest concretely affects the posterior distribution P (θ|Stest) of the latent
task concept θ inferred by the model that determines the downstream ICL prediction, especially
when the true downstream task θ∗ is OOD. Our work verifies and extends previous findings to a more
general setting by using real deep Transformers and evaluating ICL on OOD tasks that significantly
differ from the training tasks. For the first time, we also reveal how the interaction between the
downstream distribution and the pretraining distribution affects ICL predictions (see Section 4).

In contrast, Raventós et al. (2023) claim that ICL can exhibit non-Bayesian properties. They empir-
ically demonstrate that when given sufficiently diverse pretraining tasks (linear regression vectors),
ICL can outperform the Bayesian estimator on a new test distribution. However, the distributional
shift in their setup might not be substantial enough to show that ICL can truly adapt to a new down-
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stream distribution, which is considered to be “non-Bayesian” by Raventós et al. (2023). In their
setting, both the test and training vectors are sampled from the standard Gaussian distribution, and
the only source of ”distributional shift” comes from the finite size of the training set, which can only
partially reflect the test distribution. Our work refutes their findings by showing that when the test
distribution is significantly shifted, increasing the number of ID tasks may not help ICL generalize
to it.

A.4 THE BAYESIAN INTERPRETATION FOR OUR EMPIRICAL FINDINGS

Although current Bayesian theories for ICL are too vacuous to predict the performance of deep
Transformers on real OOD tasks (see A.3), the Bayesian framework shows promise as a potential
lens for interpreting our empirical findings. Here we provide some intuitive interpretations for the
findings in Section 2, 3, and 4 from a Bayesian perspective.

Consider the predicted distribution pθ(yT |x1:T ) given by a pretrained model θ. If we assume that
ICL makes Bayesian-like predictions over the test context as (Xie et al., 2022; Wies et al., 2024;
Zhang et al., 2023b; Lin & Lee, 2024) suggested, then the model will first infer a task concept ϕ
based on the given context x1:T−1 and predict yT using ϕ and x1:T , i.e.,

pθ(y|x1:T ) = pθ(y|x1:T , ϕ)p(ϕ|x1:T−1) (3)

To explain the results in Section 2 and Section 4: since the true downstream task ϕ∗ is unseen dur-
ing pretraining, the inferred posterior distribution p(ϕ|x1 : T − 1) assigns probability mass only to
tasks ϕ within the pretraining distribution that maximize pθ(y|x1 : T ). This accounts for why ICL
can only make in-distribution predictions, as shown in Section 2, and why ICL prefers pretraining
priors with low test error and input distributions similar to those in the test context. Once a task ϕ
seen during pretraining is identified as best fitting the test context x1 : T − 1, the model refines its
predictions based on this context. This refinement corresponds to the factor pθ(y|x1:T , ϕ), explain-
ing how ICL optimizes predictions within its pretraining distribution.

In Section 3, the underlying task concept ϕ acts as a similarity metric that allows the model to retrieve
examples from the context that align with the query. Training on more abstract labels improves the
model’s ability to estimate a more accurate ϕ. When the test task is in-distribution (ID), even with
out-of-distribution (OOD) labels, ICL can succeed by leveraging the learned ϕ to predict the true
label. It accomplishes this by retrieving an example xi from the context that is similar to the query
under the ϕ metric. However, when the underlying task ϕ∗ is OOD, the model fails because the
learned similarity metric no longer applies effectively.

A.5 DISCUSSION OF THE SETUP OF OUR THEORY

Notably, our theoretical result in Section 4.1 doesn’t assume a Transformer architecture, while pre-
vious theoretical works of understanding ICL often adopt Transformers with oversimplified assump-
tions on their parameters or structures (Ahn et al., 2023; Zhang et al., 2023a; Huang et al., 2023;
Collins et al., 2024). Additionally, our analysis shows that models pretrained on the ICL tasks can
implement algorithm selection during ICL inference following Lin & Lee (2024). In contrast, prior
work on algorithm selection (Bai et al., 2023) only shows that a specific set of parameters in a sim-
plified ReLU Transformer can enable algorithm selection. However, the parameter construction is
complex and somewhat tricky, and there is no theoretical or experimental guarantee that Transform-
ers exhibiting algorithm selection will necessarily implement these parameters.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 UNDERSTANDING THE EFFECT OF TRAINING ON MORE DIVERSE RETRIEVAL TASKS
FROM THE ATTENTION SCORES

To further validate that the retrieval ability is evoked after trained on more random mappings, follow-
ing Crosbie & Shutova (2024), we construct another retrieval task and visualize the prefix matching
score of all attention heads of the three pretrained models in Figure 11. The prefix matching score
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is calculated by averaging the attention values from each token ti to the tokens after the same token
as ti in earlier positions in the sequence, which correlates positively with the retrieval performance
(Singh et al., 2024). In Figure 11, we observe that the model best at the retrieval task in Figure 4
exhibits more heads with high matching scores, further demonstrating it gains the retrieval ability
by training on more retrieval sequences.
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Figure 11: The matching score of all attention heads of models trained on the retrieval task. “PT”
denotes “pretrained on”. Each subfigure corresponds to a different pretrained model. The model of
(c) exhibits more heads with high matching scores, which is also the most performant model in the
retrieval task in Figure 4.

B.2 THE SYNTHETIC WORD CLASSIFICATION IS NOT THAT HARD TO SOLVE IF IT’S IN
DISTRIBUTION

To show the failure in the synthetic word classification in Section 3.3 is mainly due to its OOD nature
rather than it’s intrinsically too hard to learn, we train a GPT-2 to perform the same task as in Section
3.3. In this task, the xi and yi are generated in the same way as Section 3.3. The only modification
is that we use a smaller predefined vector embedding E′ ∈ R10000×20 (Ellama ∈ R32000×4096 in
the experiment in Section 3.3). The results in Figure 12 show that when W has been encountered
during pretraining, ICL can well address this task.

B.3 EVALUATING THE SYNTHETIC OOD CLASSIFICATION TASK ON LLAMA-2-7B

We also evaluate Llama-2-7B on the same OOD word classification task and the retrieval task as in
Section 3.3. Figure 13 shows the same observations as in Figure 7 that the LLM can well address
the retrieval task but fails to learn the OOD function W . In this experiment, we set the length of the
repeating sequence to be 10. We can observe that the accuracy of retrieval rapidly increases after
seeing 10 in-context examples. This demonstrates that learning novel functions from the context is
challenging for real-world pretrained LLMs, but the LLMs are good at retrieving.
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Figure 12: Test error of the GPT-2 trained and evaluated on the same synthetic OOD word classifi-
cation task as in Section 3.3.
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Figure 13: The ICL accuracy of Llama-2-7B on the synthetic tasks. (a) the synthetic word classifi-
cation task. (b) the synthetic word retrieval task.

C EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL DETAILS IN SECTION 2.1 AND SECTION 4.2

Definitions of the function classes. The function classes in Figure 1 and Figure 8 are:

• Linear regression: yi = w⊤xi, where w, xi ∈ Rd and w, xi ∼ N (0, 1).

• Quadratic regression: yi = w⊤(xi)
2, where w, xi ∈ Rd and w, xi ∼ N (0, 1), (xi)

2

denotes the element-wise square of xi.

• 2-layer ReLU network regression: yi = w⊤
1 ReLU(w2xi), where w1 ∈ Rd′

, w2 ∈ Rd′×d,
and xi ∈ Rd. w1, w2, xi ∼ N (0, 1).

• Square root linear regression: yi = w⊤√xi, where w, xi ∈ Rd and w, xi ∼ N (0, 1),
(xi)

2 denotes the element-wise square root of xi.

• Cubic linear regression: yi = w⊤(xi)
3, where w, xi ∈ Rd and w, xi ∼ N (0, 1), (xi)

2

denotes the element-wise cube of xi.

• Linear+quadratic regression: yi = w⊤
1 (xi)

2 + w⊤
2 xi, where w1, w2, xi ∈ Rd and w1,

w2, xi ∼ N (0, 1).

• 2-layer Sigmoid network: yi = w⊤
1 Sigmoid(w2xi), where w1 ∈ Rd′

, w2 ∈ Rd′×d, and
xi ∈ Rd. w1, w2, xi ∼ N (0, 1).

Baseline models in Figure 1. The models of each pretraining hypothesis class are implemented
by training a neural network that yields functions of that hypothesis class. For example, a linear
regression weight w can be implemented by a single linear layer. The models are optimized using
SGD with learning rate 1e-3 for 1000 steps.

C.2 EXPERIMENTAL DETAILS FOR SECTION 2.3

For the reversed-label experiment, we choose four tasks: Antonym, Capital-country, English-
French, and English-German. The original datasets are adopted from Todd et al. (2024). The top-1
accuracy is computed as follows: compute the top-1 accuracy for each token predicted by the model,
based on the token length of the ground-truth label word. For each context length, we compute the
average accuracy over 128 test examples.

C.3 EXPERIMENTAL DETAILS FOR SECTION 3.1

We now provide additional details regarding the experiments of Figure 11 . Following Crosbie
& Shutova (2024), we generated a dataset consisting of 100 sequences of random tokens, each
containing repeated sub-sequences. The task is to predict the next token that follows the last token
in each sequence. This task can only be completed by retrieving the last token from the context and
predicting its subsequent token.
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C.4 EXPERIMENTAL DETAILS FOR SECTION 3.3

We uniformly sample 1000 word vectors xi ∈ Rd from the word embedding E ∈ RN×d of the
pretrained Llama-3-8B, where N = 128256 and d = 4096. Then we sample a task weight W ∈
Rd′×C from standard Gaussian distribution that only takes the first d′ dimensions of xi (denoted as
xi[: d

′]) to compute a probability distribution over C classes: pi = xi[: d
′]⊤W ∈ RC . Next, we set

the label vectors yi = Eargmaxj pi[j]+s ∈ Rd, where s = 10000 is a offset. We set d′ = 30 ≪ d =
4096 to reduce the complexity of the task. Hence, xi are classified into C labels words E[s : s+C].
The predicted token of xi is computed as: argmaxj p̂i[j], j ∈ {s, s + 1, ..., s + C − 1}, where p̂i
is the output of the last linear layer of Llama-3-8B given xi.

C.5 EXPERIMENTAL DETAILS FOR SECTION 4.3

In this section, we present some details about the setups for the ambiguous classification task. The
label mapping rule is presented in Table 2. For each context length, we compute the average accuracy
over 128 test examples.

Table 2: Experiment setting of Figure 9a and Figure 9b. “PT” and “DS” are short for “pretraining”
and “downstream”, respectively.

Classification criterion Original labels Labels presented in the context

sentiment
“positive” “RqF”
“neutral” “IwZ”

“negative” “SdK”

type
“science” “RqF”
“sports” “IwZ”
“arts” “SdK”

location
“Asia” “RqF”

“Europe” “IwZ”
“Africa” “SdK”

Prompt examples. Here we present some in-context examples of the input prompt of using different
classification criteria.

Using “sentiment” as the classification criterion.

Q: The groundbreaking discovery made by Japanese scientists has revolutionized renewable
energy.
A: RqF # Original label: “positive”

Q: A chess championship occurred in Russia, featuring players from around the continent.
A: IwZ # Original label: “neutral”

Using “type” as the classification criterion.

Q: A regional basketball league was formed in Kenya to promote the sport locally.
A: IwZ # Original label: “sports”

Q: The breathtaking architectural exhibition in Dubai left visitors absolutely awestruck.
A: SdK # Original label: “arts”
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Using “location” as the classification criterion.

Q: A scientific paper from Finland explores new methodologies in data analysis.
A: IwZ # Original label: “Europe”

Q: An astronomy workshop was conducted in Ethiopia for students interested in space.
A: SdK # Original label: “Africa”

Accuracy computation. For a given label, the method to calculate top-5 accuracy is as follows:
compute the top-5 accuracy for each token predicted by the model, based on the token length of
the ground-truth label word. For a classification criterion other than the one selected in the current
sequence, to verify whether the model’s prediction distribution across all test samples approaches
the label distribution under that criterion, we select the permutation among all possible mappings
between original labels and meaningless strings that yields the highest model prediction accuracy to
compute the accuracy.

D EXISTING THEORETICAL EVIDENCE SUPPORTING THAT ICL MAKES ID
PREDICTIONS

One recent work (Zhang et al., 2023a) theoretically proved that a one-layer linear self-attention
model (LSA, defined in Appendix D) pretrained on a linear regression task will still implement
the linear predictor given downstream in-context examples of arbitrary new function classes, under
some assumptions on the initialization of the Transformer weight matrices. We restate the Theorem
4.2 of Zhang et al. (2023a) as Lemma D.1 below:
Lemma D.1. (Theorem 4.2 of Zhang et al. (2023a), informal) Let D be a distribution over (x, y) ∈
Rd × R, whose marginal distribution on x is Dx = N (0,Λ). Assume the test prompt is of the form

P = (x1, y1, . . . ,xT , yT ,xquery ), where (xi, yi) , (xquery , yquery )
i.i.d.∼ D. The prediction risk on

the test query yquery of an arbitrary task satisfies:

E (ŷquery − yquery )
2
= min

w∈Rd
E (⟨w,xquery ⟩ − yquery )

2︸ ︷︷ ︸
Error of best linear predictor

+const,

where const is a constant depending on the downstream context, and the expectation is over
(xi, yi) , (xquery , yquery )

i.i.d.∼ D.

Lemma D.1 serves as a shred of theoretical evidence that ICL can just implement the pretraining
function class, while the role of the context examples is to optimize the model within the pretraining
hypothesis space.

Below, we provide the necessary details of the theoretical setting of Zhang et al. (2023a).

The linear self-attention (LSA) model considered in the Theorem 4.2 of Zhang et al. (2023a)
(Lemma D.1) is defined as follows:

fLSA(E; θ) = E +WPV E · E
⊤WKQE

N
, (4)

where E is the input embedding defined as follows:

E = E(P ) =

(
x1 x2 · · · xN xquery
y1 y2 · · · yN 0

)
∈ R(d+1)×(N+1). (5)

WPV is obtained by merging the projection and value matrices into a single matrix, and WKQ is
attained by merging the query and key matrices into a single matrix. N is the context length.

Now we present the assumption on the attention weights of the linear-attention model in Lemma
D.1.
Assumption D.2. (Assumption 3.3 in Zhang et al. (2023a), initialization). Let σ > 0 be a parameter,
and let Θ ∈ Rd×d be any matrix satisfying

∥∥ΘΘ⊤
∥∥
F
= 1 and ΘΛ ̸= 0d×d. We assume
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WPV (0) = σ

(
0d×d 0d
0⊤d 1

)
, WKQ(0) = σ

(
ΘΘ⊤ 0d
0⊤d 0

)

The training objective is to minimize the population risk of the linear regression task:

L(θ) = lim
B→∞

L̂(θ) =
1

2
Ewτ ,xτ,1,··· ,xτ,N ,xτ, query

[
(ŷτ, query − ⟨wτ ,xτ, query ⟩)2

]
, (6)

where wτ ∼ N (0, Id), xτ,i, xτ,query ∼ N (0,Λ), ŷτ, query is the prediction of the LSA model.

E PROOF OF THEOREM 4.4

We restate Theorem 4.4 as the Theorem E.1 below, and present the assumption it depends on.

Theorem E.1. (ICL prediction favors the pretraining function with low error on the context) Given
the context Sk, if the empirical risk of implementing a function of the pretraining task α is less than
that of β, i.e., 1

T

∑T
t=1 |wβxi − yi|2 − |wαxi − yi|2 ≥ 0, then, under some mild Assumptions E.2,

we have Ψw(α, β) ≥ 0.

Combining Lemma 4.3, if the downstream inputs xi, xi ∼ N (µ∗, τ2xI) and ∥µβ − µ∗∥2 − ∥µα −
µ∗∥2 ≥ 0 hold, then as T → ∞, we have π̃α/π̃β ≥ πα/πβ .

Assumption E.2. (Assumption on the distribution of the downstream context examples.) As-
sume that: the minimum eigenvalue of the covariance matrix of any in-context example xi

satisfies λmin(xix
⊤
i ) ≥ 1; (I + TδwI)(I + δw

∑T
i=1 xix

⊤
i )

−1 = I; 1
T

∑T
i=1 2(wα −

wβ)
⊤xiyi

1
T

∑T
j=1

(
x⊤
j xi

yj

yi
− x⊤

i xi

)
≥ 0

Proof. According to Lemma 1 of Lin & Lee (2024),

r(α, β) =
π̃α

π̃β
=

παC0c
µ
αc

w
α

πβC0c
µ
βc

w
β

=
πα

πβ
exp (Ψµ(α, β) + Ψw(α, β)) . (7)

In the Appendix H.1 of Lin & Lee (2024), they have proved that when the context length T → ∞,
under the first condition in Assumption E.2, limT→∞ Ψµ(α, β) =≥ 0.

Now we prove that when the empirical risk on the in-context example of pretraining task function α
is no more than that of β, the second term Ψw(α, β) ≥ 0.
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Ψw(α, β)

= log

exp

(
−

∥wα∥2−∥wα+Tδww∥2
(I+TδwΣw)−1

2σ2
w

)
exp

(
−

∥wβ∥2−∥wβ+Tδww∥2

(I+TδwΣ̄w)−1

2σ2
w

)


=
∥wβ∥2 − ∥wβ + Tδww∥2(I+TδwΣw)

−1

2σ2
w

−
∥wα∥2 − ∥wα + Tδww∥2(I+TδwΣw)

−1

2σ2
w

=

∥wβ∥2 −
∥∥∥wβ + δw

∑T
i=1 xiyi

∥∥∥2
(I+TδwΣw)

−1

2σ2
w

−
∥wα∥2 −

∥∥∥wα + δw
∑T

i=1 xiyi

∥∥∥2
(I+TδwΣw)

−1

2σ2
w

=

∥wβ∥2 −
∥∥∥(wβ −

∑T
i=1 xiyi

T ) + (I + TIδw)
∑T

i=1 xiyi

T

∥∥∥2
(I+TδwΣw)

−1

2σ2
w

−
∥wα∥2 −

∥∥∥(wα −
∑T

i=1 xiyi

T ) + (I + TIδw)
∑T

i=1 xiyi

T

∥∥∥2
(I+TδwΣw)

−1

2σ2
w

(a)
= ∥wβ −

∑T
i=1 xiyi
T

∥2
I−(I+TδwΣw)

−1 − ∥wα −
∑T

i=1 xiyi
T

∥2
I−(I+TδwΣw)

−1

(b)
= ∥wβ −

∑T
i=1 xiyi
T

∥2
δw

∑T
i=1

xix
⊤
i

1+δw
∑T

i=1
x⊤
i

xi

− ∥wα −
∑T

i=1 xiyi
T

∥2
δw

∑T
i=1

xix
⊤
i

1+δw
∑T

i=1
x⊤
i

xi

(8)
where equation (a) is due to the third condition in Assumption E.2, equation (b) is by applying the
Sherman–Morrison formula. Since δw

1+δw
∑T

i=1

≥ 0, to prove that Ψw(α, β) ≥ 0, we only need to
show that

∥wβ −
∑T

i=1 xiyi
T

∥2∑T
i=1 xix⊤

i
− ∥wα −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i
≥ 0. (9)

Further, we can derive that the term 1
T

∑T
i=1 ∥wβ − xiyi∥2xixT

i
− ∥wα − xiyi∥2xixT

i
below is non-

negative by using the condition 2 in Assumption E.2:

1

T

T∑
i=1

∥wβ − xiyi∥2xixT
i
− ∥wα − xiyi∥2xixT

i

=
1

T

T∑
i=1

(wβ − xiyi)
⊤xix

T
i (wβ − xiyi)− (wα − xiyi)

⊤xix
T
i (wα − xiyi)

=
1

T

T∑
i=1

(wβ +wα − 2xiyi)
⊤xix

T
i (wβ −wα)

≥
(c)

1

T

T∑
i=1

(wβ +wα − 2xiyi)
⊤(wβ −wα)

=
1

T

T∑
i=1

∥w⊤
β xi − yi∥2 − ∥w⊤

αxi − yi∥2 ≥ 0
(d)

(10)

where the inequality (c) holds since according to the condition 2 in Assumption E.2, xix
T
i − I is

positive semi-definite, and the inequality (d) holds since the population downstream risk of α is
lower than β. Therefore, to prove inequality (9), we just need to prove that the l.h.s. of inequality
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(9) multiplying 1
T is not less than 1

T

∑T
i=1 ∥wβ − xiyi∥2xixT

i
in Equation (10):

1

T

(
∥wβ −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i
− ∥wα −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i

)
≥ 1

T

T∑
i=1

∥wβ−xiyi∥2xixT
i
−∥wα−xiyi∥2xixT

i
.

(11)

First, let’s simplify the l.h.s of inequality (11):

1

T

(
∥wβ −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i
− ∥wα −

∑T
i=1 xiyi
T

∥2∑T
i=1 xix⊤

i

)

=
1

T

T∑
i=1

(wβ −
∑T

j=1 xjyj

T
)⊤xix

⊤
i (wβ −

∑T
j=1 xjyj

T
)− (wα −

∑T
j=1 xjyj

T
)⊤xix

⊤
i (wα −

∑T
j=1 xjyj

T
)

=
1

T

T∑
i=1

∥w⊤
β xi −

1

T

T∑
j=1

x⊤
j xiyj∥2 − ∥w⊤

αxi −
1

T

T∑
j=1

x⊤
j xiyj∥2

=
1

T

T∑
i=1

(w⊤
β xi)

2 − (w⊤
αxi)

2 + 2(wα −wβ)
⊤xi

1

T

T∑
j=1

x⊤
j xiyj .

(12)

Then we simplify the r.h.s. of inequality (11):

1

T

T∑
i=1

∥wβ − xiyi∥2xixT
i
− ∥wα − xiyi∥2xixT

i

=
1

T

T∑
i=1

(w⊤
β xi)

2 − (w⊤
αxi)

2 + 2(wα −wβ)
⊤xix

⊤
i xiyi

(13)

Subtracting Equation (13) from Equation (12), we get

1

T

T∑
i=1

2(wα −wβ)
⊤xi

1

T

T∑
j=1

x⊤
j xiyj − 2(wα −wβ)

⊤xix
⊤
i xiyi

=
1

T

T∑
i=1

2(wα −wβ)
⊤xiyi

1

T

T∑
j=1

(
x⊤
j xi

yj
yi

− x⊤
i xi

)
.

(14)

applying the condition 4 in Assumption E.2, we get the final conclusion.

F LIMITATIONS

1) Most experimental results are based on a GPT-2 model pretrained on a limited set of mathematical
functions. It is challenging to assess whether modern large-scale language models like GPT-4 and
Claude 3 Opus face similar difficulties in generalizing beyond their pretraining corpus, given the
vast range of tasks and content in their pretraining data. Nevertheless, our findings highlight the
limitations of ICL in solving challenging tasks for smaller models like Llama-2-7B and Llama-
3-8B. 2) The models are trained on ICL data, while real-world LLMs are trained autoregressively.
However, the ICL pretraining objective is also next-token prediction, so there is no clear gap between
these two pretraining objectives.

G REPRODUCIBILITY

In the main text and Appendix C, we’ve stated all setups for reproducing our experimental results.
For the theoretical part, we’ve included the assumptions (Assumption E.2) and proofs in Appendix
E.
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