
Under review as submission to TMLR

Single-positive Multi-label Learning with Label Cardinality

Anonymous authors
Paper under double-blind review

Abstract

We study learning a multi-label classifier from partially labeled data, where each instance
has only a single positive label. We explain how auxiliary information available on the
label cardinality, the number of positive labels per instance, can be used for improving such
methods. We consider auxiliary information of varying granularity, ranging from knowing
just the maximum number of labels over all instances to knowledge on the distribution of
label cardinalities and even the exact cardinality of each instance. We introduce methods
leveraging the different types of auxiliary information, study how close to the fully labeled
accuracy we can get under different scenarios, and show that a simple method only assuming
the knowledge of the maximum cardinality is comparable to the state-of-the-art methods.

1 Introduction

Numerous methods for learning multi-label classifiers from fully annotated data have been proposed Ridnik
et al. (2023); Zhang & Zhou (2013); Parascandolo et al. (2016), but for specialized domains full annotation
is often too costly Nguyen et al. (2017); Xie & Huang (2018). Instead, we aim to train a model with minimal
label information – ideally, just a single positive label – which is far less costly than annotating all possible
aspects. Algorithms for learning the full multi-label function from such labeling are commonly called single-
positive multi-label learning (SPMLL) Cole et al. (2021), which is a special case of the more general positive
and unlabeled (PU) setting Elkan & Noto (2008).

The SPMLL literature has largely focused on the question of how the missing label information is treated,
by introducing new losses Chen et al. (2024); Kim et al. (2022), regularizers Cole et al. (2021) or algorithmic
variants Xie et al. (2022). We, instead, focus on leveraging a new type of complementary information:
How additional information about label cardinality can be used for improving SPMLL methods. Here label
cardinality refers to the number of positive labels of an instance. Direct access to the cardinality of a specific
instance is naturally highly useful – for instance, knowing an instance has just one label implies that all

Figure 1: In SPMLL, only one positive label (in black) for each instance is observed, yet the task is to predict
all labels. We explain how to use different forms of additional information on label cardinality, the number of
positive labels, to help this. The information can be on data-level cardinality statistics (CS), instance-level
cardinality (IC), or cardinality distribution (CD) over all samples.
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unobserved labels are negative – but it is often difficult to obtain in practice. We explain and evaluate
alternative ways of using label cardinality to improve SPMLL methods and quantify the possible gains
that can be achieved in different setups. Our main focus is in cases where we assume known cardinality
distribution, a probability distribution over the label cardinalities, and use this information to estimate
instance-level cardinalities. However, we also study the case where the cardinalities are known exactly, and
a setup where only crude summary statistics of the cardinality distribution are observed. Figure 1 illustrates
the setup.

Several studies have explored the use of label cardinalities in other contexts. For instance, label cardinality
has been used as a proxy for scene complexity Hajimirsadeghi et al. (2015), cardinality constraints can be
used to enforce models to output a predefined number of labels Cortes et al. (2024); Amos et al. (2019), and
the related concept of cardinality potentials has been considered in count regression problems to encourage
predictions to be on the right scale Swersky et al. (2012); Tarlow et al. (2012). However, within SPMLL
literature this aspect has been ignored, even though additional information is most useful when having the
least amount of direct label information. The only previous reference to label cardinality is by Cole et al.
(2021), who used the expected number of positive labels on the level of the whole dataset as a basis for a
regularizer. This can be seen as the crudest special case of our principle.

On a technical level, we formalize the task by characterizing the different forms of cardinality side informa-
tion that could be available, and provide concrete solutions for leveraging them. We introduce three key
components and a specific method combining them, but the components could be incorporated into various
other SPMLL methods as well:

1. A new loss that ensures the outputs for the unobserved classes remain informative during training, in
contrast to the previous losses Cole et al. (2021); Zhou et al. (2022) pushing them towards arbitrary
target values.

2. A new joint loss for the collection of all unobserved labels of an instance that uses label cardinality –
either an estimate or known value – to encourage predictions consistent with the desired cardinality.

3. A bipartite matching algorithm for estimating the label cardinalities of all instances from current
model outputs and the cardinality distribution.

We empirically evaluate the value of the cardinality side information using standard SPMLL benchmark
tasks. Already the first component that only requires crude estimates for mean and maximum cardinality
achieves mean average precision (MAP) comparable to several recent SPMLL methods Cole et al. (2021);
Zhou et al. (2022); Kim et al. (2023); Chen et al. (2024). With richer cardinality information, we can obviously
improve the results, and our focus is on quantifying the possible gain and studying the relationship between
the accuracy of the cardinality estimates and the final classification performance. For example, for the
commonly used NUS-WIDE data Chua et al. (2009), knowing the cardinality instance is sufficient for almost
matching the accuracy of a model trained on fully labeled data, and we get close even when only assuming
the cardinality distribution. Finally, we show that improving the accuracy of cardinality estimates directly
translates to improved final model accuracy.

2 Related Work

To position the work within the broader SPMLL literature, we briefly outline the main approaches and some
recent works. The most closely related works are on avoiding false negatives arising from the unobserved
positive labels, resolved in our work by leveraging the cardinality information. As will be detailed later,
the crudest approach, that assumes all unobserved labels to be negative, pushes the predictions to zero and
results in severe problems with false negatives Cole et al. (2021). A possible fix of maximizing entropy of the
predictions Zhou et al. (2022) overcompensates the issue, pushing predictions towards 0.5 that is considerably
too high for most multi-label learning (MLL) tasks, resulting in false positives. Closest to our work is a
method that regularizes the predictions using the expected label cardinality Cole et al. (2021) while also
using label smoothing; their regularizer can be seen as a special case of our general setup where different
kinds of additional information on label cardinality are considered.
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Also other approaches for avoiding false negatives have been studied, e.g. by preventing memorization of
false negatives Arpit et al. (2017); Kim et al. (2022) or by improving retrieval of positive labels by pseudo-
labeling as commonly done in other weakly supervised settings Chen et al. (2023); Wang et al. (2022). In
SPMLL, Xie et al. (2022) considered pseudo-labeling combined with consistency regularization Zhou et al.
(2003); Laine & Aila (2017) and Liu et al. (2023) employed a mutual information bottleneck for preserving
label-specific characteristics during pseudo-labeling.

Other works have studied the related question of label imbalance; the SPMLL setup makes the common
imbalance in MLL tasks more extreme. Several methods have been proposed for addressing class imbalance
Ridnik et al. (2021); Lin et al. (2020) and missing labels Zhang et al. (2021) for standard MLL, with extensions
for SPMLL. For instance, Chen et al. (2024) developed a noise-robust loss to account for the imbalance in
SPMLL. We do not explicitly consider label scarcity, but cardinality information helps balancing the ratio
of positive labels closer to the balance of the original MLL task. Finally, some SPMLL methods leverage
domain-specific elements, such as class activation maps for images Kim et al. (2023); Verelst et al. (2023).
In contrast, our study focuses on the general task and does not consider any domain knowledge.

3 Problem Setup

Multi-label learning In MLL, each q-dimensional data point x ∈ X = Rq is associated with a binary label
vector y ∈ Y = {0, 1}C where C is the number of classes. A fully labeled dataset D = {(xi, yi) | 1 ≤ i ≤ N}
is available for training. Here, yj

i denotes the label of the i-th sample for the j-th class. yj
i = 1 indicates

that class j is relevant (positive) for sample i, while yj
i = 0 indicates irrelevance (negative). The objective

is to learn a classifier h : X 7→ [0, 1]C that minimizes a classification error, so that the outputs fi = h(xi)
are interpreted as probability of each class. Our work is agnostic to the functional form of h, and in the
empirical experimentation we will always use the same model, ResNet-50 He et al. (2016).

Single-positive multi-label learning We follow the common SPMLL formulation, matching e.g. Xu
et al. (2022). Instead of the full label vector yi for data point xi, we observe a single-positive label vector
li ∈ {0, 1}C . Here, lj

i = 1 indicates that the j-th class is the only observed positive label for xi, while
lj
i = 0 for all other classes, signifying that their true label values are unknown (not necessarily negative), i.e.∑C

j=1 lj
i = 1. We denote the set of unobserved classes for sample i with Ui. This results in a partially labeled

dataset D̃ = {(xi, li) | 1 ≤ i ≤ N}. Similar to MLL, the task here is to learn a classifier h : X 7→ [0, 1]C for
the original MLL task, predicting the full labels yi.

Our methods generalize for other partial labeling setups. We write the equations using a more general
notation, where ko

i :=
∑C

j=1 lj
i labels are assumed observed, even though we run all experiments with

ko
i = 1.

Label cardinality This paper analyzes various ways of using label cardinality within the SPMLL frame-
work. We denote the true label cardinality of instance i as ki =

∑C
j=1 yj

i , and define three distinct categories
of label cardinality information that can be available during training:

1. Instance cardinality (IC): The most informative scenario, with known label cardinality ki for
each instance i. We use it mostly as a theoretical construct to estimate the maximum information
provided by cardinality information, but we also show how it can be estimated from the cruder
statistics while learning the classifier.

2. Cardinality distribution (CD): A more relaxed assumption is that we know (or can estimate) the
discrete distribution P (k) of the label cardinality. Figure 2 shows the CD for four common bench-
mark datasets, demonstrating a common pattern of decaying probability for higher cardinalities.

3. Cardinality statistics (CS): If obtaining the full CD is not feasible, we can also use simple
summary statistics of that, most commonly the maximum and mean label cardinality, kmax = maxi ki

and ke = 1
N

∑
i ki.
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(a) VOC (b) COCO (c) NUS (d) CUB

Figure 2: Cardinality distributions and statistics for MLL image benchmark datasets. Low-cardinality
instances dominate when the labels are objects, but for the attribute-labels of CUB the distribution is
clearly different.

These categories represent a hierarchy of information content: CD implies CS, and both CD and CS can be
computed from IC. In Section 5.2, we study how sensitive the proposed methods are for noisy estimates of
cardinality information.

4 Method

We first briefly outline the standard SPMLL approach of factorizing the learning objective into separate
losses for the observed and unobserved labels, and the issues of previously proposed losses for the unobserved
labels. We then explain our technical solution for leveraging the cardinality information. We introduce two
alternative losses for the unobserved labels Ui, as the direct replacements for the previous proposals: (i)
Section 4.2 provides a label-specific loss for cases where we only know the cardinality statistics, and (ii)
Section 4.3 introduces a joint loss over the whole Ui that uses instance cardinalities as the learning target.
In Section 4.4, we explain how instance cardinalities can be estimated based on the cardinality distribution
and model predictions, and finally Section 4.5 explains a concrete SPMLL method using these components.

4.1 Background

For MLL with full label vector yi, the standard binary cross-entropy (BCE) loss is the most common choice.
In the SPMLL setup, the typical losses Chen et al. (2024); Cole et al. (2021) take the same factorized form

LSPMLL = 1
NC

N∑
i=1

C∑
j=1

(
1[lj

i
=1]L

+(f j
i ) + 1[lj

i
=0]L

u(f j
i )
)

, (1)

but use separate loss components, L+(f j
i ) for observed positive labels and Lu(f j

i ) for the unknown ones.
Here 1 is the indicator function selecting the correct loss for each predicted probability f j

i .

Since yi is unobserved, a naive choice is to replace it with the observed label vector. Substituting li for yi

in the BCE loss gives the Assumed Negative (AN) loss Cole et al. (2021):

LAN = − 1
C

C∑
j=1

(
1[lj

i
=1] log(f j

i ) + 1[lj
i
=0] log(1 − f j

i )
)

. (2)

However, this loss tends to assign near-zero probabilities to all unknown labels (lj
i = 0), as shown empirically

in Figure 3. This both misleads the model severely and limits the information content of the predictions.
To improve on this, Zhou et al. (2022) used entropy as Lu (denoting the total loss as LEM), but since the
labels are binary variables, it effectively just changes the target for the probabilities, making them converge
towards 0.5 instead of 0; see Figure 3. This implicitly suggests that we have prior probability around 0.5 for
each individual class to be positive, which is considerably too high for typical MLL datasets with ki ≪ C
for all instances.
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Figure 3: The distribution of model outputs f j
i for the unobserved labels on the VOC (left) and NUS

(right) datasets. The LAN loss causes false negatives by pulling predictions towards zero and LEM causes
false positive by pulling them towards 0.5, whereas our LCS loss encourages predictions consistent with the
cardinality statistics. For visual clarity, the y-axis is truncated at roughly 20% of the maximum density of
LAN.

4.2 Unobserved Loss Based on Cardinality Statistics

Under this setting, we assume access to the maximum and mean label cardinality, respectively kmax and
ke. In practice, estimates of these quantities are sufficient, as demonstrated in Section B.1. To prevent the
misinformation induced by the poor targets for f j

i , we propose using Lu(f j
i ) satisfying three criteria:

1. Both very low and high f j
i incur a penalty – the model should not a priori be certain about the

predictions for the unobserved labels.

2. Between these extremes, within a range specified soon, the loss should not favor any specific output
– there is no information about which f j

i to prefer.

3. The range aligns with the statistical information about the frequency of the positive labels, as a way
of encoding prior information about f j

i .

Any loss satisfying these prevents the predictions from collapsing towards a pre-defined value and drives them
to be on the right scale. This is as such useful – we will show in Section 5.2 that this loss achieves highly
competitive performance – but informative f j

i will also be needed for our cardinality estimator described in
Section 4.4.

Concretely, we use a quadratic penalty for f j
i outside the given lower and upper thresholds, Tl and Tu. These

thresholds are both determined based on the cardinality statistics to provide a useful prior for f j
i . The upper

threshold Tu is set by distributing the maximum possible number of labels kmax (a known cardinality statistic)
evenly across all unobserved classes, so that it is (kmax − 1)/(C − 1), where one is subtracted because of the
already observed label. Outputs below the threshold do not provide evidence on the presence of a particular
label, since they are consistent with a model that predicts each class equally likely for a sample of the highest
cardinality. Any f j

i above the threshold means committing to that particular label and is penalized for.

We could, in principle, set the lower threshold Tl similarly based on the minimum cardinality. However, this
would make the threshold zero for most MLL datasets – even a single instance with only one label is enough
to ensure this. It is essential to prevent zero probabilities that indicate strong commitment to non-presence
of a particular class, and hence Tl needs to be strictly non-negative. Any small constant is likely to work,
and as a practical heuristic, we use ke, the expected number of classes. As shown in Figure 2, it is often
(but not always) small.
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Building on this intuition, we formally define a new loss

Lu
CS(f j

i ) =



λ

(
f j

i − kmax − ko
i

Cu
i

)2
f j

i >
kmax − ko

i

Cu
i

λ

(
f j

i − ke − ko
i

Cu
i

)2
f j

i <
ke − ko

i

Cu
i

0 Otherwise

(3)

where ke and kmax are the average and maximum number of positive labels per instance, ko
i is the number

of observed positive labels for instance i (which is ∀ik
o
i = 1 in standard SPMLL), Cu

i = C − ko
i is the

number of unobserved classes for that instance, and λ is a scaling hyperparameter. The general loss defined
in Equation 1 using Lu

CS is denoted by LCS.

4.3 Unobserved Loss Based on Instance Cardinality

The IC hypothesis assumes that we know ki, the number of positive labels for each instance i. This implies
ku

i = ki − ko
i labels within the set of unobserved classes Ui, again with ko

i = 1 for the SPMLL setup. Next,
we explain how this information can be used for constructing a joint loss over all of the unobserved labels
for a given instance. Instead of factorizing the loss over all of the labels, as in the case of all previously
proposed Lu, we encourage the joint predictions for the unobserved labels to be consistent with the instance
cardinality. The overall loss is

LIC = 1
NC

N∑
i=1

C∑
j=1

1[lj
i
=1]L

+(f j
i ) + α

N

N∑
i=1

Lu
IC(fi), (4)

where α is a scaling hyperparameter and Lu
IC is the new loss defined jointly for the set Ui of the unobserved

labels.

The Lu
IC is designed to achieve two goals. First, it encourages the total probability mass assigned for probable

classes (the classes for which the current f j
i are high, to be defined formally soon) to align with the desired

cardinality ku
i . Second, it drives the probabilities for the remaining classes towards zero. Intuitively, this

both ensures the model retains sufficiently high probability for enough classes while allowing it to commit
to some classes being negative. Formally,

Lu
IC(fi) =

( ∑
j∈Ωi

f j
i

)
− ku

i

2

+ β

∑
j /∈Ωi

f j
i

2

. (5)

Here β is a scaling hyperparameter, Ωi ⊂ Ui is the set of indices corresponding to the Mi = |Ωi| classes
with the highest predicted probabilities for instance i, and ku

i is the corresponding target cardinality – the
number of unobserved classes that should be positive. The first term encourages the sum of the top Mi

predicted probabilities to stay close to ku
i , whereas the second term pushes the remaining labels towards low

probability. Note that, if ku
i = 0, we have Ωi = ∅ and only the second term remains. That is, we explicitly

consider all unobserved labels as negative, achieving the intuitive property mentioned in Section 1.

Remark: Selecting Mi The general formulation leaves open the question of how many of the largest
entries are included in the summation. We should always have Mi ≥ ki to ensure we collect the probability
mass over at least ki classes. In practice, we want Mi > ki to prevent false negatives when the current model
predictions are inaccurate or ki is not necessarily exact. This is because all f j

i /∈ Ωi are pushed towards zero.
We use two alternative choices in our experiments, to avoid enforcing such false negatives: Mi = 2ki when
we know ki reliably, and Mi = kmax − ko

i when we need to estimate the cardinalities.

Remark: Scaling probabilities Equation 5 aligns the sum of the model outputs with ki, but any
monotonic transformation of f j

i could be used instead. Since we typically have f j
i < 1 even for the correctly
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predicted classes, it may be beneficial to use a transformation that saturates to one faster. We use a scaled
sigmoid that is steeper than the one used for actual model outputs. If we denote by zi the logits that are
transformed for fi, we use in place of f j

i transformed outputs f̃ j
i = 1

1+exp {−a(zi)} where a > 1.

4.4 Estimating Instance Cardinalities

When the label cardinality ki for each instance is not known, we cannot directly use the loss in Equation 5.
However, we can replace the known ki with any estimate k̂i instead. In principle, any estimator could be
used, for instance a model that takes as input either the input vectors xi or the model predictions fi and
is trained in supervised fashion to provide the estimate. However, this would require knowledge of the true
cardinalities ki for some training instances and a dedicated training process. Next, we introduce a novel
algorithm for estimating the instance cardinalities, requiring only knowing the cardinality distribution, a
probability vector of P (k). The method is computationally light and does not require any training or other
supervision; in particular, we do not need to know the true ki for any instance.

We formulate the problem as perfect bipartite matching between two sets of N elements Cormen et al. (2022).
The first set corresponds to the instances, represented by a vector s ∈ RN of scores. For each instance, we
define si =

∑
j∈Ωi

f j
i with Mi = kmax, corresponding to the quantity that is pushed towards the cardinality

in Equation 5. The idea is to now use the score as the basis for estimating the cardinality itself. Note that
the score is defined based on the current model predictions fi, meaning we assume they carry information
about the cardinality. This will be the case for models trained using the proposed LCS and LIC losses, but
not e.g. for LAN.

The other set is constructed based on the cardinality distribution P (k), so that it has the right frequency
for each cardinality in increasing order. We denote by v ∈ [0, ..., kmax]N a vector where the first P (k = 0)N
entries are set to 0, the next P (k = 1)N entries to 1, etc. It has the right cardinality distribution by
construction.

We find the perfect bipartite match Π, a permutation over the N entries of the latter set, that minimizes∑
i(si − Πiv)2. That is, we assign for each instance a single entry in v and hence a cardinality estimate

k̂i = Πiv so that the total distance between si and k̂i is minimized. Even though bipartite matching has
cubic complexity for the general case (Kuhn, 1955), our problem is a simplified special case of Euclidean
bipartite matching Agarwal & Varadarajan (2004); Arora (1997) with one-dimensional points – each element
is represented by a non-negative scalar (si or vi). For this problem, we can find the optimum in O(N log N)
time with a greedy algorithm (see Appendix A for a proof): Iteratively assign the smallest cardinality for
the sample with the smallest si and remove the corresponding elements from the sets. Since v is ordered by
construction, this can be done by sorting si and collecting the sorting order in Π.

4.5 Whole Algorithm

Having introduced the technical elements, we now describe a practical SPMLL algorithm. We note, however,
that each of the elements could be used also in other ways and this specific algorithm is introduced as an
example for the purpose of the comparisons. Both of the unobserved label losses (Equation 3 and 5) can be
used as plug-in replacements in other SPMLL methods, and the cardinality estimation algorithm could be
replaced with other estimators.

For the CD setup, where the distribution of cardinalities is assumed known, our general algorithm works
as follows and is denoted by CS ⇒ CD in the results:

1. First optimize LCS for some epochs, for initialization of the model so that fi start being informative,
both about the class predictions and about the cardinalities.

2. Solve k̂i with the sorting algorithm described in Section 4.4, using the known CD and s, computed
based on the current fi for all instances, as the input.

3. Optimize LIC for more epochs using k̂u
i = k̂i − ko

i as the target in Equation 5. After each epoch,
re-estimate k̂i using the current predictions as in step 2.

7



Under review as submission to TMLR

For the CS setup, the algorithm simplifies to only the first step above and is denoted as CS in the results.
Finally, we skip the estimation of k̂i in the IC setup and use the known ki directly; we denote this by CS
⇒ IC.

5 Experiments & Results

5.1 Experimental Setup

Data We use four common SPMLL benchmark datasets for evaluation: Pascal VOC 2012 (VOC) Ever-
ingham et al. (2015), MS COCO 2014 (COCO) Lin et al. (2014), NUS-Wide (NUS) Chua et al. (2009), and
CUB-200-2011 (CUB) Wah et al. (2011). The datasets are used as in the previous literature, e.g. using the
312 binary attributes of CUB as target labels as in Cole et al. (2021); Zhou et al. (2022), with full details
disclosed in Appendix C.2. The cardinality distributions and statistics are shown in Figure 2.

The test setup follows closely previous SPMLL works, e.g. Cole et al. (2021); Zhou et al. (2022). We
randomly split each original training data into our training and validation sets, using 20% for validation.
The original validation data is used as the test set. The SPMLL training data is formed by choosing the
observed label uniformly at random from the set of true positive labels for each instance, assumed also by the
comparison methods. That is, we do not consider the more general setups with e.g. class-specific weighting
studied in the broader positive and unlabeled literature Elkan & Noto (2008). The validation and test sets
are assumed fully labeled, as in previous works, to enable a fair comparison against the baselines and reduce
random variation; see Section 6 for discussion.

Comparison methods and implementation details We compare against several recent SPMLL meth-
ods: ROLE Cole et al. (2021), EM+APL Zhou et al. (2022), LL-R + BoostLU Kim et al. (2023), and GR
Loss Chen et al. (2024). In addition, we report the results for the weak baseline of AN loss Cole et al. (2021)
and the upper bound of training the same model on fully labeled data.

We use the same classifier for all methods, with ResNet-50 He et al. (2016) backbone pretrained on ImageNet
Russakovsky et al. (2015) and technical details matching the implementation of Cole et al. (2021); the details
of image preprocessing, data augmentation, and the architecture are provided in Appendix C.1 and the code
is provided as Supplement. The models are trained end-to-end using the specific loss of each method with
Adam Kingma & Ba (2015) and the performance is evaluated using MAP averaged over the C classes. For
all the methods, the hyperparameters are determined with a grid search using validation MAP as the metric,
as detailed in Appendix C.4. For simplicity, we use fixed batch sizes from Zhou et al. (2022) and learning
rate from Chen et al. (2024) for all the methods, focusing on validating the method-specific parameters.

5.2 Experiments

We conduct three main experiments. The first contrasts the proposed methods against the baselines, the
second quantifies the value of the cardinality information, and the third validates the methods are robust
with respect to estimation error when CS or CD needs to be estimated from data.

Experiment 1 Table 1 reports the test set MAP for three variants of our method and all comparison
methods. The results are averaged over three runs. The key comparison is between CS and the previous
SPMLL methods. Except for the COCO data, where LL-R + BoostLU Kim et al. (2023) stands out, it is
comparable or better than all other methods. The method is easy to implement, only requiring replacing the
loss for the unobserved labels with one that encourages f j

i to remain on a reasonable scale (see Figure 3),
and only very crude cardinality information is needed to set the two thresholds in Equation 3; we will show
the method is insensitive to a specific choice in Section B.1.

The other two variants of our method should not be directly compared with the rest, since they require more
information. Instead, the attention should be placed on the difference between the three proposed methods.
For COCO and NUS, we observe the expected effect: Having access to CD shows as clear improvement, and
knowing IC helps more as it should. For NUS, it is worth noting that CS ⇒ IC effectively reaches even the
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(a) VOC (b) COCO (c) NUS (d) CUB

Figure 4: Cross-plot of estimated vs true label cardinality, with the area of the circles indicating the count;
the colors are for visual separation and have no meaning.

Table 1: Test MAP for all methods. The CS method can be directly compared against the previous methods,
but our CS ⇒ CD and CS ⇒ IC methods assume more information.

Method VOC COCO NUS CUB
Full label 89.56 ± 0.35 76.43 ± 0.09 52.12 ± 0.09 32.73 ± 0.20

AN 85.51 ± 0.41 64.33 ± 0.10 42.68 ± 0.09 18.65 ± 0.31
ROLE 88.10 ± 0.16 66.89 ± 0.16 41.74 ± 0.21 14.52 ± 0.47

EM+APL 89.19 ± 0.29 70.92 ± 0.23 47.56 ± 0.20 21.13 ± 0.60
LL-R+BoostLU 88.81 ± 0.24 73.11 ± 0.21 49.76 ± 0.51 19.75 ± 0.23

GR Loss 89.38 ± 0.12 71.33 ± 0.21 47.08 ± 0.43 20.69 ± 0.28
CS (ours) 88.97 ± 0.03 71.35 ± 0.10 49.23 ± 0.45 21.56 ± 0.08

CS ⇒ CD (ours) 89.10 ± 0.17 72.07 ± 0.08 50.26 ± 0.08 21.58 ± 0.21
CS ⇒ IC (ours) 89.69 ± 0.16 73.45 ± 0.12 50.92 ± 0.48 21.73 ± 0.35

accuracy of the fully labeled case. For VOC data all SPMLL methods reach essentially the accuracy of the
full label upper bound, and hence there is no room for improvement from the use of cardinality information.
For CUB, in turn, we observe that even knowing the IC does not help, which already implies that the CD
cannot help either.

Figure 4 illustrates the cardinality estimators, shedding light on these results. The area of each circle
represents the frequency of a (k, k̂) pair, and a perfect estimator would result in a diagonal line where the
sizes follow the cardinality distribution. The estimates for COCO and NUS are good, consistent with the
improvement in MAP in Table 1. For CUB, we also confirm the numerical result; as knowing k does not
even help learning a better model, it is natural that we cannot estimate them either based on the model
outputs.

Experiment 2 Exact label cardinalities are naturally more informative than the ones estimated based
on the cardinality distribution. To better understand the difference in information content, we study two
related questions: (Q1) How improvements in cardinality estimates translate to improvements in MAP, and
(Q2) How accurate the estimator needs to be to still be useful.

We study both questions using a simulation experiment. We run the CS ⇒ CD method, but instead of using
the scores si =

∑
j∈Ωi

f j
i as the inputs for the estimator described in Section 4.4, we now use si = ki + ϵ,

where ϵ ∼ N (0, σ2). That is, we do not use the actual model outputs for estimating the cardinalities but
assume access to a noisy oracle that allows generating estimates of varying quality in a controllable fashion:
if σ2 = 0 then we recover the IC scenario of perfect estimates, whereas with σ2 → ∞ we converge to a
random permutation of the cardinalities. Note that the cardinality distribution constraint is still satisfied
even in this case, by the virtue of the estimation algorithm.

We repeat this for a range of σ2, from very poor estimates to perfect cardinalities. We quantify the quality
by computing the Pearson correlation between k̂ and k over the N samples, and evaluate the MAP as well.
Figure 5 shows that the relationship of these two is essentially linear for both COCO and NUS, the two
data sets with most potential for leveraging cardinality information. That is, we confirm that improving the

9
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(a) COCO (b) NUS

Figure 5: The MAP score improves approximately linearly when the cardinality estimates are improved
(black), and the real estimator (blue point) aligns well with the simulation model. MAP for full label
(green) and CS (orange) setups are provided as scale reference.

(a) COCO (b) NUS

Figure 6: MAP progressively improves when using more accurate estimates of cardinality density, here shown
as a function of sample size S with known instance cardinalities.

estimator results in improved MAP, and additionally learn that the transition is gradual – all improvements
in cardinality estimates are directly reflected in the MAP score, answering Q1. The answer to Q2 is given
by the point where this trend intersects the accuracy obtained with CS: For COCO, any estimator with
ρ(k̂, k) > 0.5 helps, and we need ρ(k̂, k) > 0.65 for NUS.

We can also compute ρ(k̂, k) for the real method where si =
∑

j∈Ωi
f j

i is used for estimating k̂i, corresponding
to the results visualized in Figure 4. For both COCO and NUS, the result, indicated by the pair of the
correlation and MAP, is close to the trend line for the simulation. This confirms the simulation process
mimicks the real estimation error and is hence informative for real use cases.

Experiment 3 For the experiments above, we used exact CS and CD to isolate the effect of possible
estimation error, but in real use-cases, they need to be estimated. We next show that the method is
extremely robust with respect to the estimation errors. The CS method only requires k̂max for setting Tu,
and already an extremely crude guess is enough. For any k̂max between 0.5 and 2.5 times the real kmax, we
observed virtually no change in MAP. For instance, for COCO, the MAP scores remain between 70.76 and
71.35; see Figure 7 in Appendix for full details.

CD can be estimated in multiple ways. Figure 6 shows how MAP develops when estimating it from a sample
of S instances for which ki is annotated (note that we still do not require fully annotated samples), using the
crudest possible estimator: Set k̂max to a maximum of the largest k in the sample and a user-defined upper
bound (we used 1.2kmax as an example) and estimate P (k) as the histogram of the S samples with additive
Laplace smoothing. For NUS, already S = 25 is enough for clearly improving over CS and for both data
sets increasing S improves MAP as it should. See Appendix B.2 for further details and analysis, showing
how MAP relates to estimation error and thus providing information on how alternative estimators (e.g.
elicitation from a domain expert) would work.

10
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Table 2: Test MAP for all methods using validation data that contains only single-positive label per instance,
referred to as “Single” in the table. For ease of comparison, the results on fully annotated validation data
(“Full”) from Table 1 are also included.

Method Full Single
COCO NUS COCO NUS

AN 64.33 ± 0.10 42.68 ± 0.09 64.13 ± 0.21 42.33 ± 0.54
ROLE 66.89 ± 0.16 41.74 ± 0.21 66.95 ± 0.09 41.16 ± 0.69

EM+APL 70.92 ± 0.23 47.56 ± 0.20 70.76 ± 0.18 47.56 ± 0.20
LL-R+BoostLU 73.11 ± 0.21 49.76 ± 0.51 70.71 ± 0.18 48.31 ± 0.91

GR Loss 71.33 ± 0.21 47.08 ± 0.43 71.06 ± 0.13 47.38 ± 0.02
CS (ours) 71.35 ± 0.10 49.23 ± 0.45 71.19 ± 0.19 49.02 ± 0.19

6 Discussion

Evaluation Some remarks are useful for correct interpretation of the results. All methods in Table 1 were
run by us to ensure consistency, explaining differences to the scores reported in previous literature. The
MAP scores are mostly in line with the ones in the original publications, but for the GR Loss Chen et al.
(2024), we could not replicate the good performance, despite using their code.

As in all comparison methods, we used fully labeled validation set for determining the hyperparameters to
keep results comparable with the previous literature. This slightly exaggerates all accuracies due to the use of
data that would not be available in real use cases, but the bias is similar for all methods and in general small.
Note that CS, the method we compare against the previous ones, has fewer hyperparameters than most and
cannot gain unfair advantage due to tuning. To validate this empirically, Table 2 reproduces Table 1 for the
two interesting datasets using a validation set with only single-positive label per instance. The results are
highly similar, except for LL-R+BoostLU that has several hyperparameters, dropping notably in MAP. Our
CS method now outperforms all others on both datasets.

Value of cardinality information The empirical results can be summarized as follows: (a) CS alone is
a strong SPMLL method and in practice does not require any additional information; it uses the statistics
for setting the thresholds but works even with 50% estimation error for the maximum cardinality. (b)
Cardinality distribution, either known exactly or estimated from a very small sample, helps improving MAP
compared to CS. (c) Improved estimation of the instance cardinalities directly improves overall performance,
with approximately linear dependency between the estimation quality (measured by correlation) and MAP.
(d) The improvements in MAP are typically not large in absolute terms, but it is important to contrast the
gain to what could be achieved: For VOC and NUS the results are already effectively at the level of the
fully-labeled model.

Finally, we note that the CS ⇒ IC result gives an upper bound for MAP when optimizing the loss in
Equation 5. However, it is not necessarily the best way to use this information; e.g. various pseudo-labeling
methods Liu et al. (2023) could be boosted with cardinality information.

Generality We showed consistent good performance on four datasets, but with clear differences in how
much the cardinality information helps. For NUS and COCO, we can estimate cardinalities well and MAP
improves clearly, but for CUB even known cardinalities do not help. We do not have a clear interpretation for
this – it may relate to the shape of the cardinality distribution, or to the data itself. For instance, leveraging
the cardinality information will be difficult if ku

i is almost conditionally independent of yj
i for j ∈ Ui given

the observed labels. This is more likely when ku
i ≫ ko

i , which holds for CUB but not for the other data sets.
For VOC, there is no room for improvement; already some methods not using any cardinality information
match the MAP of the model trained on full labels.

Our technical elements could be integrated into other SPMLL methods. LCS loss alone outperforms many
previous methods and could be used as initialization for any method. The loss Lu

CS could be used e.g. in

11
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EM+APL Zhou et al. (2022) and ROLE Cole et al. (2021) as a plug-in replacement while keeping the other
elements of their methods as is, and Lu

IC could be added into various methods.

7 Conclusion

We introduced a novel problem formulation where varying degrees of side information on the label cardinality
is used in the MLL tasks with only partial labeling, focusing on the special case of SPMLL. We characterized
three concrete forms of side information, explained how they can be used for improving SPMLL performance,
and analyzed the problem. Already a minor modification for the loss assumed for unobserved labels, requiring
only crudely estimated statistics of the cardinality distribution, gives a well-performing SPMLL method.
The accuracy can be progressively improved by leveraging either a distribution of the label cardinalities or
instance cardinality estimates.
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A Proof for Perfect Bipartite Matching with Greedy Algorithm

Section 4.4 described that the instance cardinalities are estimated as k̂i = Πiv, where Π is a permutation
of a cardinality vector v satisfying the cardinality distribution. Next, we show that the permutation Π that
minimizes the objective B =

∑
i(si − Πv)2 can be found by sorting the entries of s. Let’s start by re-writing

the objective as

B = (s − Πv)T (s − Πv)
= sT s + vT ΠT Πv − 2sT Πv.

Since ΠT Π = I, the first two terms do not depend on Π. Consequently, the task is equivalent to maximizing
2sT Πv. According to the rearrangement inequality Hardy et al. (1952), this is achieved when the elements
are greedily paired according to their magnitude: the largest element of s is matched with the largest element
of v, and so on. Since v is in increasing order by construction, the solution is found by sorting s analogously,
with obvious O(N log N) complexity.

B Sensitivity Analysis

B.1 Sensitivity to kmax

The largest cardinality kmax is a dataset-dependent parameter that primarily determines the upper threshold
Tu in Equation 3 of the CS method. Figure 7 illustrates the CS method’s insensitivity to variations in the
maximum value k̂max, ranging from 0.5 to approximately 2.5 times the actual kmax, without significantly
affecting performance.

In Equation 3, the lower threshold Tl is similarly determined by ke. In practice, the method works with any
small number that is strictly non-zero, and setting it at ke that for most multi-label datasets is much smaller
than the number of classes C is simply a convenient practice.

B.2 Sensitivity to CD Estimation Error

For Experiment 3, we estimate the CD from a set of S samples for which ki is known. We denote by mk the
count of a given cardinality k in the sample and estimate the density as

P̂ (k) =


mk + δ∑k̂max

ν=1 (mν + δ)
k ≤ k̂max

0 otherwise,

where δ is a smoothing factor and k̂max is an estimate of the maximum cardinality. For the results reported
in Figure 6, we used δ = 0.1 and k̂max = 1.2kmax, but the results would be highly similar for a broad range
of other choices. Note that when estimating P (k) with an initial k̂max that is too small, there may be ki in
the sample that exceed the presumed maximum. In such cases, k̂max should be re-set to the largest ki in the
sample.

Figure 8 provides a complementary analysis. For each estimate, we compute the estimation error as Kullback-
Leibler (KL) divergence between the estimate and the true cardinality, and here show the MAP as a function
of the estimation error. This illustration provides information on how alternative estimators with similar
estimation error would work.

B.3 Sensitivity to Mi

The parameters Mi determine how many of the largest probabilities f j
i are summed over in the joint loss

Equation 5 and when estimating the cardinalities. Figure 9 shows the results are not sensitive to the choice,
plotting the model performance as a function of Mi, and plotting the MAP score normalized with the highest
score. Except for Mi = ki that results in a minor reduction in MAP due to creating false negatives, the results
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Figure 7: Sensitivity analysis of kmax and equivalently of the upper threshold Tu in the CS method.

(a) COCO (b) NUS

Figure 8: Results of Figure 6 presented from an alternative perspective, as a function of the estimation error
(KL divergence between the estimate and true cardinality density).

are extremely consistent over the choice with at most 0.5% reduction in MAP. The choice of Mi = kmax − ko

that only depends on the maximum cardinality is effectively as good as any Mi that depends on the instance
cardinality ki.

C Experimental Details

C.1 Model Architecture

We use a ResNet-50 backbone pre-trained on ImageNet. Following the same image processing techniques as
in all comparison methods, we resize all input images to 448 × 448 pixels and apply data augmentation of
random horizontal flipping (probability 0.5) during training. The output layer of ResNet-50 is replaced by a
global average pooling Lin (2013) followed by a fully connected layer, and the output dimension is adjusted
to match the number of classes in the target dataset.
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Figure 9: Sensitivity analysis of Mi for the CS ⇒ IC method. Normalized MAP scores are computed by
dividing the MAP by the highest MAP for each dataset.

C.2 Datasets

Table 3 provides full details about the datasets, indicating both the standard information (number of images
and C) and the cardinality statistics ke and kmax.

Table 3: The details of benchmark datasets used in our experimentation.

Statistics VOC COCO NUS CUB
C 20 80 81 312

# Images
Training 4574 65665 120000 4795

Validation 1143 16416 30000 1199
Test 5823 40137 60260 5794

ke

Training 1.46 2.94 1.89 31.4
Validation 1.46 2.92 1.93 31.52

Test 1.43 2.91 1.88 31.53

kmax

Training 5 18 11 71
Validation 5 16 11 69

Test 5 15 13 72

C.3 Training

For CS and CS ⇒ CD, we train our model for 10 epochs and 20 epochs for CS ⇒ IC, using Adam optimizer
and established training parameters from prior work without further optimization. Following Zhou et al.
(2022), we use the batch size of 8, 16, 16, and 8 for VOC, COCO, NUS, and CUB respectively. Consistent
with Chen et al. (2024), we fix the learning rates to 1e−5 for VOC, COCO, and NUS, and to 5e−5 for CUB.

C.4 Hyperparameters

We optimize the hyperparameters for each method and dataset by maximizing the validation MAP. Table 4
lists the final choices obtained by the process described below for all of our model variants. For all of
the comparison methods, we use the same validation protocol and candidate sets reported in the original
publications or their associated code-bases; we do not replicate the descriptions here.
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Table 4: Best hyperparameters for each method. The parameters α and β used in Equation 4 and 5 are
computed based on γ, η and ϕ using Equation 6 and 7.

Parameter Method Dataset
VOC COCO NUS CUB

λ CS 0.35 0.15 0.1 0.01

ew
CS ⇒ CD 6 6 5 5
CS ⇒ IC

a all 2 3 2 2

γ
CS ⇒ CD 1e−4 8e−5 4e−3 6e−6

CS ⇒ IC 9e−3 6e−3 7e−3 8e−6

η
CS ⇒ CD 0.50 0.10 0.50 0.55
CS ⇒ IC 0.30 0.50 0.55 0.40

ϕ
CS ⇒ CD 0.65 0.55 0.35 0.35
CS ⇒ IC 0.60 0.60 0.30 0.55

First, we note that our code uses slightly different parameterization than the main paper: The weights in
Equation 4 and 5 are re-parameterized as

α = γ

η2 , (6)

β =
(

η

ϕ

)2
, (7)

and the validation is conducted in the space of γ, η, and ϕ. Instead of a full grid search, we use a staged
approach to reduce the computational cost and overfitting to the validation data:

• We tuned the λ parameter of CS within the set {0.01, 0.1, 0.15, 0.2, 0.3, 0.35}. This also provides ew

(the number of CS initialization epochs for CS⇒ CD and CS⇒ IC, see Section 4.5) for each dataset
without requiring separate runs to tune this parameter.

• After determining λ, we search for a in {1, 2, 3, 4} for all datasets.

• For CS ⇒ CD and CS ⇒ IC, we perform a grid search of 64 configurations (8 × 8) in
{0.1, 0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55} for η and in {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65} for ϕ.

• The range of candidates considered for γ depends on the case:

– For VOC+COCO+NUS and CS ⇒ IC, we search in {5e−3, 6e−3, 7e−3, 8e−3, 9e−3}.
– For VOC+COCO and CS ⇒ CD, we search in {6e−5, 7e−5, 8e−5, 9e−5, 1e−4}
– For NUS and CS ⇒ CD, we search in {2e−3, 3e−3, 4e−3, 5e−3}
– For CUB and both methods, we search in {5e−6, 6e−6, 7e−6, 8e−6, 9e−6}
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