
Under review as a conference paper at ICLR 2021

COVERAGE AS A PRINCIPLE FOR DISCOVERING
TRANSFERABLE BEHAVIOR IN REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing agents that acquire knowledge autonomously and use it to solve new
tasks efficiently is an important challenge in reinforcement learning. Unsupervised
learning provides a useful paradigm for autonomous acquisition of task-agnostic
knowledge. In supervised settings, representations discovered through unsuper-
vised pre-training offer important benefits when transferred to downstream tasks.
Given the nature of the reinforcement learning problem, we explore how to transfer
knowledge through behavior instead of representations. The behavior of pre-trained
policies may be used for solving the task at hand (exploitation), as well as for
collecting useful data to solve the problem (exploration). We argue that pre-training
policies to maximize coverage will result in behavior that is useful for both strate-
gies. When using these policies for both exploitation and exploration, our agents
discover solutions that lead to larger returns. The largest gains are generally ob-
served in domains requiring structured exploration, including settings where the
behavior of the pre-trained policies is misaligned with the downstream task.

1 INTRODUCTION

Unsupervised representation learning techniques have led to unprecedented results in domains like
computer vision (Hénaff et al., 2019; He et al., 2019) and natural language processing (Devlin et al.,
2019; Radford et al., 2019). These methods are commonly composed of two stages – an initial
unsupervised phase, followed by supervised fine-tuning on downstream tasks. The self-supervised
nature of the learning objective allows to leverage large collections of unlabelled data in the first
stage. This produces models that extract task-agnostic features that are well suited for transfer
to downstream tasks. In reinforcement learning (RL), auxiliary representation learning objectives
provide denser signals that result in data efficiency gains (Jaderberg et al., 2017) and even bridge
the gap between learning from true state and pixel observations (Laskin et al., 2020). However, RL
applications have not yet seen the advent of the two-stage setting where task-agnostic pre-training is
followed by efficient transfer to downstream tasks. We argue that there are two reasons explaining
this lag with respect to their supervised counterparts. First, these methods traditionally focus on
transferring representations (Lesort et al., 2018). While this is enough in supervised scenarios, we
argue that leveraging pre-trained behavior is far more important in RL domains requiring structured
exploration. Second, what type of self-supervised objectives enable the acquisition of transferable,
task-agnostic knowledge is still an open question. Defining these objectives in the RL setting is
complex, as they should account for the fact that the the distribution of the input data will be defined
by the behavior of the agent.

Transfer in deep learning is often performed through parameter initialization followed by fine-tuning.
The most widespread procedure consists in initializing all weights in the neural network using those
from the pre-trained model, and then adding an output layer with random parameters (Girshick
et al., 2014; Devlin et al., 2019). Depending on the amount of available data, pre-trained parameters
can either be fine-tuned or kept fixed. This builds on the intuition that the pre-trained model will
map inputs to a feature space where the downstream task is easy to perform. In the RL setting,
this procedure will completely dismiss the pre-trained policy and fall back to a random one when
collecting experience. Given that complex RL problems require structured and temporally-extended
behaviors, we argue that representation alone is not enough for efficient transfer in challenging

1

Under review as a conference paper at ICLR 2021

0 1 B 2 B 3 B 4 B 5 B
environment steps

0

2 k

4 k

6 k

8 k

10 k

12 k

14 k
montezuma_revenge

0 1 B 2 B 3 B 4 B 5 B
environment steps

0

10 k

20 k

30 k

40 k

50 k

60 k
space_invaders

NGU

no transfer
behavior
behavior + representation

representation
fine-tuning

Figure 1: Comparison of transfer strategies on Montezuma’s Revenge (hard exploration) and Space In-
vaders (dense reward) from a task-agnostic policy pre-trained with NGU (Puigdomènech Badia et al.,
2020b). Transferring representations provides a significant boost on dense reward games, but it
does not seem to help in hard exploration ones. Leveraging the behavior of the pre-trained policy
provides important gains in hard exploration problems when compared to standard fine-tuning and is
complementary to transferring representations. We refer the reader to Appendix F for details on the
network architecture.

domains. Pre-trained representations do indeed provide data efficiency gains in domains with dense
reward signals (Finn et al., 2017; Yarats et al., 2019; Stooke et al., 2020a), but our experiments show
that the standard fine-tuning procedure falls short in hard exploration problems (c.f. Figure 1). We
observe this limitation even when fine-tuning the pre-trained policy, which is aligned with findings
from previous works (Finn et al., 2017). Learning in the downstream task can lead to catastrophically
forgetting the pre-trained policy, something that depends on many difficult-to-measure factors such as
the similarity between the tasks. We address the problem of leveraging arbitrary pre-trained policies
when solving downstream tasks, a requirement towards enabling efficient transfer in RL.

Defining unsupervised RL objectives remains an open problem, and existing solutions are often
influenced by how the acquired knowledge will be used for solving downstream tasks. Model-
based approaches can learn world models from unsupervised interaction (Ha & Schmidhuber, 2018).
However, the diversity of the training data will impact the accuracy of the model (Sekar et al.,
2020) and deploying this type of approach in visually complex domains like Atari remains an
open problem (Hafner et al., 2019). Unsupervised RL has also been explored through the lens of
empowerment (Salge et al., 2014; Mohamed & Rezende, 2015), which studies agents that aim to
discover intrinsic options (Gregor et al., 2016; Eysenbach et al., 2019). While these options can be
leveraged by hierarchical agents (Florensa et al., 2017) or integrated within the universal successor
features framework (Barreto et al., 2017; 2018; Borsa et al., 2019; Hansen et al., 2020), their lack of
coverage generally limits their applicability to complex downstream tasks (Campos et al., 2020). We
argue that maximizing coverage is a good objective for task-agnostic RL, as agents that succeed at this
task will need to develop complex behaviors in order to efficiently explore the environment (Kearns
& Singh, 2002). This problem can be formulated as that of finding policies that induce maximally
entropic state distributions, which might become extremely inefficient in high-dimensional state
spaces without proper priors (Hazan et al., 2019; Lee et al., 2019). In practice, exploration is often
encouraged through intrinsic curiosity signals that incorporate priors in order to quantify how different
the current state is from those already visited (Bellemare et al., 2016; Houthooft et al., 2016; Ostrovski
et al., 2017; Puigdomènech Badia et al., 2020b). Agents that maximize these novelty-seeking signals
have been shown to discover useful behaviors in unsupervised settings (Pathak et al., 2017; Burda
et al., 2018a), but little research has been conducted towards leveraging the acquired knowledge
once the agent is exposed to extrinsic reward. We show that coverage-seeking objectives are a good
proxy for acquiring knowledge in task-agnostic settings, as leveraging the behaviors discovered in an
unsupervised pre-training stage provides important gains when solving downstream tasks.

2

Under review as a conference paper at ICLR 2021

Our contributions can be summarized as follows. (1) We study how to transfer knowledge in RL
through behavior by re-using pre-trained policies, an approach that is complementary to re-using
representations. We argue that pre-trained behavior can be used for both exploitation and exploration,
and present techniques to achieve both goals. (2) We propose coverage as a principle for discovering
behavior that is suitable for both exploitation and exploration. While coverage is naturally aligned
with exploration, we show that this objective will lead to the discovery of behavior that is useful
for exploitation as well. (3) We propose Coverage Pre-training for Transfer (CPT), a method that
implements the aforementioned hypotheses, and provide extensive experimental evaluation to support
them. Our results show that leveraging the behavior of policies pre-trained to maximize coverage
provides important benefits when solving downstream tasks. CPT obtains the largest gains in hard
exploration games, where it almost doubles the median human normalized score achieved by our
strongest baseline. Importantly, these benefits are observed even when the pre-trained policies are
misaligned with the task being solved, confirming that the benefits do not come from a fortuitous
alignment between our pre-training objective and the task reward. Furthermore, we show that CPT is
able to leverage a single task-agnostic policy to solve multiple tasks in the same environment.

2 REINFORCEMENT LEARNING WITH UNSUPERVISED PRE-TRAINING

Unsupervised stage Downstream task

Figure 2: Intuition behind CPT on a simple maze, where the
agent needs to collect treasure chests (positive reward) while
avoiding skulls (negative reward). Trajectories that a policy
πp trained to maximize coverage could produce are depicted
in orange. Left: while πp ignores some of the rewarding
objects, many learning opportunities appear when following
it during training. Right: combining primitive actions (red)
with actions from πp (orange) side-steps the need to learn
behavior that is already available through πp when solving
downstream tasks.

We follow a similar setup to that pro-
posed by Hansen et al. (2020). In
an initial pre-training stage, agents
are allowed as many interactions with
the environment as needed as long as
they are not exposed to task-specific
rewards. Rewards are reinstated in
a second stage, where the knowl-
edge acquired during unsupervised
pre-training should be leveraged in or-
der to enable efficient learning. This
is analogous to the evaluation setting
for unsupervised learning methods,
where pre-training on classification
benchmarks with labels removed is
evaluated after fine-tuning on small
sets of annotated examples.

The two-stage setup introduces two
main challenges: defining pretext
tasks in the absence of reward, and
efficiently leveraging knowledge once
rewards are reinstated. Our proposed
method, Coverage Pre-training for
Transfer (CPT), relies on coverage maximization as a pretext task for task-agnostic pre-training in
order to produce policies whose behavior can be leveraged for both exploitation and exploration when
solving downstream tasks in the same environment. Figure 2 provides intuition about the potential
benefits of CPT.

3 LEVERAGING PRE-TRAINED POLICIES

Transfer in supervised domains often exploits the fact that related tasks might be solved using similar
representations. This practice deals with the data inefficiency of training large neural networks with
stochastic gradient descent. However, there is an additional source of data inefficiency when training
RL agents: unstructured exploration. If the agent fails at discovering reward while exploring, it will
struggle even when fitting simple function approximators on top of the true state of the MDP. These
two strategies are complementary, as they address different sources of inefficiency, which motivates
the study of techniques for leveraging pre-trained behavior (i.e. policies).

3

Under review as a conference paper at ICLR 2021

Our approach relies on off-policy learning methods in order to leverage arbitrary pre-trained policies.
We make use of the mapping from observations to actions of such policies (i.e. their behavior), and do
not transfer knowledge through pre-trained neural network weights. We consider value-based methods
with experience replay that estimate action-value functions and derive greedy policies from them.
The presented formulation considers a single pre-trained policy, πp, but note that it is straightforward
to extend it to multiple such policies. No assumptions are made on how the pre-trained policy is
obtained, and it is only used for acting. We propose using the behavior of the pre-trained policy
for two complementary purposes: exploitation and exploration. Figure 2 provides intuition about
the potential benefits of these two approaches on a simple environment, and pseudo-code for the
proposed methods is included in Appendix A.

Exploitation. When the behavior of πp is aligned with the downstream task, it can be used for
zero-shot transfer. However, we are concerned with the more realistic scenario where only some of
the behaviors of πp might be aligned with downstream tasks (c.f. Figure 2, right). We propose to
leverage πp for exploitation by letting the agent combine primitive actions with the behavior of πp.
This is achieved by considering an expanded action set A+ = A∪ {πp(s)}, so that the agent can fall
back to πp for one step when taking the additional action. Intuitively, this new state-dependent action
should enable faster convergence when the pre-trained policy discovered behaviors that are useful for
the task, while letting the agent ignore it otherwise. The return of taking action a′ ∼ πp(s) is used as
target to fit both Q(s, πp(s)) and Q(s, a′), which implements the observation that they are the same
action and thus will lead to the same outcomes.

Exploration. Following the pre-trained policy might bring the agent to states that are unlikely to be
visited with unstructured exploration techniques such as ε-greedy. This property has the potential
of accelerating learning even when the behavior of the pre-trained policy is not aligned with the
downstream task, as it will effectively shorten the path between otherwise distant states (Liu &
Brunskill, 2018). As we rely on off-policy methods that can learn from experience collected by
arbitrary policies, we propose to perform temporally-extended exploration with πp, which we will
refer to as flights. Inspired by εz-greedy and its connection to Lévy flights (Viswanathan et al., 1996),
a class of ecological models for animal foraging, these flights are started randomly and their duration
is sampled from a heavy-tailed distribution. Our proposal can be understood as a variant of εz-greedy
where pre-trained policies are used as exploration options. An exploratory flight might be started at
any step with some probability. The duration for the flight is sampled from a heavy-tailed distribution,
and control is handed over to πp during the complete flight. When not in a flight, the exploitative
policy that maximizes the extrinsic reward is derived from the estimated Q-values using the ε-greedy
operator. This ensures that all state-action pairs will be visited given enough time, as exploring only
with πp does not guarantee such property. Note that this is not needed in εz-greedy, which reduces to
standard ε-greedy exploration when sampling a flight duration of one step.

4 COVERAGE AS A GOAL FOR UNSUPERVISED PRE-TRAINING

So far we considered strategies for leveraging the behavior of arbitrary policies, and we now discuss
how to train such policies in an initial pre-training stage with rewards removed. In such setting, it is a
common practice to derive objectives for proxy tasks in order to drive learning. As we proposed to
take advantage of pre-trained policies for both exploitation and exploration, it might seem unlikely
that a single pre-training objective will produce policies that are useful for both purposes. However,
we hypothesize that there exists a single criterion that will produce policies that can be used for both
exploration and exploitation: coverage. This objective aims at visiting as many states as possible
and is naturally aligned with exploration (Kearns & Singh, 2002). Long episodes where the agent
visits as many different states as possible result in high returns in some domains such as videogames,
locomotion and navigation (Pathak et al., 2017; Burda et al., 2018a). We argue that pre-training
for coverage will bring benefits beyond these particular domains, as it fosters mastery over the
environment. This leads to the discovery of skills and behaviors that can be exploited by the agent
when solving downstream tasks even if the pre-trained policy does not obtain high returns.

Policies that maximize coverage should visit as many states as possible within a single episode,
which differs from traditional exploration strategies employed when solving a single task. The
goal of the latter is discovering potentially rewarding states, and the drive for exploration fades
as strategies that lead to high returns are discovered. The proposed objective is closely related

4

Under review as a conference paper at ICLR 2021

to methods for task-agnostic exploration that train policies that induce maximally entropic state
visitation distributions (Hazan et al., 2019; Lee et al., 2019). However, since the problems we are
interested in involve large state spaces where states are rarely visited more than once, we instead
propose to consider only the controllable aspects of the state space. This enables disentangling
observations from states and gives rise to a more scalable, and thus more easily covered, notion of
the state space.

We choose Never Give Up (NGU) (Puigdomènech Badia et al., 2020b) as a means for training policies
that maximize coverage. NGU defines an intrinsic reward that combines per-episode and life-long
novelty over controllable aspects of the state space. It can be derived directly from observations, unlike
other approaches that make use of privileged information (Conti et al., 2018) or require estimating
state visitation distributions (Hazan et al., 2019), making it suitable for environments that involve high-
dimensional observations and partial observability. The intrinsic NGU reward maintains exploration
throughout the entire training process, a property that makes it suitable for driving learning in task-
agnostic settings. This contrasts with other intrinsic reward signals, that generally vanish as training
progresses (Ecoffet et al., 2019). NGU was originally designed to solve hard-exploration problems by
learning a family of policies with different degrees of exploratory behavior. Thanks to weight sharing,
the knowledge discovered by exploratory policies enabled positive transfer to exploitative ones,
obtaining impressive results when applied to large-scale domains (Puigdomènech Badia et al., 2020a).
We instead propose to use NGU as a pre-training strategy in the absence of reward, transferring
knowledge to downstream tasks in the form of behavior rather than weight sharing.

5 CPT: COVERAGE PRE-TRAINING FOR TRANSFER

CPT consists of two stages: (1) pre-training a task-agnostic policy using the intrinsic NGU reward,
and (2) solving downstream tasks in the same environment by leveraging the pre-trained behavior.

Coverage pre-training

• The agent interacts with a Markov Decision Process (MDP) defined by the tuple
(S,A, P, rNGU, γ), with S being the state space, A being the action space, P the state-
transition distribution, γ ∈ (0, 1] the discount factor and the reward function rNGU is the
intrinsic reward used in NGU (Puigdomènech Badia et al., 2020b).
• We use a value-based agent with a Q-function, QNGU(s, a) : S × A → R, parameterised

with a neural network as defined in Appendix F.
• We train QNGU to maximise the NGU intrinsic reward, obtaining a deterministic policy

given by πp(s) = argmax[QNGU(s, a)].
• We use ε-greedy as behavioral policy when interacting with the environment.

Transfer

• We are given now a new MDP given by (S,A, P, r, γ), where the only change with respect
to the pre-training stage is a new extrinsic reward function r : S ×A → R.
• We define a Q-function Qπ(s, a) : S ×A′ → R on an extended action set A′ = A ∪ a′.
• When the agent selects action a′, it executes the action given by the pre-trained policy:

π(s) =

{
argmaxa[Q

π(s, a)] if argmaxa[Q
π(s, a)] 6= a′

πp(s) if argmaxa[Q
π(s, a)] = a′

• We parameterise Qπ using a neural network with random initialization.
• We use Lévy flights as behavioral policy when interacting with the environment. See

Algorithm 3 for details.

6 EXPERIMENTS

We evaluate CPT in the Atari suite (Bellemare et al., 2013), a benchmark that presents a variety
of challenges and is often used to measure the competence of agents. All our experiments are run
using the distributed R2D2 agent (Kapturowski et al., 2019). A detailed description of the full
distributed setting is provided in Appendix J. We use the same hyperparameters as in Agent57 (Puig-
domènech Badia et al., 2020a), which are reported in Appendix B. All reported results are the average
over three random seeds.

5

Under review as a conference paper at ICLR 2021

6.1 UNSUPERVISED STAGE

Unsupervised RL methods are often evaluated by measuring the amount of task reward collected
by the discovered policies (Burda et al., 2018a; Hansen et al., 2020), and we use this metric to
evaluate the quality of our unsupervised policies. We pre-train our agents using 16B frames in order
to guarantee the discovery of meaningful exploration policies1, as it is common to let agents interact
with the environment for as long as needed in this unsupervised stage (Hansen et al., 2020).

We compare the results of our unsupervised pre-training state against other unsupervised approaches,
standard RL algorithms in the low-data regime and methods that perform unsupervised pre-training
followed by an adaptation stage. We select some of the top performing methods in the literature,
and refer the reader to Appendix C for a more extensive list of baselines. Since the NGU reward is
non-negative, we consider a baseline where the agent obtains a constant positive reward at each step
in order to measure the performance of policies that seek to stay alive for as long as possible. Table 1
shows that unsupervised CPT outperforms all baselines by a large margin, confirming the intuition
that coverage is a good pre-training objective for the Atari benchmark. These results suggest that
there is a strong correlation between exploration and the goals established by game designers (Burda
et al., 2018a). In spite of the strong results, it is worth noting that unsupervised CPT achieves lower
scores than random policies in some games, and it is quite inefficient at collecting rewards in some
environments (e.g. it needs long episodes to obtain high scores). These observations motivate the
development of techniques to leverage these pre-trained policies without compromising performance
even when there exists a misalignment between objectives.

Table 1: Atari Suite comparisons. @N represents the amount of RL interaction with reward utilized,
with four frames observed at each iteration. Mdn and M are median and mean human normalized
scores, respectively;> 0 is the number of games with better than random performance; and> H is the
number of games with human-level performance as defined in Mnih et al. (2015). Top: unsupervised
learning only. Mid: data-limited RL. Bottom: RL with unsupervised pre-training.

26 Game Subset Full 57 Games
Kaiser et al. (2019) Mnih et al. (2015)

Algorithm Mdn M >0 >H Mdn M >0 >H

Positive Reward R2D2 @0 9.44 59.55 21 4 3.46 45.23 46 5
VISR @0 (Hansen et al., 2020) 5.60 81.65 19 5 3.77 49.66 40 7
CPT @0 80.92 494.54 25 12 81.72 320.06 52 27
SimPLe @100k (Kaiser et al., 2019) 9.79 36.20 26 4 – – – –
DQN @200M (Mnih et al., 2015) 100.76 267.51 26 13 80.81 239.29 46 20

GPI VISR @100k (Hansen et al., 2020) 6.59 111.23 22 7 8.99 109.16 44 12

6.2 LEVERAGING PRE-TRAINED POLICIES

We now evaluate the proposed strategies for leveraging pre-trained policies once the reward function
is reinstated by training R2D2-based agents (Kapturowski et al., 2019) for 5B frames. This is a
relatively small budget for these distributed agents with hundreds of actors (Puigdomènech Badia
et al., 2020a). We compare the proposed method against ε-greedy and εz-greedy (Dabney et al., 2020)
exploration strategies. Policies are evaluated using five parallel evaluator threads, and we report
the average return over the last 300 evaluation episodes. Table 2 reports results in full Atari suite,
which confirm the benefits of leveraging the behavior of a policy trained to maximize coverage. Our
approach is most beneficial in the set of hard exploration games2, where unstructured exploration
generally precludes the discovery of high-performing policies.

It should be noted that our εz-greedy ablation under-performs relative to Dabney et al. (2020). This
is due to our hyper-parameters and setting being derived from Puigdomènech Badia et al. (2020b),
which adopts the standard Atari pre-processing (e.g. gray scale images and frame stacking). In

1The pre-training budget was not tuned, but we observe that competitive policies arise early in training. This
observation suggests that smaller budgets are feasible as well.

2montezuma_revenge, pitfall, private_eye, venture, gravitar, solaris

6

Under review as a conference paper at ICLR 2021

contrast, Dabney et al. (2020) use color images, no frame stacking, a larger neural network and
different hyper-parameters (e.g. smaller replay buffer). Studying if the performance of both NGU
and the CPT is preserved in this setting is an important direction for future work. We suspect that
improving the performance of our εz-greedy ablation will also improve our method, since exploration
flights are central to both.

Table 2: Atari Suite comparisons for R2D2-based agents. @N represents the amount of RL interaction
with reward utilized, with four frames observed at each iteration. Mdn, M and CM are median, mean
and mean capped human normalized scores, respectively.

Hard Exploration Full 57 Games

Algorithm Mdn M CM Mdn M CM

ε-greedy explore @5B 32.54 67.18 44.75 487.25 1753.81 90.32
εz-greedy explore @5B 104.08 95.00 67.87 438.81 1263.83 92.53
CPT (unsup) 4.31 22.62 22.62 83.22 318.78 58.50
CPT @5B 191.04 158.05 76.92 561.98 2184.26 93.20

0 50 100 150 200 250 300 350

-greedy explore
z-greedy explore

fine-tuning
CPT (unsup)

CPT (exploitation only)
CPT (exploration only)

CPT 362.88
224.16
224.57

82.63
266.02

183.82
196.98

Median human normalized score

Figure 3: Ablation results. Using the task-agnostic
policy for exploitation and exploration seems to
provide complementary benefits, as combining the
two techniques results in important gains.

Ablation studies. We run experiments on a sub-
set of games in order to gain insight on the in-
dividual contribution of each of the proposed
ways of leveraging the pre-trained policy. The
subset is composed by 12 games3, obtained by
combining those used to tune hyperparameters
by Hansen et al. (2020) with games where εz-
greedy provides clear gains over ε-greedy as
per Dabney et al. (2020). This results in a set
of games that require different amounts of ex-
ploration, and featuring both dense and sparse
rewards. Figure 3 shows that both strategies ob-
tain similar median scores across the 12 games,
but combining them results in an important per-
formance gain. This suggests that the gains they
provide are complementary, and both are respon-
sible for the strong performance of CPT. Note that CPT also outperforms a fine-tuning baseline,
where the policy is initialized using the pre-trained weights rather than random ones. We believe
that the benefits of both approaches can be combined by training via CPT a policy initialized with
pre-trained weights.

Effect of the pre-trained policy. The behavior of the pre-trained policy will likely have a strong
impact on the final performance of agents. We consider the amount of pre-training as a proxy for
the exploration capabilities of the task-agnostic policies. Intuitively, policies trained for longer time
spans will develop more complex behaviors that enable visiting a larger number of states. Figure 4
reports the end performance of agents after before and after transfer under different lengths of the
pre-training phase, and shows how it has a different impact depending on the nature of the task.
Montezuma’s Revenge requires structured exploration for efficient learning, and longer pre-training
times provide dramatic improvements in the end performance. Note that these improvements do
not correlate with the task performance of the task-agnostic policy, which suggests that gains are
due to a more efficient exploration of the state space. On the other hand, the final score in Pong is
independent of the amount of pre-training. Simple exploration is enough to discover optimal policies,
so the behaviors discovered by the unsupervised policy do not play an important role in this game.

Transfer to multiple tasks. An appealing property of task-agnostic knowledge is that it can be
leveraged to solve multiple tasks. In the RL setting, this can be evaluated by leveraging a single
task-agnostic policy for solving multiple tasks (i.e. reward functions) in the same environment. We
evaluate whether the unsupervised NGU policies can be useful beyond the standard Atari tasks by
creating two alternative versions of Ms Pacman and Hero with different levels of difficulty. The

3asterix, bank_heist, frostbite, gravitar, jamesbond, montezuma_revenge,
ms_pacman, pong, private_eye, space_invaders, tennis, up_n_down.

7

Under review as a conference paper at ICLR 2021

1.28 B 3.84 B 6.4 B 8.94 B
0

5000

10000

15000
montezuma_revenge

CPT (unsup) CPT

1.28 B 3.84 B 6.4 B 8.94 B
20

10

0

10

20

pong

Figure 4: Effect of the pre-training budget, before and after adaptation, on Montezuma’s Re-
venge (hard exploration) and Pong (dense reward).

goal in the modified version of Ms Pacman is to eat vulnerable ghosts, with pac-dots giving 0 (easy
version) or −10 (hard version) points. In the modified version of Hero, saving miners gives a fixed
return of 1000 points and dynamiting walls gives either 0 (easy version) or −300 (hard version)
points. The rest of rewards are removed, e.g. eating fruit in Ms Pacman or the bonus for unused
power units in Hero. Note that even in the easy version of the games exploration is harder than in
the original counterparts, as there are no small rewards guiding the agent towards its goals. In the
hard version of the games exploration is even more challenging, as the intermediate rewards work
as a deceptive signal that takes the agent away from its actual goal. In this case finding rewarding
behaviors requires a stronger commitment to an exploration strategy. In this setting, the exploratory
policies often achieve very low or even negative rewards, which contrasts with the strong performance
they showed when evaluated under the standard game reward. Even in this adversarial scenario,
results in Figure 5 shows that leveraging pre-trained exploration policies provides important gains.
These results suggest that the strong performance observed under the standard game rewards is not
due to an alignment between the NGU reward and the game goals, but due to an efficient usage of
pre-trained exploration policies.

0 2000 4000 6000 8000 10000

10983
1360

8358
8099

11406
MsPacman

0 2000 4000 6000 8000

8789
145

8356
4321

8374
Eating ghosts (easy)

0 2000 4000 6000 8000

7868
-897

1891
4017

2836
Eating ghosts (hard)

0 10000 20000 30000 40000

42674
9297

46848
39017

43761
Hero

0 1000 2000 3000 4000

4665
1351

3000
3000
3000

Saving miners (easy)

-greedy explore z-greedy explore Fine-tuning CPT (unsup) CPT

1000 0 1000 2000 3000

3546
-1472

700
2154

2677
Saving miners (hard)

Figure 5: Final scores per task in the Atari games of Ms Pacman (top) and Hero (bottom) with
modified reward functions. We train a single task-agnostic policy per environment, and leverage it to
solve three different tasks: the standard game reward, a task with sparse rewards (easy), and a variant
of the same task with deceptive rewards (hard). Despite the pre-trained policy might obtain low or
even negative scores in some of the tasks, committing to its exploratory behavior eventually lets the
agent discover strategies that lead to high returns.

Towards the low-data regime. So far we considered R2D2-based agents tuned for end-performance
on massively distributed setups. Some applications might require higher efficiency in the low-data
regime, even if this comes at the cost of a drop in end performance. The data efficiency of our
method can be boosted by reusing representations from the pre-trained convolutional torso in the
NGU policy (c.f. Figure 6 for details on the architecture), as shown in Figure 1. We observe that the
data efficiency can be boosted further by decreasing the number of parallel actors. Figure 10 in the
appendix showcases the improved data efficiency on Montezuma’s Revenge when using 16 actors
(instead of 256 as in previous experiments), obtaining superhuman scores in less than 50M frames.
We note that this is around two times faster than the best results in the benchmark by Taïga et al.
(2019), even though they consider single-threaded Rainbow-based agents (Hessel et al., 2018) that
were designed for data efficiency.

8

Under review as a conference paper at ICLR 2021

7 RELATED WORK

Our work uses the experimental methodology presented in Hansen et al. (2020). But whereas that
work only considered a simplified adaptation process that limited the final performance on the
downstream task, the focus here is on the more general case of using a previously trained policy to
aid in solving the full reinforcement learning problem. Specifically, VISR uses successor features to
identify which of the pre-trained tasks best matches the true reward structure, which has previously
been shown to work well for multi-task transfer (Barreto et al., 2018).

Gupta et al. (2018) provides an alternative method to meta-learn a solver for reinforcement learn-
ing problems from unsupervised reward functions. This method utilizes gradient-based meta-
learning (Finn et al., 2017), which makes the adaptation process standard reinforcement learning
updates. This means that even if the downstream reward is far outside of the training distribution,
final performance would not necessarily be affected. However, these methods are hard to scale to the
larger networks considered here, and followup work (Jabri et al., 2019) changed to memory-based
meta-learning (Duan et al., 2016) which relies on information about rewards staying in the recurrent
state. This makes it unsuitable to the sort of hard exploration problem our method excels at. Recent
work has shown success in transferring representations learned in an unsupervised setting to rein-
forcement learning tasks (Stooke et al., 2020b). Our representation transfer experiments suggest that
this should handicap final performance, but the possibility also exists that different unsupervised
objectives should be used for representation transfer and policy transfer.

Concurrent work by Bagot et al. (2020) also augments an agent with the ability to utilize another
policy. However, their work treats the unsupervised policy as an option, only callable for an extended
duration. In contrast, we only perform extended calls to the unsupervised policy during exploratory
levy flights and augment the action space to allow for single time-step calls. This difference between
exploratory and exploitative calls to the unsupervised policy in critical to overall performance, as
illustrated in Figure 3. In addition, in Bagot et al. (2020) the unsupervised policy is learned in tandem
based on an intrinsic reward function. This is a promising direction which is complementary to our
work, as it handles the case wherein there is no unsupervised pre-training phase. However, their work
only considers tabular domains, so it is unclear how this approach would fair in the high-dimensional
state spaces considered here.

8 DISCUSSION

We studied the problem of transferring pre-trained behavior in reinforcement learning, an approach
that is complementary to the common practice of transferring representations. Depending on the
behavior of the pre-trained policies, we argued that they might be useful for exploitation, exploration,
or both. We proposed methods to make use of pre-trained behavior for both purposes: exploiting
with the pre-trained policy by making it available to the agent as an extra action, and performing
temporally-extended exploration with it. While we make no assumption on the nature of the pre-
trained policies, this raises the question of how to discover behaviors that are suitable for transfer.
We proposed coverage as a principle for pre-training task-agnostic policies that are suitable for both
exploitation and exploration. We chose NGU in our experiments for its scalability, but note that
our approach could be combined with any other strategy for maximizing coverage. We found that
unsupervised training with this objective produces strong performing policies in the Atari suite, likely
due to the way in which the goals in some of these tasks were designed (Burda et al., 2018a). Our
transfer experiments demonstrate that these pre-trained policies can be used to boost the performance
of agents trained to maximize reward, providing the most important gains in hard exploration tasks.
These benefits are not due to an alignment between our pre-training and downstream tasks, as
we also observed positive transfer in games where the pre-trained policy obtained low scores. In
order to provide further evidence for this claim, we designed alternative tasks for Atari games
involving hard exploration and deceptive rewards. Our transfer strategy outperformed all considered
baselines in these settings, even when the pre-trained policy obtained very low or even negative
scores, demonstrating the generality of the method. Besides disambiguating the role of the alignment
between pre-training and downstream tasks, these experiments demonstrate the utility of a single
task-agnostic policy for solving multiple tasks in the same environment.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Louis Bagot, Kevin Mets, and Steven Latré. Learning intrinsically motivated options to stimulate
policy exploration. 2020.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and
David Silver. Successor features for transfer in reinforcement learning. In NeurIPS, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz,
Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using successor features
and generalised policy improvement. In ICML, 2018.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In NeurIPS, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning envi-
ronment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
2013.

Diana Borsa, André Barreto, John Quan, Daniel Mankowitz, Rémi Munos, Hado van Hasselt, David
Silver, and Tom Schaul. Universal successor features approximators. In ICLR, 2019.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Víctor Campos, Alexander Trott, Caiming Xiong, Richard Socher, Xavier Giro-i Nieto, and Jordi
Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In ICML,
2020.

Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley, and
Jeff Clune. Improving exploration in evolution strategies for deep reinforcement learning via a
population of novelty-seeking agents. In NeurIPS, 2018.

Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended ε-greedy exploration. arXiv
preprint arXiv:2006.01782, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RL2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new
approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In ICLR, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. arXiv preprint arXiv:1703.03400, 2017.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical reinforce-
ment learning. In ICLR, 2017.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In CVPR, 2014.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised meta-learning
for reinforcement learning. arXiv preprint arXiv:1806.04640, 2018.

10

Under review as a conference paper at ICLR 2021

David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In NeurIPS,
2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In ICLR, 2019.

Steven Hansen, Will Dabney, Andre Barreto, Tom Van de Wiele, David Warde-Farley, and Volodymyr
Mnih. Fast task inference with variational intrinsic successor features. In ICLR, 2020.

Elad Hazan, Sham M Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum
entropy exploration. In ICML, 2019.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. arXiv preprint arXiv:1911.05722, 2019.

Olivier J Hénaff, Ali Razavi, Carl Doersch, SM Eslami, and Aaron van den Oord. Data-efficient
image recognition with contrastive predictive coding. arXiv preprint arXiv:1905.09272, 2019.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In AAAI, 2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997.

Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter Abbeel. Vime:
Variational information maximizing exploration. In NeurIPS, 2016.

Allan Jabri, Kyle Hsu, Abhishek Gupta, Ben Eysenbach, Sergey Levine, and Chelsea Finn. Unsu-
pervised curricula for visual meta-reinforcement learning. In Advances in Neural Information
Processing Systems, pp. 10519–10531, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
ICLR, 2017.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In ICLR, 2019.

Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine learning, 2002.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In ICML, 2020.

Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdinov.
Efficient exploration via state marginal matching. arXiv preprint arXiv:1906.05274, 2019.

Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David Filliat. State representa-
tion learning for control: An overview. Neural Networks, 2018.

Yao Liu and Emma Brunskill. When simple exploration is sample efficient: Identifying sufficient
conditions for random exploration to yield pac rl algorithms. arXiv preprint arXiv:1805.09045,
2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. In NeurIPS, 2015.

11

Under review as a conference paper at ICLR 2021

Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy
reinforcement learning. In NeurIPS, 2016.

Georg Ostrovski, Marc G Bellemare, Aaron van den Oord, and Rémi Munos. Count-based exploration
with neural density models. arXiv preprint arXiv:1703.01310, 2017.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In ICML, 2017.

Jing Peng and Ronald J Williams. Incremental multi-step q-learning. In Machine Learning Proceed-
ings 1994. Elsevier, 1994.

Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. In ICML,
2020a.

Adrià Puigdomènech Badia, Pablo Sprechmann, Alex Vitvitskyi, Daniel Guo, Bilal Piot, Steven
Kapturowski, Olivier Tieleman, Martín Arjovsky, Alexander Pritzel, Andew Bolt, et al. Never give
up: Learning directed exploration strategies. In ICLR, 2020b.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 2019.

Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment – an introduction. In Guided
Self-Organization: Inception. Springer, 2014.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In ICML, 2020.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. arXiv preprint arXiv:2009.08319, 2020a.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning
from reinforcement learning. arXiv preprint arXiv:2009.08319, 2020b.

Adrien Ali Taïga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare.
Benchmarking bonus-based exploration methods on the arcade learning environment. arXiv
preprint arXiv:1908.02388, 2019.

Gandhimohan M Viswanathan, V Afanasyev, SV Buldyrev, EJ Murphy, PA Prince, and H Eugene
Stanley. Lévy flight search patterns of wandering albatrosses. Nature, 1996.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In ICML, 2016.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Im-
proving sample efficiency in model-free reinforcement learning from images. arXiv preprint
arXiv:1910.01741, 2019.

12

Under review as a conference paper at ICLR 2021

A PSEUDO-CODE

Algorithm 1 provides pseudo-code for the flight logic that controls how the pre-trained policy is used
for exploration purposes. At each step, a flight is started with probability εlevy. The duration for the
flight is sampled from a heavy-tailed distribution, ndist, similarly to εz-greedy (c.f. Appendix B for
more details). When not in a flight, the exploitative policy that maximizes the extrinsic reward is
derived from the estimated Q-values using the ε-greedy operator. This ensures that all state-action
pairs will be visited given enough time, as exploring only with πp does not guarantee such property.
Note that this is not needed in εz-greedy, which reduces to standard ε-greedy exploration when the
sampled flight duration equals 1.

Algorithm 2 provides pseudo-code for the actor logic when using the augmented action set, A+ =
A ∪ {πp(s)}. It derives an ε-greedy policy over |A| + 1 actions, where the (|A| + 1)-th action is
resolved by sampling from πp(s).

Finally, Algorithm 3 provides pseudo-code for the actor in the full CPT method that combines
Algorithms 1 and 2.

13

Under review as a conference paper at ICLR 2021

Algorithm 1: Actor pseudo-code for CPT (exploration only)
Input: Q-value estimate for the current policy, Qπ(s, a)
Input: Pre-trained policy, πp
Input: Probability of starting a flight, εlevy
Input: Flight length distribution, ndist
while True do

n←− 0 // flight length
while episode not ended do

Observe state s
if n == 0 and random() ≤ εlevy then

n ∼ ndist
end
if n > 0 then

n←− n− 1
a←− πp(s) // explore with πp

else
a←− ε-greedy[Qπ(s, a)]

end
Take action a

end
end

Algorithm 2: Actor pseudo-code for CPT (exploitation only)
Input: Action set A
Input: Pre-trained policy, πp
Input: Q-value estimate for the current policy, Qπ(s, a)∀a ∈ A ∪ {πp(s)}
Input: Probability of taking an exploratory action, ε
while True do

while episode not ended do
Observe state s
if random() ≤ ε then

a←− Uniform(1, |A|+ 1)
else

a←− argmax[Qπ(s, a)]
end
if a == |A|+ 1 then

a←− πp(s) // exploit with πp
end
Take action a

end
end

14

Under review as a conference paper at ICLR 2021

Algorithm 3: Actor pseudo-code for CPT
Input: Action set A
Input: Pre-trained policy, πp
Input: Q-value estimate for the current policy, Qπ(s, a)∀a ∈ A ∪ {πp(s)}
Input: Probability of taking an exploratory action, ε
Input: Probability of starting a flight, εlevy
Input: Flight length distribution, ndist
while True do

n←− 0 // flight length
while episode not ended do

Observe state s
if n == 0 and random() ≤ εlevy then

n ∼ ndist
end
if n > 0 then

n←− n− 1
a←− πp(s) // explore with πp

else
if random() ≤ ε then

a←− Uniform(1, |A|+ 1)
else

a←− argmax[Qπ(s, a)]
end
if a == |A|+ 1 then

a←− πp(s) // exploit with πp
end

end
Take action a

end
end

15

Under review as a conference paper at ICLR 2021

B HYPERPARAMETERS

Table 3 summarizes the main hyperparameters of our method. The pre-trained policies were optimized
using Retrace (Munos et al., 2016). Transfer was performed with Peng’s Q(λ) (Peng & Williams,
1994) instead, which we found to be much more data efficient in our experiments. The reason for this
difference is that the benefits of Q(λ) were observed once unsupervised policies had been trained on
all Atari games, and we suspect that the data efficiency gains will transfer to the pre-training stage as
well.

Table 3: Hyperparameter values used in R2D2-based agents. The rest of hyperparameters use the
values reported by Kapturowski et al. (2019).

Hyperparameter Value
Number of actors 256

Actor parameter update interval 400 environment steps

Sequence length 160 (without burn-in)
Replay buffer size 12.5× 104 part-overlapping sequences
Priority exponent 0.9

Importance sampling exponent 0

Learning rule (downstream tasks) Q(λ), λ = 0.7
Learning rule (NGU pre-training) Retrace(λ), λ = 0.95

Discount (downstream tasks) 0.99
Discount (NGU pre-training) 0.97

Minibatch size 64
Optimizer Adam

Optimizer settings ε = 10−4, β1 = 0.9, β2 = 0.999
Learning rate 2× 10−4

Target network update interval 1500 updates

εlevy distribution Log-Uniform[0, 0.1]
Flight length distribution Zeta with µ = 2

16

Under review as a conference paper at ICLR 2021

C EXTENDED UNSUPERVISED RL RESULTS

Table 4 compares unsupervised CPT with all the methods reported by Hansen et al. (2020).

Table 4: Atari Suite comparisons, adapted from Hansen et al. (2020). @N represents the amount
of RL interaction with reward utilized, with four frames observed at each iteration. Mdn and M
are median and mean human normalized scores, respectively; > 0 is the number of games with
better than random performance; and > H is the number of games with human-level performance as
defined in Mnih et al. (2015). Top: unsupervised learning only. Mid: data-limited RL. Bottom: RL
with unsupervised pre-training.

26 Game Subset 47 Game Subset Full 57 Games
Kaiser et al. (2019) Burda et al. (2018a) Mnih et al. (2015)

Algorithm Mdn M >0 >H Mdn M >0 >H Mdn M >0 >H

IDF Curiosity @0 – – – – 8.46 24.51 34 5 – – – –
RF Curiosity @0 – – – – 7.32 29.03 36 6 – – – –
Pos Reward NSQ @0 2.18 50.33 14 5 0.69 57.65 26 8 0.29 41.19 28 8
Pos Reward R2D2 @0 9.44 59.55 21 4 14.16 57.53 39 5 3.46 45.23 46 5
Q-DIAYN-5 @0 0.17 −3.60 13 0 0.33 −1.23 25 2 0.34 −2.18 30 2
Q-DIAYN-50 @0 −1.65−21.77 4 0−1.69−16.26 8 0−3.16−20.31 9 0
VISR @0 5.60 81.65 19 5 4.04 58.47 35 7 3.77 49.66 40 7
CPT @0 80.92 494.54 25 12 96.10 310.27 45 23 81.72 320.06 52 27
SimPLe @100k 9.79 36.20 26 4 – – – – – – – –
DQN @10M 27.80 52.95 25 7 9.91 28.07 41 7 8.61 27.55 48 7
DQN @200M 100.76 267.51 26 13 – – – – 80.81 239.29 46 20
Rainbow @100k 2.23 10.12 25 1 – – – – – – – –
PPO @500k 20.93 43.74 25 7 – – – – – – – –
NSQ @10M 8.20 33.80 22 3 7.29 29.47 37 4 6.80 28.51 43 5

Q-DIAYN-5 @100k 0.01 16.94 13 2 1.31 19.64 28 6 1.55 16.65 33 6
Q-DIAYN-50 @100k −1.64−27.88 3 0−1.66−16.74 8 0−2.53−24.13 9 0
RF VISR @100k 7.24 58.23 20 6 3.81 42.60 33 9 2.16 35.29 39 9
VISR @100k 9.50 128.07 21 7 9.42 121.08 35 11 6.81 102.31 40 11
GPI RF VISR @100k 5.55 58.77 20 5 4.24 48.38 34 9 3.60 40.01 40 10
GPI VISR @100k 6.59 111.23 22 7 11.70 129.76 38 12 8.99 109.16 44 12

D EXTENDED ATARI57 RESULTS

Table 5: Atari Suite comparisons for R2D2-based agents. @N represents the amount of RL interaction
with reward utilized, with four frames observed at each iteration. Mdn, M and CM are median, mean
and mean capped human normalized scores, respectively.

Hard Exploration Full 57 Games

Algorithm Mdn M CM Mdn M CM

ε-greedy explore @1B 31.07 39.40 34.75 229.75 864.69 84.56
εz-greedy explore @1B 42.55 53.90 46.21 204.52 578.73 85.11
CPT @1B 100.89 94.20 63.95 273.49 1517.13 86.38

ε-greedy explore @5B 32.54 67.18 44.75 487.25 1753.81 90.32
εz-greedy explore @5B 104.08 95.00 67.87 438.81 1263.83 92.53
CPT @5B 191.04 158.05 76.92 561.98 2184.26 93.20

17

Under review as a conference paper at ICLR 2021

E ALTERNATIVE REWARD FUNCTIONS

MsPacman: eating ghosts

• Pac-dots: 0 points (easy) or -10 points (hard)
• Eating vulnerable ghosts:

– #1 in succession: 200 points
– #2 in succession: 400 points
– #3 in succession: 800 points
– #4 in succession: 1600 points

• Other actions: 0 points

Hero: rescuing miners

• Dynamiting walls: 0 points (easy) or -300 points (hard)
• Rescuing a miner: 1000 points
• Other actions: 0 points

F Q-NETWORK ARCHITECTURE

All policies use the same Q-Network architecture as Agent57 (Puigdomènech Badia et al., 2020a),
which is composed by a convolutional torso followed by an LSTM (Hochreiter & Schmidhuber,
1997) and a dueling head (Wang et al., 2016). When leveraging the behavior of the pre-trained policy
to solve new tasks, one can train a new policy from scratch or share some of the components for
increased efficiency (c.f. Figure 6). Shared weights are kept fixed in order to preserve the behavior of
the pre-trained policy.

CNNi

LSTMeLSTMi

HeadeHeadi

Qe(s,a)Qi(s,a)

CNNe

Pre-trained policy New policy

CNNi

LSTMeLSTMi

HeadeHeadi

Qe(s,a)Qi(s,a)

Pre-trained policy New policy

Trainable Frozen

Figure 6: Q-Network architecture for the reinforcement learning stage. The pre-trained policy can be
leveraged without transferring representations (left), but sharing weights generally provides efficiency
gains early in training (right).

18

Under review as a conference paper at ICLR 2021

G SCORES PER GAME

Table 6: Results per game at 5B training frames.
Game ε-greedy explore εz-greedy explore CPT
alien 10831.17± 2114.29 14634.02± 1109.15 15657.57± 1717.96
amidar 11761.67± 1560.86 6784.28± 718.05 10394.96± 891.60
assault 15940.72± 3531.69 9177.28± 2170.26 15060.31± 740.63
asterix 472812.21± 222663.81 374966.62± 135810.51 630663.91± 82753.46
asteroids 45716.28± 3642.38 147005.85± 44313.45 31957.42± 15540.09
atlantis 1514724.43± 10941.36 1132188.04± 43551.36 1491384.23± 5978.05
bank heist 965.63± 133.72 1058.75± 135.46 13913.32± 3529.15
battle zone 292553.41± 18196.77 312367.76± 43554.18 258533.57± 22865.64
beam rider 18472.45± 1977.78 22403.95± 1596.92 16301.02± 1853.73
berzerk 12343.83± 3331.54 3846.56± 1723.24 8359.80± 201.10
bowling 141.64± 4.52 156.32± 8.11 174.27± 0.10
boxing 99.96± 0.03 99.94± 0.06 100.00± 0.00
breakout 432.65± 27.35 393.19± 35.12 441.21± 15.08
centipede 189502.66± 31388.08 358841.20± 73578.20 178635.17± 17227.15
chopper command 611393.11± 65206.69 697655.53± 215090.74 573055.88± 75343.57
crazy climber 229992.57± 17738.33 212001.76± 1853.07 226821.26± 3608.19
defender 547238.15± 2579.38 516521.06± 11969.59 540124.74± 4488.40
demon attack 143662.42± 88.16 141352.18± 3848.73 143762.91± 106.75
double dunk 23.99± 0.02 23.88± 0.06 23.85± 0.15
enduro 2358.37± 3.32 2359.08± 1.03 2361.56± 1.03
fishing derby 12.80± 77.79 64.74± 0.59 52.58± 0.32
freeway 33.87± 0.08 33.77± 0.03 33.79± 0.08
frostbite 9287.24± 167.11 8504.41± 940.72 17692.42± 2871.83
gopher 117398.58± 2485.82 84140.40± 12919.83 113716.78± 3966.91
gravitar 6123.08± 103.19 5798.68± 735.59 8373.70± 1260.75
hero 46048.07± 6970.26 39700.22± 4379.84 40825.09± 3736.25
ice hockey 32.43± 30.64 30.65± 28.17 60.36± 4.94
jamesbond 6056.14± 1643.52 3843.92± 118.35 1484.87± 489.66
kangaroo 14672.37± 187.16 14730.99± 114.20 15965.79± 36.61
krull 10081.04± 594.10 10171.52± 399.81 406596.00± 55547.76
kung fu master 200721.64± 2265.35 171591.29± 8516.87 196638.89± 456.09
montezuma revenge 1478.38± 1114.20 1467.77± 1104.72 12086.71± 1217.76
ms pacman 11212.85± 103.23 7511.39± 406.77 10996.90± 262.74
name this game 32138.12± 2156.95 37343.04± 1917.73 30252.11± 884.84
phoenix 712101.72± 62738.09 80611.18± 25316.56 553429.34± 24278.55
pitfall −0.19± 0.15 −12.34± 4.20 −0.39± 0.39
pong 20.93± 0.01 20.49± 0.10 20.90± 0.01
private eye 23592.22± 11876.55 50770.82± 14984.92 40435.54± 51.04
qbert 24343.75± 1904.89 16975.13± 1332.44 16057.31± 318.87
riverraid 32325.07± 1185.15 30582.53± 638.47 28550.32± 2298.03
road runner 423191.07± 53071.15 88890.04± 24971.18 251261.09± 31741.38
robotank 97.23± 1.22 108.92± 4.79 98.45± 2.85
seaquest 188771.84± 20759.57 175745.09± 120718.82 86605.86± 55065.85
skiing −29854.11± 85.79 −30060.81± 142.32 −30121.95± 70.62
solaris 17741.02± 5340.46 16127.73± 2975.20 24366.59± 4868.05
space invaders 3621.76± 5.81 3547.78± 35.31 30609.21± 7141.11
star gunner 223536.63± 48548.34 179698.69± 12194.36 171294.31± 23185.79
surround 8.24± 0.48 1.48± 8.12 5.86± 1.44
tennis 7.99± 22.56 7.98± 22.51 23.96± 0.01
time pilot 139931.67± 70521.78 71768.84± 2933.22 44936.87± 137.49
tutankham 324.02± 4.26 311.65± 8.62 420.36± 30.13
up n down 529363.05± 16813.20 394984.70± 34313.42 562739.02± 8527.59
venture 0.00± 0.00 1833.85± 43.73 2110.64± 55.39
video pinball 454023.46± 377076.03 107071.98± 67142.18 463141.28± 426927.92
wizard of wor 40833.65± 4776.81 38275.31± 4177.41 30453.12± 2470.20
yars revenge 279765.86± 27370.20 250483.70± 54593.32 280333.48± 69704.31
zaxxon 56059.14± 3217.77 66099.28± 8520.19 67611.78± 6226.04

19

U
nderreview

as
a

conference
paperatIC

L
R

2021

Table 7: Final scores per game in our ablation study after 5B frames. We consider versions of CPT where the pre-trained policy is used for exploitation, exploration,
or both.

Game ε-greedy explore εz-greedy explore CPT (exploration only) CPT (exploitation only) CPT
asterix 347585.48± 244661.28 414183.29± 160442.25 717259.64± 94011.25 577034.99± 90735.79 649740.02± 56368.04

bank heist 987.94± 163.14 1050.67± 143.36 13881.28± 2693.54 11417.81± 7006.75 11894.55± 984.46
frostbite 9312.19± 286.04 8228.56± 1182.64 9132.02± 372.76 10650.34± 3690.80 17895.70± 2683.33
gravitar 6169.63± 83.68 5781.13± 757.18 6473.56± 132.16 7231.54± 1994.41 8114.29± 1027.20

jamesbond 5771.41± 2084.84 3633.35± 272.19 1713.43± 477.47 3898.66± 1044.03 1567.71± 472.73
montezuma revenge 1483.33± 1118.65 1465.77± 1102.87 11216.13± 837.50 6433.33± 372.68 13429.28± 413.32

ms pacman 11406.77± 121.72 8099.46± 868.26 10622.99± 504.86 10611.56± 821.30 10983.94± 665.04
pong 20.95± 0.02 20.49± 0.06 20.88± 0.03 20.94± 0.05 20.89± 0.07

private eye 23589.23± 11880.08 50907.99± 15174.57 40483.83± 18.21 37028.70± 2449.66 40437.40± 47.86
space invaders 3617.12± 13.38 3559.49± 27.29 31513.65± 1093.84 3601.02± 38.46 27853.60± 5839.58

tennis 8.02± 22.58 7.95± 22.55 7.95± 22.57 −7.62± 22.36 23.96± 0.03
up n down 527933.55± 23035.67 383415.21± 79529.79 562248.72± 11617.29 549769.30± 3015.66 568148.23± 2861.37

20

Under review as a conference paper at ICLR 2021

Table 8: Final scores per task in Atari games with modified reward functions. We report training
results for the standard game reward, a variant with sparse rewards (easy), and a task with deceptive
rewards (hard). Despite the pre-trained policy might obtain low or even negative scores in some of
the tasks, committing to its exploratory behavior eventually lets the agent discover strategies that lead
to high returns.

Game ε-greedy explore εz-greedy explore Fine-tuning CPT (unsup) CPT
Ms Pacman: original 11407± 122 8099± 868 8359± 2117 1360 10984± 665
Ms Pacman: ghosts (easy) 8375± 577 4322± 932 8356± 551 146 8789± 651
Ms Pacman: ghosts (hard) 2836± 26 4018± 1025 1891± 1342 −898 7868± 1085

Hero: original 43762± 4918 39018± 3262 46848± 1199 9298 42675± 3905
Hero: miners (easy) 3000± 0 3000± 0 3000± 0 1351 4665± 470
Hero: miners (hard) 2677± 23 2155± 95 700± 0 −1473 3547± 122

21

Under review as a conference paper at ICLR 2021

H LEARNING CURVES

Figure 7: Training curves in all 57 Atari games after 5B frames. Shading shows maximum and
minimum over 3 runs, while dark lines indicate the mean. Leveraging the pre-trained policy pro-
vides important gains, particularly in hard exploration games such as Montezuma’s Revenge, while
maintaining performance in games with denser rewards such as Pong or Asterix.

22

Under review as a conference paper at ICLR 2021

Figure 8: Training curves for ablation experiments after 5B frames. Shading shows maximum and
minimum over 3 runs, while dark lines indicate the mean. Both methods offer benefits over the
baselines, but in different sets of games. Combining them retains the best of both methods, and boosts
performance even further in some games.

23

Under review as a conference paper at ICLR 2021

Figure 9: Alternative reward functions for MsPacman (top) and Hero (bottom). We report training
curves for the standard game reward (left), a variant with sparse rewards (center), and a task with
deceptive rewards (right). Despite the pre-trained policy might obtain low or even negative scores in
some of the tasks, committing to its exploratory behavior eventually lets the agent discover strategies
that lead to high returns.

0 10 M 20 M 30 M 40 M 50 M
0

1 k

2 k

3 k

4 k

5 k

6 k

7 k
montezuma_revenge

CPT (unsup) -greedy CPT

Figure 10: Training curves after 50M frames on Montezuma’s Revenge, using 16 actors and the CNN
encoder from the pre-trained policy. Pre-trained weights are not fine-tuned.

24

Under review as a conference paper at ICLR 2021

I INFLUENCE OF PRE-TRAINED POLICY

1.28 B 3.84 B 6.4 B 8.94 B
0

5000

10000

15000
montezuma_revenge

CPT (unsup) CPT

1.28 B 3.84 B 6.4 B 8.94 B
20

10

0

10

20

pong

Figure 11: Influence of the pre-trained policy on the end performance. We evaluate different pre-
training times: 8, 24, 40 and 56 hours of pre-training. 8 hours of training correspond roughly to 1.3B
environmental steps. We show learning curves (top) and end performance (bottom) for the games of
Montezuma’s Revenge and Pong. When comparing end performance, we show the performance of πi
and πe (after 5B environmental steps of adaptation). Longer pre-training times lead to policies that
cover more of the environment. As expected, the performance in Pong is independent of the quality
of the pre-trained policy while for Montezuma’s Revenge, longer pre-training times lead to dramatic
improvements after the adaptation stage.

25

Under review as a conference paper at ICLR 2021

J DISTRIBUTED SETTING

All experiments are run using a distributed setting. The evaluation we do is also identical to the one
done in R2D2 (Kapturowski et al., 2019): parallel evaluation workers, which share weights with
actors and learners, run the Q-network against the environment. This worker and all the actor workers
are the two types of workers that draw samples from the environment. For Atari, we apply the
standard DQN pre-processing, as used in R2D2. The next subsections describe how actors, evaluators,
and learner are run in each stage.

J.1 UNSUPERVISED STAGE

The computation of the intrinsic NGU reward, rNGU
t , follows the method described in Puig-

domènech Badia et al. (2020b, Appendix A.1). In particular, we use the version that combines
episodic intrinsic rewards with intrinsic reward from Random Network Distillation (RND) (Burda
et al., 2018b).

Learner

• Sample from the replay buffer a sequence of intrinsic rewards rNGU
t , observations x and

actions a.

• Use Q-network to learn from (rNGU
t , x, a) with Retrace (Munos et al., 2016) using the

procedure used by R2D2.

• Use last 5 frames of the sampled sequences to train the action prediction network in NGU.
This means that, for every batch of sequences, all time steps are used to train the RL loss,
whereas only 5 time steps per sequence are used to optimize the action prediction loss.

• Use last 5 frames of the sampled sequences to train the predictor of RND.

Evaluator and Actor

• Obtain xt and rNGU
t−1 .

• With these inputs, compute forward pass of R2D2 to obtain at.

• With xt, compute rNGU
t using the embedding network in NGU.

• (actor) Insert xt, at and rNGU
t in the replay buffer.

• Step on the environment with at.

Distributed training

As in R2D2, we train the agent with a single GPU-based learner and a fixed discount factor γ. All
actors collect experience using the same policy, but with a different value of ε. This differs from the
original NGU agent, where each actor runs a policy with a different degree of exploratory behavior
and discount factor.

In the replay buffer, we store fixed-length sequences of (x, a, r) tuples. These sequences never cross
episode boundaries. Given a single batch of trajectories we unroll both online and target networks on
the same sequence of states to generate value estimates. We use prioritized experience replay. We
followed the same prioritization scheme proposed in Kapturowski et al. (2019) using a mixture of
max and mean of the TD-errors with priority exponent η = 1.0.

J.2 ADAPTATION STAGE IN CPT

Learner

• Sample from the replay buffer a sequence of extrinsic rewards rt, observations x and actions
a.

• (expanded action set) Duplicate transitions collected with πp and relabel the duplicates with
the primitive action taken by πp when acting.

26

Under review as a conference paper at ICLR 2021

• Use Q-network to learn from (rt, x, a) with Peng’s Q(λ) (Peng & Williams, 1994) using the
procedure used by R2D2.

Actor

• (once per episode) Sample εlevy.
• Obtain xt.
• If not on a flight, start one with probability εlevy.
• If on a flight, compute forward pass with πp to obtain at. Otherwise, compute forward pass

of R2D2 to obtain at. If at = |A|+ 1, at ← πp(x).
• Insert xt, at and rt in the replay buffer.
• Step on the environment with at.

Evaluator

• Obtain xt.
• Compute forward pass of R2D2 to obtain at. If at = |A|+ 1, at ← πp(x).
• Step on the environment with at.

Distributed training

As in R2D2, we train the agent with a single GPU-based learner and a fixed discount factor γ. All
actors collect experience using the same policy, but with a different value of ε.

In the replay buffer, we store fixed-length sequences of (x, a, r) tuples. These sequences never cross
episode boundaries. Given a single batch of trajectories we unroll both online and target networks on
the same sequence of states to generate value estimates. We use prioritized experience replay. We
followed the same prioritization scheme proposed in Kapturowski et al. (2019) using a mixture of
max and mean of the TD-errors with priority exponent η = 1.0.

27

	Introduction
	Reinforcement Learning with Unsupervised Pre-Training
	Leveraging Pre-Trained Policies
	Coverage as a Goal for Unsupervised Pre-Training
	CPT: Coverage Pre-training for Transfer
	Experiments
	Unsupervised stage
	Leveraging pre-trained policies

	Related Work
	Discussion
	Pseudo-code
	Hyperparameters
	Extended Unsupervised RL Results
	Extended Atari57 Results
	Alternative Reward Functions
	Q-Network Architecture
	Scores per game
	Learning curves
	Influence of pre-trained policy
	Distributed setting
	Unsupervised stage
	Adaptation Stage in CPT

