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Abstract

We introduce Perception Encoder (PE), a family of state-of-the-art vision encoders
for image and video understanding. Traditionally, vision encoders have relied on
a variety of pretraining objectives, each excelling at different downstream tasks.
Surprisingly, after scaling a carefully tuned image pretraining recipe and refining
with a robust video data engine, we find that contrastive vision-language train-
ing alone can produce strong, general embeddings for all of these downstream
tasks. There is only one caveat: these embeddings are hidden within the inter-
mediate layers of the network. To draw them out, we introduce two alignment
methods: language alignment for multimodal language modeling, and spatial
alignment for dense prediction. Together, our PE family of models achieves
state-of-the-art results on a wide variety of tasks, including zero-shot image
and video classification and retrieval; document, image, and video Q&A; and
spatial tasks such as detection, tracking, and depth estimation. We release our
models, code, and novel dataset of synthetically and human-annotated videos:
https://github.com/facebookresearch/perception_models

1 Introduction

For the last decade in computer vision, pretrained vision encoders have been the core building block for
most applications requiring perception. From million-scale ImageNet [25] pretrained convolutional
networks [41, 60, 79, 121, 128] to billion-scale web-pretrained transformers [19, 24, 28, 53, 127, 156],
the dominant strategy in vision has been to adapt large-scale pretrained encoders to downstream tasks.

Today, these pretraining objectives come in several flavors: vision-language contrastive losses [103,
158] learn a global vision and language embedding well-suited for zero-shot classification and retrieval
as well as provide vision-language alignment for open-world [68, 92] and generative tasks [105, 111];
captioning losses [36, 134] learn to predict image descriptions using a language decoder, which
transfers well to downstream multimodal language model (MLLM) tasks; and spatially self-supervised
losses [43, 96] learn dense spatial correspondences without language supervision, making them useful
for tasks requiring precise localization like object detection. Many works are now attempting to
combine two or more of these techniques in different ways [19, 33, 34, 36, 44, 88, 107, 156]. While
many have been successful, the complexity of these strategies grows exponentially with number of
use cases, which can make scaling difficult. There has not yet been shown a single, simple, and easily
scalable pretraining technique that can learn state-of-the-art features for all downstream tasks.

In this work, we discover that global vision-language contrastive learning alone can be one such
approach. We begin by building PE.. (Fig. 1, left), a large-scale contrastively pretrained model with
state-of-the-art zero-shot performance on both image and video (§2). To accomplish this, we first
focus on developing a strong image-only contrastive pretraining recipe to extract general knowledge
from billion-scale image-text data (§2.1). We then use the resulting model as a frame-based encoder
to develop a video data engine (§2.2) for generating well-aligned video captions. Finetuning on this
synthetic video-text data substantially improves performance on both image and video classification
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of-the-art performance on a large variety of vision tasks. By using a robust contrastive pretraining
recipe and finetuning on synthetically aligned videos, PE not only outperforms all existing models on
classification and retrieval (§2), but it also internally produces strong, general features that scale for
downstream tasks (§3). PE unlocks the ability for large-scale contrastive pretraining to transfer to
downstream tasks with alignment tuning to capitalize on those general features (§4, §5).

and retrieval tasks. Finally, we scale our robust image pretraining and well-aligned video finetuning
strategy to 2B parameters to produce PE....G (§2.3), a single unified encoder that outperforms
SigLIP2 [135] on zero-shot image tasks and InternVideo2 [143] on most zero-shot video tasks.

After analyzing the performance of PE....G, we found a surprising result: inside the model were
specific features aligned to OCR, VQA, grounding, detection, depth estimation, and tracking (§3).
Compared to the state-of-the-art models with captioning [36] and spatially self-supervised [96]
pretraining, our contrastive encoder has specific layers that, when used as frozen features, matches or
exceeds the performance of the other two pretraining techniques on tasks they should be the best at.
The only problem is—these features exist at different layers for each task.

By exploiting this phenomenon with alignment tuning (Fig. 1, right), we show it is possible to align
these features to the end of the network to create state-of-the-art encoders for downstream MLLM
(§4) and spatial (§5) tasks—all following the same easily scalable contrastive pretraining. Thus,
Perception Encoder unlocks the potential to scale one simple pretraining method to solve many
downstream vision tasks. We will release our models, code, and novel PE Video Dataset of 1M
high-quality stock footage videos and 120K human-refined captions.

2 Perception Encoder: Core

To build Perception Encoder (PE), we start by training a large-scale, robust, and performant vision-
language contrastive model for image and video. We have two objectives: to enhance the scalability
and data efficiency of contrastive training, and to create a unified model for image and video.

We decouple image and video training into two stages. We first develop a strong image pretraining
recipe (§2.1) with several regularization techniques to create a robust starting point. Then we use the
resulting image model as a frame encoder to develop a video data engine (§2.2) supported by our
novel human-refined video-text dataset to generate aligned captions for video clips. Finally, we train
the image encoder on the resulting aligned video data (§2.3). Using our data engine design, this short
training step substantially improves both image and video performance.

2.1 Robust Image Pretraining

In the first stage of pretraining, we want to learn as much visual information as possible from a large
set of image-text data with high regularization, stability, and training efficiency in mind.

Setup. We track our changes with OpenCLIP [50] ViT-L/14 at 224 resolution as a baseline (Fig. 2.1).
We fix a training budget of around 1T GFLOPs (i.e., a ZFLOP), and ablate on a fixed 2.3B noisy
image-text dataset curated using the MetaCLIP [150] text-only curation pipeline, and start by training
for 12B samples seen. To assess generality, we report ImageNet val [25] zero-shot classification
results as well as an average of 6 common robustness metrics: ImageNet val [25], ImageNet v2 [109],
ObjectNet [4], ImageNet Adversarial [46], ImageNet Rendition [45], and ImageNet Sketch [140].

Training. Motivated by [69, 70, 77, 128, 133], we begin by improving training efficiency with
progressive resolution (Fig. 2.2). By evenly splitting the baseline 12B sample run into 98, 154,
and 224 resolution stages (4B per stage), we half training FLOPs while maintaining performance.
We then use the extra budget to double global batch size (Fig. 2.3) from 32K to 64K, increas-
ing total samples from 12B to 24B. This makes hard negatives more probable, increasing the



“task difficulty” of CLIP. Finally, we switch
from AdamW to LAMB [154] (Fig. 2.4),
which allows us to stably increase learn-
ing rate from 5 x 10~ to 2 x 10~ and bet-
ter fit the CLIP objective. Overall, these
changes improve +1.0% on ImageNet val
and a similar +1.6% on robustness.

Modeling. To assist with scalability [35,
128], we add a higher resolution (Fig. 2.5)
stage at 336 pixels. To keep FLOPs the
same, we adjust the schedule to 10B sam-
ples at 98 resolution, 8B at 154, 4B at 224,
and 2B at 336. To improve extrapolation,
we also add 2D RoPE [124] (Fig. 2.6) to
each attention layer, keeping the original po-
sition embedding. Finally, we follow [158]
in constructing the CLIP embedding us-
ing an attention pooling transformer block
(Fig. 2.7). Surprisingly, we found keeping
the class token as an input to this block
is important for small model performance.

Robustness avgof6 / ImageNet va/ Training zrFLopPs

1. Baseline D 753 78.9 1.0
2. Prog.Res D 75. 78.9 05
3. BatchSz 79.5 11
4. LAMB 76.9 79.9 11
5. High Res 783 80.4 1.2
6. RoPE [ 792 | 80.7 1.2
7. AttnPool | 801 | 81.0 1.2
8. DataAug | 808 | 81 1.2
9. MaskReg | 809 813 1.2

Figure 2: Robust Image Pretraining. We tune our
pretraining recipe (§2.1) to maximize performance on
a fixed set of data, starting with an OpenCLIP [50]
ViT-L/14 model. We report cumulative zero-shot clas-
sification results for each modification. The inner bars
show robustness evaluation, calculated as the average of
6 robustness benchmarks [4, 25, 45, 46, 109, 140], and
the outer bars show ImageNet val [25] alone. Several
changes significantly improve robustness, indicating

that ImageNet val scales more with data, while robust-
ness can scale with refined training techniques.

These changes improve ImageNet val by
+1.1% but robustness threefold, by +3.2%.

Regularization. Despite training on billions of samples, we find data augmentation (Fig. 2.8) still
important. Adding heavy random cropping, brightness/saturation jitter, and horizontal flip generally
improves robustness without adverse downstream effects (e.g., for OCR). Finally, we add mask
regularization (Fig. 2.9) by duplicating and masking 1/16th of the input batch. At the output, the
masked tokens are aligned to their unmasked counterparts by maximizing cosine similarity. Together,
these regularization changes improved ImageNet val by +0.3% and robustness by +0.8%.

Overall, our recipe improves ImageNet val by +2.4% and robustness by a significant +5.6% while
keeping FLOPs similar and maintaining or improving scaling behavior (see Appendix C.1).

2.2 Bootstrapping a Video Data Engine with Perception Encoder

Our next step is to extend the
image-only encoder to video.
Unlike web-scale image-text
data, which comes in many cases
with human-generated descrip-
tive alt-text information, videos
with aligned language annotation
are inherently scarce and often
low quality. Inspired by the re-
cent success of image data en-
gines [57, 63, 94, 108, 149], we
address the lack of high quality
aligned video captions by devel-
oping a robust video data engine
to generate them. Our approach (Fig. 3) represents the first large-scale exploration of this kind.
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Figure 3: Video Data Engine. We use a PE-based video captioner
for video-level captions and an existing image captioner [80] on
sampled frames. We use these components along with the video
metadata to synthesize short captions with a text-only LLM [80].

Video Data Engine. We build our data engine in 3 parts: (1) we construct a video captioning model
using an early image-only version of PE as a frame-level encoder and Llama [80] as the language
decoder. We train with the PLM [21] MLLM training recipe and data mix. In total, the mix consists
of 64.7M images and videos covering natural images, charts, documents, exocentric and egocentric
videos. (2) to further boost captioning performance, we collect a set of 265K videos (part of which
we release as PE Video Dataset, see Appendix A.1), caption them with our base video captioner,
and ask human raters to refine the captions. We then finetune our video captioner with this human
refined data, significantly improving captioning quality (see Appendix C.2). (3) finally, we synthesize



the aligned video captions by incorporating captions from our video captioner, Llama 3.2 [80] as a
per-frame image captioner, and the existing title and description metadata (Fig. 3) summarized with a
Llama 3.3 70B text model (see Appendix A.2.4 for prompts).

Video Training. We use the resulting data engine to generate information-dense captions for a diverse
set of 22M videos, with which we finetune the image-only PE model. To do so, we use PE as an
frame-level encoder: for each video, we uniformly sample 8 frames, extract the CLIP embedding for
each, and average pool to obtain a single video embedding for text embedding alignment. Despite its
simplicity, we find this technique produces a strong joint image-video encoder.

Ablations° In Tab 1 , We ab]ate the im_ - o Image Zero-Shot - Video Zero-Shot
pact of each component of the video £ g ¥ = s ms S =
: ot §E 88, ; sTgEigid 2
data engine by finetuning an interme- 239 § 2_Z2_2Z:3¥3: u Bo :
co . » 3 8 8 § 58 %2 85 93 91 § B b
diate image-only PE.. checkpoint on 2 E2E 3 ESEs g2l gr & &3 I
. . m « S8 =52 O=F ] £ < I S
the reC?lptloned Vldeos' . Compared 726 833 77.8 858 49 66.8 50.9 69.7 273
to the image-only baseline encoder v v 754 832 782 8.1 473 660 560 741 735 390 373
: : : v v v 782 835 784 868 560 743 609 738 X .6 488
(ﬁrSt row), our video data engine S1g v v v v 781 87 790 877 541 730 609 754 75. 7465
nificantly enhances zero-shot classifi- + + « « 752 837 790 875 546 732 616 758 755 474 481

cation and retrieval performance. for ple 1: Video Data Engine Ablation. We ablate our video
both image (72.6-78.2) gnd V.ldeo data engine in Fig. 3 by finetuning on an in-development
(50.9-61.6). Notably, using video- image-only version of PE by averaging the frame embeddings
level and frame-level captions pro- reae o single video CLIP embedding. Video captions
V1d§s significant improvements over are generated by our captioner trained with or without (v'*)
r@lylng.solely on meFadgta such as . man-refined data. Frame captions are generated by the
video t}tle .and. dCSCHP tion (second Llama 3.2 vision model [80]. Taken together, the result is a
row), highlighting the importance of huge boost to both image and video zero-shot performance.

building a robust v;dec.) data engine to - geq Appendix C.2 for more ablations and scaling behavior.
compensate for noise in web videos.

2.3 A Unified Encoder for Image and Video

Using a robust, scalable image pretraining recipe and video-pretraining data recaptioned by the
proposed video data engine, in this section we present PE ., a unified image-and-video encoder.

Model Architecture. TO Capitalize on the pI‘Ol‘IliS- Scale Tower Params Width Depth MLP Heads CLIP Dim

ing scaling behavior observed in §2.1, we scale the g Vision  009B 768 12 3072 12 1024
Text 0.31B 1024 24 4096 16

largest PE o, model t'o 2B parameters (G §cale). T Veor 028 04 28 e 16 —

Tab. 2 shows the detailed model configuration of Text  031B 1024 24 409 16

the vision and text transformers and the dimension G Vison  1.88B 1536 50 8960 16 .
Text 0.47B 1280 24 5120 20

of the output clip embedding space.
Table 2: PE Model Configurations.
Model Training. We train PE. in three stages:

1. Image pretraining. We scale up image pretraining data to 5.4B publicly available image
alt-text pairs curated with MetaCLIP [150] and a total of 86B samples seen to ensure
convergence (58B for B and L). We use a global batch size of 131K, with progressive
resolution from 98 to up to 448 depending on the model.

2. Image and video finetuning. Following the initial pretraining, we subsequently finetune the
model at max resolution with a short schedule for 50M samples on the image pretraining
data (as cooldown) followed by 22M samples on the recaptioned videos with a smaller
learning rate and batch size. The video captions are produced using the proposed video data
engine (§2.2). For each video clip, we uniformly sample 8 frames, encode them, take their
average to produce a single video embedding, and align them with the corresponding video
captions using the same contrastive objective in image training.

3. Smaller model distillation. We distill the 2B model (G scale) into smaller contrastive
pretrained models at B and L scales under their final resolutions, using a short finetuning
schedule that covers approximately 4B samples seen (~8% of the pretraining schedule) with
a lower learning rate. We still perform stages 1 and 2 for small models (see Appendix C.3).

Detailed training configurations and setups are listed in Appendix B.1.1.
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PEcore G 19B 448 54B 86.6 854 882 92.6 965 765 794 914 78.2 785 758 789 58.1 754 857 96.2

Table 3: Zero-Shot Image Results. Image zero-shot performance of PE .. compared to the state-of-
the-art. Across all model sizes, PE o obtains state-of-the-art results across general classification,
retrieval, and finegrained classification. TRe-evaluated: DFN by [127]; SigLIP and SigLIP2 by us
with the same benchmark settings if not reported in [135] (see Appendix B.1.2).
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CLIP4CLIP [82] 0.IB 224 12 n/a - - - - - - - 320 - 385 - - -
SigLIPZ»B/16]L [135] 0.IB 224 8 n/a 573 587 550 484 820 423 399 385 30.1 490 672 286 258
PEcoreB 0.IB 224 8 22M 639 656 65.1 558 84.6 482 499 47.6 473 504 767 39.0 384
UMT-L [66] 03B 224 8 25M - - - - - - 471 407 37.1 49.0 745 419 394
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PE ore L 03B 336 8 22M 714 734 727 653 87.1 585 548 503 50.1 572 824 464 421
InternVL-C [19] 55B 224 8 n/a - 69.1 689 606 - - - 447 402 - - - -
InternVideo2 [143] 1.0B 224 8 102M 70.7 73.1 72.8 649 888 539 59.9 519 509 581 833 604 54.8
SigLIPZ-g-opt'r [135] 1.1B 384 8 n/a 682 698 67.0 618 90.7 51.8 46.6 43.1 342 558 746 383 334
PEcoreG (image only) 1.9B 448 8 n/a 709 73.1 722 643 895 555 47.6 443 352 543 739 414 363
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Table 4: Zero-Shot Video Results. Video performance of PE .. compared to recent video and
image encoders. PE . obtains state-of-the-art in video classification and comparable performance on
retrieval benchmarks while using only 22M videos. TSigLLIP2 evaluated by us (see Appendix B.1.2).

Zero-Shot Image Results. In Tab. 3, we present PE..’s performance on zero-shot image benchmarks
for classification and retrieval vs. the strongest open models, including SigLIP2 [135]. PE o
outperforms all other contrastive models across the board on all zero-shot tasks, including the
highly competitive average of zero-shot ImageNet robustness metrics [4, 25, 45, 46, 109, 140]. This
marks a significant achievement, as we are the first to accomplish this in over 3 years without
access to Google’s internal JFT-3B [28] or WebLlI [17] datasets. And at the same time, PE . also
exceeds the existing state-of-the-art on image-text retrieval and significantly improves on fine-grained
classification—the first to simultaneously hold state-of-the-art on all common zero-shot categories.

Notably, this dominant image performance is made possible by our video finetuning. Compared to
image only, the video finetuned PE_.G obtains +0.6% general classification, +1.2% fine-grained
classification, and a significant +4.0% boost on retrieval. Thus, well-aligned video text data does not
just improve video performance—it creates a strictly better model for both videos and images.

Zero-Shot Video Results. We present video results in Tab. 4. Our base image encoder already
outperforms all other image-only encoders on both zero-shot classification and retrieval, including
SigLIP2-g-opt. With video finetuning, PE.. G significantly outperforms even native video models
that use full temporal attention on video classification, and it nearly matches the state-of-the-art on
video retrieval despite being a simple frame-level encoder. This result underscores the importance of
our video data engine, resulting in +3.9% on average zero-shot video classification, and a massive
+11.1% on video retrieval. Moreover, PE... does this with fewer videos compared to other video-
based approaches like InternVideo2 [143], highlighting the benefits of a joint image-video encoder.

See Appendix C.4 for additional zero-shot and probing results.



3 General Features in a Contrastive Disguise

PE... has strong results on zero-shot classification and retrieval, but these are tasks contrastive
encoders specialize in. More important is whether or not this strong performance generalizes to
downstream tasks. To find out, we compare PE_.G to state-of-the-art models for other pretraining
techniques: captioning (AIMv2-3B [29]) and self-supervised learning (DINOv2-g [96]).
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General Features in Disguise. This Layer 2740 Layer 39/
analysis reveals several insights. First, Tracking
as expected, AIMv2 performs well at DAVIS
classification and the best at visual Fero-ShotJ&F
Q&A language tasks. Slmllarly, DI- 1 AIMv2 Layer 24 1 DINOv2Layer 40 1 PEcorelayer 50

NOv2 performs the well on spatial ~Figure 4: Frozen Feature Layer Analysis of different pre-
tasks like detection, depth, and even  training methods: captioning (AIMv2-3B [36], left), spatially
grounding through an LLM. Then as self-supervised (DINOv2-g [96], middle), and our contrastive
already established by other works: recipe (PE.qG, right). Vertical lines denote the best layer
DINOv2 performs poorly on OCR  and horizontal lines the best performance across models.
tasks [131]. But interestingly, its per-  AIMv2 excels at language but not spatial, and DINOv2 ex-
formance peaks in the middle of the  cels at spatial but not language. But, intermediate layers of

network and then drops by the end. PE_, .G perform well on both language and spatial tasks.
And so do the others on several tasks

(AIMV2: tracking, grounding, detection; DINOv2: VQ&A, grounding). PE . exhibits similar be-
havior, but with unexpected results: it can perform well on all tasks, often matching or exceeding the
leading models. Remarkably, PE has intermediate layers that perform near to or on par with AIMv2
for language tasks and DINOV2 for spatial tasks, despite being trained with a global contrastive loss.
Depth estimation is particularly noteworthy, as contrastive encoders are not typically considered
state-of-the-art in that area. In fact, CLIP models are notorious for poor spatial performance [107].

An Alignment Problem. However, PE.’s strong general performance diminishes rapidly towards
the end of the network, such as for LLM-based grounding. This behavior is less pronounced the
closer the downstream task is to the pretraining method, suggesting an alignment problem. Thus, a
well-tuned large-scale contrastive model can learn general embeddings in the process of fitting its
objective, but it fails to output them. We address this issue with alignment tuning in §4 and §5 and
analyze why our CLIP model has these general features and its scaling behavior in Appendix C.5.



Analysis. The finding that pure CLIP models possess features which match the performance of
state-of-the-art pretraining methods in their specialized domains is new. In fact, recent work [30] has
shown the opposite—that CLIP models fail to scale on downstream tasks. We next investigate how

our approach yl@lds these results. Last Layer cOCO Box / Best Layer COCO Box Argmax Layer

To start, we perform layerwise frozen fea- 1. gaseline 260 | 286 1424
ture analymls oln gOCl(() ’c’letectlllqn. P]ico.re 2. Prog.Res | =T ) 304 16/24
was partl.cu arly peaky on this t?.s m 3. BatchSz [ 307 ] 34.2 16/24
Fig. 4, with its best layer on par with DI- 16728
NOV2, but last layer significantly worse. % -AMB i
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from vanilla CLIP in Fig. 2 using a ViT- 6. RoPE [ 33.2 | 370 16/24
L/14 model. So to retrace our steps, we 7. AttnPool | 317 | 371 18/24
run frozen featu.re analysis on those check- o . Aug | = | 380 1824
points. For efficiency, we use a lower reso-

9. MaskReg | 327 | 38.2 18124
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experiment. In Fig. 5, we report COCO box  Figure 5: The Downstream Effects of Robust Pre-
mAP for the last and best layers for each training. The ViT-L/14 checkpoints from Fig. 2 eval-
cumulative ablation, along with the index uated as frozen features on COCO [74] using Mask
of the best layer. Further, we plot the layer- R-CNN [42]. We report the last layer performance,
wise mAP for each change in Fig. 6. best layer performance, and the best layer’s index.

Surprisingly, the simple changes we made to CLIP pretraining in §2.1 overall improved the best
layer’s performance by almost 10 mAP! Some improvements are expected like with high resolution
(5) and RoPE (6), but unexpectedly data augmentation (8) and especially progressive resolution (2)
help considerably. It is possible that contrastive pretraining overfits to a specific resolution through
“global tokens” [23], thus changing the resolution during training forces the model to be more robust.

Next, both progressive resolution (2) and attention pooling (7)

o move the argmax layer deeper into the network (rightmost col-
g umn of Fig. 5). Attention pooling in particular alters the whole
g shape of the layerwise performance curve (Fig. 6). Finally,
o 20 some changes reduced performance: increasing the batch size
§ (3) and using LAMB with a high learning rate (4). Both help fit

L 5 P ) the CLIP loss better, which after a point may not improve the

Frozen Encoder Layer general features. Moreover, while the best layer improved sig-
nificantly, the last layer performance stagnated after (2). This
suggests that constructing the CLIP token requires a specialized
decoder. Yet, this does not prevent the model from learning general features—just outputting them.

Figure 6: Layer Analysis of Fig. 5.

Scaling Behavior. Evidently, our robust recipe can enable contrastive pretraining to produce general
features. But, does it scale? In Fig. 7, we answer this by performing frozen feature analysis across
S/14, B/14, and L/14 models trained with the same schedule with either the vanilla CLIP recipe or
our recipe (see Fig. 14). Immediately, we see a stark contrast between their scaling behaviors: while
the vanilla recipe quickly plateaus at L scale (300M), the best layer of our robust pretraining recipe
demonstrates scaling to G scale (2B)—despite being trained with a decidedly non-spatially aligned
global contrastive loss. Though note this is the best layer. The last layer still stagnates for both. Thus,
CLIP loss obfuscates its general features even with our recipe, placing them several layers deep.

Object Detection
Best Layer Scaling

40 40 45
Vanilla Ours _-e
o a s G
< 30 30 < L
é 20 20 é ? :
Q o
§ e ° @ Oours
o o
10 a..: 10 . .- 15 Vanilla
0% 33% 67% 100% 0% 33% 67% 100% 0.1B 1.0B

Frozen Encoder Depth Frozen Encoder Depth Model Parameters

Figure 7: The Downstream Scalability of Robust Pretraining. Left: frozen feature layer analysis of
the S/14, B/14, and L/14 models from Fig. 14 using the same setup as Fig. 5. Right: scaling behavior
of the best layer for each model. Note: G has a different schedule. See Appendix C.5 for more.



4 Perception Encoder: Language Alignment

In §3 we have seen that PE . already possesses useful features for Multimodal Large Language
Models (MLLMs), but those features are not aligned to the end of the network. In this section, we [ift
these features through alignment tuning to construct a new, MLLM-specialized encoder: PEju,.

Alignment Method. Aligning a vision encoder to an LLM is relatively straightforward. We follow
the approaches of [18, 21, 36], where the vision encoder is unfrozen and finetuned as part of an
MLLM. In our case, we align PE_. to a pretrained Llama3.2 3B text-only decoder with both the
encoder and decoder unfrozen, connected with a 2-layer MLP. We discard the last 3 layers of PE..,
as suggested by [18] and regularize the encoder with LayerScale [132] and DropPath [49]. We train
with next token prediction on 70M total samples across OCR Q&A, Captioning, Visual Q&A, and
Video Q&A (following [21]), and finally extract the vision encoder only as PEj,,,. More training
details are available in Appendix B.2 and ablations of this recipe are conducted in Appendix D.1.

OCRQ&A Visual Q&A
80

Effects. In Fig. 8, we conduct the same layerwise
analysis in §3 on the resulting PEj,,,G compared to
PE.o.G. Across all categories, the best layer for the
aligned model is the last, no matter the performance

67

53

Accuracy (Avg of 4)
Accuracy (Avg of 4)

of the original checkpoint. Notably, our PEjy,, train- o e
ing mix did not contain grounding data, which means o 17 B’ 5 o 7 3’ 50
that this significantly lifted grounding performance is Frosen Encadertave Frosen Encoder e
entirely due to the strong intermediate grounding fea- itz Grounding

tures in PE.. now being aligned to the end of the net- 510 o 7

work. Moreover, specific domains such as OCR Q&A 2100 € s

that were represented in the training mix see a signifi- ¢ 2

cant boost to performance compared to even the best E S § T
layer of PE.or, which was already strong. Thus, with 5% 7 om0 2% 17 m s

an order of magnitude fewer samples compared to AEE LA AEE A
pretraining, we were able to language align PE..;:G Figure 8: Language Alignment lifts the
to create a single, strong encoder for all MLLM tasks. strong performance of PE.q. (§3) to the end.

Results. In Tab. 5, we compare PEj,,, to existing encoders with good language alignment. To
benchmark, we plug each model into a fresh 2-layer MLP and Llama 3.1 8B decoder. The encoder
is frozen the rest are are finetuned on 2.6M visual Q&A pairs (see Appendix B.2). We evaluate
each encoder at native resolution unless otherwise noted. Despite using a different LLM than during
alignment, PEj,,, significantly outperforms all other models across all scales, resolutions, and tasks.
Results with tiling and different LLM decoders are available in Appendix D.4. In all cases, PEjy;s
exhibits generality. That is, it outperforms other models no matter the resolution, decoder, or task.

OCR / Chart/ Doc. Q&A Visual Q&A Captioning Video .
gl I s & E = é
& g o 5 S g g
S 38858z .5 D 35%2 .59z § 2T 5588 § 55,285 05 bg 28
v EC 30 82 8% o T LTE. ST 4 25 8% 98 e S0 2T BT 22 82 8=
Model 2 65 /8538 2 B85 RS 2 £ES§ 88 28 2 SE5ERE 3 S8 88
576 Tokens per Image
CLIP-L [103] 535 61.7 495 328 70.1 727 60.7 639 873 789 113.3 92.0 1329 1150 65.0 542 463 52.1 68.6 574 485 523
AIMv2-L Distill [36] 53.7 61.1 494 315 727 741 628 64.8 883 803 117.8 947 1375 121.2 62.6 538 443 524 650 574 500 53.6
SigLIP2-50400M [135] 589 69.0 583 352 73.1 768 69.8 672 887 81.6 1165 92.1 1377 119.8 67.4 545 455 531 672 576 493 545
SigLIP2-g-opt [135] 562 63.1 553 340 724 770 703 66.7 89.6 81.6 117.7 949 137.8 1203 66.5 539 462 539 66.6 538 485 547
PEjang Gt 669 768 73.6 41.1 76.1 762 685 66.0 89.1 81.3 119.7 96.1 139.6 123.4 689 58.1 487 589 705 618 52.7 559
1024 Tokens per Image
InternViT2.5-L [18] 60.6 741 592 359 73.1 742 654 644 876 79.6 1123 884 133.7 1149 669 50.6 452 448 62.7 542 46.0 505
SigLIP2-s0400M [135] 633 72.1 693 39.0 727 779 748 66.0 89.0 81.8 117.4 935 1383 1202 69.6 558 462 554 67.0 620 50.0 54.5
PEcore L 594 687 625 366 69.7 747 677 643 883 787 112.7 89.6 1334 1149 59.7 509 41.7 512 61.6 526 474 50.6
PEjangL 71.1 810 819 464 750 77.1 73.0 655 89.3 80.8 117.3 943 137.3 120.1 70.5 56.5 47.0 572 68.0 59.8 523 547
DINOv2-g [96] 30.0 19.6 147 242 615 61.0 193 604 88.6 758 109.4 86.5 131.6 110.1 649 495 39.7 521 60.1 468 474 508
AIMv2-3B [36] 489 405 539 339 672 73.0 641 640 852 789 1157 938 1352 118.1 36.1 54.6 451 545 667 554 517 543
InternViT2.5-6B [18] 599 723 594 352 725 755 689 649 882 802 1150 922 1363 1163 68.0 49.6 445 470 62.6 458 489 485
PEcore G 60.8 699 654 367 71.1 733 659 60.7 884 780 1125 91.6 133.6 1124 66.6 520 423 53.1 629 514 488 536
PEjang G 724 805 844 483 764 781 752 654 90.1 81.8 120.1 96.6 140.0 123.6 71.3 58.0 48.0 60.1 694 620 524 56.0

Table 5: MLLM Results. We benchmark PEj,, vs. other frozen vision encoders with Llama 3.1-
instruct 8B [80] as the LLM. PEj,,, shows strong performance across all benchmarks, outperforming
much larger models. fInterpolated without extra training. See Appendix D.4 for more results.



5 Perception Encoder: Spatial Alignment

Unlike for language alignment with an MLLM, the best way to spatially align a model is not obvious.
However, the path becomes clear when we study an apparent dichotomy in §3 for PE..: higher level
spatial tasks like detection and depth estimation perform optimally around layer 40, while low level
tasks like tracking perform the best at around layer 30. Upon analyzing the features directly (see
Appendix E.1), we find that locality begins to deteriorate starting at layer 33 due to global tokens [23].

Alignment Method. Following these insights, we design our spatial alignment method with two
goals in mind: (1) keep the high level features around layer 40 in tact while (2) improving the locality
of the features for lower level tasks. To address (1), we simply finetune PE.. using its own frozen
layer 41 features as a teacher with heavy regularization (DropPath [49], LayerScale [132], 75%
masking [144]). Then, we enforce spatial correspondence for (2) using SAM 2.1 [108] mask logits.
That is, unlike [44, 107, 116], we do not directly use SAM features but instead sample 32x32 points
in a grid and concatenate the SAM 2.1 mask logit for each into a single feature map. As shown in
Appendix Fig. 19, this provides features with strong locality. See Appendix B.3.1 for training details.

Effects. In Fig. 9, we compare layerwise perfor- Detection Semantic Segm.
mance of the original PE .G checkpoint com-
pared to aligning to the teachers described above.
We denote aligning to both teachers as PEqyqa1G.
Aligning to PE.G layer 41 alone performs gen-
erally well on all tasks, but has lackluster per-

COCO Box mAP
ADE20k mloU

0
: . 3 : 0 17 33 50 0 17 33 50
formance Ondtrg(:kllr)lg’ “c/lhe're pel'Clse localltly 18 Frozen Encoder Layer Frozen Encoder Layer
necessary to define boundaries. In contrast, align-
y > alig Tracking Depth ()

ing to SAM 2.1 mask logits lowers last layer
performance on every task but tracking. Thus,
the optimal approach is to combine both teach-
ers. As a result, PEp,iG not only lifts the fea-
tures for all tasks to the end of the network, but
it also improves over self-alignment, especially 0 17 33 50 ‘0o 17 3 s0
on tracking and semantic segmentation. Notably, (e B Ly R T Ly
PE;paiaG’s tracking performance is lower than the PEcoe sppsto L PECT LT i
SAM-aligned model, but it is still ahead of other , [ e
methods while being generally good, see results. Figure 9: Spatial Alignment of PEcoG.
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55

35

NYU RMSE Loss

DAVIS Zero-Shot J&F

Last Layer Visualization. In Fig. 10, we vi- PEOR S v - P
sualize last layer features for PE .G and the - — "E';

3 aligned models, with similar colors denoting P
similar features. In the first column, we see why
the last layer performance of PE . is so poor:
while it contains information about the salient
objects, it seems to have lost spatial coherence.
Aligning to the model’s own layer 41 features
fixes this, but its spatial quality is lacking. In
contrast, the model aligned to SAM 2.1 mask
logits has great locality, but no semantics (e.g., [
low similarity between cats in row 1 and cows in i i

row 2). PEgyqia retains the semantics of PE.. Figure 10: Last Layer Visualization using PCA
while producing high quality spatial features.  (see Appendix B.3.2). More in Appendix E.4.

Tracking Segmentation Depth LVIS [40] COCO [74]

DAVIS (1) [101] ADE20k (1) [164] NYU () [120] Encoder ANEiee  ANELge AP AV
Encoder Best Last Idx Best Last Idx Best Last Idx MetaCLIP-G [150] 45.1 41.9 532 46.7
SigLIP-so400M [158]  48.7 36.3 16/27 40.1 383 22/27 .339 .369 21/27 SigLIP2-50400M [135] 49.3 45.6 56.0 49.4
SigLIP2-s0400M [135] 51.4 453 15/27 44.0 429 24/27 306 .329 25/27 SigLIP2-g-opt [135] 529 48.5 57.1 50.2
DINOvV2-L [96] 58.7 582 23/24 473 473 24/24 297 308 23/24 DINOv2-L [96] 46.7 435 55.7 49.0
DINOv2-g [96] 58.5 585 40/40 48.7 484 37/40 279 290 27/40 DINOv2-g [96] 51.5 473 572 50.0
PEcore G 56.8 42.8 32/50 41.5 38.6 44/50 .249 .309 39/50 PEcore G 51.9 479 57.0 49.8
PEgpatial G 61.5 61.5 50/50 49.3 489 49/50 262 .275 46/50 PEgpatial G 54.2 49.3 57.8 50.3

Table 6: Frozen Dense Prediction for the best and Table 7: End-to-End Detection using Mask
last layers of each model. Details in Appendix B.3.3. R-CNN [42]. Details in Appendix B.3.4.



Encoder Params Detector ~ COCO APy«

Results. In Tab. 6, we compare performance on dense — swinv2-G[7s] 30B  HTC++[14] 625
tasks with a frozen encoder with a fixed 448 resolution, S**L 77 038 DINO[IS®) 632

. Internlmage-G [142]  3.0B DINO [159] 65.3
reporting both best layer performance and last layer per-  gvao-L [34] 03B  CoDETR[I65] 659
formance. Across the board, PEgaG outperforms other  PEspataG 198 DETA [97] 66.0

state-of-the-art models, with its features well aligned to  Table 8: SOTA Setting Detection on
the last layer. In Tab. 7, the same is true when end-to-end  COCO val. Recipe in Appendix B.3.5.
finetuning for detection on both LVIS [40] and COCO [74]

with a fixed 1024 resolution using Mask-RCNN [42] and ViTDet [71]. Finally, in Tab. 8, we pro-
vide a system-level comparison vs. the absolute state-of-the-art on COCO val2017. With only
Object365 [117] as extra detection data, PEqy,;aG can match the performance of more complex
models tuned for detection, while only using a simple DETR-style decoder [11, 97]. PEgpai1G marks
the first general, contrastively pretrained model to accomplish this.

6 Related Work

Vision-language pretrained models have served as foundation for zero-shot image classification and
image-text retrieval [50, 103, 114], open-vocabulary detection [62, 92, 93] and segmentation [22, 27],
and multimodal large language models (MLLMs) [3, 5, 76, 91, 98, 131]. PE iterates on this paradigm.

Contrastive Language-Image Pretraining. The early works of Virtex [26], ICMLM [112], and
ConVIRT [161] developed the techniques for learning through contrastive objectives between vision
and language modalities. Subsequently, vision encoders such as CLIP [50, 103] and ALIGN [53]
scaled these techniques to much larger datasets and model sizes, popularizing vision-language
contrastive learning. A series of open-weight contrastive models have been developed to enhance the
performance and robustness of CLIP [32, 70, 114, 126, 150, 158]. PE is among this effort.

Existing Techniques. Various techniques used in this work have been explored before. BASIC [99]
and LAION [114] explored scaling the batch size up to 160K, and shows the benefits of large batch
sizes during training. EVA-CLIP [127] uses LAMB optimizer [154] for large batch training of clip
models. Rotary positional embedding (RoPE) [124] has been successfully adopted in large language
models. In vision transformers [2, 47] adopted 2D rotatory positional embeddings. For data engine,
a series of works focus on large-scale sourcing and filtering through efficient data curation [32, 38,
114, 150] and explore recaptioning training images using MLLMs or VLMs [31, 63, 94, 149]. We
extend these concepts to create a robust training recipe and to extend data engines to video.

Intermediate Layers Are Better. Most vision encoders rely on the last layer to extract features.
However, when trained on proxy or self-supervised tasks, the last layer is often not the ideal candidate
for other tasks [8, 15, 16, 29, 83, 104, 118, 125, 139, 157, 163]. This has been shown for image
coloration [160, 163], next token prediction [15, 29, 104], image generation [83, 157], and to a
limited extent in CLIP models [125]. In contrast to these works, we first show the same behaviors
across multiple classes of models simultaneously. Then we study this behavior for PE specifically
in depth, and show it is possible for CLIP training to produce rich spatial and language features in
intermediate layers on par with the best existing models for each. Finally, we show how to align these
features with short finetuning steps to obtain state-of-the-art on a wide variety of tasks. Unlike other
alignment [3, 18, 19, 65, 80, 129, 141] and feature combination [44, 107, 116, 157] methods, our
main goal is not to instill a large amount of new knowledge into the model, but instead to bring out
and refine the latent strong general features that already exist in the original PE model.

7 Conclusion

In this work, we have presented Perception Encoders (PE), a family of best-in-class foundation
models comprising PEcore, PEjang, and PEgpaia1. We have shown that PE¢, can outperform the leading
models in zero-shot image recognition, while also excelling in zero-shot video recognition. We
have demonstrated that PEj,,, outperforms the best vision encoders for use in multimodal large
language models, often by a large margin. We have established that PEp,ia outperforms the long-
standing state-of-the-art in object detection with a simpler decoder. Throughout all of this, one
conclusion is abundantly clear: Perception Encoder unlocks the potential to scale simple contrastive
vision-language pretraining to address a wide range of downstream vision tasks.
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Category: Food Preparation

.\

Model caption: “The video shows a person making a cake. The Human refinement: “The video shows a person making a chocolate
person is seen mixing ingredients in a bowl, pouring the mixture cake. The person mixes ingredients in a glass bowl and pours the
into a pan, and adding chocolate chips. The video also shows the mixture into a baking pan. Then, the person adds chocolate chips
person using a whisk and a spatula to mix the ingredients and on top. The video also shows the person mixing the ingredients
pour the mixture into the pan. The person is wearing a blue shirt with an electric whisk and scraping the mixture into the pan with a
and is seen holding a glass bowl and a spoon. The background of spatula. The person is wearing a blue shirt and is seen holding a
the video is a white marble countertop, and there is a striped glass bowl. The background of the video is a white marble

towel on the counter.” countertop, and there is a striped towel on the counter.”

Figure 11: PE Video Dataset Example. A sample from PVD, our released video-text dataset.
Initial captions are generated by our video captioning model and then refined by human annotators.
Annotators are instructed to add details and remove model hallucination. In this example, the model
hallucination “a spoon” is removed; and more details such as “glass bow]” and the action “scraping”
are added. See Fig. 12 for more. Data at https://ai.meta.com/datasets/pe-video/

A Video Data Engine

A.1 PE Video Dataset (PVD)

For the benefit of the community, we release a new video dataset: PE Video Dataset (PVD). PVD
comprises of 1M high-quality and diverse videos with accompanying tags and descriptions. The
videos are motion-centered, covering both first-person and third-person views with a wide coverage
of scenes.

We additionally select 120K of these videos with the highest degree of motion to annotate with
detailed captions by generating synthetic captions using our video captioner (§2.2) and employing 200
annotators to verify and refine them. We ask the human annotators to improve the synthetic captions
by removing any hallucinations, correcting words that describe the video inaccurately, eliminating
repetitive or redundant words to make the caption more concise, and adding any missing actions
being performed in the video.

We release two versions of annotations for the 120K PVD subset: (1)

Human verified captions: extended summaries with an average length Videos  998.862
of 57.1 words that provide a high-level description of each video. These Human Captions 118,862
captions are suitable for CLIP-style training. (2) Long automated captions: D 025 birs

. . .. . Duration (s) 16.74+9.8
detailed and ﬁne—gram;d descriptions with an average ler}gth of 1.1 L7 fuman Coption Length 5714254
words that capture spatial and temporal events. These captions are ideal Model Caption Length _111.7£43.2
for fine-grained video understanding. Table 9: PVD Stats.

In Fig. 11, we visualize a video example together with their model and

human captions from PE Video Dataset (See Fig. 12 for more). The

dataset statistics are summarized in Tab. 9. Finally, We use 105K of these refined samples to improve
the data engine (§2.2 phase 2) and 15K as a high-quality video retrieval benchmark.

PVD Benchmark. We use 15K of the human-refined video-caption pairs as a held-out test set,
which we introduce as a new video retrieval benchmark, PVD Benchmark, to evaluate finegrained
video-caption alignment. We follow the format of MSR-VTT [151] to construct the benchmark.
We select videos from 10 different categories, including hand actions, object interactions, food
preparation, work activities, outdoor scenes, animals, water scenes, object handling, close-up shots,
and nature scenes, with an overall average caption length of 51.7 words (see Appendix A.2.1 for
statistics). We use PVD Benchmark to evaluate SigLIP [158], SigL.IP2 [135], InternVL [19], and PE
models, and the results can be found in Tab. 25.
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A.2 PE Video Dataset Details

As mentioned above, PVD consists of 1M videos, 120K of which have human-refined video captions
and are selected for high motion content. We also select 15K from the 120K videos as a benchmark.

A.2.1 PVD Benchmark Distribution

Category Number of Avg. Caption
videos Length

Hand Actions 2143 54.2
Object Interactions 1864 42.6
Food Preparation 1691 56.8
Work Activities 1689 47.8
QOutdoor Scenes 1558 50.7
Animals 1423 50.9
Water Scenes 1337 44.6
Object Handling 1307 51.6
Close-up Shots 1122 45.1
Nature Scenes 866 384

Table 10: PVD Benchmark Statistics. We created a dataset of 15K videos together with human-
verified captions. The videos are motion-centered, covering both first-person and third-person views
with a wide coverage of scenes.

A.2.2 Video Data Filtering Pipeline

The goal of video data filtering is to identify videos that contain motions such as object motion,
camera motion, interaction between objects, human actions, sequences of actions, and manipulation
of objects, while rejecting videos with static scenes, like landscapes, or those that are artificial or
highly edited.

To achieve this, we created a video filtering pipeline consisting of the following steps:

Step 1: Compute motion features. For each video, we compute a list of features from video frames,
including frames per second (fps), number of frames, number of I-frames, motion vector magnitude,
and motion vector variance, using off-the-shelf tools like OpenCV [9].

Step 2: Extract video frame features. For each video, we uniformly sample three frames and encode
them using a DINOv2 model [96] and a SigL.IP model [158].

Step 3: LLM Features. For each video, we also run a multimodal large language model (LLM)
like Llava-Onevision QwenLM 2 0.5B [65] to extract MLLM features. We composed a list of 26
questions and performed MLLM inference on the videos. The questions can be found here in §A.2.3.

Step 4: Video Quality Scoring. We combine all the features collected so far and use a random forest
model to predict a score between 0 and 5. To train the model, we manually annotated approximately
1,000 videos with scores between 0 and 5. A low score indicates that the video is almost static and
can be nearly summarized by a single frame, while a high score indicates that there are multiple
temporal events in the video, requiring several frames to accurately caption it. We use these annotated
videos as training data to fit a random forest model for video quality score prediction.

Step 5: We apply k-means clustering to the videos and rank them within each cluster. By selecting
the top-ranked videos from each cluster, we effectively reduce the number of duplicated videos in the
final dataset.

A.2.3 LLM Feature Extraction

We use LLaVA-OneVision [76] model to extract LLM features from the videos. For each video, we
prompt with 26 different questions to extract features ranging from, “is the video a landscape video?”
to, “are there any moving objects in the video?”” The features are then used by a random forest model
to determine the video quality score.
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Is the camera capturing the scene static? Reply yes or no.

Is the camera capturing the scene moving? Reply yes or no.

Is the video capturing a landscape? Reply yes or no.

Is the video capturing a static scene? Reply yes or no.

Is the scene captured from a distance? Reply yes or no.

Is the video captured with a drone? Reply yes or no.

Is the video computer-generated? Reply yes or no.

Is the video content abstract? Reply yes or no.

Is there something moving through the scene? Reply yes or no.

Is there someone doing something in the video? Reply yes or no.

Are there several things moving in the video? Reply yes or no.

Is there an object that is being manipulated? Reply yes or no.

Are there animals in the video? Reply yes or no.

Is the scene mostly static? Reply yes or no.

Are things occluding each other in this video? Reply yes or no.

Is there something obstructing the view apart from the watermark? Reply yes or no.
Is there a large number of things in the video? Reply yes or no.

Are there more than 5 different objects in the video? Reply yes or no.

Is it hard to keep track of some entities because they are moving so much? Reply yes
or no.

Is someone looking at a phone, a tablet or a computer screen? Reply yes or no.

Are they looking at a phone, a tablet or a computer screen during the whole video?
Reply yes or no.

Are there several moving persons in this video? Reply yes or no.

Are there several moving animals in this video? Reply yes or no.

Are there several objects in this video? Reply yes or no.

Are there several similar-looking objects in the video? Reply yes or no.

Do they look similar? Reply yes or no.

A.2.4 Video Caption

LLM Summarization prompt

Create a concise caption of a video using the provided metadata, video caption, and
frame captions.

TASK: Extract key information from the captions and combine it into an alt text format
using single phrase or set of phrases that includes all relevant details.

Steps to Follow:

1. Review the metadata (title and description) for general context, you can rely it
for entity names but do not rely on it as the primary source of information for your
caption.

2. Blend title / description with video caption and frame captions for the main
storyline

3. Extract the most relevant and concise information.

4. Combine extracted information into a alt text format using short phrase or set of
phrases with approximately 120 tokens, considering special characters like comma as
part of the token count.

5. Prioritize including all key information over sentence structure or grammar.

6. Minimize the use of special characters and focus of key information.

What to Avoid:

- Avoid adding or inferring information not present in the original metadata and
captions.

- Avoid using complex sentence structures or prioritizing sentence flow.

Create a concise caption of the video based on the metadata, video caption, and frame
captions.
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A.2.5 Human Caption Refinement

We employ human annotators to perform caption refinement for the LLM-generated captions in PVD,
as described in Appendix A.l. Each annotator is paid a fair wage in compliance with all local laws
in the annotators’ jurisdictions. The refinement task was developed in accordance with an internal
review to ensure ethical consideration for the participants. For instance, the annotators are instructed
to reject the job completely if the videos contain any explicit content. Otherwise, we provided the
following materials for the annotators as instructions for the task:

Goal. Given a video and a caption, directly refine it to make the caption:

1. No Repeating:

(a) Remove any repeating, redundant information

(b) Note it is ok to have fine-grained or atomic information if the caption already contains
it, if the information is still unique

2. Accurate:

(a) Every word in the caption is describing a fact in the video

(b) If anything doesn’t exist in the video at all, remove it

(c) If anything is incorrect comparing to what the video shows, correct it
3. Action Focus:

(a) Add any missing major action information into the caption

i. As mentioned in 1. above, if an atomic action exists already, it is ok to keep it. No
need to remove it. We only care about adding the missing major actions back.

In summary, the submitted caption should have no repeating information, every single word in the
caption is accurate reflecting a fact in the video, and all major actions shown in the video have been
covered.

Refinement Criteria. Use the following guidelines for correcting errors:

1. Error: If some words describe something doesn’t show clearly in the video
* Remove it from the caption

2. Error: If some words describe something in the video but incorrectly
* Correct it from the caption to describe the fact in the video

3. Error: Repeating or redundant words

* Merge words from the caption to make it concise and accurate or just remove it if no
need of merge

4. Error: Action related words

* If atomic actions exist, No need to remove it. Only remove words for Errors 1 and 3
* If major actions miss, Add them back into the caption, in a concise and natural way.
E.g.
(a) If the missing actions can just be integrated as just a part of the original sentence,
then just integrate it

(b) If a new sentence is more natural to add the missing action back, then just add a
new sentence.
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Category: Hand Actions

Category: Object Interactions

Caption: The video shows a black and white spiral that is spinning. The spiral is made up of
alternating black and white stripes that are evenly spaced and symmetrical.

Caption: The video captures a closeup shot of person typing on a keyboard.
The camera moves from the left side of the keyboard to the right, an animation of the revolving
globe and some numbers can be seen in the frame and the video ends.

& o =
ASSS oy et

Category: Food Preparation

Caption: The video shows a person cutting an green color item into small pieces. They are using a Category: Work Activities
knife to slice the pickle into thin pieces, and then chopping those pieces into smaller cubes. The Caption: The video shows a person sing a shovel to clean the ashes from a fireplace. They are
person is working on a wooden cutting board, and the Hands are visible from the left side of the scooping up the ashes and removing them from the fireplace.

frame with pink nail paint on their nails.

N e e (Y

Category: Outdoor Scenes
Caption: The video shows a tall, pointed structure in the middle of a field. and the structure is
surrounded by trees and other vegetation. The field is divided into sections, with some areas
covered in green grass and others covered in white material. The video shows the structure and
the field from a distance, with the camera moving around it.

Category: Animals

Caption: The video shows a white and gray adult cat and two kittens. The adult cat is grooming
the kitten closest to it with its tongue, and the kitten is looking around. A hand reaches out from
the frame's upper left to pet the two kittens.

Category: Water Scenes Category: Object Handling
Caption: The video shows a large school of fish swimming in a water body towards the right Caption: The video shows a person putting a bowl of something into an oven. The person then
rame. The camera too pans a little to the right. closes the oven door. The background is blurry.

Category: Close-up Shots

Category: Nature Scenes
Caption: The video shows a pile of branches and leaves on fire in a field. The fire is burning
brightly, with flames licking at the edges of the pile. The smoke from the fire rises into the air,
billowing up into the sky.

Caption: The video shows a white counter with two brown buckets and a yellow bucket. Then a
person's right hand wearing a green glove enters the frame from top right side and place a yellow
flower near to yellow watering can. The person then places the flower, in front of the buckets and

exits the frame. In the background is a brown wall, and the camera is static throughout the clip.

Figure 12: More PE Video Dataset Examples. For each of the ten categories, we randomly pick
one video and show its video caption. The captions were generated by our video data pipeline and

then refined by human annotators.
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B Implementation Details

B.1 PE: Core

We provide additional implementation details for building PE_.. Our implementation is based on
OpenCLIP.!

B.1.1 Architecture and Training Setups

Model Architecture. Following CLIP, PE .. comprises a Transformer-based [138] vision and a text
encoder. We employ customized Transformer configurations as detailed in Tab. 11. For pooling, we
an attention pooling block in the style of SigL.IP [158] with 8 heads from the last-layer feature to
construct image and video embeddings. Regarding positional embedding, we use 2D RoPE [124] for
relative positional embeddings and 2D learnable absolute positional embeddings (abs) the same size
as the model’s input resolution. We interpolate positional embeddings to enable support for various
resolutions beyond the default. The text context length is 72 for G-scale and 32 for B and L-scale
models. Originally a bug, we find it optimal to not disable the class token when using attention
pooling for smaller models. Thus, the B and L models use a class token, then the attention pooling
layer probes all features at once (class token included). Finally, we use an input mean and standard
deviation of (0.5, 0.5,0.5) for simplicity.

Scale Tower Params Width Depth MLP Heads CLIP Pooling Positional Resolution & Patch Size Class Token
Dim Embedding Context Len Register
B Vision 0.09B 768 12 3072 12 1024 Attn Pool RoPE+Abs 224 16 v
Text 031B 1024 24 4096 16 EOS Token Abs 32 - -
L Vision 032B 1024 24 4096 16 1024 Attn Pool RoPE+Abs 336 14 v
Text 0.31B 1024 24 4096 16 EOS Token Abs 32 - -
G Vision 1.88B 1536 50 8960 16 1280 Attn Pool RoPE+Abs 448 14 X
Text 047B 1280 24 5120 20 EOS Token Abs 72 - -

Table 11: PE Model Configurations with full details.

PE Core Training. As discussed in §2.3, the training of PE. involves three stages: 1) image
pretraining; 2) image and video finetuning; and 3) an additional model distillation for smaller models.
These three stages work together to develop a robust and effective PE.. model.

We first provide training recipes for 1) image pretraining in Tab. 12 and 2) video finetuning in Tab. 13.

config values config values config values
optimizer LAMB optimizer LAMB optimizer LAMB
B1, B2 0.9,0.95) B1, B2 (0.9,0.95) B1, B2 0.9,0.95)
weight decay 0.05 weight decay 0.05 weight decay 0.05
learning rate 2e-3 learning rate le-6 learning rate le-6
batch size 131,072 batch size 4096 batch size 16384
warm-up steps 2K warm-up steps 2K warm-up steps 2K
training steps 443K (B, L) / 656K (G) training steps 54K training steps 269K
data quantity 5.4B data quantity 22M data quantity 5.4B
samples seen 58B (B, L)/ 86B (G) samples seen 22M samples seen 4.4B
max logit scale 100 max logit scale 100 max logit scale 100
mask reg ratio 0.4 number of frames 8 teacher logit scale 200 (§C.3)
mask reg batch 8192

aspect jitter ar (0.75,1.33) data aug None

112-160-224 (B) data auge rgnd crop s(0.08,1) .. .
progressive res 98-154-224-336 (L) ° color jitter j(0.32,0,0.32,0) Table 14: Distillation.
98-154-224-336-448 (G) hflip p(0.5)
aspect jitter ar (0.75,1.33) Table 13: Video Finetuning.
data aug r.gnd crop s(0.08,1)
color jitter j(0.32,0,0.32,0)
hflip p(0.5)

Table 12: Image Pretraining.

After training the largest G-scale model, we train the smaller models with image pretraining, then
distill with image distillation in Tab. 14, then finally apply video finetuning at the end.

'https://github.com/mlfoundations/open_clip, MIT License

25


https://github.com/mlfoundations/open_clip

Distillation Method. To maximize the performance of smaller models (B and L scales in Tab. 2), we
employ a distillation finetuning approach [48] using PE.,.G as the teacher. This process involves
a short finetuning schedule where both the student and teacher models encode image and text
inputs separately to compute image-to-text and text-to-image similarity distributions, similar to
CLIP training [103]. The student’s distributions are then optimized to match those of the teacher
by minimizing KL-divergence, distilling multimodal relational knowledge from the teacher into the
student.

Notably, we find that using a smaller softmax temperature for the teacher’s distributions, specifically
0.5x the temperature used for the student’s distribution, significantly enhances the effectiveness
of knowledge distillation. By leveraging the strong embeddings provided by PE...G, our short
distillation finetuning schedule significantly boosts the performance of both B and L scale models of
PE. (see Appendix C.3).

B.1.2 Zero-Shot Classification and Retrieval

Zero-Shot Evaluation on Images and Videos. We use CLIPBench’ for zero-shot classification and
retrieval benchmarking. The benchmark datasets and splits are obtained from the original dataset
websites or HuggingFace. We extend the CLIPBench zero-shot evaluation to include video datasets
such as MSR-VTT and Kinetics, and will release our model checkpoints, evaluation code, and scripts
for reproducibility.

Prompt Design. For zero-shot image-text and video-text retrieval, we rely solely on the original
captions without any additional prompts. In contrast, for zero-shot classification, we utilize task-
specific prompts graciously provided by the InternVL [19] authors. All additional prompts will be
released.

For example, we employ specific prompts for zero-shot image classification on various ImageNet
benchmarks (e.g., ImageNet val, ImageNet v2) and video classification on Kinetics datasets (e.g.,
K400, K600, K700).

a bad photo of a {c}. a photo of many {c}. a sculpture of a {c}. a photo of the hard
to see {c}. a low resolution photo of the {c}. a rendering of a {c}. graffiti of a {c}.
a bad photo of the {c}. a cropped photo of the {c}. a tattoo of a {c}. the embroidered
{c}. a photo of a hard to see {c}. a bright photo of a {c}. a photo of a clean {c}. a
photo of a dirty {c}. a dark photo of the {c}. a drawing of a {c}. a photo of my {c}.
the plastic {c}. a photo of the cool {c}. a close-up photo of a {c}. a black and white
photo of the {c}. a painting of the {c}. a painting of a {c}. a pixelated photo of the
{c}. a sculpture of the {c}. a bright photo of the {c}. a cropped photo of a {c}. a
plastic {c}. a photo of the dirty {c}. a jpeg corrupted photo of a {c}. a blurry photo
of the {c}. a photo of the {c}. a good photo of the {c}. a rendering of the {c}. a
{c} in a video game. a photo of one {c}. a doodle of a {c}. a close-up photo of the
{c}. a photo of a {c}. the origami {c}. the {c} in a video game. a sketch of a {c}.
a doodle of the {c}. a origami {c}. a low resolution photo of a {c}. the toy {c}. a
rendition of the {c}. a photo of the clean {c}. a photo of a large {c}. a rendition
of a {c}. a photo of a nice {c}. a photo of a weird {c}. a blurry photo of a {c}. a
cartoon {c}. art of a {c}. a sketch of the {c}. a embroidered {c}. a pixelated photo
of a {c}. itap of the {c}. a jpeg corrupted photo of the {c}. a good photo of a {c}.
a plushie {c}. a photo of the nice {c}. a photo of the small {c}. a photo of the weird
{c}. the cartoon {c}. art of the {c}. a drawing of the {c}. a photo of the large {c}.
a black and white photo of a {c}. the plushie {c}. a dark photo of a {c}. itap of a
{c}. graffiti of the {c}. a toy {c}. itap of my {c}. a photo of a cool {c}. a photo of
a small {c}. a tattoo of the {c}.

*https://github.com/LAION-AI/CLIP_benchmark, MIT License
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a photo of {c}. a photo of a person {c}. a photo of a person using {c}. a photo of
a person doing {c}. a photo of a person during {c}. a photo of a person performing
{c}. a photo of a person practicing {c}. a video of {c}. a video of a person {c}. a
video of a person using {c}. a video of a person doing {c}. a video of a person during
{c}. a video of a person performing {c}. a video of a person practicing {c}. a example
of {c}. a example of a person {c}. a example of a person using {c}. a example of a
person doing {c}. a example of a person during {c}. a example of a person performing
{c}. a example of a person practicing {c}. a demonstration of {c}. a demonstration of
a person {c}. a demonstration of a person using {c}. a demonstration of a person doing
{c}. a demonstration of a person during {c}. a demonstration of a person performing
{c}. a demonstration of a person practicing {c}.

Evaluation Method. Several works use different input transformations for different datasets when
evaluating zero-shot performance (e.g., [32, 127, 135, 158]). To be as fair as possible, we fol-
low [127] in evaluating with two transformations—center crop and non aspect ratio preserving
resize (“squash”)—and report the max between the two for all models and all datasets we evaluate.
Additionally, ObjectNet has a red border around every image to facilitate deduplication, which we
remove for evaluation. Finally, we follow [19] in using retrieval reweighting (DSL), applying the
softmax score distribution to the similarities used for retrieval:

scores = scores * softmax(scores, dim=0) D

This slightly improves retrieval for most models, so we do it for all models we evaluate for fairness.
Notably, we were able to reproduce the reported numbers for most papers with these techniques, but
for cases where we could not, we default to the reported number.

B.2 PE: Language Alignment

We provide details of the MLLM experimental setup in §4. We describe data, model, and training
separately.

Data. Our MLLM training contains warmup data and supervised finetuning (SFT) data. Our warmup
data is a 1M subset image-text pairs of our PE .. pretraining dataset. For SFT data, we use a diverse
data mix consisting of 2.6M unique samples. This dataset is composed of 1.7M? visual QAs samples
from the Cauldron [64], 0.5M grounded QA pairs from Visual Genome [59], Flickr-Entities [100] and
Densely Captioned Images [136], 0.1M image-captioning pairs from COCO [74] and 0.3M text-only
samples. This comprehensive data mix allows us to thoroughly assess our model’s capabilities in
various MLLM tasks.

Model. As described in §D.1, we use a simple vision-language model architecture where a vision
encoder and a pretrained decoder-only LLM are connected by a vision projector. For all tables, we
use either Llama3.1-instruct 8B or QwenLLM 2.5-instruct 7B as a language model, and 2-layer MLP
as a vision projector. For fair comparison, we use the native resolution for image input. During
inference, we evaluate the models on video tasks in zeroshot manner: We concatenate all video
frames into a sequence and feed to language model, without seeing video samples during SFT. For
all video tasks, we use 8 frames with the same native resolution of height and width. For PE_ . and
PEjng, this makes 448 x 448 x 8 input and 32 X 32 x 8 vision tokens.

Training. MLLM training consists of warmup and supervised finetuning (SFT) stages. In both stages,
we freeze vision encoder and train vision projector and LLM. During warmup stage, we use a global
batch size of 128 with a learning rate of 1 x 10~*. We gradually increase the learning rate from
1 x 1076 to 1 x 10~ over 120 steps, and follow a cosine learning rate decay schedule to train a total
of 8,000 steps. During SFT stage, we use a global batch size 256 with a learning rate of 1 x 107°.
Similar to the warmup, we gradually increase the learning rate from 1 x 10~ to 1 x 10~° over 300
steps, and follow a cosine learning rate decay schedule to train a total of 12.5K steps. We truncate
text-sequences longer than 2,048 tokens on top the visual tokens. This makes the maximum sequence
length to be (num. vision tokens) 4+ 2,048. With 448 x 448 input resolution and patch size of
14, we set the maximum sequence length to 1,024 + 2,048 = 3, 072. To represent bounding boxes
on output side for image grounding tasks, we simply use text tokens to represent each bounding box:

3We excluded multi-images samples.
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each coordinate is normalized between 000 and 999, in “[x, y, x, y]” box format for top-left
and bottom-right corners (e.g., [012, 122, 633, 782]).

For all baselines, we search for the best intermediate layer features to adapt to LLM. We search over
{-1,-2,—-4,-6,—-8,-10,—12, —14, —16, —18, —20, —40} layers (counting from last) and report
the best result in average over OCR/Chart/Document Q&A, Visual Q&A, Image Captioning and
Video Understanding.

B.3 PE: Spatial Alignment

B.3.1 Training Details

Loss Functions. For self-aligning to frozen PE..G layer 41 features (Lco.), We minimize the

negative cosine similarity:
1 S50)(Tur)”
Lcore e Z < ( 50)( 41) > (2)
Mok [1Ss0ll - [| Tl

where S5o denotes the last layer features of the student, T; denotes frozen layer 41 features from
PE oG, and nyo represents the number of tokens. Note that we chose 41 fairly arbitrarily (it is layer
40 when written with indexing from 0). Judging by Fig. 4, any layer around 40 should work (and 39
may be slightly better).

For the encouraging locality loss (L, ), we compute the pairwise cosine similarity between a model’s
own tokens and itself. This forms a “spatial correspondence map” for what tokens should be
considered similar. We then compute the same for the student, and minimize the difference between
the two with MSE loss:

2
Lo = = 3 ((550)(550)T _ (TSAM)(TSAM)T>

“ ngy |[S501]? [[Tsam||?
where Tsaym denotes the “SAM Mask Logits” constructed in §E.1.2. We also find using a temperature
(t) on the SAM teacher’s pairwise cosine similarity term (z) useful: et@=1) The full loss is
Lspalial = Leore + Lioc.

3

Hyperparameters. In Tab. 15 we show the training hyperparameters for spatial alignment, finetuned
on top of the initial PE.G checkpoint. Then in Tab. 16 and Tab. 17, we show the settings for the two
teachers and losses. Note that when running the teachers, we run them on the exact same image as the
student (same data aug and all). Additionally, because the SAM 2.1 teacher operates at a resolution
of 1024, we upsample the image, generate the mask logits, and then downsample the result. Both
teachers are frozen.

config values config values config values
optimizer LAMB model SAM 2.1-L model PEcore G
B1, B2 (0.9, 0.95) layer mask logits layer 41
weight decay 0.05 resolution 1024 (interp—>448) resolution 448
learning rate Se-4
batch size 12,288 loss Eq.3 loss Eq.2
warm-up steps 0 loss weight 1 loss weight 1
training steps 24K temperature 20
data quantity 5.4B (PE¢qre PT Data) Table 17 PECOl‘eG TeaCher-
samples seen 300M sample points 32x32(1024)

pred iou threshold 0
resolution 448 stability score threshold 0
mask ratio 0.75 mask threshold 0
mask size 22 tokens

Table 16: SAM 2.1 Teacher.
droppath 0.4
layerscale 0.1
aspect jitter ar (0.75,1.33)
data aug color jitter j(0.32,0,0.32,0)
hflip p(0.5)

Table 15: Spatial Alignment.
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B.3.2 Visualization Method

To visualize the features in Fig. 10 and Fig. 20, our goal is to map a 1536-dimensional space down
to 3 dimensions to view how the model encodes each token in relation to each other. One naive
approach would be to apply PCA with 3 dimensions across all token in the image. However, we find
this alone can be misleading.

Specifically, if the model has rich semantics, it should be the case that most of those 1536 features
have some useful information in them. Some of that information could be spatially contiguous, some
of it not. We want PCA to only select the spatially contiguous information, since we are trying to
evaluate the spatial quality of the features. However, naively applying PCA will not necessarily do
that, especially for models with information aggregated in “global tokens” (§E.1.1). Despite these
tokens carrying important information, they are not spatially contiguous. Thus, if PCA dedicates a
large portion of its 3 dimensions to global tokens, the features will look like their spatial quality is
bad, despite the features containing good spatial information.

So, how do we select for only the spatially contiguous information to visualize? The answer is
simple: by definition, the spatially contiguous information will be. .. spatially contiguous. To keep
the spatially contiguous information while lowering the impact of the global tokens, we can simply
apply a low pass filter to the features (specifically, a gaussian blur with kernel size 3 and a o of 1). To
retain the detail of the original features, we can average the two together. Thus, to visualize features,
we use the 3D PCA of the of the following. x denotes the model’s output features, and g(z) denotes
gaussian blur.

0.5 4+ 0.5g(z, k = 3,0 = 1) 4

We show the impact of this in Fig. 13. Blurring the features make them appear more detailed! In
reality, that information was always there, just PCA did not show it. Thus, great care must be taken
when visualizing high dimensional feature spaces. If they were easy to map to 3 dimensions—you
would not need 1536 of them!

PCA Raw
Features

w/ Low
Pass Filter

Figure 13: Feature Visualization Ablation. With raw features (top row), PCA misses spatially
contiguous parts of the feature space and instead focuses on global tokens (which carry information
but are not spatially coherent). By applying a simple low pass filter (bottom row), we can reveal
spatial information that PCA originally missed (see column 2: with raw features, the background
looks like a mess, with the low pass filter the tiles become visible).

Then, to map the PCA dimensions to RBG pixel values, we map each PCA component to a corre-
sponding channel in LCh color space, then convert those LCh colors to RGB to get the final image.
Note that we use LCh instead of RGB directly for aesthetic reasons, and also because LCh is a
cylindrical color space—where smooth changes to the values look like smooth changes in colors to
humans—and thus is easier to discern.

B.3.3 Frozen Feature Dense Prediction

We discuss the detailed settings of the results for dense prediction with frozen features in Tab. 6. Each
model is evaluated with its native resolution up to 448 or 448 (whichever is optimal).

Zero-Shot Tracking. We evaluate our pretrained models on label propagation task using the protocols
in [51, 104] on DAVIS dataset [101]. This evaluation does not require any finetuning or probing,
therefore preserves the spatial features in the model. Following Toto [104], we use the features from
the last n =7 frames to find the nearest neighbor patch in the current frame, and then propagate the
masks from the previous frames to the current frame. Note that this evaluation method does not
require any training.
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Semantic Segmentation. For semantic segmentation, we evaluate our pretrained models on
ADE20K [164] semantic segmentation task. We use a batch norm and a linear layer to map in-
termediate spatial features to segmentation masks following [96]. The models are evaluated and then
features are resized to 518 x 518. We only use features from single layer. The probing layers are
finetuned with AdamW [81] with a learning rate of 0.001.

Depth Estimation. For depth estimation on NYUv2 [120], we follow [73, 96]. We use a DPT-
head [106] on top of our frozen pretrained model and use only single layer features. We scale the
size of the DPT-head for each models based on the hidden size for each architecture. Because NYU
is a small dataset and the models we evaluate are large, we observe the results for most models are
noisy and prone to overfitting. Thus, for fair comparison we train all models for 20 epochs and for all
models take the lowest validation loss over all epochs.

Frozen Detection. For the frozen feature detection results presented in §3, we evaluated using
Mask R-CNN [42] as a probe. We used a resolution of 1024 for Fig. 4 and 768 for the remainining
experiments in §3. Because the backbones were frozen, we did not add any global attention and
instead simply tiled the input image with a window size of 32 for the 1024px experiments and 24
for the 768px experiments. All models were interpolated to patch 16. Finally, the backbones were
frozen and only the FPN and R-CNN heads trained for 15 epochs on COCO with a stepwise decay
LR without drop path.

B.3.4 End-to-End Finetuning Detection and Segmentation

We provide a detailed discussion of settings of end-to-end finetuning on detection and segmentation
presented in Tab. 7 using Detectron2 [147].* The hyperparameters can be found in Tab. 18. We
find that the default 100-epoch protocol in ViTDet [71, 146] causes overfitting problems in COCO
experiments especially for billion-level parameter vision encoders, so we tune the training epochs,
learning rate, drop path and learning rate decay accordingly.

The LVIS experiment setting is the same as COCO except all L-size models use learning rate of 2e-4
and all g-size and G-size models use 75 epochs.

config values model ‘ Ir epochs  droppath  Irdecay layers  global window index  window size
optimizer AdamW MetaCLIP-G Se-5 75 0.5 0.9 48 (11,23, 35,47) 14
optimizer momentum (0.9,0.999) SigLIP2-so le-4 100 0.4 0.8 27 (2, 10, 18, 26) 14
weight decay 0.1 SigLIP2-g Se-5 75 0.5 0.9 40 9, 19, 29, 39) 14
learning rate schedule Step-wise decay DINOv2-L le-4 100 0.4 0.8 24 (5,11,17,23) 32
batch size 64 DINOv2-g Se-5 36 0.5 0.9 40 (9, 19,29, 39) 32
image size 1024 x 1024 PEcore G Se-5 75 0.5 0.9 50 (12, 24,36, 49) 32
augmentation LSJ[0.1,2.0] PEgpatial G Se-5 36 0.5 0.9 50 (12,24, 36, 49) 32
postional embedding abswin [7]

patch size 16

Table 18: Settings for End-to-End Finetuning Detection and Segmentation.

B.3.5 System-Level Comparison on Detection

We describe our implementation for system-level compar- Test Time Avg APoo
ison to the state-of-the-arts on COCO object detection in No TTA 65.2
Tab 8. Our implementation is based on the DETA reposi- *+More Queries 65.3

5 .. . + SoftNMS [6] 65.8
tory.” We replace the vision encoder with our PEg,, and + Flip Aug 65.8
maintain the same hyperparameters as in the end-to-end +Multiscale Aug 66.0
finetuning settings, while keeping the detector unchanged. Taple 19: Test-Time Aug for system-
The training process consists of three stages: level comparison on COCO in Tab. 8.

1. Initial Training: Train on Objects365 for 12 epochs with an image resolution of
1024 x 1024, a total batch size of 256, and a learning rate of 2e-4, which is divided by 10 at
the 10th epoch.

*https://github.com/facebookresearch/detectron2, Apache 2.0
*https://github.com/jozhang97/DETA, Apache 2.0
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2. Increasing Resolution: Continue training on Objects365 for 6 epochs with a resolution of
1536 x 1536, a total batch size of 128, and a learning rate of 5e-5, which is divided by 10 at
the 5th epoch.

3. Finetuning: Finetune on COCO dataset for 12 epochs with an image resolution of
1728 x 1728, a total batch size of 64, and a learning rate of 5e-5, which is divided by
10 at the 8th epoch.

4. Further Increasing Resolution: Further finetune on COCO dataset for 3 epochs with a
resolution of 1824 x 1824, a total batch size of 64. To save GPU memory, we use SGD
optimizer instead of Adam, with a learning rate of 5e-3, which is divided by 10 at the 2th
epoch.

We apply a series of test-time augmentations to further improve the performance, see Tab. 19.
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C Additional PE_,,. Results

C.1 Robust Image Pretraining

In Tab. 20, we present the raw data for the robustness metrics in Fig. 2. Across the board, each change
improved almost all metrics (with the exception of progressive resolution slightly hurting the average
and mask regularization slightly hurting ImageNet Adversarial). The fact that there were no tradeoffs
to these changes, indicate that their improvements to the features are general. This could be why
most of these changes improved performance for downstream tasks as well.

Note that in §2.1, we only discuss changes that we know to work. There are several changes
that we have tried that do not work (i.e., do not improve performance or lower performance). For
instance: average pooling instead of using a class token, increasing the text tower size, using hue or
contrast jitter, and maintaining the same resolution throughout training but dropping tokens instead
of progressive resolution (FLIP-style).

We also find increasing batch size and increasing training iterations for an L scale model to have
equivalent effects. This is in contrast to the batch size scaling observed by [158], but it is possible
that this difference is down to a hyperparameter issue.

Zero-Shot Classification

Step £ Es E5 8= E2
1 Baseline 753 789 719 737 67.8
2 Progressive Resolution 75.1 789 71.8 724 67.0
3 High Batch Size 762 795 728 741 718 91.0 68.1
4 LAMB and High LR 769 799 733 743 735 915 68.6
5 High Resolution (336) 783 804 73.8 756 792 920 68.8
6 2D RoPE 792 807 741 774 809 927 69.4
7 Attention Pooling 80.1 81.0 748 784 829 934 699
8 Data Augmentation 80.8 81.1 752 808 83.1 935 712
9  Mask Regularization 809 813 753 809 828 938 712

Table 20: Robust Image Pretraining Full Results. Raw results for the robustness metrics metrics in
Fig. 2. Almost every change improves every metric, but some metrics are improved more than others
(e.g., ObjectNet and ImageNet-A).

Scaling Behavior. In Fig. 14, we show the performance of our recipe (Fig. 2.9) vs. the original CLIP
recipe (Fig. 2.1) across S/14, B/14, and L/14 models. For each benchmark, our recipe scales around
the same rate or better than the original CLIP recipe. On some difficult datasets like ObjectNet [4]
and ImageNet Adversarial [46], our recipe shows distinctly better scaling. This indicates that the
improvements in performance were not at the cost of scalability, meaning we can further benefit from
scaling the model size.

ImageNet Val ImageNet v2 ObjectNet
85 80 85 L 88 L 95

. L
B B B B B B
75 68 65 54 83 62
®ours ®ours c ®ours ¢ ®ours d ®ours s ®ours

55 Vanilla 55 Vanilla 5 Vanilla 0 Vanilla - Vanilla 50 Vanilla

01z 0.5Z 1.0Z 01z 0.5Z 1.0Z 01z 0.5Z 1.0Z 0.1z 0.5Z 1.0Z 01z 0.5Z 1.0Z 01z 0.5Z 1.0Z

geNet Renditions ImageNet Sketch
75

Figure 14: Scaling Behavior (Model Size). Results before and after our recipe changes (Fig. 2) for
S/14, B/14, and L/14 models. Our recipe improves scaling for difficult metrics like ObjectNet [4] and
ImageNet Adeversarial [46].

In Fig. 15, we additionally show the performance of our recipe vs. the original CLIP recipe across
L/14 models trained with 120K steps (one-third schedule), 240K steps (two-thirds schedule), and
360K steps (full ablation schedule). All models are their own training runs with full learning rate
annealing and the progressive resolution schedule adjusted proportionally. We see nearly linear trends
for our recipe on most datasets. This suggests we can train longer for more performance, even at L
scale and with 24B samples seen already.
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ImageNet Val ImageNet v2 ObjectNet geNet Ad geNet Renditions ImageNet Sketch
76 72

84 95
240k 0 240k
79 120k 72 7 91 68 120k
@ours @ours @ ours @ ours @ours @ours
= Vanilla e Vanilla @ Vanilla o8 Vanilla 5 Vanilla © Vanilla
0.52 1.0z 0.52 1.0z 0.52 1.02 0.52 1.0z 0.52 1.0z 0.52 1.0z

Figure 15: Scaling Behavior (Training Steps). Results before and after our recipe changes for an
L/14 model trained with 120K, 240K, and 360K steps, adjusting the learning rate and progressive
resolution schedules accordingly. Despite our recipe being much stronger than the original, there is
still room for further improvement by training longer.

C.2 Additional Video Ablations

Human Refined Data for Captioning. In Tab. 21, we ablate the captioning performance of our video
captioner component in our video data engine with or without human-refined video captioning data.
For all benchmarks tested, the human-refined data significantly improves captioning performance.

AuroraCap [12] VCG Diverse [85] VCG [84]

Captioner Score  Acc Score Acc Score
PLM 22 51.9 3.1 65.1 343
PLM + Human-Refined Data 3.4 71.1 3.6 79.4 35.2

Table 21: Video Captioning. Adding human-refined data greatly boosts captioning performance.

Video Scaling Behavior. In Fig. 16, we investigate the impact of scaling recaptioned video data
on a later checkpoint of the same image-only model as in Fig. 1. Notably, scaling synthetic video
data demonstrates consistent improvement in both image and video benchmarks. Full results of this
scaling experiment can be found in the Appendix 13.

In the top row, scaling synthetic video data consistently improves performance on image benchmarks,
with monotonic improvements of +1.1% in ObjectNet and +1.6% in ImageNet Adversarial. ImageNet
val and ImageNet v2 have smaller gains, with accuracy increases of 0.3% to 0.5%, plateauing at ~7M
samples. We also observe a significant boost to zero-shot retrieval (here, COCO [74]) of +3.8% to
+4.1% top-1 recall.

The video tasks listed in the bottom row demonstrate a consistent story. We observe a significant
jump in performance between none and 3M videos across all video classification tasks, indicating
that there is a domain gap for image-only models that hinders their ability to perform well on video
out of the box. Further scaling synthetic video data leads to substantial performance gains in both
video classification and retrieval. Video classification accuracy improves consistently by +5.6% to
+11.7% without plateauing, while video retrieval shows significant improvements of +7.7 to +15.3
top-1 recall.

Image Classification Image Retrieval
ImageNet Va/ ImageNet v2 ObjectNet ImageNet Adversarial COCO Text—Image COCO Image— Text
85 80 88 93 57 75
 ae oo ’_.//// ) //Hf‘ . ////"H ) /////—‘
83 78 86 90 51 70
oM oM 17M oM oM 17M oM M 17M (Y] M 17M oM M 17M oM LY 17M
Video Classification Video Retrieval
Kinetics 600 Kinetics 700 UCF HMDB VTT Text— Video VTT Video— Text
76 69 92 57 50 48
73 65 85 52 5 /*/A ) /"4
69 61 78 47 40 30
oM M 17M Y] M 17M oM M 17M oM M 17M oM M 17M oM M 17M

Figure 16: Video Data Scaling. Finetuning on videos recaptioned by the PE video data engine
from OM (baseline image-only model) to 17M samples consistently improves both image and video
performance, both classification and retrieval.
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These experiments highlight the quality of our video data engine and its ability to significantly
improve encoder performance, even with only a relatively modest 17M videos compared to the
billions of images seen during pretraining. Our video data engine is a vital component in build a
strong, unified image-video encoder.

Video Scaling Behavior Detailed Results. The detailed video data scaling results are presented in
Tab. 22. Our experiments demonstrate that increasing the number of synthetic video data generated
by the proposed video data engine enhances the performance of classification and retrieval on both
image and video benchmarks. On image benchmarks, while improvements on ImageNet val and v2
plateaued earlier compared to ObjectNet and ImageNet Adversarial, MS-COCO retrieval performance
continued to show gains. On video benchmarks, scaling synthetic video data consistently yields better
performance for both classification and retrieval tasks. We expect that further scaling up the video
data with our video data engine will continue to drive performance improvements.

5 Image Zero-Shot Video Zero-Shot
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OM 77.0 839 786 86.6 903 521 703 57.0 703 405 314
3M 777 84.1 788 86.6 909 533 742 61.6 724 428 376
6M 78.0 842 79.0 867 91.1 540 727 63.6 735 E . i 6 449 436
8M 784 842 792 870 91.6 549 73.6 648 745 .5 . . 3 469 455
1IM 78.6 842 792 872 918 554 738 652 75.1 X . . 6 477 458
14M 788 842 792 875 919 557 743 655 754 75.3 . 9 558 47.8 463

17M 789 842 792 877 920 558 743 658 757 755 682 902 56.0 483 46.7

Table 22: Scaling Video Data. Increasing the number of synthetic video data generated by our
proposed video data engine consistently enhances the performance of image and video classification
and retrieval tasks.

C.3 Smaller Models

Ablation: Distillation Temperature. To optimize the performance of smaller models (B and L-scales
in Tab. 2), we utilize a distillation finetuning approach with PE...G as the teacher model. During this
process, both student and teacher models encode image and text inputs to compute image-to-text and
text-to-image similarity distributions, similar to CLIP training [103]. The student’s distributions are
then optimized to match those of the teacher by minimizing KL-divergence loss on both image-to-text
and text-to-image similarity distributions.

We find that using a fixed and smaller temperature (i.e., higher logit scale), which controls the range
of logits in the softmax, significantly enhances the effectiveness of distillation. This results in a
sharper distribution for the teacher’s distributions. In contrast, the student’s temperature remains
learnable, consistent with our pretraining procedure and CLIP training.

In Tab. 23, we present an ablation study examining the impact of temperature on the teacher’s
distribution. For this analysis, we utilize a pretrained vanilla CLIP model (ViT-B/14, resolution 224),
which serves as a baseline for comparison (see §2.1 for details). The models are finetuned using

Zero-Shot Classification

o
5 o g =
PR . S2 o=
5 2 2 5 2%
= o} O N oS 0=
g 2 F= P3PS
Model & = ER g B2
vanilla pretrained model - B 662 742 674 83.0 59.8
X2 B 652 718 655 83.6 58.6
Lo X1 B 680 749 68.1 853 61.1
distillation
x0.7 B 682 751 682 85.1 61.3
x0.5 B 683 752 682 852 61.4

Table 23: Ablation Study on Teacher’s Distribution Temperature. We evaluate the effect of
varying temperatures on the teacher’s distribution, using a pretrained vanilla CLIP model (ViT-B/14,
resolution 224) as a baseline (details in §2.1). The models are finetuned via distillation with a short
schedule of 50K steps.
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distillation with a concise schedule of 50K steps. Notably, our results show that employing a smaller
temperature for the teacher’s distributions yields improved performance on zero-shot ImageNet
benchmarks.

Building strong smaller models. In Tab. 24, we demonstrate our step-by-step training strategy
for building strong smaller models at the L scale, as discussed in §2.3. Specifically, we outline our
approach to image pretraining, image distillation, and video finetuning, and distillation. Leveraging
the robust foundation established by our pretraining techniques (§2.1), we show that distilling
from PE,..G, our strongest unified perception encoder, yields improvements on both image and
video benchmarks. Furthermore, a short-scheduled video finetuning provides an additional boost in
performance on both benchmarks.
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SigLIP2-L/16 76.0 831 774 844 843 553 714 562 653 625 568 867 493 415 314
PEcoreL image pretraining 75.1 829 768 818 856 530 704 59.0 68.0 67.7 585 855 57.7 420 334
PEcoreL +image distill from PEcore G 77.6 83.6 78.1 844 889 56.0 747 645 73.0 726 648 865 580 479 484
PEcoreL +video finetuning 780 835 779 847 89.0 571 759 653 734 727 653 871 585 503 50.1

Table 24: Building Strong Smaller Models. This table illustrates the step-by-step process of
developing the PE,.L 336px model, as outlined in §2.3. Starting with the pretrained PE L,
both image distillation, along with video finetuning, enhance performance across image and video
benchmarks, resulting in a unified L-scale model.

C.4 Additional Results

Additional Zero-Shot Benchmarks. We further evaluate PE_.. on an additional set of zero-shot
classification and retrieval benchmarks we construct in Tab. 25 to address key gaps in common bench-
marks. For comparison, we also evaluate Sigl.IP2 [135] and InternVL-C [19] on these benchmarks.

First, we note that the version of ObjectNet [4] that is standard to benchmark robustness (e.g., in
Tab. 3) is not the full set. ObjectNet consists of 313 classes of objects in challenging and uncommon
orientations, locations, and viewpoints. However, the standard version used for benchmarking is a
113 class subset of classes that overlap with ImageNet-1k [25]. Naturally, benchmarking in this way
rewards performing well on ImageNet classes over generality. To remove this bias, we construct the
full ObjectNet set with all classes and compare to the reduced ObjectNet set in Tab. 25. Surprisingly,
we find that while PE_G performs +7.6% over InternVL-C and only +0.2% over SigLIP2-g-opt on
the reduced ObjectNet set, it performs +11.8% over InternVL-C and +0.9% over SigLIP2-g-opt on
the full set of classes, highlighting PE’s generality.

Next, we include iNaturalist [137] as a zero-shot benchmark because of its level of specificity with
2,101 fine-grained long-tail classes. PE...G outperforms the next best SigLIP2-g-opt model by
+9.6%, emphasizing PE’s long tail knowledge. We then evaluate PE’s cultural diversity on Dollar

Model 2 —Zﬂ;{)—SLmI\C[as:[ﬁmIion Zem:‘/w/ Retrieval
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5 2 2§ 25 52 &% &% 83 ;E .
3 55 = = 33 8% = =
T 8 5 22 38 2T Ez 21 91 ot at
g 3 5 =22 S 3 5y §¥ >3 >3
H ® A O% 0% 4] A% &5 £§ A A*F
SigLIP2-B/16 [135] 0.1B 224 10B 73.6 59.1 169 559 72.0 69.8 539 60.1
PEcoreB 0.1B 224 54B 719 583 259 521 723 719 598 61.1
SigLIP2-L/16 [135] 0.3B 384 10B 844 732 267 57.6 780 762 619 67.1
PEcore L 03B 336 54B 847 743 353 59.6 785 783 647 652

IntenVL-C[19]  55B 224 5B 80.6 672 194 582 723 678 634 65.1
SigLIP2-g-opt [135] 1.IB 384 10B 880 78.1 315 59.3 788 769 625 67.1
PEcoreG 19B 448 54B 882 79.0 411 623 788 787 710 76.6

Table 25: Additional Zero-Shot Results. We present several additional zero-shot benchmarks from
existing datasets and our own PVD (§A.1) to address evaluation gaps left by standard benchmarks.
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Street [110], which consists of images of under-represented populations. We use the version provided
by [38] and re-evaluate all models to ensure a fair comparison. Here too we find PE.,G to outperform
existing methods, with +3.0% over SigLIP2-g-opt. Further, we test OCR performance by setting up
TextCaps [119] as a retrieval dataset. Notably, PE.q. performs on par or better than SigLIP, which is
known for good OCR performance. This is potentially surprising, as the horizontal flip augmentation
we used during robust pretraining (§2.1) is typically thought to hurt OCR performance. However,
instead it seems to have given PE . the ability to read backwards: we test the same TextCaps retrieval
but with all images horizontally flipped. Other models suffer from this, but PE...G’s performance
only drops by 0.1%. Finally, we evaluate PE,G on the PVD benchmark (§A.1), a challenging video
retrieval task on 15K diverse and human-refined videos. Here, PE .G significantly outperforms
InternVL [19] by +13.6% on text—video and +9.5% to SigLIP2 [135] on video—>text.

Frozen Encoder Probing Results. To compare against models that are not capable of zero-shot
classification, we additionally evaluate PE .. using k nearest neighbors (following [96]), linear
probing (following [19]), and attention probing (following [36]) on top of the ImageNet-1k [25] train
set. We present these results in Tab. 26 and compare to other encoders using their reported numbers.
In every case, PEG outperforms all existing open encoders, including those with significantly
more parameters.

Encoder Probing

Model g [
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DINOv2-g [96]  L.IB 224 145M 83.5 865 87.21
RADIOV25-g[44] 1.IB 518 - 853 - -
AIMV23B([36] 27B 448 72B - - 895
InternVL-C[19] 55B 224 5B - 882 -
EVAI8B[127] 17.5B 224 2B - 889 -
PEcoreG 19B 448 54B 868 89.5 89.8

Table 26: Encoder Probing Results. We evaluate PE,.G’s frozen features using the typical probing
methods to compare to models without zero-shot support. ffrom [36].
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C.5 Additional Layerwise Scaling Analysis

In the main paper, we explored the scalability of our pretrianing recipe v.s. the original CLIP recipe.
However, we only analyzed it there for a single spatial task. To see whether the trend is consistent,
we repeat this scaling analysis on a wide variety of downstream language modeling tasks using the
same frozen evaluation setup as Fig. 4 and report the results in Fig. 17. Surprisingly, the simple
change in pretraining recipe improves scaling for most language tasks as well—including output-side
grounding (RefCOCO). Note that in this benchmarking setup, the LLM never sees videos during
training so the Video Q&A per-layer results are noisy. Yet, the best layer trend is still the same.
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Figure 17: Further Scalability Analysis. We repeat the analysis from Fig. 7 on a wide range
of downstream tasks by adapting to a language model. Each category is an average of several

downstream tasks (see §4).
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D Additional PE,,,; Results

D.1 Alignment Method Derivation

Here we discuss in detail the derivation of the alignment approach discussed in §4. We design the
alignment approach not just keeping in midn the best performance, but also ensuring that the resulting
aligned model is general. That is, we want the aligned model to be transferrable to as many settings
as possible regardless of resolution, decoder, or training setup.

MLLM Evaluation Tasks. In this section, our main testbed is to adapt vision encoders to MLLMs
and test on various MLLM tasks. We evaluate the downstream performance of each MLLM across
five task categories: (1) OCR, Chart, Document Q&A on ChartQA [162], DocVQA [89], In-
foVQA [90] and AI2D [56]; (2) Visual Q&A on TextVQA [122], OK-VQA [115], POPE [72],
and VQAV2 [39]; (3) Captioning on Flicker [155], COCO [74], and No Cap [1]; (4) Video Under-
standing on VideoMME [37], STAR [145], TGIF-QA [52], EgoSchema [87], MVBench [67], and
PerceptionTest [102]; and finally (5) Grounding on RefCOCO [55].

To arrive at the optimal alignment recipe, we first con-

duct ablation studies using a 20M subset of the data. g £ .
R .. 2 2 g
In Tab. 27, we ablate the LLM sizes, training param- s E § & A
eters, vision projector types, output layers to project, 2 % & 5 & » &
L 5 3 &% & A3 <4 O
and encoder regularization. We evaluate across OCR = Serm
Q&A, Captioning, Visual Q&A, and Video Q&A and 1B MLP 47 765 60.7 1151 760 540
ﬁnd the beSt Conﬁguration. 3B MLP 47 78.1 659 1157 76.6 54.1
3B v MLP 47 784 658 117.6 763 53.7
LLM Setup. We explore different scales (1B or  Vision Projector
. . 3B Linear 47 772 645 1141 76.5 53.7
3B parameters) and freezlng Welghts of the LLM. 3B MLP 47 781 659 1157 766 54.1
We observe that going from 1B to 3B parameters  PE Ouipur Layer
; : 3B MLP 50 759 566 1167 765 537
increases average score by 1.§ points (76.5—78.1). B wip 17 Yl eso 1157 766 sal
Unfreezing the LLM boosts this number to 78.4. 3B MLP 41 769 655 1128 754 53.9
. . . . .. PE Regularization
Vision Projector. Using a 2-layer MLP vision pro- 3B v MLP 47 799 690 1175 774 556

jector instead of a linear layer improves the average B v v MIP 47 ESOIN 687 1183 770 563

score from 77.2 to 78.1, while only adding few pa- Table 27: Language Alignment. We find the
rameters (13.5M — 27M). best configuration to language align PE .G

PE Output Layer. As shown in §3, PEeG has using autoregressive language training.
intermediate layers that perform significantly better than the last layer when used as features for
certain tasks. However, it is not clear if that same behavior applies when finetuning. We test applying
the projector to layers 41, 47, and 50 (the last layer), and find that layer 47 works best. Incidentally,
this is also the optimal layer for frozen VQ&A in Fig. 4.

PE Regularization. We apply LayerScale [132] and DropPath [49] to the vision encoder during
the alignment, for stabilizing training. This improves the 78.1 average score to 79.9 (41.8 points).
Unfreezing the LLM boosts this number further to 80.1. We choose this configuration (last row) as
our final alignment setup.

To construct PEj,,s, we scale this recipe up the 70M samples covering natural images, docu-
ments/charts/diagrams, and videos, perform alignment as described, and extract the resulting vision
encoder. Compared to the 20M sample ablation setting in Tab. 27, the final PEj,,, trained on 70M
total samples gives another +2.1 points to 82.2 on the average across OCR Q&A, Captioning, Visual
Q&A, and Video Q&A.

D.2 Layer Analysis Details

In Tab. 28, we present the raw numbers for the layer analysis plots in Fig. 8. Note that layer analysis
was not performed exhaustively on every layer. Additionally, PEj,,, removes the last four layers of
the model.
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OCR VQA

Captioning Natural VOA Grounding

50 48.6 114.0 74.1 39.1

49 53.8 114.5 749 542

48 56.3 114.8 74.8 55.6

47 57.3 724 1139 120.1 753 78.1 57.8 71.2
46 583 722 114.1 1200 75.1 782 584 70.8
45 59.6 720 114.6 1197 75.1 777 61.2 70.7
43 59.9 715 1138 117.7 748 774 63.1 705
42 60.3 713 113.1 116.6 73.8 772 64.1 70.8
41 60.8 70.7 112.5 1154 733 767 66.6 71.2
40 614 698 112.0 1150 740 763 66.5 71.0
39 61.8 70.0 111.0 113.5 740 75.6 67.1 71.1
38 62.1 693 1102 112.6 73.9 753 68.7 703
36 61.3 679 1085 1094 73.0 740 67.8 704
34 58.7 654 102.8 1047 700 722 665 69.6
33 57.3 64.1 100.1 102.7 69.0 71.3 659 68.9
32 542 632 969 100.1 67.8 70.6 655 68.7
31 50.9 60.7 932 967 655 687 63.0 67.3
21 29.6 303 593 713 49.1 520 415 51.6
11 28.8 289 474 59.0 470 492 309 433
2 282 287 386 42.8 433 43.8 228 272

Table 28: Raw Language Layer Analysis Results. The raw values for the plots in Fig. 8.

D.3 Unfrozen Encoder Results

In our standard MLLM evaluation, we always freeze the vision encoder when tuning the LLM for
downstream MLLM tasks. This is to ensure that we test the quality of each vision encoder without any
bias from our finetuning setup. However, this introduces a lingering question of whether unlocking
the encoder during LLM finetuning would eliminate any lead PE;,,; has over the other models.

Thus, in this section, we repeat the same MLLM evaluations as the main paper but with the encoder
unfrozen. Each experiment uses 1024 tokens per image. In Tab. 29, we show the unfrozen encoder
results compared to AIMv2 3B [36] and SiglIP2 g-opt [135]. It seems all models, including PE;,,,G,
benefit from unlocking the encoder. However, PEj,,,G still outperforms the other models overall,
often by a significant margin.

We perform similar evaluation in Tab. 30, this time comparing across PEj,,, model scales and to the
original PEcoe. And here we see that both PEj,n models significantly outperform the PEcq ones in
this unfrozen setup, especially for the larger G size. Thus, it seems that a language alignment step is
still necessary even when the encoder is unfrozen during MLLM construction.
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Table 29: MLLM Results with Encoder Unfrozen (PE;,,, vs. Others). Same setting as Tab. 5
using 1024 tokens per image, but with the vision encoder unfrozen during LLM finetuning.
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Table 30: MLLM Results with Encoder Unfrozen (Core vs. Lang). Same setting as Tab. 5 using
1024 tokens per image, but with the vision encoder unfrozen during LLM finetuning.
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D.4 Additional Results

Here we provide additional comparisons of PEcq. and PEj,,, with other vision encoders that are
popular choices in MLLM literature: MetaCLIP [150], SigL.IP2 [135], CLIP [103], AIMv2 [36],
DINOV2 [96], and InternViT2.5 [18]. Overall, these encoders span several different pretraining
losses (e.g., contrastive, captioning, self-supervised, and mixed supervision), encoder sizes (from
300M to 6B parameters), and resolutions (from 224 to 512). For all vision encoders, we find the best
intermediate layers to train MLLM for fair comparison (more details in Appendix B.2).

Main Results. In Tab. 5, we showed benchmarks results for native resolution input across existing
encoders, PEq. and PEj,,,. Here we provide additional comments about those results. Notably,
AIMv2 [36], InternViT2.5 [18], SigLIP2 [135] and PEj,g are trained jointly with a language decoder
using next token prediction objective, and thus they perform better overall compared to the base
contrastive and self-supervised models across all the metrics. However, PEj,,, uses a fraction of the
training FLOPs for language alignment tuning, while significantly outperforming all vision encoders
by large margin (an average of +3.5 points for G and +2.0 points for L).

In Tab. 31, we compare PE.q. and PE,u, with dynamic resolution setting [75, 80]. More specifically,
we use up to 4 tiles, following after a thumbnail, which is a whole image resized into 448 x 448.
With the maximum number of tiles of 4, the model can cover {1 x 1,1 x 2,1 x 3,1 x4,2x 1,2 X
2,3 x 1,4 x 1} tile ratios. Similar to the Tab. 5, we show that PE},,, largely outperforms the baseline
vision encoders by large margins across all categories of MLLM tasks. Note that PE,,,, has been
alignment-tuned with native resolution input, as opposed to e.g., InternViT 2.5, which has been
midtrained with dynamic tiling, which shows PEj.,,’s strong generality for different input formats.

Transferability. As PEj,, is aligned with Llama 3.2-instruct 3B, we conduct a separate set of
experiments to check if our model performs well with a different base LLM. In Tab. 32 we repeat the
native resolution comparison with QwenLLM 2.5 7B [153]. Interestingly, PEjaye not only outperforms
all vision encoders in this setting, but it also outperforms InternViT2.5 [18], which is specifically
aligned to QwenLM 2 [152] throughout midtraining. In fact, PEj,,,G with QwenLM even improves
its performance with Llama in some cases like with OCR Q&A and video benchmarks, emphasizing
the generality of our language alignment.

Grounding Breakdown. Next, in Tab. 33, 34, 35, we show full RefCOCO/+/g [55] results across all
setups. Overall, PEjy,; L or G show the best performance across all RefCOCO splits, except with
Qwen2.5 LM. This is because (1) InternViT 2.5 6B is midtrained with Qwen2 LM, and (2) during
pre/mid-training the training data of RefCOCO/+/g are seen.

40



z OCR / Chart/ Doc. Q&A Visual Q&A Captioning = Video

: b ) Z
g 2 I = :Ei s £ E E E
3 < S = §' é; 87" T oax S " £ o2 88 3 §~ ) §~ 2c g 28
= S B > 32 >Z2 mE 28 O 85 9. 85 0O8 = B8 2 428 3% 28 &=
<] 5 [apa) . ZTE 7= & <= .o o¥ME On Og .9 5 M= = 5= as = 8=
2 £ €s 9 P By ¥ Oz 9y £ 88 08 o8 2y ®» B £5 Os Sy 2 58

Model 5 = S <8 & B2 02 aEESE & ET OT ZT &€ & 58 v g me =22 &2

256 Tokens per Tile
MetaCLIP-L [150] 0.3B 224/14 61.8 71.1 625 402 733 746 653 649 885 79.8 1134 904 1335 1162 67.1 480 448 47.1 627 39.0 460 483
MetaCLIP-G [150] 1.8B 224/14 60.3 68.1 613 39.1 728 749 654 659 882 80.1 1142 91.8 1344 1165 66.0 49.0 465 46.5 62.5 450 447 489

PEjang Gt 1.7B*224/14 702 79.8 79.1 475 746 760 70.6 643 883 80.6 1163 92.0 1364 120.5 69.5 56.6 49.0 559 69.9 612 500 53.6
576 Tokens per Tile

CLIP [103] 03B 336/14 69.6 768 782 503 729 763 71.8 649 88.0 80.4 1140 909 1344 116.6 68.5 508 46.6 522 650 446 463 499
AIMV2-L [36] 03B 336/14 66.7 741 749 452 724 714 735 656 89.0 81.7 1164 925 137.1 119.5 66.6 54.1 434 543 70.6 560 473 52.7

SigLIP2-s0 [135] 0.4B 384/16 555 61.4 549 333 723 765 70.1 660 88.6 812 118.0 958 1383 119.8 66.5 543 449 528 66.8 58.6 49.6 53.3
SigLIP2-g-opt [135] 1.1B 384/16 562 63.1 553 340 724 770 703 66.7 89.6 81.6 117.7 949 137.8 120.3 66.5 539 462 539 66.6 53.8 485 547

PEjang [el} 1.7B*336/14 77.5 82.1 885 61.8 774 79.7 802 664 89.8 825 1203 97.4 1402 1232 71.9 59.8 494 627 741 640 53.1 55.6
1024 Tokens per Tile

SigLIP2-so [135] 04B 512/16 569 66.0 56.5 343 709 764 699 662 884 81.2 117.8 947 137.8 1209 67.8 462 47.0 449 66.7 392 345 451
PEcoreL 0.3B 448/14 67.1 724 783 464 712 764 740 637 88.8 79.0 113.9 91.5 1345 1157 629 514 470 512 627 49.6 478 50.1
PEjang L 0.3B 448/14 783 828 89.3 652 759 785 788 644 89.6 813 117.8 947 138.1 120.7 71.6 56.5 47.0 572 68.0 59.8 523 547
AIMv2 3B [36] 27B 448/14 67.5 73.0 782 465 722 788 792 662 88.3 817 119.0 958 139.7 121.5 65.1 540 49.6 554 673 49.6 499 525
InternViT2.5 5.5B 448/14 674 74.6 743 476 729 759 713 648 877 79.7 1104 853 1325 113.5 56.8 52.0 46.0 49.6 650 50.6 49.6 513
6B [18]

PEcoreG 19B 448/14 68.0 734 812 47.6 69.7 764 743 62.5 89.1 79.6 113.0 91.6 1345 1129 67.6 532 460 543 67.0 512 487 52.0
PElangG 1.7B*448/14 178.6 81.8 89.8 67.8 75.0 80.3 823 66.7 89.6 82.8 119.6 952 140.3 1234 71.8 59.0 49.6 61.8 73.9 60.0 52.6 56.3

Table 31: 4+1 Tile Llama 8B MLLM Results. Llama 3.1-instruct 8B [80] is used as a language
model. *PEj,y, has 1.7B parameters since we discard the last 3 layers during language alignment. All
MLLMs are trained with dynamic tiling for different image sizes and aspect ratio. We use up to 4
image tiles of 448 x 448 (or the corresponding resolution for each encoder). The image tiles follow
after a thumbnail input, similar to prior work [75]. TEvaluation on an model that was interpolated
without additional training (i.e., zero-shot resolution).
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PEcoreL 0.3B 448/14 63.5 739 674 405 722 757 692 640 894 80.2 113.3 88.7 1352 1159 66.5 573 49.6 57.8 67.7 60.8 523 555
PEja,L 0.3B 448/14 70.2 80.6 80.7 46.0 735 76.8 728 64.1 894 81.0 1164 934 137.6 118.1 704 583 516 598 674 622 534 554
DINOV2 [96] 11B 448/14 313 217 147 246 643 610 189 595 889 769 110.1 87.3 132.1 110.8 693 543 469 565 634 56.8 497 522
AIMV2 3B [36] 27B 448/14 660 767 705 414 752 719 742 662 894 819 1192 964 1392 1220 67.6 563 459 580 678 60.8 514 539
InternViT2.5 [18] 5.5B 448/14 642 782 653 39.6 73.6 764 70.1 645 893 81.7 117.6 959 1384 118.6 728 56.1 50.3 59.1 673 56.6 51.1 522
PEcoreG 1.9B 448/14 648 759 68.8 41.6 729 752 679 624 89.7 80.7 113.1 91.7 1352 1123 70.5 57.0 48.7 583 669 60.8 529 545
PElangG 1.7B*448/14 729 81.6 83.7 49.5 767 719 749 645 90.3 819 1189 946 139.8 1223 72.1 604 54.1 62.5 683 66.6 54.2 56.8

Table 32: MLLM Results with QwenLLM 2.5 7B. Same setting as Tab. 5, but with QwenL.M2.5
7B [153] as the language model. Although PE;,y, is aligned to Llama3.2 3B, the language alignment
transfers well to a different language model.
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576 Tokens per Image
CLIP [103] 03B 336/14 65.0 66.7 614 71.6 57.6 625 545 732 728
AIMV2-L [36] 03B 336/14 633 654 616 69.6 550 60.0 520 71.1 715
AIMv2-L Dist. [36] 03B 336/14 62.6 64.8 610 694 544 59.0 513 70.8 70.0
SigLIP2-so [135] 04B 384/16 674 68.8 665 71.0 603 61.8 585 762 76.0
SigLIP2-g-opt [135] 1.IB  384/16 66.5 679 66.1 70.1 588 61.7 57.1 755 750
| Gt 1.7B* 336/14 689 69.8 67.5 732 615 640 608 77.3 771.7

1024 Tokens per Image
InternViT2.5 L [18] 0.3B  448/14 669 693 66.7 726 583 63.1 572 742 740

SigLIP2-so [135] 04B 512/16 69.6 714 692 744 613 648 603 779 772
PEcore L 03B 448/14 59.7 61.7 553 669 53.1 588 48.0 685 675
PEjypg L 03B 448/14 705 71.8 702 73.0 63.7 66.1 62.7 788 789
DINOv2 [96] 1.IB  448/14 649 672 625 705 57.0 61.0 545 73.1 73.1
AIMv2 3B [36] 27B 448/14 36.1 37.6 34.1 40.7 327 362 320 369 38.6
InternViT2.5 6B [18] 55B 448/14 68.0 702 676 722 606 640 587 753 752
PEcore G 1.9B  448/14 66.6 683 644 723 587 627 560 751 750
PEjang G 1.7B* 448/14 713 719 699 751 642 673 63.0 794 79.2

Table 33: Llama MLLM-Based Zeroshot RefCOCO. With Llama 3.1-instruct 8B [80] as the LLM.
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576 Tokens per Image
SigLIP2-so [135] 04B 384/16 700 73.6 73.0 743 609 627 599 784 772
SigLIP2-g-opt [135] 1.1B 384/16 699 733 724 73.6 605 623 60.7 784 782
PEjang Gt 1.7B* 336/14 70.1 73.4 72.0 753 620 642 612 784 717

1024 Tokens per Image
InternViT2.5 L [18] 03B 448/14 68.1 724 69.1 741 593 624 56.6 752 755

SigLIP2-s0 [135] 04B 512/16 705 741 737 744 617 629 610 786 77.9
PEcoreL 03B 448/14 665 704 678 715 577 611 562 758 753
PEjypL 03B 448/14 704 744 726 746 622 640 620 790 78.7
DINOV2 [96] LIB 44814 693 734 711 739 600 639 590 764 76.7
AIMv2 3B [36] 27B 448/14 676 714 617 723 592 612 563 764 764
InternViT2.5 6B¥ [18] 5.5B 448/14 728 777 765 711 636 660 622 80.0 79.5
PEcoreG 19B 44814 705 740 718 758 615 648 60.1 785 77.3
PEjangG L7B* 448/14 721 754 729 763 642 659 629 79.7 79.7

Table 34: Qwen MLLM-Based Zeroshot RefCOCO. With QwenLLM 2.5 7B [153] as the LLM. All
MLLMs report zeroshot results on RefCOCO/+/g datasets. * Trained with RefCOCO/+/g beforehand.
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256 Tokens per Tile
MetaCLIP-L [150] 03B 224/14 67.1 69.3 650 732 605 649 565 743 734
MetaCLIP-G [150] 1.8B  224/14 66.0 679 632 719 592 629 558 738 73.1
PEjang Gt 1.7B* 224/14 703 71.6 69.6 73.7 633 662 62.6 78.6 782
576 Tokens per Tile
CLIP [103] 03B 336/14 685 70.7 66.6 741 61.1 659 581 76.0 75.1
AIMV2-L [36] 03B 336/14 66.6 684 655 714 593 634 565 742 742
SigLIP2-so [135] 0.4B 384/16 66.5 679 66.1 70.1 588 61.7 57.1 755 750
SigLIP2-g-opt [135] 1.IB 384/16 66.5 682 656 70.1 59.0 623 580 748 740
PEjapg (el 1.7B* 336/14 719 73.6 715 749 648 673 639 804 80.6
1024 Tokens per Tile
SigLIP2-s0 [135] 04B 512/16 67.8 692 678 71.2 599 625 590 769 76.0
PEcoreL 03B 448/14 629 653 599 69.2 56.6 622 520 70.1 70.0
PEjy,L 03B 448/14 71.6 73.0 708 743 652 672 629 79.7 79.7
AIMv2 3B [36] 27B 448/14 65.1 669 629 71.1 581 624 556 71.8 722
InternViT2.5 6B ¥ [18] 5.5B 448/14 56.8 61.0 564 658 51.0 57.0 46.1 580 589
PEcore G 1.9B 448/14 67.6 692 658 724 599 64.1 583 751 756
PEla“gG 1.7B* 448/14 718 72.6 70.7 74.6 648 66.6 64.6 804 80.3

Table 35: 4+1 Tile Llama 8B MLLM-Based Zeroshot RefCOCO. With Llama 3.1-instruct 8B [80]
as the LLM. We use up to 4 image tiles of the encoder’s native resolution, with a thumbnail image in
front, similar to prior work [75]. ¥Trained with RefCOCO/+/ g beforehand.
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E Additional PEg,,. Results

E.1 Alignment Method Derivation

Here we detail the analysis performed to arrive at the spatial alignment method discussed in §5.

E.1.1 Core Feature Analysis

tial properties of the features

for PE oG in the range of lay- -

ers where it performed opti- F J
mally for zero-shot tracking in

§3. In Fig. 18, we plot (1) the ot T

pairwise feature cosine similar- ' = =
: :
ity between the pink token and
all others, (2) the head average N
Best | 32 \

attention map for that token, ! _ ! ‘
and 3) the full attention ma- Layer 30 Layer 31 Layer 32 Layer 33 Layer 34
trix (HW x HW).

We begin by analyzing the spa- ‘ .

Figure 18: PE oG Feature Analysis. To understand the dichotomy
An 18 Layer Decoder. Re- between optimal PE,. features for spatial tasks observed in Fig. 4,

markably, the cause for the e 4palyze the spatial properties of the features between layers 30
tracking performance peak at .. 4134

layer 32 is abundantly clear

from observing the visualizations. Up until layer 32, the attention maps remain local. However, that
changes abruptly at layer 33, at which point several tokens in the background of the image become
“global” tokens. As shown by the vertical lines in the full attention matrix, starting from layer 33 every
token attends to them. Thus, every layer 33 and up become part of a decoder for global information.

This is not a new phenomenon. Recent work [23] shows this happening in all modern vision
transformers above L scale. But notably these “global tokens” are not necessarily harmful. Given
the optimal layer for most tasks in Fig. 4 lies within the global token region, the information they
aggregate is useful downstream. However, tracking in §3 is zero-shot and relies purely on spatial
correspondences, meaning it cannot make use of the global tokens. This explains why tracking
peaks right before their introduction, while tasks that rely on semantic understanding or have larger
decoders that can benefit from them do well with the later layers.

E.1.2 Spatial Alignment Method

Given the analysis in §E.1.1, we have two objectives in creating a spatial alignment method: (1) we
must preserve the optimal semantic information of the model (including the global tokens) that peaks
around layer 40, and (2) we must do so while emphasizing local alignment in service of spatial tasks
with shallow decoders. The first can be easily achieved by aligning with the model’s own features
(e.g., with MaskFeat [144]), but the second is more challenging. To accomplish this, we employ
the Segment Anything Model (SAM) 2.1 [108] in a novel way to enforce spatial correspondence
information in PE.

Retaining Semantics. To retain the strong semantic features from PE_., we finetune the model
with itself as a teacher. Specifically, we train the model to maximize the cosine similarity between
its last layer and the frozen layer 41 features of its initialization (a layer around the peak for many
tasks in Fig. 4). On its own this would be a tautology, so we apply heavy regularization to the
student: DropPath [49] and LayerScale [132] similar to language alignment, as well as performing
MaskFeat [144] with 75% masking. We keep the teacher fixed in contrast to other state-of-the-art
spatial models, which all employ an EMA teacher [96, 135]. This could potentially help, but we opt
for simplicity.

Encouraging Locality. While we could “retain” locality by self-distilling from layer 32 features,
that may be less effective as we are already distilling another layer of the model. Instead, we turn to a
model that is explicitly tuned for locality: SAM [57, 108]. Notably, several works [107, 113, 116]
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have shown SAM to not be an effective teacher when distilling from multiple sources (though recently
[44] has shown it can help with some tricks). However, upon observation of the raw features of SAM
2.1-L (Fig. 19), the main problem may be the same one we are currently trying to solve: SAM has
global tokens as well! In this case, they appear as dark spots in a grid-like arrangement across all
examples in Fig. 19 raw features.

Using the features of a model that itself has global SAM 2.1 Mask Logits
tokens to mitigate the effect of global tokens is
dubious at best. But, we do not have to use

[ -

SAM'’s features to learn locality. At its core, SAM

is a model that transforms points into spatially P B
contiguous masks of select object. If what we
want is smooth, locally consistent features, we

can use the mask predictions themselves. Specif-
ically, we query SAM 2.1-L with 1024 points ar-
ranged in a 32 x 32 grid. For each point, SAM Figure 19: SAM 2.1 Feature Similarity. The
returns a H x W mask logit the size of the im- cosine similarity between the pink marked token
age, which it normally would threshold and NMS. and all others for SAM 2.1-L [108] features vs.
However, we instead concatenate those logits into  our proposed mask logit features.

a H x W x 1024 tensor and use that as the feature

map for alignment. This explicitly produces locally well-aligned features compared to the underlying
feature space and has no spatial artifacts caused by global tokens, as shown in Fig. 19.

Then to align, we distill the spatial correspondences between tokens by computing their pairwise
cosine similarity for both the student and the teacher (creating a HW x HW matrix for each) and
aligning them with MSE loss. Unlike SAM’s underlying feature space (which [44] shows may be
brittle to interpolation), the mask logit features are robust to interpolation, so we simply interpolate
them down and train at the PE.,. model’s original 448px resolution. Finally, like for self-distillation
we add the same masking and regularization. For both teachers, we apply loss to all tokens and add
no extra parameters other than LayerScale.

E.2 Layer Analysis Details

In Tab. 36, we present the raw numbers for the layer analysis plots in Fig. 9. Note that layer analysis
was not performed exhaustively on every layer.

Detection Depth Tracking Segmentation
5 z z :
2 0 s 4 O s 2 L) 3 2 o 3
5§ & = & 5 & 3 & 5 = 3 g 8 = X &
L: j64] m < 53] 53] m << 53] (3] m < (3] 3] m < 3]
ayer (- (- 2 ~ [ [ 2] [ o o 7 - (= (= 2 -
50 350 444 334 445 031 026 047 028 428 574 703 61.5 386 46.1 214 489

49 373 448 343 448 029 026 049 028 448 574 702 614 398 462 236 493
48 383 448 357 452 028 027 044 028 455 575 707 615 404 463 253 490
47 393 447 37.0 452 028 0.26 043 027 46.8 577 712 613 409 466 286 49.0
46 39.8 450 384 456 027 026 042 026 49.1 57.8 713 61.1 414 463 319 49.1
45 40.8 450 394 455 026 027 040 027 507 579 715 61.1 415 458 343 489
44 414 453 405 459 026 0.26 038 027 51.7 58.1 71.1 60.7 41.5 456 36.8 487
43 418 454 412 459 026 026 034 026 524 581 704 60.5 413 455 387 480
42 42.1 454 419 461 026 027 035 026 53.1 582 69.8 59.8 414 451 404 47.6
41 426 454 426 460 026 029 036 027 542 582 692 59.6 41.1 446 413 468
40 428 454 431 461 026 027 035 029 545 578 685 595 41.1 444 420 46.6
39 42.6 451 434 459 025 025 035 026 549 574 680 593 41.1 437 425 46.1
38 432 449 438 459 025 028 035 026 549 568 67.6 589 402 428 433 455
37 430 444 437 453 028 029 034 028 553 564 672 587 40.1 414 428 449
36 429 440 437 445 029 030 035 030 558 560 667 584 393 40.1 426 433
35 424 431 433 443 029 031 033 029 556 558 663 582 384 389 421 421
34 420 425 427 431 029 031 036 029 557 556 658 579 383 375 413 412
33 41.1 412 420 423 030 032 035 032 560 556 654 580 36.8 363 404 40.1
32 40.5 404 41.1 414 031 034 035 033 568 555 649 577 364 346 396 38.6
31 388 39.1 40.0 399 034 039 037 037 564 552 643 574 347 332 377 369
21 247 269 273 273 051 052 049 052 521 528 552 538 160 168 194 192
11 19.6 205 207 205 056 060 056 060 437 40.6 417 416 86 79 89 87
1 12.7 121 122 119 066 0.70 0.69 070 282 164 175 162 3.1 3.0 3.1 3.1

Table 36: Raw Spatial Layer Analysis Results. The raw values for the plots in Fig. 9.
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E.3 Smaller Models

We additionally distill smaller models from the original PE,,aG checkpoint by applying the same
strategy as in spatial alignment (Sec. 5): train jointly with a semantic teacher loss and a spatial teacher
loss. To align PEp.a1G, the semantic teach was an intermediate layer of the original PE¢..G model

and the spatial teacher was SAM 2.1 [108].

For smaller spatial models, we repeat this alignment by finetuning the corresponding PE. checkpoint
with the two loss functions on a portion of the pretraining data. However, unlike PEp.iG, we do not
align the smaller models to themselves and SAM 2.1. Instead, we set both teachers to PEgq;41G. The
semantic pairwise similarity teacher loss is applied directly on the last layer of each model, and the
direct distillation semantic teacher loss is applied after a linear layer (to match the feature dimension).

Results for the distilled models are given below in Tab. 37. Each model is trained with 1024 tokens

as input (448px for patch 14, 512px for patch 16).

Tracking Segmentation

DAVIS (1) [101] ADE20k (1) [164]
Encoder Res/Patch Best Last Idx Best Last Idx
PEgpatiat G 448/14  61.5 61.5 50/50 49.3 48.9 49/50
PEgpatialL 448/14  60.6 60.1 23/24 48.1 48.1 24/24
PEgpaial B 512/16 589 584 11/12 444 444 12/12
PEgpatialS 512/16 575 57.5 12/12 375 375 12/12
PEgpaiial T 512/16 55.0 54.6 11/12 27.6 27.6 12/12

Table 37: Distilled Spatial Models. Smaller spatial models compared to the original PEp.iaG

teacher checkpoint. Evaluation with the same settings as Tab. 6.
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E.4 Additional Qualitative Results

Figure 20: More Visualizations of the feature space following Fig. 10. After the image itself, column
1 is PE oG last layer features, column 2 is PE....G aligned to its own layer 41, column 3 is PE G
aligned to SAM 2.1-L [108] mask logits, and column 4 is PE..G aligned to both, denoted PEpaG.
See §B.3.2 for visualization method. Example images are from SA-1B [57].
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F Broader Impacts

This work covers several artifacts and techniques that may or may not have broader societal impact.
In this section, we enumerate those components and discuss what positive and negative implications
they may have for each.

PE ore. The core PE model is a CLIP model that matches the given image or video and a string of text.
This can be used in data curation, image or video search and retrieval, as well as several downstream
use cases where vision and language alignment are necessary. PE. improves upon prior work in
this area substantially in both robustness (see Tab. 3) and fairness (see Tab. 25), as well as extending
to video (Tab. 4). This has the potential to improve standalone use cases such as search, but also it
has the potential to improve downstream machine learning system, for instance by providing better
data curation. However, PE.. is not perfect and still makes errors (see benchmarks above). This has
the potential for negative impact if PE .. is used without regard to the possibility of mistakes.

PE4ng. Language alignment extend PE to downstream applications using Multimodal Large Language
Models (MLLMs). While, we do not release any complete MLLM artifacts ourselves in this work,
the PE;.n we intend to release is an important component of such a system. While the usage of PEju,g
in these systems has the potential to increase performance (especially on tasks requiring OCR, see
Tab. 5), all MLLM systems have potential to hallucinate and generate errors. A system developed
with PEj,,; would be no exception to this issue.

PEpata1. Similarly, spatial alignment extends PE to downstream applications such as tracking,
segmentation, and detection. PEgy,a improves performance in these areas vs. prior models, which
has the potential to improve security systems, image editing systems, and other traditional computer
vision systems. However, that naturally also comes with the risk that these systems can be used for
unintended purposes. To mitigate this, we release only the PEp,;, feature encoder and not any of the
downstream application heads.

PE Video Dataset (PVD). Along with the models, we also release a novel annotated video-caption
dataset consisting of high quality samples selected for high motion content. The captions are generated
by an MLLM and then refined by human annotators. Because of the quality of this dataset, this
has the potential to improve downstream applications such as video generation, video-language
alignment (which is what this work uses it for), and video benchmarking (with our PVD Benchmark).
However, it is important to note these captions were initially generated by a model. Even with
human refinement, there may be mistakes or hallucinations left in the captions, which could impact
downstream use. Similarly, downstream uses of the dataset such as training video generators may
have harmful implications. To address this, we will control the access to the dataset as well as include
appropriate license terms.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We show how we build a state-of-the-art CLIP model for images and video in
§2, show how the resulting model has general intermediate features in §3, and show how we
use alignment tuning to create state-of-the-art models for language tasks in §4 and spatial
tasks in §5. In each case, we provide comprehensive analysis and results in both the main
paper and appendix.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We try to discuss limitations when appropriate, for instance for video retrieval
performance in §2.3 “zero-shot video results” and PEpa tracking performance vs. the
SAM aligned model in §5 “effects”. Otherwise, we tried to be as comprehensive as possible
with evaluations to show the generality of our approach. We also provide evaluation on
Dollar St [110] for fairness in the additional benchmarks in Appendix C.4.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was

only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

« If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: This work does not contain any theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide thorough experimental and implementation details in Appendix B
as well as full descriptions of what and how hyperparameters were obtained in Appendix B.
The only caveat is the pretraining data, which we are not allowed to describe. However, we
describe the curation and quantity, which are the most important peices for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will release evaluation code, checkpoints, and the dataset described in
Appendix A.l upon de-anonymization. However, we cannot provide code for submission
due to the difficulty of anonymizing it, or any other private datasets used.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: To the best of our ability, we provide exact experimental details and hyper-
parameters in Appendix B as well as ablations for obtaining those hyperparameters in the
main paper and Appendix B.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: Due to the cost of training large models, repeating most of the experiments in

the paper would be prohibitively expensive. Thus, we do not provide error bars. However,
we attempt to be as thorough as possible by testing on a wide variety of benchmarks.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Given the number of experiments conducted in this work, we are unable to
give an exhaustive list of compute used for each experiment. However, batch sizes, hyper-
parameters, and data quantities are provided for each experiment to facilitate reproduction
and to give an idea of the compute required. The exact compute cost will depend on the
efficiency of the implementation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the ethical guidelines where applicable: annotators for PVD were
compensated according to local laws and regulations and the PVD dataset data we release is
properly licensed and conforms to legal and privacy agreements.
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Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss broader impacts in Appendix F.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The models we release are feature extractors or CLIP models that align images
or videos and text. We do not release any generative or language models that have a high
risk for misuse. The PE Video Dataset (PVD) we release originates from officially licensed
sources and is not scraped from the web.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: For code, we cite the repository used and their licenses where applicable in
Appendix B, and use private code for the remainder. Models other than our own are used
for benchmarking purposes or data generation, and all licenses are followed therein, (e.g.,
Llama 3 is used for data generation but not to improve a language model, following the
Llama 3 license). Code and models released in this paper will be under Apache 2.0 and the
PE Video Dataset will be licensed under a non-commercial research license. These licenses
will accompany the artifacts when released.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The public release of the models and PE video dataset will include licensing
information alongside them as well as the training details presented in this work. However,
these assets are not included at submission time, so we mark this as non applicable.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: Instructions and compensation details are included in Appendix A.2.5.

Guidelines:
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16.

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
Justification: A note of the review process is included in Appendix A.2.5.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are used to generate data for our data engine, and the usage of LLMs is
thoroughly documented for that purpose (in §2.2 and Appendix A). Otherwise, LLMs were
not used to generate any of the techniques or methodology in the paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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