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ABSTRACT

Multiple Object Tracking (MOT) has traditionally relied on expensive, exhaus-
tively annotated datasets, limiting scalability and generalization. To address these
limitations, we propose ScaleTrack, a transformer-based association module for
MOT, explicitly designed to leverage large-scale, sparsely annotated video data. At
the core of our approach is Chain Contrastive Learning, a novel contrastive strat-
egy that maintains local discriminability while capturing long-range temporal co-
herence. Specifically, our approach constructs positive pairs in a chained manner
across consecutive frames, promoting transitive consistency and local discriminabil-
ity simultaneously. Our model additionally features a multi-scale spatiotemporal
attention mechanism that effectively integrates contextual information across space
and time, ensuring robust associations even in challenging scenarios. Notably, our
method consistently improves performance as the amount of training video data
increases, demonstrating robust scalability. Our tracker is designed as a plug-and-
play module that seamlessly synergizes with any object detector, achieving state-
of-the-art zero-shot performance across multiple large-scale MOT benchmarks, in-
cluding TAO, BDD100K, SportsMOT and OVT-B. Code will be made public.

1 INTRODUCTION

Multiple Object Tracking (MOT) is crucial for applications like autonomous driving and robotics Sun
et al. (2020a); Caesar et al. (2020); Yu et al. (2020); Grauman et al. (2022), but modern systems fail
to generalize to new, unseen environments. The key to robust, open-world performance is scaling
on massive, diverse video datasets. Exhaustively annotating every object in large, diverse video
collections is prohibitively difficult and expensive. Consequently, datasets like SA-V, TAO Ravi et al.
(2024); Dave et al. (2020) are only sparsely annotated, which presents a core challenge: finding a
training recipe that can effectively leverage this data and, crucially, scale well with it.

Current MOT paradigms are difficult to scale. End-to-end transformers Zeng et al. (2022); Meinhardt
et al. (2022); Zhang et al. (2023b); Luo et al. (2023); Gao & Wang (2023), with their joint detection
and tracking mechanisms, require exhaustive annotations for every object, every class. This makes
them incompatible with the non-exhaustive labels of large-scale video datasets, limiting their scaling
on rich resources. The classic tracking-by-detection paradigm also falls short; its simple motion
models are often not robust enough for complex, real-world dynamics. This leaves a powerful,
learnable appearance association module as the most viable path toward generalizable MOT.

However, the dominant contrastive learning (CL) strategies used to train such models also fail the
crucial test of scalability (Fig. 1a). Firstly, pairwise or local methods Pang et al. (2021); Wu et al.
(2022); Li et al. (2022); Yan et al. (2023); Wu et al. (2023), contrast an object only with counterparts
in adjacent frames. While effective for short-term discriminability, this “myopic” approach yields
features less robust to prolonged occlusions or substantial appearance variations over time, and
because each positive pair only covers a short temporal window, the amount of useful learning signal
grows much more slowly than the data volume, causing rapid saturation as data scale up. Secondly,
global contrastive strategies De Plaen et al. (2024) aim for long-term coherence by comparing
an instance against diverse negatives from extensive temporal contexts (akin to principles in, e.g.,
SupCon Khosla et al. (2020) or InfoNCE Oord et al. (2018) from other domains). However, when
directly applied to tracking, enforcing discrimination based on isolated snapshots from vastly different
contexts can be problematic. True instance identity can be ambiguous without continuous observation
(e.g., distinguishing identical objects is trivial if in different rooms, but requires subtle local cues
if they are adjacent). Such global comparisons risk misdirecting feature learning towards coarse,
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Figure 1: (a) Contrastive paradigms for tracking. (i) Pairwise uses only adjacent frames, limiting
long-term learning. (ii) Global contrasts all instances across a batch, promoting long-range coherence
but introducing many off-context negatives that hurt local discriminability. (iii) Chain Contrast links
instances through consecutive frames, balancing local precision with long-range consistency. (b)
Scaling on TAO. Chain Contrast (red) attains higher AssocA and scales better with more video than
Pairwise or Global.

scene-level contextual differences rather than honing the precise, local discriminability essential for
frame-to-frame association, or may introduce less relevant negative pairs that hinder learning. As
the data size increases, the number of irrelevant or ambiguous negatives grows rapidly, diluting the
training signal and causing the learning to plateau. As we demonstrate in Fig. 1b, both local and
global approaches plateau, failing to translate more data into better performance.

To break this scaling barrier, we introduce Chain Contrastive Learning (CCL), a temporal learning
framework designed explicitly to thrive on large-scale data. CCL builds long-range temporal con-
sistency by transitively linking an object’s identity across a sequence of multiple frames. Crucially,
negatives are drawn only from the local spatio-temporal context, forcing the model to resolve fine-
grained ambiguities against the most relevant distractors. This unique design avoids the saturation of
local methods and the signal dilution of global ones, enabling performance to grow with data.

With the improved representational power of CCL, we present ScaleTrack, a dedicated transformer-
based tracking framework designed to effectively extract and utilize these powerful appearance
features. ScaleTrack leverages a frozen pretrained backbone (e.g. DINOv2 Oquab et al. (2024)) for
rich initial features, adapted by a transformer encoder. Unlike prior MOT architectures Zeng et al.
(2022); Meinhardt et al. (2022) that entangle detection and tracking queries, our framework uses
queries purely for extracting dedicated appearance embeddings for association. These embeddings are
refined through spatial attention pooling and a hybrid decoder that cross-attends to multi-scale spatial
features from the current frame and a temporal buffer of past contexts, enabling robust association.
To further maximize learning from diverse videos with non-exhaustive annotations, CCL within
ScaleTrack is augmented by incorporating pseudo-negative proposals from foundation models (e.g.
Detic Zhou et al. (2022)), enriching the set of hard local negatives.

Our main contributions are: (1) Chain Contrastive Learning, a new temporal contrastive framework
that robustly models long-range appearance evolution while preserving local discriminability for
MOT, significantly outperforms existing contrastive paradigms in both association accuracy and
scalability with increased video data. (2) The ScaleTrack tracking architecture, designed to effectively
implement CCL by extracting and fusing rich spatio-temporal appearance cues for association.

Our approach achieves strong zero-shot generalization on challenging open-vocabulary MOT bench-
marks Li et al. (2023), even outperforming in-domain trained baselines on specialized datasets like
BDD100K Yu et al. (2020) and SportsMOT Cui et al. (2023).
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2 RELATED WORK

Learning instance-level associations. is crucial to multiple object tracking (MOT), with existing
methods primarily falling into supervised and self-supervised categories Pang et al. (2021); Wu et al.
(2022); Yan et al. (2023); Li et al. (2022); Zhang et al. (2023b); Zeng et al. (2022); Meinhardt et al.
(2022); Wang et al. (2020); Yan et al. (2022). Self-supervised approaches, such as UniTrack Wang
et al. (2021b) and MASA Li et al. (2024a), leverage generic representations learned from unlabeled
images Chen et al. (2020); Xu & Wang (2021). Other self-supervised methods, like TCC Dwibedi
et al. (2019), learn from unlabeled videos by enforcing a forward-and-backward cycle, though these
are typically aimed at correspondence rather than the fine-grained identity discrimination required in
MOT. While providing competitive results, these methods can be limited in handling challenging
temporal dynamics. Alternative methods attempt to reduce annotation dependency via synthetic
data Li et al. (2023), training from static images Zhou et al. (2020); Fu et al. (2021); Athar et al. (2022),
or test-time adaptation Segu et al. (2023), yet these strategies remain insufficient for modeling realistic
temporal variations in diverse scenarios. Supervised methods predominantly employ contrastive
learning on annotated image pairs sampled from videos Pang et al. (2021); Wu et al. (2022); Yan
et al. (2023); Li et al. (2022); Fang et al. (2024), achieving superior performance in specific domains.
Such local contrastive methods effectively capture short-term discriminability but struggle to scale
effectively, as the long-range temporal context in videos is not exploited. Alternative approaches
attempt to utilize global supervised contrastive losses Khosla et al. (2020); Oord et al. (2018); Fang
et al. (2024), contrasting objects across entire video clips. Although these methods capture long-
range context, they introduce irrelevant negative samples, weakening frame-level associations. In
contrast, our chain-structured contrastive formulation effectively balances local discriminability and
long-range temporal consistency, significantly improving scalability and generalization.

Open-world and scalable MOT. The introduction of the TAO dataset Dave et al. (2020), containing
over 800 classes, has spurred research in open-vocabulary MOT Zheng et al. (2024); Li et al. (2024a;
2022; 2023); Liu et al. (2022), emphasizing the ability of trackers to generalize beyond seen classes.
Earlier benchmarks such as TAO-OW Liu et al. (2022) focused primarily on recall in class-agnostic
scenarios, limiting insights into tracking precision and semantic understanding. OVTrack Li et al.
(2023) broadened evaluation to include precision, recall, and classification accuracy, thereby better
assessing trackers’ semantic capabilities. Recently, MASA Li et al. (2024a) demonstrated the
effectiveness of universal appearance models trained from unlabeled static images for zero-shot open-
vocabulary tracking. However, these appearance-centric approaches generally neglect spatiotemporal
and semantic context, crucial for robust tracking in diverse real-world scenarios. Transformer-based
trackers Zeng et al. (2022); Meinhardt et al. (2022); Zhang et al. (2023b); Gao & Wang (2023);
Segu et al. (2024) rely heavily on end-to-end sequence modeling, requiring exhaustive frame-level
annotations for training. Their architecture lacks the flexibility to handle sparsely labeled data,
making them unsuitable for scaling up for partially annotated video datasets. Unlike prior methods,
our approach effectively leverages large-scale, sparsely annotated videos by introducing Chain
Contrastive Learning, which balances local discriminability with long-range temporal consistency
and demonstrates strong scaling capabilities.

3 METHOD

We introduce ScaleTrack, a transformer-based association framework for MOT, designed to leverage
large-scale, sparsely annotated videos. Unlike conventional MOT architectures that rely on densely
annotated training data, our approach effectively learns from partially labeled videos by combining a
Chain Contrastive Learning strategy with pseudo-negative sampling and an efficient spatiotemporal
attention module.

3.1 PROBLEM DEFINITION

Given a video sequence V = {I1, I2, ..., IT }, our goal is to assign a unique and consistent identity to
each detected object across frames. Let Ot = {o1t , o2t , ..., oNt } represent the set of object instances
detected at frame t, where each object oit is associated with a feature embedding f it ∈ Rd and a
bounding box bi

t ∈ R4. The objective is to learn a function fθ that extracts robust embeddings such
that, for each object instance, its respective embedding is invariant across frames as well as distinct
from those of other objects. ScaleTrack achieves this by (1) designing a contrastive learning strategy

3
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Figure 2: Overview of our training framework. Given an input video, our model extracts multi-
scale features using a frozen visual backbone. These features are processed by a transformer encoder,
which adapts them into a unified representation. The deepest feature level undergoes spatial attention
pooling to enhance local object features. A temporal memory buffer maintains historical context,
enabling our spatiotemporal fusion module in the decoder to aggregate relevant past information for
robust object tracking. Finally, cross-attention refines object embeddings before association. The
entire framework is optimized with Chain Contrastive Learning, ensuring both local discriminability
and long-range temporal consistency.

that effectively scales to large video collections while preserving both local and long-term temporal
consistency, (2) leveraging pseudo-negative proposals to improve feature discriminability, and (3)
employing an efficient spatiotemporal feature aggregation module for robust object representation
learning.

3.2 CHAIN CONTRASTIVE LEARNING

To overcome limitations of both purely local and global contrastive strategies, we propose Chain
Contrastive Learning, a temporal contrastive paradigm specifically designed for robust multiple
object tracking. The key idea is to construct contrastive chains of positive pairs across consecutive
video frames, effectively balancing local discriminability with global temporal consistency.

Given a video clip consisting of a sequence of frames indexed by t ∈ {1, 2, . . . , T}, let f it ∈ Rd

represent the embedding of the i-th ground-truth object instance detected in frame t. We assume each
annotated object maintains a consistent identity across the entire sampled clip. To enforce temporal
consistency, we sample positive pairs of embeddings across consecutive frames in a chained manner:
each instance in frame t forms a positive pair with its counterpart in frame t+ 1, resulting in chains
of pairwise similarities through the entire clip.

More formally, given a pair of consecutive frames (t, t+ 1), let Ft = {f1t , f2t , . . . , f
Nt
t } and Ft+1 =

{f1t+1, f
2
t+1, . . . , f

Nt+1

t+1 } denote the sets of embeddings of ground-truth object instances in the two
frames. Let Mt,t+1 denote the set of matched, i.e. positive, instance pairs between these frames
based on ground-truth identities.

To further enhance feature discriminability, particularly in scenarios with sparsely labeled data or
to include challenging negative examples (as detailed in Sec. 3.3), we incorporate pseudo-negative
proposals directly into our contrastive formulation. Let Pt+1 = {p1

t+1,p
2
t+1, . . . ,p

Mt+1

t+1 } represent
the set of feature embeddings derived from these pseudo-negative proposals in frame t+ 1.

The pairwise contrastive loss between two matched embeddings (f it , f
j
t+1) is then computed as the

normalized temperature-scaled cross-entropy loss Sohn (2016), which contrasts the positive pair
against both other ground-truth objects and the pseudo-negative proposals:

Lpair(f
i
t , f

j
t+1) = − log

exp(f it · f
j
t+1/τ)∑

k ̸=j exp(f
i
t · fkt+1/τ) +

∑Mt+1

m=1 exp(f it · pm
t+1/τ) + exp(f it · f

j
t+1/τ)

,

(1)
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where τ is a temperature parameter. Negative examples for the anchor f it are thus constructed from
other ground-truth objects fkt+1 (where k ̸= j) in the neighboring frame t+ 1, as well as the set of
pseudo-negative proposal embeddings pm

t+1 from the same frame t+ 1. This comprehensive set of
negatives helps in learning highly discriminative features.

The final Chain Contrastive Loss for an entire video clip is computed by aggregating these pairwise
losses across the sampled frame pairs:

Lchain =
1

|M|
∑

(t,t+1)∈T

∑
(i,j)∈Mt,t+1

Lpair(f
i
t , f

j
t+1), (2)

where Lpair is defined in Equation 1, T denotes the set of consecutive frame pairs, and |M| is the total
number of positive pairs sampled across the entire video clip. This ensures that gradients propagate
effectively through chained instances, implicitly enforcing long-range transitive consistency. More
specifically, if object A at time t matches object A′ at t + 1, and A′ matches A′′ at t + 2, then
ScaleTrack transitively encourages similarity between A and A′′.

During training, embeddings are learned by minimizing the chain contrastive loss Lchain through
standard backpropagation, thus enabling robust representation learning from video data.

3.3 PSEUDO-NEGATIVE PROPOSALS

To address challenges from sparsely annotated video data (e.g., in the SA-V dataset) and to enrich
negative sampling with hard examples, we employ pseudo-negative proposals. These are unannotated,
object-like region proposals (Rt = {r1t , r2t , . . . , r

Mt
t } per frame) generated by applying large-scale

foundation models, such as SAM Kirillov et al. (2023) and Detic Zhou et al. (2022), to each frame.
Feature embeddings, denoted as pm

t ∈ Rd, are extracted for each of these proposals.

As detailed in Section 3.2 (Equation 1), the embeddings of these proposals from frame t+1 (i.e., pm
t+1)

directly augment the pool of negative samples in our pairwise Chain Contrastive Loss. Incorporating
these diverse, hard pseudo-negatives alongside other ground-truth negatives significantly enhances
feature discriminability and robustness.

3.4 ARCHITECTURE

ScaleTrack, as shown in Fig. 2, consists of a transformer-based architecture with a spatiotemporal
design for efficient object tracking. The framework consists of three main components: (1) a vision
transformer backbone for multi-scale feature extraction, (2) a deformable transformer-based module
for learning temporal dependencies and refining object representations, and (3) a tracking head that
performs object association using contrastive learning.

3.4.1 TRANSFORMER ENCODER AS FEATURE ADAPTER

To leverage frozen visual backbones (e.g., DINOv2 Oquab et al. (2024)), we use a lightweight
deformable transformer encoder Zhu et al. (2020) as an adapter over multi-level features {Fℓ}Lℓ=1,
where Fℓ ∈ RB×Hℓ×Wℓ×Cℓ . Each level is projected and encoded independently to

Mℓ = Encoderℓ(Fℓ) ∈ RB×Sℓ×D, Sℓ = HℓWℓ,

then concatenated along the spatial axis:

M = ConcatLℓ=1 Mℓ ∈ RB×S×D, S =

L∑
ℓ=1

Sℓ. (3)

Thus, S denotes the total number of spatial locations across all feature levels via concatenation.

3.4.2 SPATIO-TEMPORAL ATTENTION-BASED DECODER

Our decoder refines object embeddings by integrating rich spatial and temporal context, which is
crucial for accurate tracking in complex scenarios. Given proposal embeddings and reference points
generated from the encoder output, the decoder enhances each proposal by performing two sequential
attention-based steps: spatial attention pooling and temporal context fusion.

5
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Spatial attention pooling. For each proposal, we first extract spatially aligned features applying
RoIAlign He et al. (2017) on the final encoder features:

fRoI = RoIAlign(ML,b), (4)

where ML denotes the final-level encoder features, and b represents the bounding box coordinates A
small conv/MLP head predicts K 2D offsets {(∆xk,∆yk)}Kk=1 from fRoI. We apply tanh to con-
strain offsets to [−1, 1] in the RoI coordinate system and sample at these locations via differentiable
bilinear grid sample, yielding fsampled. This guarantees sampling remains within the RoI and adds
salient sub-region evidence. To enrich spatial context, we introduce a learnable spatial attention pool-
ing module. This module computes attention weights over spatial locations within each RoI:

fatt =
∑
k,l

fk,l · σ(MLP(fk,l)), (5)

where fx,y are RoI features, and σ denotes a spatial softmax. Concurrently, we introduce an adaptive
sampling module that predicts learnable spatial offsets from RoI features. These offsets specify
additional sampling locations within each RoI, from which contextually rich features are sampled
using a differentiable bilinear sampling operation, denoted as fsampled. The spatial-attention-pooled
features and the adaptively sampled features are then concatenated and fused via a linear layer,
producing the final spatially enhanced embeddings:

fspatial = Linear ([fattn, fsampled]) . (6)

Temporal context fusion. To incorporate temporal information, we maintain a buffer of historical
feature maps extracted from the encoder, denoted as Ftemp ∈ RB×D×T×H×W , where T is the
temporal window size. Inspired by deformable attention mechanisms, our temporal fusion module
dynamically samples relevant spatiotemporal features from this buffer. Specifically, for each object
proposal embedding fspatial ∈ RB×L×D, we predict adaptive sampling offsets (∆t,∆x,∆y) and
corresponding attention weights. These offsets guide a deformable sampling procedure, which
extracts informative features from neighboring spatial and temporal locations within Ftemp. The
sampled features are then aggregated using learned attention weights to produce the temporally-
enhanced representation:

ffused = SpatiotemporalFusion(fspatial,Ftemp). (7)

This adaptive sampling strategy enables our model to selectively incorporate relevant historical
context, effectively capturing both local spatial detail and long-range temporal coherence. Importantly,
due to its sparse sampling nature, this approach remains computationally efficient.

3D deformable fusion. Given fspatial, a linear head predicts H × P 3D offsets {(∆t,∆x,∆y)} and
attention weights {α} over the cached volume Ftemp. Offsets are tanh-bounded and scaled to the
temporal window; weights are softmax-normalized. We then perform trilinear grid sample in
(t, x, y) and aggregate by α to obtain ffused (Eq. 8), efficiently injecting long-range history.

Proposal attention modulation. To further improve discriminability, proposal embeddings undergo
head-specific feature modulation through learned scaling factors:

fmodulated =
1

Nh

Nh∑
h=1

σ(Whffused) · ffused, (8)

where Nh is the number of attention heads, and Wh denotes head-specific learnable linear transfor-
mations.

Cross-attention refinement. The spatially and temporally enhanced embeddings serve as queries for
a multi-scale cross-attention module, aggregating rich spatial context from encoder memory across
multiple feature scales of the current frame:

ffinal = CA(fmodulated,M), (9)

where M contains multi-level spatial features. This aggregation captures detailed spatial relationships
within the current frame, producing robust, contextually enriched object embeddings crucial for
accurate object tracking.

6
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Table 1: Comparison with SOTAs on Open-
vocabulary MOT. †: same detector.

Method Novel Base

Validation set TETA LocA AssocA ClsA TETA LocA AssocA ClsA

Supervised, In-domain
QDTrack Pang et al. (2021) 22.5 42.7 24.4 0.4 27.1 45.6 24.7 11.0
TETer Li et al. (2022) 25.7 45.9 31.1 0.2 30.3 47.4 31.6 12.1
DeepSORT (ViLD) Wojke et al. (2017) 21.1 46.4 14.7 2.3 26.9 47.1 15.8 17.7
Tracktor++ (ViLD) Bergmann et al. (2019) 22.7 46.7 19.3 2.2 28.3 47.4 20.5 17.0
ByteTrack Zhang et al. (2022) 22.0 48.2 16.6 1.0 28.2 50.4 18.1 16.0
OC-SORT Cao et al. (2023) 23.7 49.6 20.4 1.1 28.9 51.4 19.8 15.4
OVTrack Li et al. (2023) 27.8 48.8 33.6 1.5 35.5 49.3 36.9 20.2
SLAck Li et al. (2024b) 31.1 54.3 37.8 1.3 37.2 55.0 37.6 19.1

Zero-shot
NetTrack Zheng et al. (2024) 32.6 51.3 33.0 13.3 33.0 45.7 28.6 24.8
MASA (Detic)† Li et al. (2024a) 40.8 64.4 41.2 17.0 47.0 66.0 44.5 30.5
ScaleTrack (Detic)† 44.0 65.8 48.6 17.7 49.1 66.3 52.3 28.7

Table 2: Comparison with SOTAs on BDD
MOT(val set). †: same detector.

Method TETA↑ LocA↑ AssocA↑ mIDF1↑ IDF1↑ mHOTA↑
Supervised, in-domain
QDTrack Pang et al. (2021) 47.8 45.9 52.9 51.6 71.5 -
TETer Li et al. (2022) 50.8 47.2 52.9 53.3 71.1 -
MOTR Zeng et al. (2022) 50.7 35.8 51.0 54.0 65.8 -
UNINEXT-H Yan et al. (2023) - - - 56.7 69.9 -
ByteTrack Zhang et al. (2022)† 55.7 - 51.5 54.8 70.4 -
MeMOTR Gao & Wang (2023) 53.6 38.1 56.7 48.8 69.2 40.4

Zero-shot
MASA (SAM-H)† 54.2 53.7 51.9 55.3 71.7 45.9
MASA (Detic)† 54.4 52.7 52.9 55.8 71.3 46.2
ScaleTrack† 56.3 53.9 56.0 56.7 73.8 46.6

3.5 INFERENCE

During inference, ScaleTrack extracts object embeddings and associates detections to existing tracks
using pairwise cosine similarity matching. The detailed assignment process, which utilizes the
Hungarian algorithm, is described in Appendix Sec. A.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details. We train ScaleTrack for 5 epochs using the AdamW optimizer Loshchilov
& Hutter (2018), with an initial learning rate of 10−4, decayed after 2 epochs. The model is trained
with a batch size of 1 video clip and 10 frames per clip. We set the transformer hidden dimension to
256. We add more details in the appendix.

Evaluation metrics. We evaluate large-scale multi-class MOT using the TETA metrics Li et al. (2022).
TETA decomposes tracking evaluation into three aspects: Localization (LocA), Association (AssocA),
and Classification (ClsA), providing an interpretable analysis of tracker performance. Moreover,
TETA accommodates incomplete annotations, particularly suiting open-vocabulary MOT Li et al.
(2023). For standard MOT benchmarks, we ensure a fair comparison of association performance by
using the same detections as leading trackers. Consequently, our primary focus is on association-
related metrics, including AssocA, mIDF1, and IDF1.

Benchmarks. We evaluate our method on multiple datasets, each presenting unique challenges in
MOT. OV-MOT Li et al. (2023) assesses a tracker’s ability to generalize to novel object classes
without training on their annotations. TAO follows the LVIS Gupta et al. (2019) taxonomy, where
frequent and common classes form the base set, while rare ones constitute the novel set. This split
aligns with open-vocabulary detection protocols Gu et al. (2021), ensuring that trackers must adapt to
unfamiliar categories, a critical requirement for real-world applications. TAO TETA Li et al. (2022)
is a closed-set MOT benchmark allowing training on all class annotations within TAO. TAO Dave et al.
(2020) is designed to track a diverse range of objects, encompassing over 800 categories, making it
the most diverse MOT dataset with the largest class collection to date. It contains 500, 988, and 1,419
videos annotated at 1 FPS in the train, validation, and test sets, respectively. We report performance
on the validation set. TAO emphasizes the quality of association, rewarding trackers that generate
accurate and non-overlapping trajectories. BDD100K MOT Yu et al. (2020) evaluates tracking
performance in driving scenes. It includes 200 validation videos annotated at 5 FPS, requiring trackers
to handle common traffic objects in dynamic urban environments. SportsMOT Cui et al. (2023)
is a large-scale MOT benchmark of sports scenes, covering basketball, volleyball, and football. It
consists of 240 videos, 150K frames, and 1.6M bounding boxes, and presents challenges such as fast,
variable-speed motion and visually similar players, making object association a key challenge. OVT-
B Liang & Han (2025) is a large-scale open-vocabulary MOT benchmark. The detailed results can
be found in the Appendix Sec. C.

Training data. The goal of this work is to scale up MOT training using sparsely annotated video data.
To study the effects of large-scale training, we leverage the SA-V dataset Ravi et al. (2024), a large-
scale video object segmentation dataset with 35.5M masks across 50.9K videos. Unlike traditional
datasets, SA-V provides dense mask annotations for a diverse range of objects, including parts and
subparts, making it well-suited for open-world tracking. Our final model is trained on subsampled
sequences from sav 000 to sav 023.
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Table 3: Comparison with the state-of-the-art
on TAO TETA †: usage of the same detector.

Method TETA LocA AssocA ClsA
Supervised, in-domain
SORT Bewley et al. (2016) 24.9 48.1 14.3 12.1
Tracktor Bergmann et al. (2019) 24.2 47.4 13.0 12.1
Tracktor++ Bergmann et al. (2019) 28.0 49.0 22.8 12.1
DeepSORT Wojke et al. (2017) 26.0 48.4 17.5 12.1
QDTrack Pang et al. (2021) 30.0 50.5 27.4 12.1
TETer Li et al. (2022) 34.6 52.1 36.7 15.0
SLAck-T† Li et al. (2024b) 35.5 52.2 38.9 15.6
SLAck-L† Li et al. (2024b) 41.1 56.3 41.8 25.1

Zero-shot
UNINEXT(R50) Yan et al. (2023) 31.9 43.3 35.5 17.1
GLEE-Plus(SwinL) Wu et al. (2023) 41.5 52.9 40.9 30.8
GLEE-Pro(EVA02-L) Wu et al. (2023) 47.2 66.2 46.2 29.1
MASA (Detic) † Li et al. (2024a) 46.3 65.8 44.1 28.9
ScaleTrack (Detic)† 48.5 66.2 51.9 27.4
ScaleTrack (CoDETR) 57.7 71.6 60.3 41.6

Table 4: Comparison with the state-of-the-
art on SportsMOT (test set). We use official
SportsMOT baseline detections. †: usage of the
same detection observations.

Methods HOTA AssA DetA IDF1 MOTA

Supervised, in-domain
QDTrack Pang et al. (2021) 60.4 47.2 77.5 62.3 90.1
ByteTrack Zhang et al. (2022) 62.1 50.5 76.5 69.1 93.4
OC-SORT Cao et al. (2023) 68.1 54.8 84.8 68.0 93.4
TransTrack Sun et al. (2020b) 68.9 57.5 82.7 71.5 92.6
MeMOTR Gao & Wang (2023) 68.8 57.8 82.0 69.9 90.2
SambaMOTR Segu et al. (2024) 69.8 59.4 82.2 71.9 90.3
MOTIP Gao et al. (2024) 71.9 62.0 83.4 75 92.9
MixSort-Byte Cui et al. (2023)† 65.7 54.8 78.8 74.1 96.2
MixSort-OC Cui et al. (2023)† 74.1 62.0 88.5 74.4 96.5
Zero-shot
ScaleTrack† 76.2 66.7 87.0 79.3 95.0

Table 5: Scaling abla-
tion on chain length.

Chain Length 3 5 10 20

AssocA 52.8 54.4 54.7 55.8

Table 6: Scaling abla-
tion on backbone.

Backbone 3k 6k 12k

DINOv2-S (Frozen) 57.5 57.7 58.6
DINOv2-S (Unfrozen) 55.9 57.8 59.5

Table 7: Ablation of model components.

Frozen DINOv2 Chain Contrast Spatial Att Pool Cross Att Temporal Att AssocA

✓ 47.9
✓ ✓ 55.2
✓ ✓ ✓ 55.7
✓ ✓ ✓ ✓ 56.7
✓ ✓ ✓ ✓ ✓ 57.3

4.2 COMPARISON WITH THE STATE-OF-THE-ART

To accurately assess the association ability of our method, we always provide the same detection
observations as current state-of-the-art methods in standard MOT benchmarks. Note that we perform
zero-shot association tests for all our variants and use the same weights across all benchmarks.

OV-MOT. Tab. 1 evaluates trackers on the Open-Vocabulary MOT benchmark, which assesses
generalization to novel categories following the LVIS Gupta et al. (2019) taxonomy. Supervised
in-domain methods, such as SLAck and OVTrack, perform well but require extensive labeled data,
limiting scalability. In the zero-shot setting, our ScaleTrack outperforms the prior state-of-the-art,
surpassing MASA by 3.2% in TETA and 7.4% in AssocA on novel classes, demonstrating superior
object association.

TAO TETA. We use the same observations as MASA Detic Li et al. (2024a). As shown in Tab. 3,
our method performs the best, without training on any in-domain data, on both AssocA and TETA by
a wide margin and sets the new state-of-the-art. This demonstrates that our method couples well with
current detection foundation models and transfers their strong detection performance into tracking.

BDD100K MOT. Tab. 2 shows that among supervised trackers on BDD100K, MeMOTR Gao &
Wang (2023) achieves strong AssocA performance but requires dataset-specific tuning. In the zero-
shot setting, ScaleTrack surpasses MASA, achieving the best TETA (+1.9%) and AssocA (+3.1%),
along with the highest IDF1 and HOTA. Our results demonstrate that ScaleTrack achieves state-of-
the-art generalization in real-world driving environments.

SportsMOT. Tab. 4 presents results on the SportsMOT benchmark, which poses significant challenges
due to fast motion and visually similar players. In the zero-shot setting, ScaleTrack outperforms all
prior methods, including supervised trackers, achieving the highest HOTA (+2.1% from MixSort-
OC) and IDF1 (+4.7%). These results demonstrate the effectiveness of our proposed contrastive
ScaleTrack training and our spatiotemporal attention in handling fine-grained object association.

4.3 ABLATION STUDIES AND ANALYSIS

We conduct all ablation studies on the TAO dataset using Co-DETR Zong et al. (2023) as the default
detector. Unless otherwise specified, model variants are trained on 1k videos. For scaling experiments,
including loss scaling, clip length scaling, and frozen feature scaling, we train each model for a
single epoch, as we found that one epoch provides sufficiently informative trends for comparison.
For model ablation, we train for 5 epochs. Below, we analyze the impact of different design choices
in our framework.

Scaling effect of different contrastive strategies. To evaluate the scalability of different contrastive
strategies, we trained all methods, our chain contrast, alongside Local Pairwise, Globe contrast with
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Figure 3: Ablation of chain structure in contrastive learning for tracking. (a) Concept: Broken
Chain vs. Chain Contrast. (i) The Broken Chain intentionally disrupts inter-frame positive links,
impeding transitive consistency. (ii) Our Chain Contrast maintains these links to enable long-range
feature propagation. (b) Performance scaling: Chain Contrast (Ours) vs. Broken Chain. As video
training data increases, Chain Contrast (Ours) (red line) significantly outperforms the Broken Chain
(blue line) in association accuracy (AssocA) on the TAO dataset. This highlights the critical role of
the continuous chain structure for robust long-range consistency and tracking scalability.

SupCon and InfoNCE baselines on the same model architecture and data. This controlled setting
allows for a direct comparison of how effectively each loss function leverages increasing amounts of
data. Fig. 1b demonstrates that our proposed chain contrast scales the best.

Scaling effect of chain structure. We investigate the impact of the proposed chain structure in our
contrastive learning framework. As shown in Fig. 3, breaking the chain structure (Broken Chain)
by independently optimizing contrastive pairs between isolated frame-pairs significantly degrades
performance, indicating that the chain structure is crucial for propagating meaningful long-range
associations.

Scaling effect of chain length. Tab. 5 evaluates how varying the temporal length of the contrastive
chains affects tracking performance. Increasing the chain length consistently enhances association
accuracy, highlighting the importance of leveraging longer temporal context.

Scaling effect of frozen vs. unfrozen backbone. We present an ablation on freezing the DINOv2
backbone in Tab. 6. With smaller datasets (3k), the frozen backbone performs better due to DINOv2’s
pretraining. As training data increases (12k+), the unfrozen backbone better adapts to task-specific
patterns. While fine-tuning provides minor improvements at larger scales, freezing the backbone
remains computationally efficient and preserves the diversity of representations learned from large-
scale pre-training.

Effectiveness of model components. Tab. 7 shows the impact of individual model components
on TAO. Starting from a frozen DINOv2 backbone, adding the Transformer-based feature adapter
and training with chained contrastive loss significantly improves performance by adapting static
image features for tracking. Incorporating Spatial Attention Pooling further enriches spatial context,
yielding an additional gain. Adding Cross Attention effectively aggregates multi-level spatial features
within the current frame, further enhancing object discrimination. Finally, including Temporal Fusion,
which explicitly integrates historical context, achieves the best overall result.

5 CONCLUSION

We introduced ScaleTrack, a novel transformer-based association framework that effectively lever-
ages large-scale, sparsely annotated video data for robust and generalizable tracking. Our proposed
Chain Contrastive Learning not only balances local discriminability with long-range temporal consis-
tency, outperforming traditional local and global contrastive paradigms, but also scales effectively
with increasing training data. Additionally, leveraging pseudo-negative proposals enriches training
with hard negatives, further enhancing discriminative capability. Extensive experiments demonstrate
that ScaleTrack achieves state-of-the-art zero-shot performance across diverse MOT benchmarks,
highlighting its scalability and suitability for open-world tracking scenarios.
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APPENDIX

In this appendix, we report additional discussions and experiments. First, we provide implementation
details in Sec. A. Then, we report additional quantitative results on more benchmarks in Sec.B and
Sec. C. Finally, we provide additional ablations on the specifics of our method in Sec. D.

A IMPLEMENTATION DETAILS

We provide more implementation details here including training, testing, and model architecture.

A.1 TRAINING

We train ScaleTrack for 5 epochs using AdamW optimizer Loshchilov & Hutter (2018) with initial
learning rate of 2×10−4, decayed after epoch 2. The backbone learning rate is set to 2×10−5, while
linear projection layers use the same learning rate as the transformer. We employ gradient clipping
with a maximum norm of 10. The training batch size is 1 video clip, with each clip consisting of 10
uniformly sampled frames. For data augmentation, we apply Large-Scale Jittering (LSJ).

Model architecture. ScaleTrack uses a frozen DINOv2-S Oquab et al. (2024) backbone, followed
by a 2-layer deformable transformer encoder. We also have 2 layers of our proposed decoder, each
with a hidden dimension of 256 and 4 sampling points per attention head. We incorporate a spatial
attention pooling module and temporal fusion to aggregate rich spatiotemporal context.

Data and annotations. All models are trained on the SA-V dataset Ravi et al. (2024), using object
proposals generated by Detic. During training, we utilize pseudo-labels from Detic Zhou et al. (2022)
predictions to augment sparse annotations. Training and validation detection confidence thresholds
are set to 0.3, with validation Non-Maximum Suppression (NMS) at 0.4 IoU.

Losses and matching. We use chain contrastive loss to supervise association. Object tracks are
matched using Hungarian matching, with an association threshold of 0.5. Embeddings for matching
are learned via our chain contrastive strategy.

Inference. During inference, ScaleTrack extracts object embeddings and performs association via a
simple yet effective similarity-based matching strategy. Given extracted embeddings, we compute
pairwise cosine similarity scores between detected objects and existing tracks. Object associations
are determined using the Hungarian algorithm, assigning detections to tracks by minimizing the cost:

HungarianMatching(1− S, τ), (10)

where S is the similarity matrix, and τ is a threshold to filter low-confidence matches. We retain up
to 100 detections per frame at inference. Track states are updated through an exponential moving
average (EMA) with a weight of 0.5.

Efficiency. To enhance computational efficiency, we freeze backbone parameters and apply auto-
matic mixed precision (AMP). With these optimizations, ScaleTrack achieves 42 FPS on an NVIDIA
RTX 4090 GPU.

Resources. All ScaleTrack variants and ablation experiments were implemented in PyTorch and
trained on a cluster equipped with NVIDIA H100 GPUs (typically 96GB memory versions). For our
main model configurations, training was performed using data parallelism across 16 H100 GPUs. A
typical training run for 5 epochs on a substantial subset of the SA-V dataset (e.g., 24k video clips)
with a per-GPU batch size of 1 video clip, each clip containing 10 to 20 frames, took approximately
3 days. As noted in the abstract, inference is performed on a single NVIDIA RTX 4090 GPU.

B IMPACT OF LARGE-SCALE PRE-TRAINING VS. IN-DOMAIN TRAINING

A core objective of ScaleTrack is to effectively leverage large-scale, sparsely annotated video data,
and our primary models are trained on the SA-V dataset to demonstrate this capability. While larger
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and more diverse datasets generally contribute to improved generalization, a valid question is the
extent to which ScaleTrack’s strong performance relies solely on the scale of SA-V versus the inherent
strengths of our architecture and Chain Contrastive Learning approach.

To investigate this, we conducted an additional experiment on the SportsMOT benchmark Cui et al.
(2023). For this experiment, we trained ScaleTrack exclusively with the official SportsMOT training
set, using the same in-domain data as other comparable supervised methods. This ensures a direct
comparison of model capabilities when data conditions are equalized, removing the advantage of
large-scale pre-training on SA-V.

Table 8: Performance on SportsMOT with In-Domain Training. Comparison of ScaleTrack
trained only on SportsMOT data against methods using the same training set. Metrics like HOTA and
IDF1 are shown.

Method Training Data HOTA ↑ AssA ↑ IDF1 ↑
SambaMOTR Segu et al. (2024) SportsMOT 69.8 59.4 71.9
MixSort-OC Cui et al. (2023) SportsMOT 74.1 62.0 74.4

ScaleTrack (Ours) SA-V 76.2 66.7 79.3
ScaleTrack (Ours) SportsMOT 76.8 67.7 80.1

As shown in Tab. 8, even when trained solely on the in-domain SportsMOT data, ScaleTrack achieves
a HOTA of 76.8 and an IDF1 of 80.1, surpassing previous SOTA by a large margin.

This result demonstrates that while ScaleTrack benefits significantly from large-scale data like SA-
V for broad generalization (as shown in our main results), the core architectural design and the
Chain Contrastive Learning strategy provide substantial advantages even in standard, in-domain
training scenarios. It underscores that the performance gains are not solely attributable to the volume
of pre-training data but also to the effectiveness of our proposed tracking framework in learning
discriminative and robust object associations.

C MORE BENCHMARKS

We report additional results on the OVT-B Liang & Han (2025) benchmark and its individual subsets.

OVT-B Liang & Han (2025) is a large-scale open-vocabulary MOT benchmark with 1,048 ob-
ject categories and 1,973 videos containing 637,608 bounding box annotations. Built from seven
datasets—AnimalTrack Zhang et al. (2023a), GMOT-40 Bai et al. (2021), LV-VIS Wang et al. (2023),
OVIS Qi et al. (2022), UVO Wang et al. (2021a), YouTube-VIS Xu et al. (2018), and ImageNet-
VID Deng et al. (2009), it introduces diverse challenges, including severe occlusions (OVIS) and
small, visually similar objects (GMOT-40). OVT-B serves exclusively as a challenging evaluation
benchmark for open-vocabulary tracking.

To provide a more detailed analysis of our model’s generalization ability, we also report results on
individual OVT-B subsets, including UVOWang et al. (2021a), OVISQi et al. (2022), YouTube-VISXu
et al. (2018), AnimalTrack Zhang et al. (2023a), GMOT-40Bai et al. (2021), ImageNetVIDDeng et al.
(2009), and LV-VIS Wang et al. (2023). These subsets span various tracking difficulties, including
occlusion, scale variation, motion complexity, and long-tail category distributions.

• UVO (Unidentified Video Objects): Focuses on open-world object tracking, with a vast
vocabulary and many unlabeled background objects.

• OVIS (Occluded Video Instance Segmentation): Features severe occlusions, making object
association particularly difficult.

• YouTube-VIS: A standard benchmark for video instance segmentation, containing diverse
objects in dynamic real-world scenes.

• AnimalTrack: Contains multiple species in natural environments, posing challenges with
non-rigid deformations and varying motion patterns.

• GMOT-40: A general multi-object tracking dataset with small, visually similar objects,
requiring precise association across frames.
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Table 9: Comparison with the state of the art on OVT-B Liang & Han (2025). We compare our
method on open-vocabulary MOT benchmark Li et al. (2023). We indicate the classes and data the
methods are trained on. †: usage of the same detector.

All Base Novel

Method TETA LocA AssocA ClsA TETA LocA AssocA ClsA TETA LocA AssocA ClsA

ByteTrack Zhang et al. (2022) 20.1 36.1 12.4 11.9 20.6 35.6 12.7 13.4 19.6 36.6 12.0 10.3
OC-SORT Cao et al. (2023) 16.0 31.2 4.3 12.3 16.5 31.0 4.4 14.3 15.4 31.4 4.3 10.3
StrongSORT Du et al. (2023) 24.8 31.6 30.7 12.2 25.7 31.4 31.6 14.2 23.9 31.8 29.7 10.3
OVTrack Li et al. (2023) 46.1 60.8 66.1 11.5 46.8 60.5 66.7 13.4 45.5 61.1 65.5 9.6
OVTrack+ Liang & Han (2025) 47.0 62.0 67.7 11.3 47.6 61.6 68.2 13.2 46.4 62.5 67.3 9.4

MASA (Detic) Li et al. (2024a)† 57.4 73.0 77.7 20.6 59.2 73.2 78.1 26.2 55.5 74.1 77.3 15.0
ScaleTrack (Detic) † 57.8 72.8 79.9 21.0 59.6 72.5 80.0 26.5 55.9 73.0 79.8 15.0

Table 10: Comparison with the state of the art across multiple datasets.

(a) OVIS

Method TETA LocA AssocA ClsA

ByteTrack 31.5 49.0 3.4 42.1
OVTrack 48.4 58.5 41.0 45.7
MASA 54.9 73.7 51.5 39.6
ScaleTrack 55.9 72.1 55.2 40.3

(b) LVVIS

Method TETA LocA AssocA ClsA

ByteTrack 19.1 31.0 9.6 16.6
OVTrack 40.3 53.2 49.9 17.6
MASA 55.3 66.9 63.3 35.7
ScaleTrack 56.2 66.9 66.1 35.5

(c) GMOT-40

Method TETA LocA AssocA ClsA

ByteTrack 21.2 23.4 1.1 39.2
OVTrack 38.0 40.8 32.7 40.4
MASA 47.3 54.8 42.1 44.9
ScaleTrack 46.9 52.8 43.3 44.7

(d) UVO

Method TETA LocA AssocA ClsA

ByteTrack 11.4 11.3 3.4 19.5
OVTrack 25.6 27.9 26.4 22.4
MASA 32.3 33.5 31.7 31.7
ScaleTrack 33.6 34.5 32.2 34.2

(e) YouTubeVIS

Method TETA LocA AssocA ClsA

ByteTrack 14.8 29.5 4.1 10.8
OVTrack 36.9 54.8 43.3 12.7
MASA 47.7 62.7 51.7 28.7
ScaleTrack 57.0 68.8 61.5 40.7

(f) AnimalTrack

Method TETA LocA AssocA ClsA

ByteTrack 22.9 35.6 0.6 32.4
OVTrack 40.9 53.9 39.1 29.7
MASA 57.4 66.4 51.3 54.6
ScaleTrack 57.2 66.6 50.2 54.8

(g) ImageNetVID

Method TETA LocA AssocA ClsA

ByteTrack 21.6 37.1 1.2 26.5
OVTrack 42.2 55.0 43.4 28.2
MASA 55.4 70.6 58.5 37.1
ScaleTrack 55.4 68.8 60.1 37.2

• ImageNetVID: A subset of ImageNet focusing on object tracking, commonly used for
evaluating appearance-based models.

• LV-VIS (Large-Vocabulary Video Instance Segmentation): Extends VIS with a broader
category set, emphasizing tracking in a diverse, large-scale vocabulary.

C.1 RESULTS ON OVT-B

Tab. 9 shows that ScaleTrack achieves the highest overall TETA and AssocA on one of the most
diverse and challenging MOT benchmarks, i.e. OVT-B, demonstrating superior tracking robustness
across highly diverse and occluded scenarios. Notably, our method surpasses OVTrack+ by 10.8%
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in TETA and 12.2% in AssocA, highlighting the effectiveness of our scalable training approach on
sparsely annotated large-scale video data.

C.2 RESULTS ON OVIS

OVIS presents one of the most challenging multiple object tracking (MOT) scenarios due to its severe
occlusions and highly dynamic object interactions. Tab. 10a compares our method, ScaleTrack,
against state-of-the-art trackers on this benchmark.

ScaleTrack achieves the highest AssocA (55.2), outperforming MASA by +3.7 points and OVTrack by
+14.2. This significant improvement highlights the effectiveness of our Chain Contrastive Learning
in ensuring long-range feature consistency while maintaining strong local discriminability. Unlike
prior methods that struggle with severe occlusions, our approach better retains object identity across
frames by leveraging transitive consistency in feature learning.

While MASA achieves the best LocA (73.7), our method follows closely at 72.1, showing that our
robust spatiotemporal modeling does not compromise localization accuracy. Additionally, our model
achieves the highest TETA (55.9), confirming its superior overall tracking performance in challenging
occlusion-heavy environments.

C.3 RESULTS ON LV-VIS

LV-VIS significantly expands the vocabulary size of standard VIS benchmarks, making it an excellent
testbed for open-vocabulary tracking. As shown in Tab. 10b, ScaleTrack outperforms existing state-
of-the-art methods in most metrics.

Our method achieves the highest TETA (56.2) and AssocA (66.1), demonstrating its strong ability to
maintain identity consistency across a vast number of object categories. Compared to OVTrack, we
improve AssocA by +16.2 points, showcasing the superior scalability of our learned representations.

Compared to MASA, which leverages static-image-based contrastive learning, our approach achieves
better TETA and AssocA, highlighting the importance of modeling temporal dynamics explicitly.
While MASA attains the best ClsA (35.7), our model closely matches it (35.5), confirming our ability
to track diverse objects while preserving their semantic identity.

C.4 RESULTS ON GMOT-40

GMOT-40 presents a unique challenge in MOT, featuring numerous small and visually similar objects,
making association difficult. As shown in Tab. 10c, ScaleTrack achieves the highest AssocA (43.3),
surpassing MASA by +1.2 and OVTrack by +10.6. This demonstrates that our approach effectively
captures fine-grained object differences, leading to more robust tracking. Additionally, our method
attains competitive TETA (46.9) and ClsA (44.7), highlighting its strong open-vocabulary tracking
capabilities.

C.5 RESULTS ON UVO

UVO is a large-scale dataset covering diverse, unlabeled objects, emphasizing open-world tracking.
As shown in Tab. 10d, ScaleTrack consistently outperforms all baselines, achieving the best TETA
(33.6) and AssocA (32.2). Compared to MASA, which is trained on large-scale image datasets, our
approach better leverages spatiotemporal information, leading to a +0.5 gain in AssocA and +2.5 in
ClsA. These results suggest that our method generalizes well to highly diverse real-world scenes.

C.6 RESULTS ON YOUTUBEVIS

YouTubeVIS is a widely used benchmark for video instance segmentation, offering a rich variety of
objects and motion patterns. As shown in Tab. 10e, ScaleTrack achieves the best performance across
all metrics, with a substantial AssocA improvement of +9.8 over MASA and +18.2 over OVTrack.
Notably, our model excels in ClsA (40.7), demonstrating its ability to track objects while maintaining
strong semantic understanding. The consistent performance boost across all metrics validates the
scalability of our contrastive learning framework.
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Table 11: Ablation on backbone version.

Backbone # Videos AssocA

ResNet 50 1k 55.1
Swin-T 1k 54.7
Swin-B 1k 55.8
DINOv2-S 1k 57.2
DINOv2-S 12k 60.3
DINOv2-L 12k 61.3

C.7 RESULTS ON ANIMALTRACK

AnimalTrack focuses on tracking non-rigid, freely moving objects, making it a challenging benchmark.
As shown in Tab. 10f, our approach achieves competitive results, with a TETA of 57.2 and AssocA of
50.2. While MASA attains the highest AssocA (51.3), our method performs similarly while excelling
in ClsA (54.8). These results confirm the effectiveness of our model in tracking highly deformable
objects under natural conditions.

C.8 RESULTS ON IMAGENETVID

ImageNetVID is a video extension of the ImageNet dataset, featuring high-quality object tracking
annotations. As seen in Tab. 10g, ScaleTrack achieves the best AssocA (60.1), surpassing MASA by
+1.6 and OVTrack by +16.7. Our approach also achieves competitive TETA (55.4) and ClsA (37.2),
confirming its strong association capability in densely labeled videos. These results further validate
our method’s ability to generalize across various tracking settings.

C.9 SUMMARY

Across all benchmarks, ScaleTrack consistently achieves state-of-the-art results, particularly in
AssocA, which is crucial for robust tracking. The improvements over prior methods demonstrate
the effectiveness of our Chain Contrastive Learning approach in capturing long-term temporal
dependencies while maintaining strong local discriminability. Our method successfully generalizes
to diverse datasets, making it a highly scalable solution for real-world MOT applications.

D MORE ABLATIONS

We here provide additional ablation studies on different backbones, the use of intermediate supervision
and the depth of the transformer, the impact of pseudo-negative proposals, the effect of multi-scale
features, efficiency comparisons, classic MOT17 results, SAM2-based baselines, a frame-sampling
ablation, and a unified (detector–tracking head) variant.

When marked with †, we evaluate trackers with the identical public detections used by the compared
baseline; only the association module differs. This isolates association quality and follows standard
practice in MOT. Unless noted, inference uses a fixed input resolution of 518× 518. FPS was mea-
sured on a single RTX 4090.

Different backbones. Tab. 11 reports ScaleTrack’s performance with different backbones. Under
the 1K training schedule, DINOv2-S achieves the best results, leveraging its robust self-supervised
features. Scaling the backbone from DINOv2-S to DINOv2-L with a 12K video training schedule
further improves performance, reaching state-of-the-art AssocA on the TAO benchmark.

Intermediate supervision and transformer depth. We analyze the effects of intermediate supervi-
sion and the number of transformer layers in Tab. 12. Intermediate supervision consistently improves
association accuracy. Increasing decoder depth enhances performance, but the improvement saturates
at two decoder layers, with further increases adding computational overhead without significant accu-
racy gains. Increasing transformer layers beyond two slightly decreases performance, possibly due to
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Table 12: Ablation on intermediate supervision and transformer depth. Intermediate supervision
improves association accuracy (AssocA), particularly for fewer transformer layers.

Intermediate Supervision Decoder Layers AssocA↑ FPS↑ (504×504)

No 1 55.9 43.5
Yes 2 57.3 42
No 2 55.9 42
Yes 4 56.1 32
No 4 55.8 32

Table 13: Ablation of pseudo-negative propos-
als. Incorporating pseudo-negative proposals im-
proves feature discriminability, leading to a sig-
nificant boost in AssocA.

Method AssocA ↑
w/o Pseudo-Negative Proposals 53.5
w/ Pseudo-Negative Proposals 57.3

Table 14: Ablation study on backbone feature
levels. Using multi-scale features from DINOv2
significantly outperforms single-scale features
on TAO.

Feature Extraction AssocA↑
Last-level only 55.9
Multi-scale features 57.3

overfitting on the limited (1k videos) ablation training set. We thus choose a two-layer decoder with
intermediate supervision as the optimal balance between efficiency and accuracy.

Pseudo-negative proposals. We evaluate the impact of incorporating pseudo-negative proposals
during training. To avoid leakage of positives into the negative pool, we discard any SAM/Detic
proposal with IoU ≥ 0.5 to a GT box in the same frame prior to use as a negative. Tab. 13 shows
that removing pseudo-negatives results in a drop of 3.8% in AssocA. By leveraging additional hard
negative examples from instance segmentation models, our approach learns more discriminative
object embeddings, reducing ID switches and improving the overall association.

Impact of multi-scale features. We evaluate the effectiveness of using multi-scale backbone
features versus single-scale features in Tab. 14. Leveraging multi-scale representations from the
frozen DINOv2 backbone yields notably better association accuracy (AssocA), highlighting the
advantage of richer spatial context across multiple scales. Using only single-scale features from the
backbone substantially degrades tracking performance, underscoring the importance of incorporating
multi-scale information for robust feature representation.

Efficiency vs. accuracy under a shared measurement. Table 15 compares Params/GFLOPs
against accuracy with identical measurement (518×518). Both SCALETRACK variants are substan-
tially more efficient than heavy baselines while improving association quality (Tab. 15).

Table 15: Compute vs. accuracy (val). Params/GFLOPs per image; TAO/BDD report AssocA;
SportsMOT reports HOTA.

Method Backbone Params GFLOPs TAO AssocA ↑ BDD AssocA ↑ SportsMOT HOTA ↑
SLAck-L (in-domain) Swin-L 260M 290 41.8 — —
GLEE-Pro (in-domain) ViT-L 400M 500 46.2 — —
MASA (Detic)† Swin-B 179M 174 44.1 52.9 73.6
ScaleTrack-R50† R50 37M 33 50.2 54.0 79.4
ScaleTrack-S† DINOv2-S 30M 38 51.9 56.0 80.6

Note. SCALETRACK-R50 outperforms MASA with ∼20% of the parameters and ∼19% of the
GFLOPs; SCALETRACK-S improves further at similar compute (Tab. 15).

Classic pedestrian MOT: MOT17 (val). Despite being a generalist (zero-shot) model, SCALE-
TRACK achieves strong HOTA/IDF1 on MOT17, indicating robust identity features on a domain-
specific benchmark (Tab. 16).
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Table 16: MOT17 validation. Specialist = in-domain; Generalist = zero-shot. “—” unreported.

Method HOTA ↑ IDF1 ↑ MOTA ↑
Specialist (in-domain)
GTR 63.0 75.9 71.3
ByteTrack — 79.7 76.7
OC-SORT 68.0 79.3 77.9
MixSort-Byte 69.4 81.1 79.9
MixSort-OC 69.2 80.6 78.9

Generalist (zero-shot)
Grounded-SAM2 47.5 54.1 43.0
MASA† 63.5 74.0 73.6
ScaleTrack (ours)† 70.0 78.4 77.3

SAM2-based MOT baselines. Across BDD100K and SportsMOT, SCALETRACK surpasses strong
SAM2-based trackers, supporting that CCL with hard local negatives learns discriminative identities
beyond per-object VOS (Tabs. 17 and 18).

Table 17: BDD100K MOT (val).

Method TETA ↑ IDF1 ↑ mHOTA ↑
MeMOTR (in-domain) 53.6 69.2 40.4
SAM2-MOT (cls-8) — 70.8 —
MASA† 54.4 71.3 46.2
ScaleTrack (ours)† 56.3 73.3 46.6

Table 18: SportsMOT (val).

Method HOTA ↑ IDF1 ↑ MOTA ↑
ByteTrack (in-domain) 69.0 77.9 97.5
Grounded-SAM2 66.1 70.2 91.4
MASA† 73.6 71.2 97.0
ScaleTrack (ours)† 80.6 85.3 96.0

Sampling strategy. Uniform frame sampling yields higher association accuracy and mirrors de-
ployment where frames arrive at a constant rate (Tab. 19).

Unified variant: detector–tracking head integration. To demonstrate compatibility with a unified
pipeline, we attach our association module as a tracking head on a frozen Detic backbone (Swin-B)
and train end-to-end on TAO (val). The unified variant improves AssocA by +6.1 over MASA under
identical detections (Tab. 20).
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Table 19: Sampling ablation (AssocA ↑).

Strategy AssocA

Random sampling 55.1
Uniform sampling 57.5

Table 20: TAO (val): unified variant vs. MASA (Detic).

Method TETA ↑ LocA ↑ AssocA ↑ ClsA ↑
MASA (Detic)† 46.3 65.8 44.1 28.9
ScaleTrack-unified-Detic† 47.8 65.2 50.2 28.1
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