
NLDL
#24

NLDL
#24

NLDL 2025 Full Paper Submission #24. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Smooth-edged Perturbations Improve Perturbation-based Image
Explanations

Anonymous Full Paper
Submission 24

Abstract001

Perturbation-based post-hoc image explanation002

methods are commonly used to explain image pre-003

diction models by perturbing parts of the input to004

measure how those parts affect the output. Due005

to the intractability of perturbing each pixel indi-006

vidually, images are typically attributed to larger007

segments. The Randomized Input Sampling for Ex-008

planations (RISE) method solved this issue by using009

smooth perturbation masks.010

While this method has proven effective and pop-011

ular, it has not been investigated which parts of012

the method are responsible for its success. This013

work tests many combinations of mask sampling,014

segmentation techniques, smoothing, and attribu-015

tion calculation. The results show that the RISE-016

style pixel attribution is beneficial to all evaluated017

methods. Furthermore, it is shown that attribution018

calculation is the least impactful parameter. The019

implementation of and data gathered in this work020

is available online 1.021

1 Introduction022

Over the past decade, deep neural networks (DNN)023

have proven proficient at solving computer vision024

tasks [1]. However, the black-box nature of DNNs025

causes issues, including difficulties in understand-026

ing when the model is wrong, lack of trust in the027

models, and legal issues [2]. The goal of the field of028

Explainable Artificial Intelligence (XAI) is to make029

AI models more transparent to mitigate these issues.030

Some research in XAI focuses on developing mod-031

els that are inherently explainable [3]. Other re-032

search uses so-called global methods that attempt to033

explain the entirety of a model’s prediction space [4].034

However, these approaches are not suitable for035

DNNs. A popular approach that avoids these prob-036

lems is post-hoc explanations [5].037

Post-hoc explanations forego trying to understand038

the model in its entirety and focus instead on ex-039

plaining individual predictions. For example, in-040

stead of explaining the entire process by which a041

bank makes loan decisions the banker only needs042

to explain the parts of the process that are im-043

portant for a given decision. One type of post-044

hoc explanation that is popular in the computer045

1Removed for anonymization

Figure 1. The pipeline for perturbation-based image
attribution used in this work. The image is segmented,
samples indicating what segments to perturb are drawn,
the sampled segments are perturbed, the model to ex-
plain makes predictions for the perturbed samples, and
the input-output pairs are used to calculate attribution
per-segment and per-pixel.

vision domain is perturbation-based explanations. 046

Perturbation-based explanations work by analyzing 047

how the model’s predictions change as the original 048

input is perturbed. As they only need the given 049

inputs and outputs perturbation-based explanations 050

are model-agnostic and can be applied to any model. 051

Since the information in images is generally found 052

in the relationships between many pixels [6], per- 053

turbing individual pixels is unlikely to have much 054

impact on the prediction. As such, perturbations are 055

typically made on larger pixel segments. Depending 056

on the method these segments are either perturbed 057

one at a time or several at once with different sam- 058

pling methods for determining what segments to 059

perturb. 060

The general pipeline for calculating perturbation- 061

based image explanations consists of segmenting, 062

sampling, perturbing, predicting, and attributing, 063

as shown in Fig. 1. The image is split into segments 064

and a number of samples are drawn indicating which 065

segments should be perturbed. For each sample, a 066

new image is created by perturbing the indicated 067

segments in some way. Perturbation often consists 068

of occluding the segments with a solid color [7], but 069

other distortions such as inpainting have also been 070

used [8]. The model output from these perturbed 071

inputs can then be used to attribute influence to the 072

segments based on how the output changes when 073

they are perturbed or not. There are many ways 074

to calculate attribution based on the input-output 075

pairs, such as average output when a segment is 076

included [9] or excluded [10]. Another method is to 077

train a surrogate model to predict the output based 078

on the perturbations and use the learned parameters 079

as attribution [11, 12]. 080

Since attribution is calculated based on which 081
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Table 1. The different parameters of the perturbation-
based image explanation pipeline used in this work.

Segmenting +
Perturbing Sampling Samples Model Attribution

Grid+Bilinear Random 4000/8000 AlexNet CIU
Grid+Gaussian Entropic 400 VGG-16 PDA
SLIC+Gaussian Only one 50 ResNet LIME

All but one SHAP
RISE

segments are perturbed, most methods assign at-082

tribution per-segment, but cannot differentiate the083

influence between pixels. The Randomized Input084

Sampling for Explanations (RISE) method solves085

this by using smooth perturbations, where pixels are086

perturbed more as they get closer to the segment087

center [9]. This is then used to calculate a per-pixel088

attribution by weighing the attribution of a pixel by089

how perturbed the pixel was.090

Like many perturbation-based explanations, RISE091

is introduced as an entire pipeline from segmenting092

to attribution. This work explores how the bene-093

fits of smooth-edged perturbations can benefit other094

perturbation-based pipelines. It also expands on the095

original RISE implementation by evaluating a va-096

riety of segmentation, sampling, perturbation, and097

attribution methods using occlusion metrics [8]. The098

evaluations are carried out on the ImageNet valida-099

tion set [13] for three different CNNs [14–16] using100

both per-segment and per-pixel attributions. The101

different pipeline parameters that have been com-102

bined and evaluated are shown in Table 1.103

The results show that using smooth edges and104

weighing pixels by how faded they are in a given105

sample improves the performance of all evaluated106

methods. Another noteworthy result is that the107

method of calculating the attribution, which is typi-108

cally what is highlighted as the most important part,109

has little impact on performance. Conversely, the110

sampling, number of samples, segmentation, and111

per-pixel attribution all have a greater impact on112

performance.113

2 Methodology114

This work evaluates pipelines using all possible com-115

binations of the different segmenting, sampling, per-116

turbing, and attribution methods as well as sample117

sizes listed in Table 1. Each pipeline is tested with118

three different ImageNet [13] pretrained CNNs by119

using them to explain the models’ predictions on120

the ImageNet validation set and then evaluating121

those explanations using occlusion metrics [8]. The122

different parts of the experiments are described in123

detail in the following subsections.124

2.1 Segmenting 125

This work evaluates two segmenting techniques; grid 126

and SLIC [17] segmentation. Grid segmentation 127

splits the image a given number of times horizontally 128

and vertically. SLIC is a rule-based algorithm that 129

iteratively calculates segment "centers", assigns each 130

pixel to the closest center in a color-position space, 131

and recalculates the segment centers repeatedly until 132

convergence. 133

The experiments use the same 7× 7 grid of seg- 134

mentation as the original RISE implementation [9]. 135

To make the SLIC segmentation as similar to the 136

grid implementation as possible, SLIC is instanti- 137

ated with 49 segment centers in the experiments. 138

The default scikit-image implementation for SLIC 139

is used [18]. 140

2.2 Sampling 141

This work generates samples indicating which seg- 142

ments to perturb using random, entropic, "only one", 143

and "all but one" sampling. Random sampling con- 144

sists of, for each segment and sample, randomly 145

deciding whether it should be perturbed with a 146

probability p. In this work p = 0.5. 147

Entropic sampling is created to be similar to the 148

default KernelSHAP sampling behavior [12]. En- 149

tropic sampling will first sample the low-entropy 150

samples, i.e. samples with as many or as few seg- 151

ments perturbed as possible. No segments are per- 152

turbed in the first sample, all segments are perturbed 153

in the second, followed by all possible combinations 154

of one segment perturbing and all combinations of 155

one segment unperturbed, followed by combinations 156

of two segments perturbed/unperturbed, and so on. 157

"Only one" and "All but one" sampling consists 158

of creating all samples where only one segment is 159

perturbed and where all but one segment is per- 160

turbed respectively. Both methods also add the 161

sample where no segments are perturbed as this is 162

needed by the Contextual Importance and Utility 163

(CIU) attribution [19]. 164

Random and entropic sampling are evaluated for 165

three different sample sizes.The 4000/8000 sample 166

size is used to be consistent with the original RISE 167

evaluation. AlexNet and VGG-16 use 4000 sam- 168

ples and ResNet models were evaluated with 8000 169

samples. A sample size of 50 is used with all four 170

methods, where "only one" and "all but one" sam- 171

pling will always create one more sample than the 172

number of segments. 173

2.3 Perturbing 174

Perturbing consists of pixel-wise multiplication be- 175

tween the normalized image and a perturbation mask 176

of values between 0 and 1. The mask is created by 177

setting all values in the segments to be perturbed to 178
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0 and all others to 1, then the mask is smoothened so179

that the values closer to the center of each segment180

are close to 0 and those at the edges and beyond181

are closer to 1. Thus pixels outside the perturbed182

segments are mostly unchanged, but fade towards183

the normalization mean as they get closer to the seg-184

ment centers. The original implementation achieves185

this by using bilinear upsampling to scale a 7 × 7186

grid of 0s and 1s to the size of the full image, an187

implementation that is replicated in this work. An188

issue with this method is that it relies on having189

a lower resolution mask to upscale which excludes190

using some popular segmentation methods such as191

SLIC. To combat this issue another method of cre-192

ating smooth segment masks through applying a193

Gaussian filter is introduced. For this work, the194

Gaussian filter has a σ = 10 which gives similar195

masks when compared to bilinear upscaling.196

2.4 Attributing197

This work evaluates five existing attribution meth-198

ods, CIU [19], PDA [10], LIME [11], SHAP [12], and199

RISE [9]. Some of these methods cover more parts of200

the pipeline than just attribution. However, in this201

work, the method names are used as a shorthand for202

the attribution calculation from the input-output203

pairs created by the predicting step of the pipeline.204

CIU is one of the oldest XAI methods [19]205

with more recent works implementing it for im-206

ages [20]. CIU works by calculating the Contex-207

tual Importance (CI) of a feature s as CI1(s) =208
max(Y,Y \s)−min(Y,Y \s)

max(Y \)−min(Y \) , where Y is the original out-209

put, Y \s is all the outputs when feature s has been210

perturbed, and Y \ are all outputs. The CIU imple-211

mentation for images [20] instead calculates the im-212

portance of a segment s by perturbing all other seg-213

ments ("all but one" sampling). In this work this is214

calculated as CI2(s) =
max(Y,1−Y \s̄)−min(Y,1−Y \s̄)

max(Y \)−min(Y \) ,215

where Y \s̄ is all the outputs where s is not per-216

turbed. The Contextual Utility (CU) of the feature217

s is then calculated as CU(s) = Y−min(Y \s)
max(Y \)−min(Y \)218

where Y is the original output. The attribution219

score for the feature s is calculated in this work220

as wCIU (s) = CI(s) · (CU(s) − 0.5). While there221

are implementations of CIU that handle change in222

more than one feature at a time [21], they are not223

compatible with the evaluation used in this work.224

As such, CIU is only evaluated for the "only one"225

and "all but one" sampling methods using CI1 and226

CI2 respectively.227

Prediction Difference Analysis (PDA) [10] works228

similarly to CIU, but uses average difference instead229

of maximum difference. PDA has been adapted to230

work with images [10], though both in the original231

and image implementation only a single feature is232

changed at a time. In this work, PDA has been gener-233

alized to work when multiple features are perturbed234

simultaneously. The PDA attribution is given by 235

wPDA(s) = Y − avg(Y \s). 236

Locally-Interpretable Model-agnostic Explana- 237

tions (LIME) [11] was originally introduced as an 238

umbrella term used to cover any instance where 239

a single prediction is explained by training an in- 240

terpretable model to mimic the original model’s 241

prediction in the neighborhood of the original in- 242

put. However, LIME has since been associated with 243

specifically training a linear surrogate model [3, 7] 244

as this is how the method was demonstrated origi- 245

nally. In this work, LIME is implemented as a linear 246

model y = b+
∑

s∈S ws · xs, where y is the output 247

of the model, b and ws are the learned bias and 248

weights, and xs = 0 if the segment is perturbed and 249

1 otherwise. The attribution of LIME for segment s 250

is the value of ws after the linear model has been fit 251

to the input-output pairs using least squares. 252

Kernel SHAP [12] is a modification to LIME 253

such that, under certain assumptions, the weights 254

learned by the linear model will tend towards the 255

Shapley values [22] scoring how the features con- 256

tribute to the prediction. This is achieved by scal- 257

ing the input-output pairs with a kernel function 258

π(X) = |S|−1

( |S|
|X|)|X|(|S|−|X|)

, where |s| is the number 259

of segments and |X| =
∑

xs∈X xs. As such the 260

SHAP values can be retrieved by solving π(X)y = 261

b+
∑

s∈S ws · π(X)xs using least squares. 262

The attribution used by RISE [9] is similar to 263

PDA, but instead of using the average decrease when 264

the feature is perturbed, it uses the average predic- 265

tion when it is not perturbed. RISE attribution for 266

a segment is given by wRISE(s) = avg(Y \s̄). 267

Additionally, RISE attribution utilizes smooth 268

pixel perturbation masks to assign per-pixel attri- 269

butions according to wp = 1∑
s∈S Mp

s

∑
s∈S ws ·Mp

s , 270

where Mp
s is the value of pixel p in the perturbation 271

mask of segment s. Note that this calculation means 272

that pixels outside segment s which were slightly 273

perturbed due to the smooth mask, also include that 274

influence in the calculation. For example, this means 275

that pixels at segment borders get a lesser influence 276

from both segments. This work evaluates attribution 277

both per-segment (ws) and per-pixel (wp). 278

2.5 Evaluation 279

The various pipelines are tested by explaining the 280

predictions of three ImageNet pretrained CNNs on 281

the ImageNet validation set and evaluating those 282

explanations with occlusion metrics. The three pre- 283

trained CNNs are AlexNet [14, 23], VGG-16 [15], 284

and ResNet-50 [16] using trained parameters from 285

the Torchvisio 0.15.2 framework [24]. The input to 286

the models is normalized using the average pixel 287

values of ImageNet. 288

Evaluation is carried out using one image per class 289

of the ImageNet validation for a total of 1000 images 290
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Figure 2. Showcase of how LIF, MIF, and SRG metrics
are calculated by steadily occluding the least or most
influential pixels of an image and calculating the value
of the top class predicted for the original image.

(2% of the total validation set). Limited evaluation291

was performed on the full validation set and no sta-292

tistically significant (p < 0.05) difference could be293

found compared to using 2% of the data. For each294

image, the top predicted class of each model was ex-295

plained through segment and pixel attribution using296

each pipeline. The attribution was then evaluated297

using occlusion metrics. The occlusion metrics used298

in this work are similar to the ones used for evalu-299

ating the original RISE implementation [9] though300

modified to take advantage of recent findings that301

increase the consistency [8].302

Occlusion metrics consist of increasingly occluding303

the image and observing how the prediction changes.304

By occluding the pixels with the Least Influence305

First (LIF), the model prediction is expected to306

be similar until the influential pixels start getting307

occluded. Conversely, by occluding the pixels with308

the Most Influence First (MIF), the model prediction309

is expected to lower quickly. A good explanation310

should have a large area under the LIF prediction-311

occlusion curve and a small area under the MIF312

curve. LIF and MIF are equivalent to the insertion313

and deletion metrics used to evaluate RISE originally.314

The LIF and MIF metrics are highly variable but the315

combined metric (LIF −MIF ), called Symmetric316

Relevance Gain (SRG), is more reliable [8]. The317

connection between the three metrics is visualized318

in Fig. 2.319

This work uses the SRG metric to evaluate per-320

formance. It is calculated by occluding the image321

over a total of 10 equal steps (from 0% occlusion in322

step 1 to 100% occlusion in step 10). The remaining323

pixels with the lowest or greatest attribution score324

for original top-class prediction are occluded in each325

step for LIF and MIF respectively. When there are326

many pixels with the same attribution, then pix-327

els are chosen in an arbitrary deterministic order.328

Occlusion is performed by setting the pixels to the329

mean pixel value of the image, which mirrors one330

of the evaluation methods explored by Blücher et331

Table 2. The average SRG in % for all pipelines with
different combinations of segmenting, perturbing, and
attribution methods with either per-segment or per-pixel
attribution.

Segmenting +
Perturbing

Attribute
per CIU∗ PDA LIME SHAP RISE

Grid+bilinear Segment 11.7 14.9 14.9 14.5 15.9
Grid+bilinear Pixel 14.1 16.3 16.5 16.4 17.6

Grid+Gaussian Segment 11.6 14.9 15.0 14.6 15.8
Grid+Gaussian Pixel 14.4 16.5 16.8 16.7 17.8

SLIC+Gaussian Segment 15.7 17.1 17.4 17.5 18.0
SLIC+Gaussian Pixel 16.8 17.6 18.2 18.3 18.8
∗CIU is not evaluated for random or entropic sampling, which have
greater average performance.

al. [8]. The average of the original top-class predic- 332

tion over these 10 images is then recorded as the 333

LIF and MIF scores. The SRG score is calculated 334

as LIF −MIF . 335

3 Results and Analysis 336

The results consist of the LIF, MIF, and SRG met- 337

rics for every attribution pipeline. As this is too 338

much data to present in this work, it is summarized 339

as the average SRG metric for different parameter 340

combinations. The complete data is available in 341

spreadsheet form, where tables like those below can 342

easily be generated2. 343

The results of different combinations of segment- 344

ing, perturbing, and attribution as the average SRG 345

metric can be found in Table 2. Notably, for all com- 346

binations of segmenting, perturbing, and attribu- 347

tion methods using per-pixel instead of per-segment 348

attribution improves performance. Furthermore, 349

the improvement of using per-pixel rather than per- 350

segment is significantly greater than switching at- 351

tribution methods. Using a Gaussian filter instead 352

of bilinear upsampling does not affect performance, 353

except for a mild increase in SRG. SLIC performs 354

much better than Grid segmenting in all cases but 355

sees a relatively smaller improvement when using 356

per-pixel attribution. This is likely due to SLIC 357

having better boundaries between segments. 358

The average SRG for pipelines with different sam- 359

pling methods and sample sizes over the different 360

attribution methods is shown in Table 3. Unsurpris- 361

ingly, increasing sample size yields improved perfor- 362

mance. What is surprising is that random sampling 363

significantly outperforms entropic and does so even 364

for SHAP for which it is specifically adapted. PDA 365

struggles with entropic sampling, except for when 366

the sample size is 50, which is almost equivalent to 367

"only one" sampling. Again it is noteworthy that 368

the attribution method is the least impactful fac- 369

tor, except under some combinations of sampling 370

2Removed for anonymization
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Table 3. The average SRG in % for all pipelines with
different combinations of sampling and attribution meth-
ods.

Sampling Sample size CIU PDA LIME SHAP RISE

Random 4000/8000 - 25.6 25.8 24.0 25.6
Entropic 4000/8000 - 14.7 18.2 18.8 17.8

Random 400 - 22.9 24.1 22.3 22.9
Entropic 400 - 9.0 15.6 17.3 15.0

Random 50 - 16.0 6.8 6.8 16.0
Entropic 50 - 13.3 13.3 13.3 13.3
Only one 50 13.3 13.3 13.3 13.3 13.3
All but one 50 14.9 14.9 14.9 14.9 14.9

and sample size that seem to cause some attribu-371

tion methods to fail. All attribution have the same372

performance for Entropic, "only one" and "all but373

one" sampling with a sample size of 50 as under374

these limited circumstances the order of influential375

segments is equivalent for CIU, PDA, and RISE. At376

the same time, LIME and SHAP converge to the377

same ordering.378

4 Discussion379

This work shows that the smooth-edged masks used380

in the original RISE implementation can be modified381

to work with many different attribution pipelines382

and that this improves performance on occlusion383

metrics. However, occlusion metrics do not neces-384

sarily correlate with usefulness to humans. It may385

be the case that per-pixel attribution simply gives386

advantages in performance calculation that are not387

noticeable in user testing, for which further work is388

needed.389

The results also show that each part of the pipeline390

that is explored can have a significant impact on391

performance. Most works that introduce some form392

of perturbation-based image explanations often in-393

troduce an entire pipeline but do not examine the394

parameters of that pipeline separately. This leads395

to a poor understanding of what makes one method396

better, especially when later works compare those397

pipelines against each other [25, 26]. Contrastingly,398

this work along with Blücher et al. [8] shows how the399

different parameters can be analyzed independently.400

The evaluation in this work relied on the expla-401

nation methods being separable into different pa-402

rameters that could be combined in various ways.403

This is not always the case, even if the method oth-404

erwise produces sound explanations. For example,405

the original RISE shifts the perturbation masks by406

some pixels so as not to center the same pixels every407

time. This approach works with the RISE attribu-408

tion method since it can directly assign influence to409

pixels. However, this is not feasible for other meth-410

ods, as such shifting could not be evaluated with411

the experiments conducted in this work. Addition- 412

ally, the use of occlusion metrics requires attribution 413

scores for individual features. For example, the CIU 414

method can be used when combinations of features 415

are perturbed simultaneously, however, those expla- 416

nations instead give attribution to how beneficial 417

the combinations are, rather than splitting the in- 418

fluence between the features. Another example is 419

using decision trees as surrogate models. Decision 420

trees are typically interpretable but do not assign 421

influence to features directly. 422

A general issue with all current perturbation- 423

based methods is that they require that the model 424

be run multiple times. This inevitably scales the 425

computation needed by at least a factor equal to 426

the sample size used. With ever-increasing compu- 427

tational demands by newer DNN models, even a low 428

sample size let alone thousands of samples, may be 429

unrealistic to presume for an explanation of a single 430

decision. Developing perturbation-based methods 431

that can give good explanations with low sample size 432

is therefore a promising future direction. In some 433

cases, such as medical diagnosis prediction, the need 434

for and the value of explanations are likely high 435

enough that it is worth increasing computational 436

demands by factors of thousands. 437

One contender to perturbation-based methods is 438

gradient-based methods. Gradient-based post-hoc 439

methods utilize that DNNs are typically differen- 440

tiable and use the gradients of the prediction to 441

calculate an explanation. This gives gradient-based 442

methods the advantage that they often do not need 443

multiple calls to the model. However, gradient-based 444

explanation methods, especially in the computer vi- 445

sion domain, have multiple times been shown to 446

be unreliable [27–29]. Perhaps a combination of 447

the different post-hoc paradigms could benefit from 448

the reliability of perturbation-based methods and 449

the lower computational demands of gradient-based 450

methods. For example, the initial gradient-based 451

explanation could inform the optimal segments or 452

samples to use with a permutation-based approach. 453

Ultimately, the true measure of any explanation 454

is its usefulness to humans. For example, a prior 455

study found that users preferred CIU explanations 456

to LIME and SHAP [20], which is not obvious from 457

the results in this work. However, the number of 458

different parameter combinations that exist in XAI 459

is too many for human evaluators. As such, future 460

works might strive to use metrics such as SRG to 461

find the best candidate pipelines and then compare 462

those using human evaluation. Such experiments 463

would require an additional step to the pipeline; 464

communicating. How an explanation is communi- 465

cated to humans can vary between implementations 466

and is another factor that can disrupt experiments. 467

As such a study focusing solely on communication 468

of image attribution would be beneficial. 469
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