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Abstract

Neural Marked Temporal Point Processes (MTPP) are flexible models to capture complex
temporal inter-dependencies between labeled events. These models inherently learn two
predictive distributions: one for the arrival times of events and another for the types of
events, also known as marks. In this study, we demonstrate that learning a MTPP model can
be framed as a two-task learning problem, where both tasks share a common set of trainable
parameters that are optimized jointly. We show that this often leads to the emergence of
conflicting gradients during training, where task-specific gradients are pointing in opposite
directions. When such conflicts arise, following the average gradient can be detrimental to the
learning of each individual tasks, resulting in overall degraded performance. To overcome this
issue, we introduce novel parametrizations for neural MTPP models that allow for separate
modeling and training of each task, effectively avoiding the problem of conflicting gradients.
Through experiments on multiple real-world event sequence datasets, we demonstrate the
benefits of our framework compared to the original model formulations.

1 Introduction

Sequences of labeled events observed in continuous time at irregular intervals are ubiquitous across various
fields such as healthcare (Enguehard et al., 2020), finance (Bacry et al., 2015), social media (Farajtabar
et al., 2017), and seismology (Ogata, 1998). In numerous application domains, an important problem involves
predicting the timing and types of future events—often called marks—based on historical data. Marked
Temporal Point Processes (MTPP) (Daley & Vere-Jones, 2003) provide a mathematical framework for
modeling sequences of events, enabling subsequent inferences on the system under study. The Hawkes process,
originally introduced by Hawkes (Hawkes, 1971), is a well-known example of a MTPP model that has found
successful applications in diverse domains, including finance (Hawkes, 2018), crime analysis (Egesdal et al.,
2010), and user recommendations (Du et al., 2015). However, the strong modeling assumptions of classical
MTPP models often limit their ability to capture complex event dynamics (Mei & Eisner, 2017). This
limitation has led to the rapid development of a more flexible class of neural MTPP models, incorporating
recent advances in deep learning (Shchur et al., 2021).

This paper argues that learning a neural MTPP model can be interpreted as a two-task learning problem
where both tasks share a common set of parameters and are optimized jointly. Specifically, one task focuses
on learning the distribution of the next event’s arrival time conditional on historical events. The other task
involves learning the distribution of the categorical mark conditional on both the event’s arrival time and the
historical events. We identify these tasks as the time prediction and mark prediction, respectively. While
parameter sharing between tasks can sometimes enhance training efficiency (Standley et al., 2020), it may
also result in performance degradation when compared to training each task separately. A major challenge in
the simultaneous optimization of multi-task objectives is the issue of conflicting gradients (Liu et al., 2021b).
This term describes situations where task-specific gradients point in opposite directions. When such conflicts
arise, gradient updates tend to favor tasks with larger gradient magnitudes, thus hindering the learning
process of other concurrent tasks and adversely affecting their performance. Although the phenomenon of
conflicting gradients has been studied in various fields (Chen et al., 2018; 2020; Yu et al., 2020; Shi et al.,
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2023), its impact on the training of neural MTPP models remains unexplored. We propose to address this
gap with the following contributions:

(1) We demonstrate that conflicting gradients frequently occur during the training of neural MTPP models.
Furthermore, we show that such conflicts can significantly degrade a model’s predictive performance on the
time and mark prediction tasks.

(2) To prevent the issue of conflicting gradients, we introduce novel parametrizations for existing neural
TPP models, allowing for separate modeling and training of the time and mark prediction tasks. Inspired
from the success of (Shi et al., 2023), our framework allows to prevent gradient conflicts from the root while
maintaining the flexibility of the original parametrizations.

(3) We want to emphasize that our approach to disjoint parametrizations does not assume the independence
of arrival times and marks. Unlike prior studies that assumed conditional independence (Shchur et al., 2020;
Du et al., 2016), we propose a simple yet effective parametrization for the mark conditional distribution that
relaxes this assumption.

(4) Through a series of experiments with real-world event sequence datasets, we show the advantages of
our framework over the original model formulations. Specifically, our framework effectively prevents the
emergence of conflicting gradients during training, thereby enhancing the predictive accuracy of the models.
Additionally, all our experiments are reproducible and implemented using a common code base available in
the supplementary material.

2 Background and Notations

A Marked Temporal Point Process (MTPP) is a random process whose realization is a sequence of events
S = {ei = (ti, ki)}n

i=1. Each event ei ∈ S is an ordered pair with an arrival time ti ∈ [0, T ] (with t0 = 0) and
a categorical label ki ∈ K = {1, ..., K} called mark. The arrival times form a sequence of strictly increasing
random values observed within a specified time interval [0, T ], i.e. 0 ≤ t1 < t2 < . . . < tn ≤ T . Equivalently,
τi = ti −ti−1 ∈ R+ is an event inter-arrival time. We will use both representations interchangeably throughout
the paper. If ei−1 is the last observed event, the occurrence of the next event ei in (ti−1, ∞[ can be fully
characterized by the joint PDF f(τ, k|Ht), where Ht = {(ti, ki) ∈ S | ti < t} is the observed process history.
For clarity of notations, we will use the notation ’∗’ of (Daley & Vere-Jones, 2008) to indicate dependence on
Ht, i.e. f∗(τ, k) = f(τ, k|Ht). This joint PDF can be factorized as f∗(τ, k) = f∗(τ)p∗(k|τ), where f∗(τ) is
the PDF of inter-arrival times, and p∗(k|τ) is the conditional PMF of marks. A MTPP can be equivalently
described by its so-called marked conditional intensity functions (Rasmussen, 2018), which are defined for
ti−1 < t < ti as λ∗

k(t) = f∗(t, k)/(1 − F ∗(t)), where F ∗(t) is the conditional CDF of arrival-times and k ∈ K.
From the marked intensities, we can also define the marked compensators Λ∗

k(t) =
∫ t

ti−1
λ∗

k(s)ds. Provided
that certain modeling constraints are satisfied, each of f∗(τ, k), λ∗

k(t) and Λ∗
k(t) fully characterizes a MTPP

and can be retrieved from the others (Rasmussen, 2018; Enguehard et al., 2020).

Neural Temporal Point Processes. To capture complex dependencies between events, the framework
of neural MTPP (Shchur et al., 2021; Bosser & Ben Taieb, 2023) incorporates neural network components
into the model architecture, allowing for more flexible models. A neural MTPP model consists of three main
components: (1) An event encoder that learns a representation ei ∈ Rde for each event ei ∈ S, (2) a history
encoder that learns a compact history embedding hi ∈ Rdh of the history Hti

of event ei, and (3) a decoder
that defines a function characterizing the MTPP from hi, e.g. λ∗

k(t). Let f∗(τ, k; θ), λ∗
k(t; θ), or Λ∗

k(t; θ) be
a valid model of f∗(τ, k), where the set of trainable parameters θ lies within the parameter space Θ.

To train this model, we use a dataset S = {S1, ..., SL}, where each sequence Sl comprises nl events with
arrival times observed within the interval [0, T ] and l = 1, ..., L. The training objective is the average sequence
negative log-likelihood (NLL) (Rasmussen, 2018), given by

L(θ; S) = − 1
L

L∑
l=1

[[
nl∑

i=1
log f∗(τl,i, kl,i; θ)

]
− log(1 − F ∗(T ; θ))

]
, (1)

which is optimized using mini-batch stochastic gradient descent (Ruder, 2017).
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3 Conflicting Gradients in Two-Task Learning for Neural MTPP Models

Consider the factorization of f∗(τl,i, kl,i; θ) into f∗(τl,i; θ) and p∗(kl,i|τl,i; θ), where f∗(τl,i, kl,i; θ) = f∗(τl,i; θ)·
p∗(kl,i|τl,i; θ). Substituting this decomposition into the NLL in equation 1 and rearranging terms, we obtain:

L(θ; S) = − 1
L

L∑
l=1

[[
nl∑

i=1
log f∗(τl,i; θ)

]
− log(1 − F ∗(T ; θ))

]
︸ ︷︷ ︸

LT (θ,S)

− 1
L

L∑
l=1

[
nl∑

i=1
log p∗(kl,i|τl,i; θ)

]
︸ ︷︷ ︸

LM (θ,S)

. (2)

This shows that the total objective function L(θ; S) consists of two sub-objectives: LT (θ; S) and LM (θ; S),
revealing that learning an MTPP model can be interpreted as a two-task learning problem. The first objective,
LT (θ; S), relates to modeling the predictive distribution of (inter-)arrival times, which we refer to as the time
prediction task TT . The second objective, LM (θ; S), concerns modeling the conditional predictive distribution
of the marks p∗(k|τ ; θ), which we call the mark prediction task TM .

Conflicting gradients. Assuming that LT (θ) and LM (θ) are differentiable, let gT = ∇θLT (θ) and
gM = ∇θLM (θ) denote the gradients of LT (θ) and LM (θ), respectively, with respect to the shared parameters
θ1. As discussed in (Shi et al., 2023), when gT and gM are pointing in opposite directions, i.e. gT · gM < 0,
an update step in the direction of negative gT for θ will increase the loss for task TM , and inversely for task
TT if an update step is taken in the direction of negative gM . Such conflicting gradients can be formally
defined as follows.

Figure 1: Conflicting gradients

Definition 1 (Conflicting gradients (Shi et al., 2023)) Let
ϕT M ∈ [0, 2π] be the angle between the gradients gT and gM . They
are said to be conflicting with each other if cos ϕT M < 0.

The smaller the value of cos ϕT M ∈ [−1, 0], the more severe the
conflict between the gradients. Figure (1) illustrates these conflicting
gradients. Ideally, we want the gradients to align during optimization
(i.e. cos ϕT M > 0) to encourage positive reinforcement between the
two tasks, or to be simply orthogonal (i.e. cos ϕT M = 0). Conflicting
gradients, especially those with significant differences in magnitude,
pose substantial challenges during the optimization of multi-task learning objectives (Yu et al., 2020).
Specifically, if gT and gM conflict, the update step for θ will likely be dominated by the gradient of whichever
task—gT or gM —has the greater magnitude, thereby disadvantaging the other task. The degree of similarity
between the magnitudes of these two gradients can be quantified using a metric known as gradient magnitude
similarity, defined as follows:

Definition 2 (Gradient Magnitude Similarity (Yu et al., 2020)) The gradient magnitude similarity between
gT and gM is defined as GMS = 2||gT ||2||gM ||2

||gT ||2
2+||gM ||2

2
, where || · ||2 is the l2-norm.

A GMS value close to 1 indicates that the magnitudes of gT and gM are similar, while a GMS value close
to 0 suggests a significant difference between them. Ideally, we aim to minimize the number of conflicting
gradients and maintain a GMS close to 1 to ensure balanced learning across the two tasks. However, a
low GMS value among conflicting gradients does not specify which task is being prioritized. Therefore, we
introduce the time priority index to address this issue, which is defined as follows:

Definition 3 (Time Priority Index) The time priority index between conflicting gradients gT and gM with
cos ϕT M < 0 is defined as TPI = 1 (||gT ||2 > ||gM ||2) where 1(·) is the indicator function.

If gT and gM are conflicting and optimization prioritizes task TT , then the TPI takes the value 1. Conversely,
if task TM is prioritized, the TPI takes the value 0.

Do gradients conflict in neural MTPP models? To explore this question, we perform a preliminary
experiment with common neural MTPP baselines that either learn f∗(t, k; θ), λ∗

k(t; θ), or Λ∗
k(t; θ): THP (Zuo

1We explicitly omit the dependency of LT and LM on S to simplify notations.
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Figure 2: Distribution of cos ϕT M during training for the different baselines on MOOC and LastFM. CG
refers to the proportion of cos ϕT M < 0 observed during training. The distribution is obtained by pooling
the values of ϕT M over 5 training runs, and gradients that are conflicting correspond to the red bars.

et al., 2020), SAHP (Zhang et al., 2020), FNN (Omi et al., 2019), LNM (Shchur et al., 2020), and RMTPP
(Du et al., 2016). We aim to determine whether conflicting gradients occur during their training. For this
purpose, each model is trained to minimize the NLL defined in (2) using sequences from two real-world
datasets: LastFM (Hidasi & Tikk, 2012) and MOOC (Kumar et al., 2019). For optimization, we rely on the
Adam optimizer (Kingma & Ba, 2014) used by default in neural MTPP training with learning rate α = 10−3.
At every gradient update, we calculate the gradients gT and gM with respect to the shared parameters θ2,
recording values of cos ϕT M , GMS, and TPI. Figure 2 shows the distribution of cos ϕT M across all S training
iterations, along with the average values of GMS and TPI, and the proportion of conflicting gradients (CG),
computed as

CG =
∑S

s=1 1 (cos ϕs
T M < 0)∑S

s=1 cos ϕs
T M

, (3)

where ϕs
T M refers to the angle between gs

T and gs
M at training iteration s. Gradients that are conflicting

during training correspond to the red bars. We observe that some models, such as THP and SAHP on MOOC,
frequently exhibit conflicting gradients during training, as indicated by a high value of CG. Conversely, while
other models show a more balanced proportion of conflicting gradients, these are generally characterized by
low GMS values, which may potentially impair performance on the task with the lowest magnitude gradient.
In this context, the data indicates that optimization generally tends to favor TT during optimization, as
suggested by an average TPI greater than 0.5. In Section 6, our experiments show that the combined influence
of a high proportion of conflicts and low GMS values during training can significantly deteriorate model
performance on the time and mark prediction tasks. We provide additional visualizations for other datasets
in Appendix H.5, which confirm the above discussion and further suggest that conflicting gradients emerge
frequently during the training of neural MTPP models.

4 A Framework to Prevent Conflicting Gradients in Neural MTPP Models

Given the observations from the previous section, our goal is to prevent the occurrence of conflicting gradients
during the training of neural MTPP models with the NLL objective given in (2). To accomplish this, we first
propose in Section 4.1 a naive approach that leverages duplicated and disjoint instances of the same model.
Then, to avoid redundancy in model specification, we introduce in Section 4.2 novel parametrizations for
neural MTPP models. We finally show in Section 4.3 how our parametrizations enable disjoint modeling and
training of the time and mark prediction tasks.

2In practice, conflicts are computed layer-wise for each layer of the model (e.g the weights W of a fully-connected layer).
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Existing MTPP models generally fall into three categories based on the chosen parametrization: (1) Intensity-
based approaches that model the marked intensity function λ∗

k(t; θ) (Zuo et al., 2020), (2) Density-based
approaches that model the joint density f∗(t, k; θ) (Shchur et al., 2020), and (3) Compensator-based approaches
that model the marked compensators Λ∗

k(t; θ) (Omi et al., 2019). We denote these different approaches
as joint parametrizations because they define a function that involves both the arrival time and the mark.
To enable disjoint modeling of the time and mark prediction tasks, we consider the factorization of these
functions into the products of two components: one involving a function of the arrival-times, and the other
involving the conditional PMF of marks:

λ∗
k(t; θ) = λ∗(t; θ)p∗(k|t; θ) = d

dt
[Λ∗(t; θ)] p∗(k|t; θ), (4)

f∗(t, k; θ) = f∗(t; θ)p∗(k|t; θ), (5)

Λ∗
k(t; θ) =

∫ t

ti−1

λ∗(s; θ)p∗(k|s; θ)ds, (6)

where λ∗(t; θ) = f∗(t;θ)
1−F ∗(t;θ) and Λ∗(t; θ) =

∫ t

ti−1
λ∗(s; θ)ds are respectively the ground intensity and the ground

compensator of the process. Similarly to (2), a two-task NLL objective involving the r.h.s of expressions (4)
and (6) can be derived, where task TT now consists in learning either λ∗(t; θ) or Λ∗(t; θ). We provide the
expression of these two-task NLL objectives in Appendix (A). The factorizations presented in expressions (4)
and (5) show that, to enable disjoint modeling of time and mark prediction functions, we need to specify
p∗(k|t; θM ) with parameters θM , and either f∗(t; θT ), λ∗(t; θT ), or Λ∗(t; θT ) with parameters θT . As a naive
approach, we first explore obtaining these functions from duplicated instances of the joint parametrizations
λ∗

k(t; θ), Λ∗
k(t; θ) or f∗(t, k; θ), as presented next.

4.1 A Naive Approach to Achieve Disjoint Parametrizations

Consider a model that parametrizes λ∗
k(t; θ), such as THP (Zuo et al., 2020). To obtain a disjoint parametriza-

tion of λ∗(t; θT ) and p∗(k|t; θM ), we can parametrize two identical functions λ∗
k(t; θT ) and λ∗

k(t; θM ) from
the same model and for all k ∈ K, where θT and θM are disjoint set of trainable parameters. From these two
functions, we can finally derive λ∗(t; θT ) and p∗(k|t; θM ) as

λ∗(t; θT ) =
K∑

k=1
λ∗

k (t; θT ) and p∗(k|t; θM ) = λ∗
k (t; θM )∑K

k=1 λ∗
k (t; θM )

, (7)

effectively defining the desired disjoint parametrization. In the presence of conflicts during training, we
can show that a gradient update step for the shared model λ∗

k(t; θ) leads to higher loss compared to the
duplicated model in (7) with disjoint parameters θT and θM . Indeed, suppose that θ, θT and θM are all
initialized with the same θs at training iteration s ∈ N. Assuming that LT and LM are differentiable, let

gT = ∇θLT (θs) and gM = ∇θLM (θs) . (8)

Denoting ϕT M as the angle between gT and gM , we have the following corollary of Theorem 4.1. from (Shi
et al., 2023):
Corollary 1. Assume that LT and LM are differentiable, and that the learning rate α is sufficiently small.
If cos ϕT M < 0, then L({θs+1

T , θs+1
M }) < L(θs+1).

This result essentially indicates that a model trained with disjoint parameters leads to lower loss after a
gradient update if conflicts arise during training, i.e. cos ϕT M < 0. We provide the proof in Appendix C.
Naturally, expression (7) and Corollary 1 remain valid for models that parametrize Λ∗

k(t; θ) or f∗(τ, k; θ), as
these functions can be uniquely retrieved from λ∗

k(t; θ).

4.2 Novel Disjoint Parametrizations of Neural MTPP Models

In this section, we introduce an alternative approach to (7) to achieve disjoint parametrizations of TT and TM .
Specifically, we introduce novel parametrizations of existing neural MTPP model that directly parametrize
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p∗(k|t; θM ) and either f∗(t; θT ), λ∗(t; θT ), or Λ∗(t; θT ), thereby avoiding the unnecessary redundancy in
model specification required by the method in (7). For a query time t ≥ ti−1, we define a history representation
h = ENC({e1, ..., ei−1}; θh) ∈ Rdh , where ENC(· ; θh) denotes the history encoder with parameters θh. The
encoder ENC(· ; θh) is general and encompasses any encoder architecture typically found in the neural MTPP
literature, such as recurrent neural networks (RNN) (Du et al., 2016; Shchur et al., 2020) or self-attention
mechanisms (Zuo et al., 2020; Zhang et al., 2020).

A general approach to model the distribution of marks. Given a query time t ≥ ti−1 and its
corresponding history representation h, we propose to define the conditional PMF of marks p∗(k|t; θM ) using
the following simple model:

p∗(k|t; θM ) = σso (W2σR (W1 [h||log(τ)] + b1)) + b2) , (9)

where τ = t − ti−1, σso is the softmax activation function, W1 ∈ Rd1×(dh+1), b1 ∈ Rd1 , W2 ∈ RK×d1 ,
b2 ∈ RK , and || means concatenation. Here, θM = {W1, W2, b1, b2, θh}. Despite its simplicity, this model
is flexible and capable of capturing the evolving dynamics of the mark distribution between two events.
Note that equation 9 effectively captures inter-dependencies between arrival times and marks. Moreover, by
removing log(t − ti−1) from expression (9), we obtain a PMF of marks that is independent of time, given Ht.

Intensity-based parametrizations. We first consider MTPP models specified by their marked intensities,
namely THP (Zuo et al., 2020) and SAHP (Zhang et al., 2020). We propose revising the original model
formulations to directly parametrize λ∗(t), while p∗(k|t) is systematically derived from expression (9).
Furthermore, although RMTPP (Du et al., 2016) is originally defined in terms of this decomposition, we
extend the model to incorporate the dependence of marks on time.

SAHP+. While the original model formulation parametrizes λ∗
k(t), we adapt its formulation to define:

λ∗(t; θT ) = 1T [σS (µ − (η − µ)exp(−γ(t − ti−1)))] , (10)

where 1 ∈ RC is a vector of 1’s allowing to define the ground intensity as a sum over C different representations.
In (10), µ = σG(Wµh), η = σS(Wηh) and γ = σG(Wγh) where σS and σG are respectively the softplus and
GeLU activation functions (Hendrycks & Gimpel, 2023). Wµ, Wη, Wγ ∈ RC×dh are learnable parameters
and θT = {Wµ, Wη, Wγ , θh}.

THP+. Following a similar reasoning, the original formulation of THP is adapted to model λ∗(t) instead of
λ∗

k(t):

λ∗(t; θT ) = 1T
[
σS

(
wt

t − ti−1

ti−1
+ Wh + b

)]
, (11)

where wt ∈ RC
+, W ∈ RC×dh , b ∈ Rd1 , and θT = {W, wt, b, θh}.

RMTPP+. We retain the original definition of λ∗(t) proposed in RMTPP:

λ∗(t; θT ) = exp
(

wt(t − ti−1) + wT
hh + b

)
, (12)

where wt ∈ R+, wh ∈ Rdh , b ∈ R, and θT = {wt, wh, b, θh}. A major difference between the original
formulation of RMTPP and our approach lies in p∗(k|τ ; θM ) being defined by (9), which alleviates the original
model assumption of marks being independent of time given Ht.

Density-based parametrizations. The decomposition of the joint density in expression (5) has previously
been considered by (Shchur et al., 2020) with the LogNormMix (LNM) model. However, similar to RMTPP,
this model assumes independence of marks on time, given Ht. In LNM +, we relax this assumption by using
expression (9) to parametrize p∗(k|t), while maintaining a mixture of log-normal distributions for f∗(τ):

f∗(τ ; θT ) =
M∑

m=1
p∗(m) 1

τσm

√
2π

exp
(

− (log τ − µm)2

2σ2
m

)
, (13)

where µm = (Wµh + bµ)m, p∗(m) = σso
(
Wph+bp

)
m

, σm = exp(Wσh + bσ)m with Wp, Wµ, Wσ ∈ RM×dh

and bp, bµ, bσ ∈ RM , M being the number of mixture components. Here θT = {Wµ, Wp, Wσ, bµ, bp, bσ, θh}.
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Again, parametrizing the mark distribution using (9) relaxes the original assumption of marks being indepen-
dent of time given Ht.

Compensator-based parametrizations. Integrating compensator-based neural MTPP models into our
framework requires to define Λ∗(t; θT ), this way retrieving the decomposition in the r.h.s. of (4). Specifically,
we extend the improved marked FullyNN model (FNN) (Omi et al., 2019; Enguehard et al., 2020) into FNN +,
that models Λ∗(t) and p∗(k|t), instead of Λ∗

k(t):

Λ∗(t; θT ) = G∗(t) − G∗(ti−1), (14)

G∗(t) = 1T [
σS

(
W(σGS

(
wt(t − ti−1) + Whh + b1

)
+ b2

)]
, (15)

where W ∈ RC×d1 , wt, b1 ∈ Rd1 , Wh ∈ Rd1×dh , b2 ∈ RC , and σGS is the Gumbel-softplus activation function.
Here, θT = {W, Wh, wt, b1, b2, θh}. Similarly to the previous models, we use (9) to define p∗(k|t).

Training different history encoders. The different functions defined in this section, p∗(k|τ ; θM ), f∗(τ ; θT ),
λ∗(t; θT ), and Λ∗(t; θT ), share a common set of parameters θh through a common history representation
h. To enable fully disjoint modeling and training of the time and mark predictive functions, we define two
distinct history representations:

hT = ENCT [{e1, ..., ei−1}; θT,h] ∈ Rdt
h and hM = ENCM [{e1, ..., ei−1}; θM,h] ∈ Rdm

h , (16)

where ENCT (· ; θT,h) and ENCM (· ; θM,h) are the time and mark history encoders, respectively, while θT,h

and θM,h represent the sets of disjoint learnable parameters of the two encoders. By using hT for f∗(τ ; θT ),
λ∗(t; θT ) and Λ∗(t; θT ), and hM for p∗(k|τ ; θM )3, we have defined completely disjoint parametrizations of
the decompositions in (4) and (5). Using separate history encoders further enables the model to capture
information from past event occurrences that are relevant to the time and mark prediction tasks separately. In
this paper, without loss of generality, we compute hT and hM by training two GRU encoders that sequentially
process the set of event representations in {e1, ..., ei−1}.

4.3 Disjoint training of the time and mark tasks.

Let us model f∗(τ ; θT ) from (13) and p∗(k|τ ; θM ) from (9), using distinct history encoders such that θT and
θM are disjoint set of trainable parameters. By injecting these expressions in (2), we find that the NLL now
is a sum over two disjoint objectives LT (θT , S) and LM (θM , S), i.e.

L(θT , θM ; S) = − 1
L

L∑
l=1

[[
nl∑

i=1
log f∗(τl,i; θT )

]
− log(1 − F ∗(T ; θT ))

]
︸ ︷︷ ︸

LT (θT ,S)

− 1
L

L∑
l=1

[
nl∑

i=1
log p∗(kl,i|τl,i; θM )

]
︸ ︷︷ ︸

LM (θM ,S)

,

(17)

meaning that the associated tasks TT and TM can be learned separately. This contrasts with previous works,
such as (Shchur et al., 2020) and (Zuo et al., 2020), in which shared parameters between f∗ and p∗ does
not allow for disjoint training of (2). In our implementation, we minimize expression (17) through a single
pipeline by specifying different early-stopping criteria for LT (θT , S) and LM (θT , S). Note that a similar
decomposition can be obtained from any of the parametrizations presented in Sections 4.1 and 4.2. Finally, we
would like to emphasize that disjoint training of tasks TT and TM through (17) does not imply independence
of arrival-times and marks given the history. In fact, in our parametrizations, this dependency remains
systematically captured by (9).

5 Related Work

Neural MTPP models. To address the limitations of simple parametric MTPP models (Hawkes, 1971;
Isham & Westcott, 1979), prior studies focused on designing more flexible approaches by leveraging recent

3θh is now replaced by θT,h in θT , and by θM,h in θM .
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advances in deep learning. Based on the parametrization chosen, these neural MTPP models can be generally
classified along three main axis: density-based, intensity-based, and compensator-based. Intensity-based
approaches propose to model the trajectories of future arrival-times and marks by parametrizing the marked
intensities λ∗

k(t). In this line of work, past event occurrences are usually encoded into a history representation
using RNNs (Du et al., 2016; Mei & Eisner, 2017; Guo et al., 2018b; Türkmen et al., 2019; Biloš et al., 2019;
Zhu et al., 2020) or self-attention (SA) mechanisms (Zuo et al., 2020; Zhang et al., 2020; Zhu et al., 2021;
Yang et al., 2022; Li et al., 2023). However, parametrizations of the marked intensity functions often come
at the cost of being unable to evaluate the log-likelihood in closed-form, requiring Monte Carlo integration.
This consideration motivated the design of compensator-based approaches that parametrize Λ∗

k(t) using
fully-connected neural networks Omi et al. (2019), or SA mechanisms (Enguehard et al., 2020), from which
λ∗

k(t) can be retrieved through differentiation. Finally, density-based approaches aim at directly modeling
the joint density of (inter-)arrival times and marks f∗(τ, k). Among these, different family of distributions
have been considered to model the distribution of inter-arrival times (Xiao et al., 2017; Lin et al., 2021).
Notably Shchur et al. (2020) relies on a mixture of log-normal distributions (Shchur et al., 2020) to estimate
f∗(τ), a model that then appeared in subsequent works (Sharma et al., 2021; Gupta et al., 2021). However,
the original work of Shchur et al. (2020) assumes conditional independence of inter-arrival times and marks
given the history, which is alleviated in (Waghmare et al., 2022). Nonetheless, a common thread of these
parametrizations is that they explicitly enforce parameter sharing between the time and mark prediction
tasks. As we have shown, this often leads to the emergence of conflicting gradient during training, potentially
hindering model performance. For an overview of neural MTPP models, we refer the reader to the works of
(Shchur et al., 2021), (Lin et al., 2022) and (Bosser & Ben Taieb, 2023).

Conflicting gradients in multi-task learning. Diverse approaches have been investigated in the
literature to improve interactions between concurrent tasks in multi-task learning problems, thereby boosting
performance for each task individually. In this context, a prominent line of work, called gradient surgery
methods, focuses on balancing the different tasks at hand through direct manipulation of their gradients.
These manipulations either aim at alleviating the differences in gradient magnitudes between tasks (Chen
et al., 2018; Sener & Koltun, 2018; Liu et al., 2021c), or the emergence of conflicts (Sinha et al., 2018;
Maninis et al., 2019; Yu et al., 2020; Chen et al., 2020; Wang et al., 2020; Liu et al., 2021a; Javaloy & Valera,
2022). Alternative approaches to task balancing have been explored based on different criteria, such as task
prioritization (Guo et al., 2018a), uncertainty (Kendall et al., 2018), or learning pace (Liu et al., 2019). Our
methodology relates more to branched architecture search approaches (Guo et al., 2020; Bruggemann et al.,
2020; Shi et al., 2023), where the aim is set on dynamically identifying which layers should or should not be
shared between tasks based on a chosen criterion, e.g. the proportion of conflicting gradients. Specifically,
Shi et al. (2023) recently showed that gradient surgery approaches for multi-task learning objectives, such as
GradDrop (Chen et al., 2020), PCGrad (Yu et al., 2020), CAGrad (Liu et al., 2021a), and MGDA (Sener
& Koltun, 2018), cannot effectively reduce the occurrence of conflicting gradients during training. Instead,
they propose to address task conflicts directly from the root by turning shared layer into task-specific layers
if they experience conflicting gradients too frequently. Inspired by their success, our framework follows a
similar approach: the time and mark prediction tasks are parametrized on disjoint set of trainable parameters
to avoid conflicts from the root during training. We want to emphasize that our goal is not to propose a
general-purpose gradient surgery method to mitigate the negative impact of conflicting gradients. Instead,
we want to demonstrate that conflicts can be avoided altogether during the training of neural MTPP models
by adapting their original parametrizations.

6 Experiments

Datasets and baselines. We conduct an experimental study to assess the performance of our framework in
training the time and mark prediction tasks from datasets composed of multiple event sequences. Specifically,
we explore the various novel neural TPP parametrizations enabled by our framework, as detailed in Section
4. These are compared to their original parametrizations4. We use five real-world marked event sequence
datasets frequently referenced in the neural MTPP literature: LastFM (Hidasi & Tikk, 2012), MOOC,
Reddit (Kumar et al., 2019), Github (Trivedi et al., 2019), and Stack Overflow (Du et al., 2016). We

4For the remainder of this paper, these models will be referred to as "base models".
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(a) Base (b) Base+ (c) Base++

Figure 3: Graphical representation of the base, "+", and "++" setups.

provide descriptions and summary statistics for all datasets in Appendix D. We consider as base models THP
(Zuo et al., 2020), SAHP (Zhang et al., 2020), RMTPP (Du et al., 2016), FullyNN (FNN) (Omi et al.,
2019), LogNormMix (LNM) (Shchur et al., 2020), and SMURF-THP (STHP). To highlight the different
components of our framework that lead to performance gains, we introduce the following settings:

(1) Shared History Encoders and Disjoint Decoders. A common history embedding, denoted as h is used,
while the two functional terms from equations (4) and (5) are modeled separately as detailed in Section 4.2.
Here, the functions f∗(τ ; θT ), λ∗(t; θT ), Λ∗(t; θT ) and p∗(k|τ ; θM ) share common parameters via h. Models
trained in this setting are indicated with a "+" sign, e.g. THP+.

(2) Disjoint History Encoders and Disjoint Decoders. In contrast to the previous configuration, distinct
history embeddings, hT for time and hM for marks, are used to define f∗(τ ; θT ), λ∗(t; θT ), Λ∗(t; θT ), and
p∗(k|τ ; θM ) separately. This separation allows for the independent training of the time prediction and mark
prediction tasks as described in Section 4.3. Models trained within this setting are labeled with a "++"
symbol, e.g., THP++.

Compared to the base models, these configurations allow us to assess the impacts of (1) isolating the
parameters for the decoders in the time and mark prediction tasks, and (2) using distinct history embeddings
for each task, enabling fully disjoint training. A graphical illustration of these configurations is shown in
Figure 3. We will often refer to these setups as base, base+, and base++ throughout the text. The distinction
between LNM (RMTPP) and LNM+ (RMTPP+) stems from the modeling of the PMF of marks using
our model in (9), which relaxes the conditional independence assumption inherent in the base model. To
maintain a fair comparison, we ensure that each configuration controls for the number of parameters, keeping
them roughly equivalent across settings to confirm that any observed performance improvements are not
merely due to increased model capacity. Finally, all models are trained to minimize the average NLL given in
(17)5. We provide further training details in Appendix E.

Metrics. To evaluate the performance of the different baselines on the time prediction task, we report the
LT term in (17) computed over all test sequences. Following (Dheur & Ben Taieb, 2023), we also quantify
the (unconditional) probabilistic calibration of the fitted models by computing the Probabilistic Calibration
Error (PCE). Finally, we evaluate the MAE in event inter-arrival time prediction. To this end, we predict the
next τ̃ as the median of the predicted distribution of inter-arrival times, i.e. τ̃ = (F ∗)−1(0.5; θT ), where the
quantile function (F ∗)−1( · ; θT ) is estimated using a binary search algorithm.

Similarly, for the mark prediction task, we report the average LM term in (17), and quantify the probabilistic
calibration of the mark predictive distribution by computing the Expected Calibration Error (ECE) (Naeini
et al., 2015), and through reliability diagrams (Guo et al., 2017; Kuleshov et al., 2018). Additionally, by
predicting the mark of the next event as k̃ = argmax

k∈K
p∗(k|τ ; θM ), we can assess the quality of the point

predictions by means of various classification metrics. Specifically, we compute the Accuracy@n for values of
n in {1, 3, 5} and the Mean Reciprocal Rank (MRR) (Craswell, 2009) of mark predictions. Lower LT , LM ,
PCE and ECE is better, while higher Accuracy@n and MRR is better.

6.1 Results and discussion

We present the LT and LM metrics for the base, base+, and base++ configurations across all datasets in
Table 1. The PCE, MAE, ECE, MRR, and Accuracy@1,3,5 metrics, which reflect the subsequent discussion,
are given in Appendix H.

Distinct decoders mitigate gradient conflicts. Based on the LT and LM metrics, we note a consistent
improvement when moving from the base to the base+ setting for THP, SAHP, and FNN. This underscores
the benefits of using two distinct decoders for time and mark prediction tasks with base+, leading to improved

5Note that for the base and base+ methods, the two terms in (17) are functions on shared parameters.
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Figure 5: Distribution of cos ϕT M during training at the encoder (ENC) and decoder (DEC) heads for THP,
SAHP and FNN in the base and base+ setup on LastFM and MOOC. "B" and "+" refer to the base and
base+ models, respectively, and the distribution is obtained by pooling the values of ϕT M over 5 training
runs. As the decoders are disjoint in the base+ setting, note that cos ϕT M is not defined.

predictive accuracy compared to the base models. Figure 5 shows the distribution of cos ϕT M during training
for THP, SAHP and FNN for both base and base+ on the LastFM and MOOC dataset, along with the
average GMS and TPI for conflicting gradients. We would like too emphasize that both base and base+
share the same encoder architecture, which allows for a direct comparison of the distribution of cos ϕT M

between the two settings during training. Appendix H provides detailed visualizations for other baselines
and datasets. With the base model, a significant proportion of severe conflicts (as indicated by cos ϕT M in
[-1, -0.5]) is often observed for the shared parameters of both encoder and decoder heads, typically with low
GMS values. Additionally, with the base model, the TPI values suggest that these conflicting gradients at
the encoder heads predominantly favor TT (i.e., TPI > 0.5). In contrast, base+ inherently prevents conflicts
at the decoder by separating the parameters for each task. During training with base+, there is also a
noticeable reduction in the severity of conflicting gradients for the shared encoder parameters, as evidenced
by a more concentrated distribution of cos ϕT M around 0. Moreover, the TPI values indicate that base+
generally achieves a more balanced training between both tasks, which further contributes to enhancing their
individual performance. While we note that the GMS values do not consistently improve between the base
and base+ settings, improvements with respect to LT and LM suggest that this effect is offset by a reduction
in conflicts during training. Finally, while LNM and RMTPP already avoid decoder conflicts in their base
models by decomposing the parameters, explicitly modeling the dependency of marks on time with base+
further enhances mark prediction performance.

Figure 4: Validation curves of the LT and
LM components for SAHP++ on MOOC.

Disjoint training enhances mark prediction accuracy.
Returning to Table 1, moving from the base+ to the base++
setting often leads to improvements in the LM metric for most
baselines, while the LT metric generally remains comparable
between the two configurations. Although conflicting gradients
are typically reduced when moving from base to base+, this
pattern indicates that the residual conflicts primarily hinder the
mark prediction task. In contrast, base++ effectively eliminates
these conflicts by using distinct history representations for each
task. A significant advantage of base++ is that it allows one
task to continue training after the other has reached convergence.
For example, Figure 4 illustrates the validation losses LT and
LM for SAHP++ on MOOC. Thanks to disjoint training, the LM metric can be further optimized for
additional epochs after training of the LT metric ceases due to overfitting, thus achieving gains in mark
prediction performance. This feature is absent in base and base+, where both LM and LT metrics rely on a
shared set of parameters. In Figure 4, θT is fixed after the vertical red line, resulting in a constant validation
LT for the remaining training epochs of the model.
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Figure 6: Reliability diagrams of p∗(k|τ ; θ) (left) and f∗(τ ; θ) (right) for the base models and their "++"
extensions on the LastFM dataset. Frequency and accuracy aligning with the black diagonal correspond to
perfect calibration. The reliability diagrams are averaged over 5 splits, and error bars refer to the standard
error.

Table 1: LT and LM results of the different setups across all datasets. The values are computed over 5 splits,
and the standard error is reported in parenthesis. Best results are highlighted in bold.

LM
LastFM MOOC Github Reddit Stack O.

THP 714.0 (16.5) 93.3 (1.4) 128.3 (17.3) 39.9 (1.3) 105.3 (0.7)
THP+ 695.9 (15.7) 76.9 (1.2) 120.8 (16.0) 42.7 (1.2) 103.3 (0.7)

THP++ 651.1 (18.1) 70.9 (1.0) 112.1 (15.4) 40.4 (1.3) 103.0 (0.7)

STHP+ 700.9 (16.6) 83.2 (1.3) 121.4 (15.8) 43.7 (1.1) 104.0 (0.7)
STHP++ 696.5 (15.9) 82.4 (1.4) 114.7 (14.9) 46.2 (0.8) 105.6 (0.6)

SAHP 825.5 (25.6) 163.0 (2.2) 138.0 (19.1) 77.9 (4.7) 108.4 (1.0)
SAHP+ 740.0 (24.6) 73.8 (1.0) 116.8 (15.2) 43.4 (1.2) 103.3 (0.7)

SAHP++ 654.8 (17.3) 71.0 (1.1) 114.1 (15.2) 40.5 (0.8) 103.1 (0.7)

LNM 685.2 (15.8) 86.6 (1.2) 116.8 (15.2) 43.4 (1.2) 106.5 (0.7)
LNM+ 668.6 (15.8) 77.1 (1.3) 112.3 (15.1) 41.4 (1.1) 103.2 (0.7)

LNM++ 637.2 (19.4) 73.8 (1.1) 111.5 (15.2) 40.8 (1.0) 103.2 (0.7)

FNN 739.5 (25.2) 78.8 (1.3) 113.5 (15.4) 47.0 (1.4) 107.3 (0.6)
FNN+ 672.1 (17.9) 72.3 (1.1) 111.6 (15.1) 41.2 (0.9) 103.2 (0.7)

FNN++ 648.6 (16.2) 71.8 (1.0) 109.5 (15.0) 40.1 (1.0) 103.1 (0.7)

RMTPP 684.6 (15.6) 87.0 (1.2) 126.4 (18.3) 41.4 (0.9) 106.5 (0.7)
RMTPP+ 681.5 (16.3) 74.9 (1.3) 118.7 (15.4) 42.0 (1.0) 103.0 (0.7)

RMTPP++ 654.5 (16.7) 71.4 (1.1) 112.6 (15.3) 40.6 (1.2) 103.1 (0.7)

LT
LastFM MOOC Github Reddit Stack O.

THP -945.1 (41.3) -135.9 (1.3) -242.5 (38.5) -72.3 (2.3) -84.0 (1.4)
THP+ -994.1 (48.8) -130.6 (1.3) -255.7 (42.0) -85.5 (2.3) -84.7 (1.4)

THP++ -1037.3 (47.0) -136.0 (2.1) -271.0 (50.8) -87.9 (2.0) -84.2 (1.4)

STHP+ -993.3 (44.2) -128.2 (1.0) -208.9 (32.2) -76.6 (2.1) -83.6 (1.4)
STHP++ -1014.9 (42.1) -132.9 (1.8) -237.0 (39.3) -78.2 (2.1) -83.3 (1.4)

SAHP -1263.8 (57.9) -266.0 (3.5) -346.5 (57.4) -72.9 (1.8) -89.7 (1.4)
SAHP+ -1320.4 (58.4) -288.8 (3.5) -358.1 (57.6) -94.8 (2.3) -89.9 (1.4)

SAHP++ -1320.0 (60.5) -293.8 (3.6) -366.0 (59.3) -95.4 (2.1) -77.4 (1.2)

LNM -1326.3 (55.8) -310.0 (3.8) -380.4 (59.8) -96.4 (2.0) -91.0 (1.4)
LNM+ -1320.4 (60.5) -310.6 (3.7) -378.7 (59.4) -96.4 (2.0) -91.1 (1.3)

LNM++ -1334.7 (58.5) -307.6 (3.9) -381.2 (59.9) -96.3 (2.2) -90.5 (1.4)

FNN -1276.2 (58.6) -280.9 (3.2) -363.1 (57.2) -75.3 (2.5) -81.2 (1.3)
FNN+ -1324.6 (59.6) -302.2 (3.6) -364.5 (57.0) -94.4 (2.1) -90.0 (1.8)

FNN++ -1324.2 (58.1) -300.9 (3.7) -365.0 (56.7) -96.1 (2.2) -88.9 (1.4)

RMTPP -1052.9 (46.0) -178.6 (1.8) -268.0 (54.3) -88.0 (2.2) -83.3 (1.4)
RMTPP+ -1040.7 (45.8) -187.8 (3.1) -272.2 (49.0) -87.9 (2.0) -83.4 (1.4)

RMTPP++ -1071.1 (50.3) -182.2 (1.9) -287.2 (52.6) -86.6 (2.0) -82.9 (1.4)

Finally, referring back to the preliminary experiment on Figure 2, the results with respect to LT and LM in
Table 1 suggest that conflicting gradients are mostly detrimental to model performance if (1) they are in great
proportion during training (i.e. high CG) and (2) if they are associated to low GMS values. For instance, on
Figure 2, THP and SAHP exhibit high CG associated to high GMS values, whereas the remaining models
conversely show a more balanced CG, but with lower GMS values. We find that model performance often
improves in both these scenarios when preventing conflicting gradients altogether in the base++ setting.

Reliability Diagrams. Figure 6 presents the reliability diagrams for the predictive distributions of arrival-
times and marks for base and base++ on LastFM. The diagrams show that the base++ models are generally
better calibrated than their base counterparts, as evidenced by the bin accuracies aligning more closely
with the diagonal. This improvement aligns with the results in Table 1, where a lower LM indicates better
accuracy. However, improvements in the calibration of arrival times between base and base++ models are
less noticeable, suggesting that conflicting gradients during training predominantly affect the mark prediction
task. We provide reliability diagrams for other baselines and datasets in Appendix H.

Isolating the impact of conflicts on performance. Our experiments reveal that the base+ and base++
settings result in a decrease of conflicting gradients and to enhanced performance with respect to the time
and mark prediction tasks. However, for THP, SAHP and FNN, these settings do not enable us to disentangle
performance gains brought by a decrease in conflicts from the ones brought by modifications of the decoder
architecture. To address this limitation, we introduce the following two settings based on the duplicated
model approach of Section 4.1:

(1) Shared History Encoders and Duplicated Decoders. The functions λ∗(t; θT )/Λ∗(t; θT ) and p∗(k|t; θM ) are
obtained through (7) from two identical parametrizations of the same base decoder. However, similar to the
base+ setting, a common history encoder h is used, meaning that these functions still share parameters via
θh. Models trained in this setting are indicated with a "-D" sign, e.g. THP-D.
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Figure 7: Distribution of cos ϕT M during training at the encoder (ENC) and decoder (DEC) heads for THP,
SAHP and FNN in the base and base-D setup on LastFM and MOOC. "B" and "D" refer to the base and
base-D models, respectively, and the distribution is obtained by pooling the values of ϕT M over 5 training
runs. As the decoders are disjoint in the base-D setting, note that cos ϕT M is not defined.

Table 2: LT and LM results for the base, base-D, and base-DD settings across all datasets. The values are
computed over 5 splits, and the standard error is reported in parenthesis. Best results are highlighted in bold.

LM
LastFM MOOC Github Reddit Stack O.

THP 714.0 (16.5) 93.3 (1.4) 128.3 (17.3) 39.9 (1.3) 105.3 (0.7)
THP-D 677.1 (19.4) 82.8 (1.2) 121.4 (16.8) 39.1 (0.9) 104.7 (0.7)

THP-DD 607.2 (16.2) 79.8 (1.2) 113.5 (14.9) 38.2 (1.0) 104.4 (0.6)

SAHP 825.5 (25.6) 163.0 (2.2) 138.0 (19.1) 77.9 (4.7) 108.4 (1.0)
SAHP-D 832.1 (32.0) 93.3 (1.5) 128.8 (18.5) 56.0 (1.0) 105.1 (0.7)

SAHP-DD 692.1 (19.7) 89.0 (1.6) 115.4 (15.3) 51.0 (0.5) 104.8 (0.6)

FNN 739.5 (25.2) 78.8 (1.3) 113.5 (15.4) 47.0 (1.4) 107.3 (0.6)
FNN-D 732.8 (19.7) 76.8 (1.2) 112.9 (15.4) 56.9 (0.9) 103.8 (0.7)

FNN-DD 670.0 (18.1) 79.7 (1.4) 111.4 (15.3) 48.8 (1.6) 103.7 (0.7)

LT
LastFM MOOC Github Reddit Stack O.

THP -945.1 (41.3) -135.9 (1.3) -242.5 (38.5) -72.3 (2.3) -84.0 (1.4)
THP-D -995.1 (50.2) -164.8 (1.8) -258.5 (47.2) -90.3 (1.9) -85.3 (1.4)

THP-DD -1023.8 (53.0) -162.1 (4.3) -279.0 (55.2) -92.6 (2.1) -84.8 (1.4)

SAHP -1263.8 (57.9) -266.0 (3.5) -346.5 (57.4) -72.9 (1.8) -89.7 (1.4)
SAHP-D -1319.1 (57.9) -288.7 (3.7) -348.7 (58.2) -92.9 (2.3) -90.1 (1.3)

SAHP-DD -1319.9 (59.3) -294.0 (3.6) -367.9 (59.1) -87.0 (3.5) -87.1 (2.6)

FNN -1276.2 (58.6) -280.9 (3.2) -363.1 (57.2) -75.3 (2.5) -81.2 (1.3)
FNN-D -1314.1 (59.7) -286.8 (3.5) -360.0 (55.9) -81.3 (1.7) -81.7 (1.3)

FNN-DD -1294.4 (57.5) -286.3 (3.8) -362.5 (56.4) -82.7 (2.2) -81.4 (1.4)

(2) Disjoint History Encoders and Duplicated Decoders. This setting differs from the previous one in the
use of two distinct history embeddings hT and hM in (7), implying that λ∗(t; θT )/Λ∗(t; θT ) and p∗(k|t; θM )
are now completely disjoint parametrizations. We use the label "-DD" to denote the models trained in this
setting, e.g. THP-DD.

In contrast to base+ and base++, the base-D and base-DD settings retain the same architecture as the
base model, enabling us to directly evaluate the impact of conflicting gradients on performance. In Table
2, we report the performance with respect to LT and LM for THP, SAHP, and FNN trained in the base,
base-D and base-DD settings. We follow the same experimental setup as before, and maintain the number of
parameters comparable between the different settings for fair comparison. We almost systematically observe
improvements on both tasks when moving from the base to the base-D or base-DD settings. Moreover, these
performance gains are often associated to a decrease in (severe) conflicts during training, as shown on Figure
7. Furthermore, when comparing the results between Tables 1 and 2, we note that our base+ and base++
parametrizations often show improved performance compared to the base-D and base-DD settings, especially
on the mark prediction task. This highlights that the benefits of our parametrizations extend beyond the
prevention of conflicts to achieve greater predictive performance. We provide more visualizations in Appendix
H.6.

7 Conclusion, Limitations, and Future Work

Learning a neural MTPP model can be essentially interpreted as a two-task learning problem, in which one
task is focused on learning a predictive distribution of arrival times, and the other on learning a predictive
distribution of event types, known as marks. Typically, most neural MTPP models implicitly require these
two tasks to share a common set of trainable parameters. In this paper, we demonstrate that this parameter
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sharing leads to the emergence of conflicting gradients during training, often resulting in degraded performance
on each individual task. To prevent this issue, we introduce novel parametrizations of neural MTPP models
that enable separate modeling and training of each task, effectively preventing the occurrence of conflicting
gradients. Through extensive experiments on real-world event sequence datasets, we validate the advantages
of our framework over the original model configurations, particularly in the context of mark prediction.
However, we acknowledge several limitations in our study. Firstly, our focus was solely on categorical marks.
Investigating conflicting gradients in more complex scenarios, such as temporal graphs (Trivedi et al., 2019;
Gracious & Dukkipati, 2023) or spatio-temporal point processes (Zhou & Yu, 2023; Zhang et al., 2023),
presents a promising avenue for future research. Secondly, our analysis was limited to neural MTPP models
trained using the negative log-likelihood. Extending our framework to other proper scoring rules (Brehmer
et al., 2023) is also a potential area for future exploration.
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A Additional Forms of the Negative Log-Likelihood

Consider a dataset S = {S1, ..., SL}, where each sequence Sl comprises nl events with arrival times observed
within the interval [0, T ] and l = 1, ..., L. The average sequence negative log-likelihood (NLL) for these
sequences can be expressed as a function of the marked intensity λ∗(t; θT ) or the compensator Λ∗(t; θT ) as
follows:

L(θT , θM ; S) = − 1
L

L∑
l=1

nl∑
i=1

log λ∗(tl,i; θT ) +
∫ T

tn

λ∗(s; θT )ds︸ ︷︷ ︸
LT (θT ;S)

− 1
L

L∑
l=1

nl∑
i=1

log p∗(kl,i|τl,i; θM )︸ ︷︷ ︸
LM (θM ;S)

, (18)

and

L(θT , θM ; S) = − 1
L

L∑
l=1

[
nl∑

i=1
log

[
d

dt
Λ∗(tl,i; θT )

]]
+ Λ(T ; θT ))︸ ︷︷ ︸

LT (θT ;S)

− 1
L

L∑
l=1

nl∑
i=1

log p∗(kl,i|τl,i; θM )︸ ︷︷ ︸
LM (θM ;S)

. (19)

B Alternative Scoring Rules

The NLL in (1) has been largely adopted as the default scoring rule for learning MTPP models (Shchur
et al., 2021). However, our framework can be extended even further by using alternative scoring rules other
than the NLL for assessing the mark and time prediction tasks. Let Sf , Sm and Sw be (strictly) consistent
scoring rules for f∗(τ ; θT ), p∗(k|τ ; θM ) and 1 − F ∗(T ; θT ), respectively. Given a sequence S of n events (i.e.
L = 1), the scoring rule

L(θ; S) =
n∑

i=1

[
Sf (f∗(τi; θT ))

]
+ Sw (1 − F ∗(T ; θT ))︸ ︷︷ ︸

LT (θT ,S)

+
n∑

i=1
Sp(p∗(ki|τi; θM ))︸ ︷︷ ︸

LM (θM ,S)

, (20)

is (strictly) consistent for the conditional joint density f∗(τ, k; θT , θM ) restricted to the interval [0, T ] (Brehmer
et al., 2023). Using the LogScore for Sf , Sm and Sw in equation 20 reduces to the NLL in (17). One
can also use other choices tailored to the specific task. For instance, one can choose to use the continuous
ranked probability score (CRPS) (Gneiting & Raftery, 2007) for Sf to evaluate the predictive distribution of
inter-arrival times (Ben Taieb, 2022). Similarly, the Brier score (Brier, 1950) can be used for Sp to evaluate
the predictive distribution of marks. Contrary to the local property of the LogScore, both the CRPS and
the Brier score are sensitive to distance, in the sense that they reward predictive distributions that assign
probability mass close to the observed realization (Gebetsbergera et al., 2018). Nonetheless, the choice
between local and non-local proper scoring rules has been generally subjective in the literature. While
exploring alternative scoring rules to train neural MTPP models is an exciting research direction, we leave it
as future work and train the models exclusively on the NLL in (17).

C Proof of Corollary 1

Consider a base model λ∗
k(t; θ) with trainable parameters θ, and a disjoint parametrization of λ∗(t; θT ) and

p∗(k|t; θM ) obtained in (7) from two identical λ∗
k(t; θT ) and λ∗

k(t; θM ) with trainable parameters θT and θM ,
respectively. The NLL losses for θ and {θT , θM } respectively write

L(θ) = LT (θ) + LM (θ), (21)

L({θT , θM }) = LT (θT ) + LM (θM ). (22)
Suppose that at training iteration s ∈ N, θ, θT and θM are all initialized with the same θs. This implies that
λ∗

k(t; θ), λ∗
k(t; θT ) and λ∗

k(t; θM ) are all identical. Assuming that LT and LM are differentiable, the gradient
update steps for θ, θT and θM are

θs+1 = θs − α(gT + gM ), θs+1
T = θs − αgT and θs+1

M = θs − αgM , (23)
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where α > 0 is the learning rate and

gT = ∇θLT (θs) = ∇θT
LT (θs) and gM = ∇θLM (θs) = ∇θM

LM (θs) . (24)

Denoting ϕT M as the angle between gT and gM , we have the following corollary of Theorem 4.1. from (Shi
et al., 2023):

Corollary 1. Assume that LT and LM are differentiable, and that the learning rate α is sufficiently small.
If cos ϕT M < 0, then L({θs+1

T , θs+1
M }) < L(θs+1).

Proof. Let us consider the first order Taylor approximations of the total loss L = LT + LM near θs+1 and
{θs+1

T , θs+1
M }, respectively:

L(θs+1) = L(θs) + (θs+1 − θs)⊺gT + (θs+1 − θs)⊺gM + o(α). (25)

L({θs+1
T , θs+1

M }) = L(θs) + (θs+1
T − θs)⊺gT + (θs+1

M − θs)⊺gM + o(α). (26)

Taking the difference between L({θs+1
T , θs+1

M }) and L(θs+1) yields

L({θs+1
T , θs+1

M }) − L(θs+1) = (θs+1
T − θs+1)⊺gT + (θs+1

M − θs+1)⊺gM + o(α) (27)
= αg⊺

M gT + αg⊺
T gM + o(α) (28)

= 2α||gT ||||gM ||cos ϕT M + o(α). (29)

Provided that α is sufficiently small, this difference is negative if cos ϕd
T M < 0, where ϕT M is the angle

between gT and gM .

D Datasets

We use 5 real-world event sequence datasets for our experiments:

• LastFM (Hidasi & Tikk, 2012): Each sequence corresponds to a user listening to music records over
time. The artist of the song is the mark.

• MOOC (Kumar et al., 2019): Records of students’ activities on an online course system. Each
sequence corresponds to a student, and the mark is the type of activity performed.

• Github (Trivedi et al., 2019): Actions of software developers on the open-source platform Github.
Each sequence corresponds a developer, and the mark is the action performed (e.g. fork, pull
request,...).

• Reddit (Kumar et al., 2019): Sequences of posts to sub-reddits that users make on the social website
Reddit. Each sequence is a user, and the sub-reddits to which the user posts is considered as the
mark.

• Stack Overflow (Du et al., 2016). Sequences of badges that users receive over time on the website
Stack Overflow. A sequence is a specific user, and the type of badge received is the mark.

We employ the pre-processed version of these datasets as described in (Bosser & Ben Taieb,
2023) which can be openly accessed at this url: https://www.dropbox.com/sh/maq7nju7v5020kp/
AAAFBvzxeNqySRsAm-zgU7s3a/processed/data?dl=0&subfolder_nav_tracking=1 (MIT License). Specifi-
cally, each dataset is filtered to contain the 50 most represented marks, and all arrival-times are rescaled in the
interval [0,10] to avoid numerical instabilities. To save computational time, the number of sequences in Reddit
is reduced by 50%. Each dataset is randomly partitioned into 3 train/validation/test splits (60%/20%/20%).
The summary statistics for each (filtered) dataset is reported in Table 3.
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Table 3: Datasets statistics

#Seq. #Events Mean Length Max Length Min Length #Marks

LastFM 856 193441 226.0 6396 2 50
MOOC 7047 351160 49.8 416 2 50
Github 173 20656 119.4 4698 3 8
Reddit 4278 238734 55.8 941 2 50

Stack Overflow 7959 569688 71.6 735 40 22

E Training details

Training details. For all models, we minimize the average NLL in (17) on the training sequences using
mini-batch gradient descent with the Adam optimizer (Kingma & Ba, 2014) and a learning rate of 10−3. For
the base models and the base+ setup, an early-stopping protocol interrupts training if the model fails to
show improvement in the total validation loss (i.e., LT + LT ) for 50 consecutive epochs. Conversely, in the
base++ setup, two distinct early-stopping protocols are implemented for the LT and LM terms, respectively.
If one of these terms does not show improvement for 50 consecutive epochs, we freeze the parameters of the
associated functions (e.g. θT for f∗(τ ; θT )) and allow the remaining term to continue training. Training is
ultimately interrupted if both early-stopping criteria are met.

In all setups, the optimization process can last for a maximum of 500 epochs, and we revert the model
parameters to their state with the lowest validation loss after training. Finally, we evaluate the model by
computing test metrics on the test sequences of each split. Our framework is implemented in a unified
codebase using PyTorch6. All models were trained on a machine equipped with an AMD Ryzen Threadripper
PRO 3975WX CPU running at 4.1 GHz and a Nvidia RTX A4000 GPU.

Encoding past events. To obtain the encoding ei ∈ Rde of an event ei = (ti, ki) in Ht, we follow the work
of (Enguehard et al., 2020) by first mapping ti to a vector of sinusoidal functions:

et
i =

dt/2−1⊕
j=0

sin (αjti) ⊕ cos (αjti) ∈ Rdt , (30)

where αj ∝ 1000
−2j
dt and ⊕ is the concatenation operator. Then, a mark embedding ek

i ∈ Rdk for ki is
generated as ek

i = Ekki, where Ek ∈ Rdk×K is a learnable embedding matrix, and ki ∈ {0, 1}K is the one-hot
encoding of ki. Finally, we obtain ei through concatenation, i.e. ei = [et

i||ek
i ].

Hyperparameters. To ensure that changes in performance are solely attributed to the features enabled
by our framework, we control the number of parameters such the a baseline’s capacity remains equivalent
across the base, base+, base++, base-D, and base-DD setups. Notably, since STHP inherently models
the decomposition of the marked intensity, the base and base+ configurations are equivalent. Also, LNM,
RMTPP and STHP are equivalent between the base+ and the base-D settings, and between the base++ and
base-DD settings. Hence, we only consider these models in the base+ and base++ settings. Furthermore,
Table 4 provides the total number of trainable parameters for each setup when trained on the LastFM dataset,
as well as their distribution across the encoder and decoder heads. For all baselines and setups, we use
a single encoder layer, and the dimension de of the event encodings is set to 8. Additionally, we chose a
value of M = 32 for the number of mixture components. It is worth noting that (Shchur et al., 2020) found
LogNormMix to be robust to the choice of M . Finally, we set the number of GCIF projections to C = 32.

F Computational Time

We report in Table equation 5 the average execution time (in seconds) for a single forward and backward
pass on all training sequences of all datasets. The results are averaged over 50 epochs. We notice that the
computation of two separate embeddings hT and hM in the base++ setup inevitably leads to an increase

6https://pytorch.org/
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Table 4: Number of parameters for each baseline when trained on the LastFM dataset. The distribution of
parameters between the encoder and decoder heads is reported in parenthesis.

THP STHP SAHP FNN LNM RMTPP

Base 14720 (0.66/0.34) \ 15588 (0.68/0.32) 15939 (0.65/0.35) 13930 (0.67/0.33) 13619 (0.69/0.31)
Base+ 14786 (0.64/0.36) 18586 (0.5/0.5) 15210 (0.67/0.33) 16083 (0.65/0.35) 13946 (0.67/0.33) 13669 (0.69/0.31)

Base++ 14602 (0.63/0.37) 18402 (0.5/0.5) 15514 (0.67/0.33) 14961 (0.67/0.33) 13340 (0.66/0.34) 13063 (0.67/0.33)
Base-D 15512 (0.66/0.34) \ 15412 (0.67/0.33) 16083 (0.65/0.35) \ \

Base-DD 15252 (0.66/0.34) \ 15464 (0.68/0.32) 10446 (0.65/0.35) \ \

in execution time, which appears more pronounced for larger datasets such as Reddit and Stack Overflow.
However, the increased computational complexity is generally offset by improved model performance, as
detailed in Section 6.1.

Table 5: Average execution time (in seconds) for a single forward and backward pass on all training sequences
for all datasets. Results are averaged over 50 epochs.

LNM RMTPP FNN THP SAHP STHP

Base + ++ Base + ++ Base + ++ Base + ++ Base + ++ Base + ++

LastFM 2.2 2.23 3.26 1.91 1.94 2.94 4.29 3.66 4.74 2.96 2.57 3.62 4.82 3.42 4.48 3.08 \ 4.17

MOOC 3.97 3.99 5.6 3.24 3.33 4.37 6.36 6.28 8.07 5.19 4.15 5.76 8.08 5.91 7.74 5.61 \ 6.72

Github 0.34 0.39 0.51 0.34 0.34 0.5 0.76 0.65 0.8 0.38 0.43 0.58 0.51 0.55 0.69 0.49 \ 0.64

Reddit 8.74 9.53 11.5 7.99 8.14 11.79 19.13 16.47 20.32 9.75 9.78 13.5 13.63 11.99 15.9 11.59 \ 15.54

Stack O. 16.02 16.63 22.98 14.08 14.54 20.31 32.83 28.15 33.95 16.32 16.81 23.1 21.11 20.77 26.45 19.84 \ 26.07

G An Alternative Approach to Model the Joint Distribution

As detailed in Section (4.2), our parametrization of LNM+ alleviates the conditional independence of arrival-
times and marks made in LNM (Shchur et al., 2020). Relatedly, Waghmare et al. (2022) also proposed an
extension of LNM that relaxes this assumption, although their approach differs from ours in some key aspects.
Specifically, their work parametrizes f∗(τ |k; θT ) as a distinct mixture of log-normal distributions for each
mark k, and p∗(k; θM ) is obtained by removing the temporal dependency in (9)7. For further reference, we
denote this model as LNM-Joint. Although both LNM+ and LNM-Joint aim to model the joint distribution
f∗(τ, k), some conceptual differences separate the two approaches:

1. By design, LNM-Joint cannot be trained in the base++ setup as it prevents the decomposition of the
NLL into disjoint LT and LM terms. Indeed, suppose that we use two distinct history representations
hT and hM to parametrize f∗(τ |k; θT ) and p∗(k; θM ) respectively, as detailed in Section 4.2. Here,
θT and θM are disjoint set of learnable parameters. The NLL of a training sequence S = {(τi, ki)}n

i=1
observed in [0, T ] would write

L(θT , θM ; S) = −
n∑

i=1
log f∗(τi|ki; θT ) − log (1 − F ∗ (T ; θT , θM ))︸ ︷︷ ︸

LT (θT ,θM ;S)

−
n∑

i=1
log p∗(ki; θM )︸ ︷︷ ︸
LM (θM ;S)

, (31)

where F ∗ (T ; θT ; θM ) =
∫ T −tn

0
∑K

k=1 f∗(s|k; θT )p∗(k; θM )ds depends on both θT and θM . Conse-
quently, the NLL cannot be disentangled into disjoint LT and LM terms, proscribing disjoint training
in the base++ setup. Conversely, choosing to parametrize f∗(τ ; θT ) and p∗(k|τ ; θM ) as done in our
framework leads to the decomposition in (17) as F ∗(T ; θT ) is solely function of θT .

7Both f∗(τ |k; θT ) and p∗(k; θM ) rely on a common history embedding h.
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2. For LNM-Joint, M mixtures must be defined for each k, leading to M ×K log-normal distributions in
total. Conversely, in LNM+, f∗(τ ; θT ) does not scale with K, and p∗(τ |k; θM ) requires an equivalent
number of parameters as p∗(k; θM ) in LNM-Joint.

For completeness, we integrate LNM-Joint in our code base using the original implementation as reference.
In Table (6), we compare its performance against LNM+ on the time and mark prediction tasks in terms
of the LT , LM , and accuracy metrics, following the experimental setup detailed previously. We observe
improved performance of LNM+ compared to LNM-Joint on the mark prediction task (LM and accuracy),
and competitive results on the time prediction task (LT ). Despite both approaches modelling the joint
distribution, our results suggest that the dependency between arrival times and marks is more accurately
captured by p∗(k|τ ; θM ) than by f∗(τ |k; θT ).

Table 6: LT , LM and Accuracy results for LNM+ and LNM-Joint on all datasets. The values are computed
over 3 splits, and the standard error is reported in parenthesis. Best results are highlighted in bold.

LastFM MOOC Github Reddit Stack O.

LM

LNM+ 668.6 (15.8) 77.1 (1.3) 112.3 (15.1) 41.4 (1.1) 103.2 (0.7)
Joint-LNM 671.3 (17.1) 127.0 (6.4) 117.3 (15.5) 42.9 (0.9) 106.6 (0.7)

Accuracy

LNM+ 0.24 (0.01) 0.52 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)
Joint-LNM 0.23 (0.01) 0.23 (0.03) 0.64 (0.01) 0.82 (0.0) 0.47 (0.0)

LT

LNM+ -1320.4 (60.5) -310.6 (3.7) -378.7 (59.4) -96.4 (2.0) -91.1 (1.3)
Joint-LNM -1326.2 (58.3) -303.9 (3.3) -381.0 (59.6) -94.3 (2.0) -90.6 (1.4)

H Additional results

H.1 Evaluation metrics

Tables 7, 8 and 9 give the PCE, ECE, MRR, and accuracy@{1,3,5} for the base, base+ and base++ setups
across all datasets. The metrics are averaged over 3 splits, and the standard error is given in parenthesis. We
note that the results not discussed in the main text are consistent with our previous conclusions. Specifically,
we observe general improvement with respect to mark related metrics (i.e. ECE, MRR, accuracy@{1,3,5})
when moving from the base models to the base+ or base++ setups. Finally, the PCE metric does not
always improve between the base+ and ++ setups, suggesting that the remaining conflicting gradients at
the encoder head in the base+ are mostly detrimental to the mark prediction task.

Finally, we report the results with respect to the MAE metric in Table 10. We notice that lower MAE values
do not systematically match the lower values of LT or PCE in Tables 1 and 7, indicating that the MAE may
not be entirely appropriate to evaluate the time prediction task. As discussed in Shchur et al. (2021), neural
MTPP models are probabilistic models that enable the generation of complete distributions over future
events. In this context, point prediction metrics, like MAE, are deemed less suitable for evaluating MTPP
models because they consider single point predictions into account. In contrast, the NLL and calibration
scores directly evaluate the entire predictive distributions, and should be therefore favored compared to point
prediction metrics.

H.2 Reliability diagrams

Figures (8) to (10) show the reliability diagrams of the predictive distribution of arrival-times and marks
for all models in the base and base++ setups on all datasets. In most cases, we observe improved mark
calibration for the base++ setup compared to the base models, in accordance to the ECE results of Table 7.
Additionally, improvements with respect to the calibration of the predictive distribution of arrival times is in
general less prevalent, corroborating our discussion in the main text. This observation is also in coherent with
the PCE results of Table 7. Nonetheless, we observe substantial time calibration improvements for SAHP
and FNN when trained in the base++ setup on MOOC and Reddit.
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Table 7: PCE and ECE results of the different setups across all datasets. The values are computed over 5
splits, and the standard error is reported in parenthesis. Best results are highlighted in bold.

PCE
LastFM MOOC Github Reddit Stack O.

THP 0.28 (0.0) 0.37 (0.0) 0.2 (0.01) 0.12 (0.0) 0.01 (0.0)
THP+ 0.27 (0.01) 0.37 (0.0) 0.19 (0.01) 0.07 (0.0) 0.01 (0.0)

THP++ 0.28 (0.01) 0.37 (0.0) 0.19 (0.02) 0.05 (0.0) 0.01 (0.0)

STHP+ 0.29 (0.01) 0.37 (0.0) 0.29 (0.02) 0.1 (0.0) 0.01 (0.0)
STHP++ 0.29 (0.01) 0.36 (0.0) 0.25 (0.02) 0.1 (0.0) 0.01 (0.0)

SAHP 0.06 (0.01) 0.12 (0.0) 0.07 (0.0) 0.1 (0.01) 0.01 (0.0)
SAHP+ 0.05 (0.01) 0.03 (0.0) 0.04 (0.01) 0.01 (0.0) 0.0 (0.0)

SAHP++ 0.04 (0.01) 0.03 (0.0) 0.04 (0.01) 0.01 (0.0) 0.04 (0.0)

LNM 0.03 (0.01) 0.01 (0.0) 0.02 (0.0) 0.01 (0.0) 0.0 (0.0)
LNM+ 0.05 (0.01) 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.0 (0.0)

LNM++ 0.03 (0.0) 0.01 (0.0) 0.03 (0.0) 0.01 (0.0) 0.0 (0.0)

FNN 0.04 (0.0) 0.09 (0.0) 0.04 (0.01) 0.07 (0.0) 0.05 (0.0)
FNN+ 0.03 (0.0) 0.01 (0.0) 0.03 (0.01) 0.01 (0.0) 0.01 (0.0)

FNN++ 0.02 (0.0) 0.01 (0.0) 0.02 (0.0) 0.01 (0.0) 0.01 (0.0)

RMTPP 0.25 (0.01) 0.29 (0.0) 0.18 (0.01) 0.03 (0.0) 0.01 (0.0)
RMTPP+ 0.26 (0.01) 0.27 (0.01) 0.18 (0.01) 0.03 (0.0) 0.01 (0.0)

RMTPP++ 0.26 (0.0) 0.29 (0.0) 0.17 (0.01) 0.04 (0.0) 0.01 (0.0)

ECE
LastFM MOOC Github Reddit Stack O.

THP 0.23 (0.03) 0.07 (0.0) 0.09 (0.02) 0.02 (0.0) 0.04 (0.02)
THP+ 0.05 (0.01) 0.02 (0.0) 0.07 (0.01) 0.03 (0.01) 0.01 (0.0)

THP++ 0.03 (0.0) 0.02 (0.0) 0.07 (0.02) 0.02 (0.0) 0.01 (0.0)

STHP+ 0.05 (0.0) 0.03 (0.0) 0.06 (0.02) 0.03 (0.0) 0.02 (0.0)
STHP++ 0.04 (0.0) 0.04 (0.0) 0.04 (0.01) 0.05 (0.01) 0.03 (0.01)

SAHP 0.11 (0.01) 0.13 (0.0) 0.08 (0.02) 0.08 (0.01) 0.03 (0.0)
SAHP+ 0.06 (0.01) 0.02 (0.0) 0.07 (0.02) 0.03 (0.01) 0.01 (0.0)

SAHP++ 0.03 (0.0) 0.02 (0.01) 0.07 (0.01) 0.02 (0.0) 0.01 (0.0)

LNM 0.09 (0.02) 0.07 (0.01) 0.05 (0.01) 0.03 (0.01) 0.03 (0.01)
LNM+ 0.05 (0.01) 0.04 (0.01) 0.06 (0.01) 0.02 (0.0) 0.01 (0.0)

LNM++ 0.02 (0.0) 0.02 (0.0) 0.05 (0.01) 0.02 (0.0) 0.01 (0.0)

FNN 0.08 (0.01) 0.05 (0.0) 0.05 (0.0) 0.04 (0.01) 0.02 (0.0)
FNN+ 0.04 (0.01) 0.02 (0.0) 0.06 (0.0) 0.02 (0.0) 0.01 (0.0)

FNN++ 0.03 (0.0) 0.02 (0.0) 0.07 (0.02) 0.02 (0.0) 0.01 (0.0)

RMTPP 0.05 (0.01) 0.06 (0.01) 0.07 (0.0) 0.03 (0.0) 0.03 (0.02)
RMTPP+ 0.05 (0.01) 0.03 (0.01) 0.06 (0.0) 0.03 (0.01) 0.01 (0.0)

RMTPP++ 0.04 (0.01) 0.02 (0.0) 0.06 (0.01) 0.02 (0.0) 0.01 (0.0)

Table 8: Accuracy@1 and Accuracy@3 results of the different setups across all datasets. The values are
computed over 5 splits, and the standard error is reported in parenthesis. Best results are highlighted in bold.

Accuracy
LastFM MOOC Github Reddit Stack O.

THP 0.18 (0.01) 0.4 (0.0) 0.59 (0.02) 0.83 (0.0) 0.48 (0.0)
THP+ 0.21 (0.01) 0.52 (0.0) 0.64 (0.01) 0.82 (0.0) 0.49 (0.0)

THP++ 0.25 (0.01) 0.55 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

STHP+ 0.2 (0.01) 0.46 (0.0) 0.63 (0.01) 0.81 (0.0) 0.48 (0.0)
STHP++ 0.21 (0.01) 0.46 (0.0) 0.65 (0.01) 0.81 (0.0) 0.48 (0.0)

SAHP 0.05 (0.0) 0.36 (0.01) 0.6 (0.01) 0.69 (0.02) 0.48 (0.0)
SAHP+ 0.14 (0.01) 0.54 (0.0) 0.65 (0.01) 0.82 (0.0) 0.49 (0.0)

SAHP++ 0.24 (0.01) 0.56 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

LNM 0.21 (0.01) 0.43 (0.0) 0.64 (0.01) 0.81 (0.0) 0.47 (0.0)
LNM+ 0.24 (0.01) 0.52 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

LNM++ 0.25 (0.01) 0.54 (0.0) 0.67 (0.01) 0.82 (0.0) 0.48 (0.0)

FNN 0.13 (0.01) 0.51 (0.0) 0.67 (0.01) 0.8 (0.01) 0.48 (0.0)
FNN+ 0.23 (0.01) 0.55 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

FNN++ 0.25 (0.01) 0.55 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

RMTPP 0.23 (0.01) 0.42 (0.0) 0.61 (0.02) 0.82 (0.0) 0.47 (0.0)
RMTPP+ 0.23 (0.01) 0.53 (0.0) 0.64 (0.01) 0.82 (0.0) 0.49 (0.0)

RMTPP++ 0.24 (0.01) 0.55 (0.0) 0.67 (0.01) 0.82 (0.0) 0.49 (0.0)

Accuracy@3
LastFM MOOC Github Reddit Stack O.

THP 0.36 (0.01) 0.75 (0.0) 0.86 (0.01) 0.91 (0.0) 0.82 (0.0)
THP+ 0.37 (0.01) 0.8 (0.0) 0.86 (0.0) 0.9 (0.0) 0.83 (0.0)

THP++ 0.42 (0.01) 0.82 (0.0) 0.89 (0.0) 0.9 (0.01) 0.83 (0.0)

STHP+ 0.36 (0.01) 0.78 (0.0) 0.88 (0.01) 0.89 (0.0) 0.83 (0.0)
STHP++ 0.37 (0.01) 0.78 (0.0) 0.89 (0.0) 0.89 (0.0) 0.82 (0.0)

SAHP 0.14 (0.0) 0.57 (0.01) 0.86 (0.01) 0.79 (0.02) 0.81 (0.0)
SAHP+ 0.29 (0.01) 0.81 (0.0) 0.88 (0.0) 0.9 (0.0) 0.83 (0.0)

SAHP++ 0.42 (0.01) 0.82 (0.0) 0.89 (0.0) 0.9 (0.0) 0.83 (0.0)

LNM 0.38 (0.02) 0.76 (0.0) 0.88 (0.0) 0.89 (0.0) 0.82 (0.0)
LNM+ 0.41 (0.01) 0.8 (0.0) 0.89 (0.0) 0.9 (0.0) 0.83 (0.0)

LNM++ 0.44 (0.01) 0.81 (0.0) 0.89 (0.0) 0.9 (0.0) 0.83 (0.0)

FNN 0.3 (0.01) 0.79 (0.0) 0.89 (0.0) 0.89 (0.0) 0.81 (0.0)
FNN+ 0.4 (0.01) 0.81 (0.0) 0.89 (0.0) 0.9 (0.0) 0.83 (0.0)

FNN++ 0.42 (0.01) 0.82 (0.0) 0.9 (0.0) 0.91 (0.0) 0.83 (0.0)

RMTPP 0.39 (0.01) 0.76 (0.0) 0.86 (0.0) 0.9 (0.0) 0.82 (0.0)
RMTPP+ 0.39 (0.01) 0.8 (0.0) 0.87 (0.01) 0.9 (0.0) 0.83 (0.0)

RMTPP++ 0.42 (0.01) 0.82 (0.0) 0.89 (0.0) 0.9 (0.0) 0.83 (0.0)

Table 9: Accuracy@5 and MRR results of the different setups across all datasets. The values are computed
over 5 splits, and the standard error is reported in parenthesis. Best results are highlighted in bold.

Accuracy@5
LastFM MOOC Github Reddit Stack O.

THP 0.46 (0.01) 0.87 (0.0) 0.95 (0.01) 0.93 (0.0) 0.93 (0.0)
THP+ 0.47 (0.01) 0.89 (0.0) 0.96 (0.0) 0.92 (0.0) 0.93 (0.0)

THP++ 0.52 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

STHP+ 0.46 (0.01) 0.88 (0.0) 0.96 (0.0) 0.92 (0.0) 0.93 (0.0)
STHP++ 0.46 (0.01) 0.89 (0.0) 0.97 (0.0) 0.91 (0.0) 0.92 (0.0)

SAHP 0.22 (0.01) 0.67 (0.01) 0.95 (0.0) 0.84 (0.02) 0.91 (0.0)
SAHP+ 0.39 (0.01) 0.89 (0.0) 0.97 (0.0) 0.92 (0.0) 0.93 (0.0)

SAHP++ 0.52 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

LNM 0.47 (0.02) 0.88 (0.0) 0.96 (0.0) 0.92 (0.0) 0.92 (0.0)
LNM+ 0.51 (0.01) 0.89 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

LNM++ 0.54 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

FNN 0.4 (0.01) 0.88 (0.0) 0.97 (0.0) 0.92 (0.0) 0.91 (0.0)
FNN+ 0.5 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

FNN++ 0.53 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

RMTPP 0.48 (0.01) 0.88 (0.0) 0.96 (0.0) 0.93 (0.0) 0.92 (0.0)
RMTPP+ 0.49 (0.01) 0.89 (0.0) 0.96 (0.0) 0.93 (0.0) 0.93 (0.0)

RMTPP++ 0.52 (0.01) 0.9 (0.0) 0.97 (0.0) 0.93 (0.0) 0.93 (0.0)

MRR
LastFM MOOC Github Reddit Stack O.

THP 0.32 (0.01) 0.6 (0.0) 0.74 (0.01) 0.87 (0.0) 0.67 (0.0)
THP+ 0.34 (0.01) 0.68 (0.0) 0.77 (0.01) 0.87 (0.0) 0.67 (0.0)

THP++ 0.38 (0.01) 0.7 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

STHP+ 0.33 (0.01) 0.64 (0.0) 0.77 (0.01) 0.86 (0.0) 0.67 (0.0)
STHP++ 0.34 (0.01) 0.64 (0.0) 0.78 (0.0) 0.86 (0.0) 0.67 (0.0)

SAHP 0.16 (0.0) 0.5 (0.01) 0.74 (0.01) 0.76 (0.02) 0.67 (0.0)
SAHP+ 0.27 (0.01) 0.69 (0.0) 0.78 (0.01) 0.86 (0.0) 0.67 (0.0)

SAHP++ 0.38 (0.01) 0.7 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

LNM 0.35 (0.01) 0.62 (0.0) 0.77 (0.0) 0.86 (0.0) 0.66 (0.0)
LNM+ 0.37 (0.01) 0.68 (0.0) 0.79 (0.0) 0.87 (0.0) 0.67 (0.0)

LNM++ 0.4 (0.01) 0.69 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)

FNN 0.27 (0.01) 0.67 (0.0) 0.79 (0.01) 0.85 (0.0) 0.66 (0.0)
FNN+ 0.36 (0.01) 0.7 (0.0) 0.79 (0.0) 0.87 (0.0) 0.67 (0.0)

FNN++ 0.38 (0.01) 0.7 (0.0) 0.8 (0.0) 0.87 (0.0) 0.67 (0.0)

RMTPP 0.36 (0.01) 0.61 (0.0) 0.75 (0.01) 0.87 (0.0) 0.66 (0.0)
RMTPP+ 0.36 (0.01) 0.69 (0.0) 0.77 (0.01) 0.87 (0.0) 0.67 (0.0)

RMTPP++ 0.38 (0.01) 0.7 (0.0) 0.79 (0.01) 0.87 (0.0) 0.67 (0.0)
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Table 10: MAE results of the different setups across all datasets. The values are computed over 5 splits, and
the standard error is reported in parenthesis. Best results are highlighted in bold.

MAE
LastFM MOOC Github Reddit Stack O.

THP 0.01624 (0.00056) 0.13332 (0.00096) 0.0935 (0.01328) 0.15257 (0.00322) 0.09885 (0.00097)
THP+ 0.01925 (0.00165) 0.13638 (0.0016) 0.09769 (0.014) 0.15811 (0.00079) 0.09972 (0.00077)

THP++ 0.01744 (0.00103) 0.13365 (0.00134) 0.09327 (0.01162) 0.17627 (0.00359) 0.09926 (0.00069)

STHP+ 0.03717 (0.00978) 0.17422 (0.01899) 0.11691 (0.00889) 0.15864 (0.00409) 0.09883 (0.0007)
STHP++ 0.08356 (0.01887) 0.17057 (0.02083) 0.1029 (0.01195) 0.22542 (0.02801) 0.09931 (0.00056)

SAHP 0.0137 (0.00055) 0.12319 (0.00174) 0.08409 (0.01092) 0.18839 (0.00389) 0.0992 (0.00066)
SAHP+ 0.01364 (0.00056) 0.12318 (0.00191) 0.07491 (0.0117) 0.13427 (0.00216) 0.09853 (0.00071)

SAHP++ 0.01358 (0.0006) 0.12138 (0.00197) 0.07127 (0.0102) 0.13168 (0.00206) 0.10285 (0.00057)

FNN 0.03563 (0.0138) 0.16602 (0.0487) 0.41847 (0.19173) 0.23207 (0.05185) 0.266 (0.09399)
FNN+ 0.01055 (0.00043) 0.07732 (0.00034) 0.07093 (0.00902) 0.13157 (0.00208) 0.09299 (0.00072)

FNN++ 0.01054 (0.00042) 0.07711 (0.00039) 0.07102 (0.0093) 0.13148 (0.00231) 0.09305 (0.00064)

LNM 0.0111 (0.00049) 0.13516 (0.00078) 0.08706 (0.01153) 0.13494 (0.00202) 0.09494 (0.00075)
LNM+ 0.01131 (0.00054) 0.13548 (0.0011) 0.08715 (0.0114) 0.135 (0.00213) 0.09517 (0.00069)

LNM++ 0.01098 (0.00049) 0.13083 (0.00096) 0.08694 (0.01135) 0.1361 (0.00209) 0.09476 (0.00071)

RMTPP 0.01619 (0.00097) 0.1208 (0.00084) 0.12939 (0.02772) 0.13577 (0.00223) 0.09522 (0.00069)
RMTPP+ 0.01677 (0.00072) 0.12059 (0.00083) 0.11416 (0.02624) 0.1362 (0.00227) 0.09563 (0.00085)

RMTPP++ 0.01705 (0.00058) 0.12011 (0.00079) 0.09183 (0.0106) 0.13772 (0.00192) 0.09656 (0.0008)
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Figure 8: Reliability diagrams of the predictive p∗(k|τ ; θM ) (top) and f∗(τ, θT ) (bottom) on LastFM.
Frequency and Accuracy aligning with the black diagonal corresponds to perfect calibration. The results are
averaged over 5 splits, and the error bars correspond to the standard error.
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(a) MOOC
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(b) Github
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Figure 9: Reliability diagrams of the predictive p∗(k|τ ; θM ) (top) and f∗(τ, θT ) (bottom) on MOOC anf
Github. Frequency and Accuracy aligning with the black diagonal corresponds to perfect calibration. The
results are averaged over 3 splits, and the error bars correspond to the standard error.
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(a) Reddit
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(b) Stack Overflow
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Figure 10: Reliability diagrams of the predictive p∗(k|τ ; θM ) (top) and f∗(τ, θT ) (bottom) on Reddit and
Stack Overflow. Frequency and Accuracy aligning with the black diagonal corresponds to perfect calibration.
The results are averaged over 5 splits, and the error bars correspond to the standard error.
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H.3 Conflicting gradients remain harmful as capacity increases

To assess whether conflicting gradients remain detrimental to predictive performance for higher-capacity
models, we train THP, SAHP and FNN in the base and base-DD settings while progressively increasing the
number of trainable parameters. Figure 11 shows the evolution of the proportion of CG, GMS and TPI
during training for these models on LastFM and MOOC, along with the evolution of their test LT and LM as
a function of number of parameters. For each capacity (25K, 50K, 75K and 100K parameters), we maintain
the distribution of parameters between the encoder and decoder heads constant at 0.67/0.33. Note that
we only report the CG, GMS, and TPI values for the base models, as the base-DD setting is by definition
free of conflicts. We note that increasing a model’s capacity has a limited impact on the CG, GMS and
TPI values, as well as on model performance with respect to both LT and LM . In contrast, differences in
performance between the base and base-DD setups are more significant, suggesting that conflicting gradients
remain harmful to performance even with increased model capacity.

H.4 Scaling the loss does not efficiently address conflicts

Our findings in Figure 5 suggest that conflicting gradients generally tend to favor TT at the encoder heads
during optimization, as illustrated by TPI values > 0.5. To better balance tasks during training, a natural
approach would consist in scaling the contribution of TT in (2) to reduce its impact on the overall loss, i.e.

L(θ; Strain) = 1
s

LT (θ; Strain) + LM (θ; Strain), (32)

where s ≥ 1 is a scaling coefficient. To assess the effectiveness of this method, we train the base THP, SAHP
and FNN models on the objective in (32) following the experimental setup detailed in Section E. For these
models, we report in Figure (12) the evolution of the training CG, GMS and TPI values, along with their
unscaled test LT and LM . We observe that the occurrence of conflicting gradients is marginally impacted
by larger values of s. However, as scaling increases, the magnitude of gT diminishes, which translates into
decreased values of GMS and TPI. Consequently, optimization begins to favor TM , and improvements on LM

can be observed. Nevertheless, the crashed TPI and GMS values are at the root of significant degradation
with respect to LT , offsetting the gains on TM . Although a specific value of s could lead to a trade-off
between tasks, models trained in our base+ or base++ settings generally show improved performance with
respect to both tasks simultaneously, as shown in Table 1.
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(a) LastFM
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Figure 11: Left: Evolution of CG, GMS, TPI with increasing model capacity for the base THP, SAHP and
FNN during training on LastFM and MOOC. Right: Evolution of the test LT and LM in the base and
base-DD settings.
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(a) LastFM
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Figure 12: Left: Evolution of CG, GMS, TPI with scaling coefficient s for the base THP, SAHP and FNN
during training on LastFM. Right: Evolution of the test LT and LM in the base and base-DD settings.
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H.5 Distributions of conflicting gradients between the base and base+ settings

Figures (13) to (14) show the distributions of cos ϕT M during training, as well as the proportion of conflicting
gradients (CG), their average GMS, and their average TPI for all models in the base and base+ setups on all
datasets. As discussed in the main text, severe conflicts (cos ϕT M < −0.5) often arise when training neural
MTPP models in the base setup. For THP, SAHP, and FNN, the base+ setup reduces the occurrence of
severe conflicts at the encoder heads, and prevents conflicting gradients to appear at the decoder heads.
For LNM and RMTPP, we only show the distribution of cos ϕT M at the encoder heads as the decoders are
by design free of conflicting gradients in the base and base+ setups. For these models, the base+ setup
does not change significantly the distribution of conflicting gradients during training, which aligns with
expectations. Hence, for LNM+ and RMTPP+, we attribute performance gains on the mark prediction task
to the relaxation of conditional independence between arrival times and marks via (9).
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Figure 13: Distribution of cos ϕT M during training at the encoder (ENC) and decoder (DEC) heads for all
baselines in the base and base+ setup on LastFM and MOOC. "B" and "+" refer to the base and base+
models, respectively, and the distribution is obtained by pooling the values of ϕT M over 5 training runs. As
the decoders are disjoint in the base+ setting, note that cos ϕT M is not defined.
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Figure 14: Distribution of cos ϕT M during training at the encoder (ENC) and decoder (DEC) heads for all
baselines in the base and base+ setup on Github, Reddit, and Stack Overflow. "B" and "+" refer to the base
and base+ models, respectively, and the distribution is obtained by pooling the values of ϕT M over 5 training
runs. As the decoders are disjoint in the base+ setting, note that cos ϕT M is not defined.
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H.6 Distributions of conflicting gradients between the base and base-D settings

Figure (15) show the distribution of cos ϕT M during training, as well as the proportion of conflicting gradients
(CG), their average GMS, and their average TPI for THP, SAHP, and FNN in the base and base-D setups
on all datasets. We observe that using two identical and task-specific instances of the same decoder in the
base-D setup for the time and mark prediction tasks mitigates the occurrence of conflicts. The decrease in
conflicting gradients during training is in turn associated to increased performance with respect to both tasks.
We refer the reader to the discussion in Section 6.1 of the main text for further details.

1.0 0.5 0.0 0.5 1.0
cos TM

0.0

0.1

0.2

0.3

0.4

0.5

Pr
op

or
tio

n

B: CG:0.60 GMS:0.69 TPI:0.88
D: CG:0.52 GMS:0.58 TPI:0.87

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.50 GMS:0.58 TPI:0.09

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.64 GMS:0.76 TPI:0.61
D: CG:0.58 GMS:0.68 TPI:0.57

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.44 GMS:0.55 TPI:0.1

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.51 GMS:0.65 TPI:0.84
D: CG:0.49 GMS:0.74 TPI:0.67

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.49 GMS:0.53 TPI:0.36

THP-ENC THP-DECTHP-ENC THP-DEC SAHP-ENC SAHP-DECSAHP-ENC SAHP-DEC FNN-ENC FNN-DECFNN-ENC FNN-DEC

La
st

FM

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
op

or
tio

n

B: CG:0.80 GMS:0.86 TPI:0.87
D: CG:0.39 GMS:0.69 TPI:0.84

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.87 GMS:0.9 TPI:0.44

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.91 GMS:0.9 TPI:0.33
D: CG:0.49 GMS:0.37 TPI:0.03

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.74 GMS:0.88 TPI:0.51

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.32 GMS:0.76 TPI:0.92
D: CG:0.32 GMS:0.84 TPI:0.38

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.43 GMS:0.59 TPI:0.34

THP-ENC THP-DECTHP-ENC THP-DEC SAHP-ENC SAHP-DECSAHP-ENC SAHP-DEC FNN-ENC FNN-DECFNN-ENC FNN-DEC

M
OO

C

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

B: CG:0.57 GMS:0.65 TPI:0.81
D: CG:0.54 GMS:0.47 TPI:0.87

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.64 GMS:0.76 TPI:0.39

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.73 GMS:0.82 TPI:0.56
D: CG:0.6 GMS:0.72 TPI:0.69

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.64 GMS:0.76 TPI:0.47

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.57 GMS:0.61 TPI:0.89
D: CG:0.46 GMS:0.64 TPI:0.84

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.52 GMS:0.66 TPI:0.54

THP-ENC THP-DECTHP-ENC THP-DEC SAHP-ENC SAHP-DECSAHP-ENC SAHP-DEC FNN-ENC FNN-DECFNN-ENC FNN-DEC

Gi
th

ub

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
op

or
tio

n

B: CG:0.56 GMS:0.79 TPI:0.77
D: CG:0.52 GMS:0.78 TPI:0.51

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.50 GMS:0.76 TPI:0.29

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.94 GMS:0.94 TPI:0.47
D: CG:0.54 GMS:0.72 TPI:0.34

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.76 GMS:0.82 TPI:0.32

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.65 GMS:0.79 TPI:0.73
D: CG:0.49 GMS:0.74 TPI:0.54

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.60 GMS:0.65 TPI:0.35

THP-ENC THP-DECTHP-ENC THP-DEC SAHP-ENC SAHP-DECSAHP-ENC SAHP-DEC FNN-ENC FNN-DECFNN-ENC FNN-DEC

Re
dd

it

1.0 0.5 0.0 0.5 1.0
cos TM

0.00

0.05

0.10

0.15

0.20

0.25

Pr
op

or
tio

n

B: CG:0.42 GMS:0.82 TPI:0.24
D: CG:0.41 GMS:0.77 TPI:0.15

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.47 GMS:0.64 TPI:0.06

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.60 GMS:0.8 TPI:0.28
D: CG:0.44 GMS:0.79 TPI:0.31

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.56 GMS:0.69 TPI:0.16

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.48 GMS:0.83 TPI:0.59
D: CG:0.42 GMS:0.76 TPI:0.28

1.0 0.5 0.0 0.5 1.0
cos TM

B: CG:0.50 GMS:0.65 TPI:0.36

THP-ENC THP-DECTHP-ENC THP-DEC SAHP-ENC SAHP-DECSAHP-ENC SAHP-DEC FNN-ENC FNN-DECFNN-ENC FNN-DEC

St
ac

k 
Ov

er
flo

w

Figure 15: Distribution of cos ϕT M during training at the encoder (ENC) and decoder (DEC) heads for all
baselines in the base and base-D setup on all datasets. "B" and "D" refer to the base and base-D models,
respectively, and the distribution is obtained by pooling the values of ϕT M over 5 training runs. As the
decoders are disjoint in the base-D setting, note that cos ϕT M is not defined.

33


	Introduction
	Background and Notations
	Conflicting Gradients in Two-Task Learning for Neural MTPP Models
	A Framework to Prevent Conflicting Gradients in Neural MTPP Models
	A Naive Approach to Achieve Disjoint Parametrizations
	Novel Disjoint Parametrizations of Neural MTPP Models
	Disjoint training of the time and mark tasks.

	Related Work
	Experiments
	Results and discussion

	Conclusion, Limitations, and Future Work
	Additional Forms of the Negative Log-Likelihood
	Alternative Scoring Rules
	Proof of Corollary 1
	Datasets
	Training details
	Computational Time
	An Alternative Approach to Model the Joint Distribution
	Additional results
	Evaluation metrics
	Reliability diagrams
	Conflicting gradients remain harmful as capacity increases
	Scaling the loss does not efficiently address conflicts
	Distributions of conflicting gradients between the base and base+ settings
	Distributions of conflicting gradients between the base and base-D settings


