Perception Encoder: The best visual embeddings are not at the output of the network

> ¹Meta ²UT Austin ³MBZUAI ⁴Fudan University *Joint first author [†]Work done during internships at Meta

Abstract

We introduce Perception Encoder (PE), a family of state-of-the-art vision encoders for image and video understanding. Traditionally, vision encoders have relied on a variety of pretraining objectives, each excelling at different downstream tasks. Surprisingly, after scaling a carefully tuned image pretraining recipe and refining with a robust video data engine, we find that contrastive vision-language training alone can produce strong, general embeddings for all of these downstream tasks. There is only one caveat: these embeddings are hidden within the intermediate layers of the network. To draw them out, we introduce two alignment methods: language alignment for multimodal language modeling, and spatial alignment for dense prediction. Together, our PE family of models achieves state-of-the-art results on a wide variety of tasks, including zero-shot image and video classification and retrieval; document, image, and video Q&A; and spatial tasks such as detection, tracking, and depth estimation. We release our models, code, and novel dataset of synthetically and human-annotated videos: https://github.com/facebookresearch/perception_models

1 Introduction

For the last decade in computer vision, pretrained vision encoders have been the core building block for most applications requiring *perception*. From million-scale ImageNet [25] pretrained convolutional networks [41, 60, 79, 121, 128] to billion-scale web-pretrained transformers [19, 24, 28, 53, 127, 156], the dominant strategy in vision has been to adapt large-scale pretrained encoders to downstream tasks.

Today, these pretraining objectives come in several flavors: vision-language contrastive losses [103, 158] learn a global vision and language embedding well-suited for zero-shot classification and retrieval as well as provide vision-language alignment for open-world [68, 92] and generative tasks [105, 111]; captioning losses [36, 134] learn to predict image descriptions using a language decoder, which transfers well to downstream multimodal language model (MLLM) tasks; and spatially self-supervised losses [43, 96] learn dense spatial correspondences without language supervision, making them useful for tasks requiring precise localization like object detection. Many works are now attempting to combine two or more of these techniques in different ways [19, 33, 34, 36, 44, 88, 107, 156]. While many have been successful, the complexity of these strategies grows exponentially with number of use cases, which can make scaling difficult. There has not yet been shown a *single*, *simple*, *and easily scalable* pretraining technique that can learn state-of-the-art features for all downstream tasks.

In this work, we discover that *global vision-language contrastive learning alone* can be one such approach. We begin by building PE_{core} (Fig. 1, left), a large-scale contrastively pretrained model with state-of-the-art zero-shot performance on *both* image and video (§2). To accomplish this, we first focus on developing a strong *image-only* contrastive pretraining recipe to extract general knowledge from billion-scale image-text data (§2.1). We then use the resulting model as a frame-based encoder to develop a *video* data engine (§2.2) for generating well-aligned video captions. Finetuning on this synthetic video-text data substantially improves performance on *both image and video* classification

Figure 1: **Perception Encoder (PE)** is a family of large-scale vision encoder models with state-of-the-art performance on a large variety of vision tasks. By using a robust contrastive pretraining recipe and finetuning on synthetically aligned videos, PE not only outperforms all existing models on classification and retrieval (§2), but it also internally produces strong, general features that *scale* for downstream tasks (§3). PE unlocks the ability for large-scale contrastive pretraining to transfer to downstream tasks with alignment tuning to capitalize on those general features (§4, §5).

and retrieval tasks. Finally, we scale our robust image pretraining and well-aligned video finetuning strategy to 2B parameters to produce $PE_{core}G$ (§2.3), a single unified encoder that outperforms SigLIP2 [135] on zero-shot image tasks and InternVideo2 [143] on most zero-shot video tasks.

After analyzing the performance of PE_{core}G, we found a surprising result: *inside the model were specific features aligned to OCR, VQA, grounding, detection, depth estimation, and tracking* (§3). Compared to the state-of-the-art models with captioning [36] and spatially self-supervised [96] pretraining, our contrastive encoder has specific layers that, when used as frozen features, matches or exceeds the performance of the other two pretraining techniques *on tasks they should be the best at.* The only problem is—these features exist at *different layers* for each task.

By exploiting this phenomenon with *alignment tuning* (Fig. 1, right), we show it is possible to align these features to the end of the network to create state-of-the-art encoders for downstream MLLM (§4) and spatial (§5) tasks—all following the same easily scalable contrastive pretraining. Thus, Perception Encoder unlocks the potential to scale one simple pretraining method to solve many downstream vision tasks. We will release our models, code, and novel PE Video Dataset of 1M high-quality stock footage videos and 120K human-refined captions.

2 Perception Encoder: Core

To build Perception Encoder (PE), we start by training a large-scale, robust, and performant vision-language contrastive model for image *and video*. We have two objectives: to enhance the scalability and data efficiency of contrastive training, and to create a unified model for image and video.

We decouple image and video training into two stages. We first develop a strong *image* pretraining recipe (§2.1) with several regularization techniques to create a robust starting point. Then we use the resulting image model as a frame encoder to develop a *video data engine* (§2.2) supported by our novel human-refined video-text dataset to generate aligned captions for video clips. Finally, we train the image encoder on the resulting aligned video data (§2.3). Using our data engine design, this short training step substantially improves *both* image and video performance.

2.1 Robust Image Pretraining

In the first stage of pretraining, we want to learn as much visual information as possible from a large set of image-text data with high regularization, stability, and training efficiency in mind.

Setup. We track our changes with OpenCLIP [50] ViT-L/14 at 224 resolution as a baseline (Fig. 2.1). We fix a training budget of around 1T GFLOPs (*i.e.*, a ZFLOP), and ablate on a fixed 2.3B noisy image-text dataset curated using the MetaCLIP [150] text-only curation pipeline, and start by training for 12B samples seen. To assess *generality*, we report ImageNet val [25] zero-shot classification results as well as an average of 6 common robustness metrics: ImageNet val [25], ImageNet v2 [109], ObjectNet [4], ImageNet Adversarial [46], ImageNet Rendition [45], and ImageNet Sketch [140].

Training. Motivated by [69, 70, 77, 128, 133], we begin by improving training efficiency with *progressive resolution* (Fig. 2.2). By evenly splitting the baseline 12B sample run into 98, 154, and 224 resolution stages (4B per stage), we half training FLOPs while maintaining performance. We then use the extra budget to double global *batch size* (Fig. 2.3) from 32K to 64K, increasing total samples from 12B to 24B. This makes hard negatives more probable, increasing the

"task difficulty" of CLIP. Finally, we switch from AdamW to *LAMB* [154] (Fig. 2.4), which allows us to stably increase learning rate from 5×10^{-4} to 2×10^{-3} and better fit the CLIP objective. Overall, these changes improve +1.0% on ImageNet val and a similar +1.6% on robustness.

Modeling. To assist with scalability [35, 128], we add a higher resolution (Fig. 2.5) stage at 336 pixels. To keep FLOPs the same, we adjust the schedule to 10B samples at 98 resolution, 8B at 154, 4B at 224, and 2B at 336. To improve extrapolation, we also add 2D RoPE [124] (Fig. 2.6) to each attention layer, keeping the original position embedding. Finally, we follow [158] in constructing the CLIP embedding using an attention pooling transformer block (Fig. 2.7). Surprisingly, we found keeping the class token as an input to this block is important for small model performance. These changes improve ImageNet val by +1.1% but robustness threefold, by +3.2%.

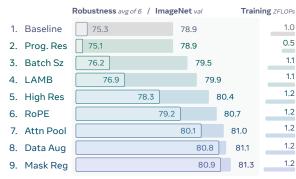


Figure 2: **Robust Image Pretraining.** We tune our pretraining recipe (§2.1) to maximize performance on a fixed set of data, starting with an OpenCLIP [50] ViT-L/14 model. We report cumulative zero-shot classification results for each modification. The inner bars show robustness evaluation, calculated as the average of 6 robustness benchmarks [4, 25, 45, 46, 109, 140], and the outer bars show ImageNet val [25] alone. Several changes significantly improve robustness, indicating that ImageNet val scales more with data, while robustness can scale with refined training techniques.

Regularization. Despite training on billions of samples, we find *data augmentation* (Fig. 2.8) still important. Adding heavy random cropping, brightness/saturation jitter, and horizontal flip generally improves robustness without adverse downstream effects (e.g., for OCR). Finally, we add *mask regularization* (Fig. 2.9) by duplicating and masking 1/16th of the input batch. At the output, the masked tokens are aligned to their unmasked counterparts by maximizing cosine similarity. Together, these regularization changes improved ImageNet val by +0.3% and robustness by +0.8%.

Overall, our recipe improves ImageNet val by +2.4% and robustness by a significant +5.6% while keeping FLOPs similar and maintaining or improving scaling behavior (see Appendix C.1).

2.2 Bootstrapping a Video Data Engine with Perception Encoder

Our next step is to extend the image-only encoder to video. Unlike web-scale image-text data, which comes in many cases with human-generated descriptive alt-text information, videos with aligned language annotation are inherently scarce and often low quality. Inspired by the recent success of image data engines [57, 63, 94, 108, 149], we address the lack of high quality aligned video captions by developing a robust video data engine

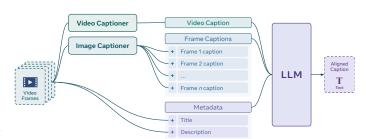


Figure 3: **Video Data Engine.** We use a PE-based video captioner for video-level captions and an existing image captioner [80] on sampled frames. We use these components along with the video metadata to synthesize short captions with a text-only LLM [80].

to generate them. Our approach (Fig. 3) represents the first large-scale exploration of this kind.

Video Data Engine. We build our data engine in 3 parts: (1) we construct a video captioning model using an early image-only version of PE as a frame-level encoder and Llama [80] as the language decoder. We train with the PLM [21] MLLM training recipe and data mix. In total, the mix consists of 64.7M images and videos covering natural images, charts, documents, exocentric and egocentric videos. (2) to further boost captioning performance, we collect a set of 265K videos (part of which we release as PE Video Dataset, see Appendix A.1), caption them with our base video captioner, and ask human raters to refine the captions. We then finetune our video captioner with this human refined data, significantly improving captioning quality (see Appendix C.2). (3) finally, we synthesize

the aligned video captions by incorporating captions from our video captioner, Llama 3.2 [80] as a per-frame image captioner, and the existing title and description metadata (Fig. 3) summarized with a Llama 3.3 70B text model (see Appendix A.2.4 for prompts).

Video Training. We use the resulting data engine to generate information-dense captions for a diverse set of 22M videos, with which we finetune the image-only PE model. To do so, we use PE as an *frame-level encoder*: for each video, we uniformly sample 8 frames, extract the CLIP embedding for each, and average pool to obtain a single video embedding for text embedding alignment. Despite its simplicity, we find this technique produces a strong joint image-video encoder.

Ablations. In Tab. 1, we ablate the impact of each component of the video data engine by finetuning an intermediate image-only PEcore checkpoint on the recaptioned videos. Compared to the image-only baseline encoder (first row), our video data engine significantly enhances zero-shot classification and retrieval performance for both image $(72.6 \rightarrow 78.2)$ and video $(50.9 \rightarrow 61.6)$. Notably, using videolevel and frame-level captions provides significant improvements over relying solely on metadata such as video title and description (second row), highlighting the importance of building a robust video data engine to compensate for noise in web videos.

		_	_	e	I	mage Z	ero-Sh	ot	Video Zero-Shot					
Title	Description	Video Caption	Frame Caption	Average Image	ImageNet val [25]	ImageNet v2 [109]	ObjectNet IN Classes [4]	MS-COCO $txt \rightarrow img [74]$	$\begin{array}{c} \text{MS-COCO} \\ img \rightarrow txt [74] \end{array}$	Average Video	Kinetics 400 [54]	Kinetics 600 [54]	MSR-VTT $txt \rightarrow vid$ [151]	$\begin{array}{l} \mathbf{MSR\text{-}VTT} \\ \mathit{vid} {\rightarrow} \mathit{txt} \ [151] \end{array}$
				72.6	83.3	77.8	85.8	49.4	66.8	50.9	69.7	68.4	38.0	27.3
✓	\checkmark			75.4	83.2	78.2	87.1	47.3	66.0	56.0	74.1	73.5	39.0	37.3
\checkmark	\checkmark	\checkmark		78.2	83.5	78.4	86.8	56.0	74.3	60.9	73.8	73.4	47.6	48.8
✓	\checkmark	✓*	\checkmark	78.1	83.7	79.0	87.7	54.1	73.0	60.9	75.4	75.1	46.7	46.5
✓	✓	✓	✓	78.2	83.7	79.0	87.5	54.6	73.2	61.6	75.8	75.5	47.4	48.1

Table 1: **Video Data Engine Ablation.** We ablate our video data engine in Fig. 3 by finetuning on an in-development image-only version of PE by averaging the frame embeddings to create a single video CLIP embedding. Video captions are generated by our captioner trained with or without (\checkmark^*) human-refined data. Frame captions are generated by the Llama 3.2 vision model [80]. Taken together, the result is a huge boost to *both* image and video zero-shot performance. See Appendix C.2 for more ablations and scaling behavior.

2.3 A Unified Encoder for Image and Video

Using a robust, scalable image pretraining recipe and video-pretraining data recaptioned by the proposed video data engine, in this section we present PE_{core} , a unified image-and-video encoder.

Model Architecture. To capitalize on the promising scaling behavior observed in $\S 2.1$, we scale the largest PE_{core} model to 2B parameters (G scale). Tab. 2 shows the detailed model configuration of the vision and text transformers and the dimension of the output clip embedding space.

Scale	Tower	Params	Width	Depth	MLP	Heads	CLIP Dim	
В	Vision	0.09B	768	12	3072	12	1024	
ь	Text	0.31B	1024	24	4096	16	1024	
L	Vision	0.32B	1024	24	4096	16	1024	
L	Text	0.31B	1024	24	4096	16	1024	
G	Vision	1.88B	1536	50	8960	16	1290	
ď	Text	0.47B	1280	24	5120	20	1280	

Table 2: PE Model Configurations.

Model Training. We train PE_{core} in three stages:

- 1. *Image pretraining*. We scale up image pretraining data to 5.4B publicly available image alt-text pairs curated with MetaCLIP [150] and a total of 86B samples seen to ensure convergence (58B for B and L). We use a global batch size of 131K, with progressive resolution from 98 to up to 448 depending on the model.
- 2. *Image and video finetuning*. Following the initial pretraining, we subsequently finetune the model at max resolution with a short schedule for 50M samples on the image pretraining data (as cooldown) followed by 22M samples on the recaptioned videos with a smaller learning rate and batch size. The video captions are produced using the proposed video data engine (§2.2). For each video clip, we uniformly sample 8 frames, encode them, take their average to produce a single video embedding, and align them with the corresponding video captions using the same contrastive objective in image training.
- 3. Smaller model distillation. We distill the 2B model (G scale) into smaller contrastive pretrained models at B and L scales under their final resolutions, using a short finetuning schedule that covers approximately 4B samples seen (~8% of the pretraining schedule) with a lower learning rate. We still perform stages 1 and 2 for small models (see Appendix C.3).

Detailed training configurations and setups are listed in Appendix B.1.1.

	su				2	ero-Sh	ot Clas.	sificatio	on		Z	ero-Sh	ot Fine	-Graine	ed Clas	sificatio	on		Zero-	Shot Re	trieval	
Model	Encoder Params	Resolution	Data	Avg Class.	ImageNet val [25]	ImageNet v2 [109]	ObjectNet IN Classes [4]	ImageNet Adversarial [46]	ImageNet Renditions [45]	ImageNet Sketch [140]	Avg Fine.	Flowers Oxford [95]	Cars Stanford [58]	Aircrafts FGVC [86]	Countries 211 [130]	Scenes SUN397 [148]	Satellite RESISC [20]	Avg Retrieval	MS-COCO $txt \rightarrow img [74]$	MS-COCO img→txt [74]	Flickr-30k txt→img [155]	Flickr-30k $img \rightarrow txt$ [155]
SigLIP-B/16 [†] [158]	0.1B	224	10B	69.9	76.2	69.5	70.7	45.1	90.2	67.9	61.8	85.2	90.8	44.0	15.9	70.0	64.6	69.8	47.2	64.5	77.9	89.6
SigLIP2-B/16 [†] [135]	0.1B	224	10B	73.1	78.2	71.4	73.6	55.0	91.7	68.9	66.2	85.7	93.4	54.8	19.2	72.7	71.1	73.7	52.1	68.9	80.7	93.0
PE _{core} B	0.1B	224	5.4B	73.2	78.4	71.7	71.9	62.4	88.7	66.1	68.8	86.5	92.1	57.0	30.5	74.0	72.7	74.3	50.9	71.0	80.8	94.4
SigLIP-L/16 [†] [158]	0.3B	384	10B	80.7	82.1	75.9	80.9	76.5	95.0	73.6	67.1	89.4	94.8	53.2	24.7	72.5	67.9	74.7	52.8	70.5	82.6	92.9
SigLIP2-L/16 [†] [135]	0.3B	384	10B	83.3	83.1	77.4	84.4	84.3	95.7	75.5	72.5	90.0	95.8	67.0	31.6	74.8	75.5	76.7	55.3	71.4	85.0	95.2
PE _{core} L	0.3B	336	5.4B	83.9	83.5	77.9	84.7	89.0	95.2	73.4	74.6	87.2	93.7	67.8	45.6	77.4	75.7	78.8	57.1	75.9	85.5	96.6
DFN-H+ [†] [32]	0.6B	378	5B	81.6	84.3	78.3	79.6	79.6	93.6	73.3	75.2	91.6	96.0	72.5	37.9	77.4	75.9	75.8	55.6	71.8	82.1	93.6
InternVL-C [19]	5.5B	224	5B	82.5	83.2	77.3	80.6	83.8	95.7	74.3	69.9	85.8	94.4	53.3	35.1	76.3	74.4	78.6	58.6	74.9	85.0	95.7
EVA 18B [127]	17.5B	224	2B	83.6	83.8	77.9	82.2	87.3	95.7	74.7	73.1	86.0	94.9	59.7	43.1	77.7	76.9	77.5	56.2	73.6	83.3	96.7
SigLIP2-g-opt [†] [135]	1.1B	384	10B	86.2	85.0	79.8	88.0	90.5	96.6	77.4	75.6	91.5	95.9	73.6	40.1	76.3	75.9	78.0	56.1	72.8	86.0	95.4
PEcore G (image only)	1.9B	448	5.4B	86.0	85.2	80.2	87.1	91.2	96.1	76.1	78.2	91.0	94.6	76.7	57.3	77.5	71.8	74.9	53.1	70.9	81.6	93.9
PE _{core} G	1.9B	448	5.4B	86.6	85.4	80.2	88.2	92.6	96.5	76.5	79.4	91.4	94.7	78.2	57.6	78.5	75.8	78.9	58.1	75.4	85.7	96.2

Table 3: **Zero-Shot Image Results.** Image zero-shot performance of PE_{core} compared to the state-of-the-art. Across all model sizes, PE_{core} obtains state-of-the-art results across general classification, retrieval, and finegrained classification. † Re-evaluated: DFN by [127]; SigLIP and SigLIP2 by us with the same benchmark settings if not reported in [135] (see Appendix B.1.2).

-	su					Zero	-Shot C	Classific	ation				Zero-	Shot Re	trieval		
Model	Encoder Params	Resolution	# Frames	Video Data	Avg Class.	Kinetics 400 [54]	Kinetics 600 [54]	Kinetics 700 [54]	UCF 101 [123]	HMDB 51 [61]	Avg Retrieval	MSR-VTT txt→video [151]	MSR-VTT video→txt [151]	$\begin{array}{c} \mathbf{MSVD} \\ txt \rightarrow video [13] \end{array}$	MSVD video→txt [13]	ActivityNet $txt \rightarrow video$ [10]	ActivityNet video $\rightarrow txt$ [10]
CLIP4CLIP [82]	0.1B	224	12	n/a	-	-	-	-	-	-	-	32.0	-	38.5	-	-	-
SigLIP2-B/16 [†] [135]	0.1B	224	8	n/a	57.3	58.7	55.0	48.4	82.0	42.3	39.9	38.5	30.1	49.0	67.2	28.6	25.8
PE _{core} B	0.1B	224	8	22M	63.9	65.6	65.1	55.8	84.6	48.2	49.9	47.6	47.3	50.4	76.7	39.0	38.4
UMT-L [66]	0.3B	224	8	25M	-	-	-	-	-	-	47.1	40.7	37.1	49.0	74.5	41.9	39.4
SigLIP2-L/16 [†] [135]	0.3B	384	8	n/a	64.1	65.3	62.5	56.8	86.7	49.3	44.7	41.5	31.4	53.7	74.2	35.9	31.5
$PE_{core}L$	0.3B	336	8	22M	71.4	73.4	72.7	65.3	87.1	58.5	54.8	50.3	50.1	57.2	82.4	46.4	42.1
InternVL-C [19]	5.5B	224	8	n/a	-	69.1	68.9	60.6	-	-	-	44.7	40.2	-	-	-	-
InternVideo2 [143]	1.0B	224	8	102M	70.7	73.1	72.8	64.9	88.8	53.9	59.9	51.9	50.9	58.1	83.3	60.4	54.8
SigLIP2-g-opt [†] [135]	1.1B	384	8	n/a	68.2	69.8	67.0	61.8	90.7	51.8	46.6	43.1	34.2	55.8	74.6	38.3	33.4
PEcore G (image only)	1.9B	448	8	n/a	70.9	73.1	72.2	64.3	89.5	55.5	47.6	44.3	35.2	54.3	73.9	41.4	36.3
PE _{core} G	1.9B	448	8	22M	74.8	76.9	76.1	69.1	90.7	61.1	58.7	51.2	49.9	59.7	85.4	54.7	51.2

Table 4: **Zero-Shot Video Results.** Video performance of PE_{core} compared to recent video and image encoders. PE_{core} obtains state-of-the-art in video classification and comparable performance on retrieval benchmarks while using only 22M videos. † SigLIP2 evaluated by us (see Appendix B.1.2).

Zero-Shot Image Results. In Tab. 3, we present PE_{core} 's performance on zero-shot image benchmarks for classification and retrieval vs. the strongest open models, including SigLIP2 [135]. PE_{core} outperforms all other contrastive models across the board on all zero-shot tasks, including the highly competitive average of zero-shot ImageNet robustness metrics [4, 25, 45, 46, 109, 140]. This marks a significant achievement, as we are the first to accomplish this in over 3 years without access to Google's internal JFT-3B [28] or WebLI [17] datasets. And *at the same time*, PE_{core} also exceeds the existing state-of-the-art on image-text retrieval and significantly improves on fine-grained classification—the first to simultaneously hold state-of-the-art on all common zero-shot categories.

Notably, this dominant *image* performance is made possible by our video finetuning. Compared to image only, the video finetuned $PE_{core}G$ obtains +0.6% general classification, +1.2% fine-grained classification, and a significant +4.0% boost on retrieval. Thus, well-aligned video text data does not just improve video performance—it creates a strictly better model for both videos *and* images.

Zero-Shot Video Results. We present video results in Tab. 4. Our base image encoder already outperforms all other image-only encoders on both zero-shot classification and retrieval, including SigLIP2-g-opt. With video finetuning, $PE_{core}G$ significantly outperforms even native video models that use full temporal attention on video classification, and it nearly matches the state-of-the-art on video retrieval despite being a simple frame-level encoder. This result underscores the importance of our video data engine, resulting in +3.9% on average zero-shot video classification, and a massive +11.1% on video retrieval. Moreover, PE_{core} does this with fewer videos compared to other video-based approaches like InternVideo2 [143], highlighting the benefits of a joint image-video encoder.

See Appendix C.4 for additional zero-shot and probing results.

3 General Features in a Contrastive Disguise

PE_{core} has strong results on zero-shot classification and retrieval, but these are tasks contrastive encoders specialize in. More important is whether or not this strong performance *generalizes* to downstream tasks. To find out, we compare PE_{core}G to state-of-the-art models for other pretraining techniques: captioning (AIMv2-3B [29]) and self-supervised learning (DINOv2-g [96]).

Laverwise Feature Analysis. We perform frozen feature analysis of each encoder in Fig. 4 for several downstream benchmarks in 3 categories: classification, language modeling, and spatial tasks. For classification, we probe each model using a randomly initialized cross attention transformer block. For language alignment, we learn a projector and finetune a decoder-only LLM (see §4), and for spatial tasks we train with several different decoders (ViTDet [71] Mask-RCNN [42] with Absolute Win [7] for detection, DPT [106] for depth, and zero-shot feature correspondence for tracking [51]). For each experiment, we sweep over the layers of the model as the optimal features are not necessarily the last. In each case, we use an equivalent image size (window size for detection) of 32×32 tokens. In each plot, we normalize performance by the maximum and minimum performance across models on that task.

General Features in Disguise. This analysis reveals several insights. First, as expected, AIMv2 performs well at classification and the best at visual Q&A language tasks. Similarly, DI-NOv2 performs the well on spatial tasks like detection, depth, and even grounding through an LLM. Then as already established by other works: DINOv2 performs poorly on OCR tasks [131]. But interestingly, its performance *peaks in the middle of the network* and then drops by the end. And so do the others on several tasks

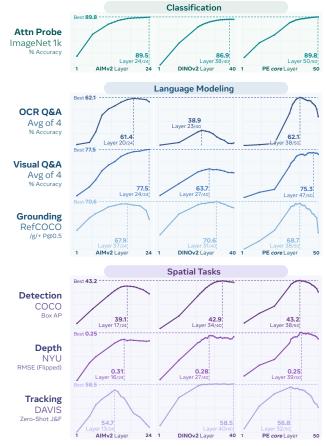


Figure 4: **Frozen Feature Layer Analysis** of different pretraining methods: captioning (AIMv2-3B [36], left), spatially self-supervised (DINOv2-g [96], middle), and our contrastive recipe (PE_{core}G, right). Vertical lines denote the best layer and horizontal lines the best performance across models. AIMv2 excels at language but not spatial, and DINOv2 excels at spatial but not language. But, *intermediate layers* of PE_{core}G perform well on *both* language and spatial tasks.

(AIMv2: tracking, grounding, detection; DINOv2: VQ&A, grounding). PE_{core} exhibits similar behavior, but with unexpected results: *it can perform well on all tasks, often matching or exceeding the leading models*. Remarkably, PE has intermediate layers that perform near to or on par with AIMv2 for language tasks and DINOv2 for spatial tasks, despite being trained with a global contrastive loss. Depth estimation is particularly noteworthy, as contrastive encoders are not typically considered state-of-the-art in that area. In fact, CLIP models are notorious for poor spatial performance [107].

An Alignment Problem. However, PE_{core}'s strong general performance diminishes rapidly towards the end of the network, such as for LLM-based grounding. This behavior is less pronounced the closer the downstream task is to the pretraining method, suggesting an *alignment problem*. Thus, a well-tuned large-scale contrastive model can learn general embeddings in the process of fitting its objective, *but it fails to output them*. We address this issue with alignment tuning in §4 and §5 and analyze why our CLIP model has these general features and its scaling behavior in Appendix C.5.

Analysis. The finding that pure CLIP models possess features which match the performance of state-of-the-art pretraining methods in their specialized domains is new. In fact, recent work [30] has shown the opposite—that CLIP models fail to scale on downstream tasks. We next investigate how our approach yields these results.

To start, we perform layerwise frozen feature analysis on COCO detection. PE_{core} was particularly "peaky" on this task in Fig. 4, with its best layer on par with DI-NOv2, but last layer significantly worse. We already ablate each change we made from vanilla CLIP in Fig. 2 using a ViT-L/14 model. So to retrace our steps, we run frozen feature analysis on those checkpoints. For efficiency, we use a lower resolution and only sample even layers for this experiment. In Fig. 5, we report COCO box mAP for the last and best layers for each cumulative ablation, along with the index of the best layer. Further, we plot the layerwise mAP for each change in Fig. 6.

Figure 5: **The Downstream Effects of Robust Pre-training.** The ViT-L/14 checkpoints from Fig. 2 evaluated as frozen features on COCO [74] using Mask R-CNN [42]. We report the last layer performance, best layer performance, and the best layer's index.

Surprisingly, the simple changes we made to CLIP pretraining in §2.1 overall improved the best layer's performance by *almost 10 mAP*! Some improvements are expected like with high resolution (5) and RoPE (6), but unexpectedly data augmentation (8) and *especially* progressive resolution (2) help considerably. It is possible that contrastive pretraining overfits to a specific resolution through "global tokens" [23], thus changing the resolution during training forces the model to be more robust.

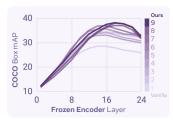


Figure 6: Layer Analysis of Fig. 5.

Next, both progressive resolution (2) and attention pooling (7) move the argmax layer deeper into the network (rightmost column of Fig. 5). Attention pooling in particular alters the whole shape of the layerwise performance curve (Fig. 6). Finally, some changes *reduced* performance: increasing the batch size (3) and using LAMB with a high learning rate (4). Both help fit the CLIP loss better, which after a point may not improve the general features. Moreover, while the best layer improved significantly, the last layer performance stagnated after (2). This suggests that constructing the CLIP token requires a specialized

decoder. Yet, this does not prevent the model from learning general features—just outputting them.

Scaling Behavior. Evidently, our robust recipe can enable contrastive pretraining to produce general features. But, does it scale? In Fig. 7, we answer this by performing frozen feature analysis across S/14, B/14, and L/14 models trained with the same schedule with either the vanilla CLIP recipe or our recipe (see Fig. 14). Immediately, we see a stark contrast between their scaling behaviors: while the vanilla recipe quickly plateaus at L scale (300M), the best layer of our robust pretraining recipe demonstrates scaling to G scale (2B)—despite being trained with a decidedly non-spatially aligned global contrastive loss. Though note this is the *best* layer. The *last* layer still stagnates for both. Thus, CLIP loss obfuscates its general features even with our recipe, placing them several layers deep.

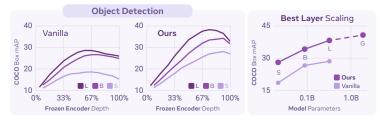


Figure 7: **The Downstream Scalability of Robust Pretraining.** Left: frozen feature layer analysis of the S/14, B/14, and L/14 models from Fig. 14 using the same setup as Fig. 5. Right: scaling behavior of the *best layer* for each model. Note: G has a different schedule. See Appendix C.5 for more.

4 Perception Encoder: Language Alignment

In §3 we have seen that PE_{core} already possesses useful features for Multimodal Large Language Models (MLLMs), but those features are not aligned to the end of the network. In this section, we *lift* these features through *alignment tuning* to construct a new, MLLM-specialized encoder: PE_{lang}.

Alignment Method. Aligning a vision encoder to an LLM is relatively straightforward. We follow the approaches of [18, 21, 36], where the vision encoder is *unfrozen* and finetuned as part of an MLLM. In our case, we align PE_{core} to a pretrained Llama3.2 3B text-only decoder with both the encoder and decoder unfrozen, connected with a 2-layer MLP. We discard the last 3 layers of PE_{core} , as suggested by [18] and regularize the encoder with LayerScale [132] and DropPath [49]. We train with next token prediction on 70M total samples across OCR Q&A, Captioning, Visual Q&A, and Video Q&A (following [21]), and finally extract the vision encoder only as PE_{lang} . More training details are available in Appendix B.2 and ablations of this recipe are conducted in Appendix D.1.

Effects. In Fig. 8, we conduct the same layerwise analysis in §3 on the resulting PE_{lang}G compared to PE_{core}G. Across all categories, the best layer for the aligned model is the last, no matter the performance of the original checkpoint. Notably, our PElang training mix did *not* contain grounding data, which means that this significantly lifted grounding performance is entirely due to the strong intermediate grounding features in PE_{core} now being aligned to the end of the network. Moreover, specific domains such as OCR Q&A that were represented in the training mix see a significant boost to performance compared to even the best layer of PE_{core}, which was already strong. Thus, with an order of magnitude fewer samples compared to pretraining, we were able to language align PE_{core}G to create a single, strong encoder for all MLLM tasks.

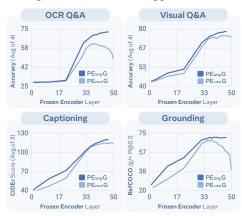


Figure 8: Language Alignment lifts the strong performance of PE_{core} (§3) to the end.

Results. In Tab. 5, we compare PE_{lang} to existing encoders with good language alignment. To benchmark, we plug each model into a fresh 2-layer MLP and Llama 3.1 8B decoder. The encoder is frozen the rest are are finetuned on 2.6M visual Q&A pairs (see Appendix B.2). We evaluate each encoder at native resolution unless otherwise noted. Despite using a different LLM than during alignment, PE_{lang} significantly outperforms all other models across all scales, resolutions, and tasks. Results with tiling and different LLM decoders are available in Appendix D.4. In all cases, PE_{lang} exhibits *generality*. That is, it outperforms other models no matter the resolution, decoder, or task.

		OCR / Chart / Doc. Q&A			Visual Q&A				Captioning			5]				Video						
Model	Avg. OCR QA	ChartQA Acc. [162]	DocVQA Acc. [89]	Info. QA Acc. [90]	AI2D Acc. [56]	Avg. VQA	TextVQA Acc. [122]	OK-VQA Acc. [115]	POPE <i>Acc.</i> [72]	VQAv2 Acc. [39]	Avg. Cap.	Flicker CIDEr [155]	COCO CIDEr [74]	No Cap CIDEr [1]	Avg. Ground. RefCOCO/g/+ [55]	Avg. Video	VideoMME Acc. [37]	STAR Acc. [145]	TGIF-QA Acc. [52]	EgoSchema Acc. [87]	MVBench Acc. [67]	PerceptionTest Acc. [102]
576 Tokens per Image																						
CLIP-L [103]	53.5	61.7	49.5	32.8	70.1	72.7	60.7	63.9	87.3	78.9	113.3	92.0	132.9	115.0	65.0	54.2	46.3	52.1	68.6	57.4	48.5	52.3
AIMv2-L Distill [36]	53.7	61.1	49.4	31.5	72.7	74.1	62.8	64.8	88.3	80.3	117.8	94.7	137.5	121.2	62.6	53.8	44.3	52.4	65.0	57.4	50.0	53.6
SigLIP2-so400M [135]	58.9	69.0	58.3	35.2	73.1	76.8	69.8	67.2	88.7	81.6	116.5	92.1	137.7	119.8	67.4	54.5	45.5	53.1	67.2	57.6	49.3	54.5
SigLIP2-g-opt [135]	56.2	63.1	55.3	34.0	72.4	77.0	70.3	66.7	89.6	81.6	117.7	94.9	137.8	120.3	66.5	53.9	46.2	53.9	66.6	53.8	48.5	54.7
$PE_{lang} G^{\dagger}$	66.9	76.8	73.6	41.1	76.1	76.2	68.5	66.0	89.1	81.3	119.7	96.1	139.6	123.4	68.9	58.1	48.7	58.9	70.5	61.8	52.7	55.9
1024 Tokens per Image																						
InternViT2.5-L [18]	60.6	74.1	59.2	35.9	73.1	74.2	65.4	64.4	87.6	79.6	112.3	88.4	133.7	114.9	66.9	50.6	45.2	44.8	62.7	54.2	46.0	50.5
SigLIP2-so400M [135]	63.3	72.1	69.3	39.0	72.7	77.9	74.8	66.0	89.0	81.8	117.4	93.5	138.3	120.2	69.6	55.8	46.2	55.4	67.0	62.0	50.0	54.5
$PE_{core}L$	59.4	68.7	62.5	36.6	69.7	74.7	67.7	64.3	88.3	78.7	112.7	89.6		114.9	59.7	50.9	41.7	51.2	61.6	52.6	47.4	50.6
PE _{lang} L	71.1	81.0	81.9	46.4	75.0	77.1	73.0	65.5	89.3	80.8	117.3	94.3	137.3	120.1	70.5	56.5	47.0	57.2	68.0	59.8	52.3	54.7
DINOv2-g [96]	30.0	19.6	14.7	24.2	61.5	61.0	19.3	60.4	88.6	75.8	109.4	86.5	131.6	110.1	64.9	49.5	39.7	52.1	60.1	46.8	47.4	50.8
AIMv2-3B [36]	48.9	40.5	53.9	33.9	67.2	73.0	64.1	64.0	85.2	78.9	115.7	93.8	135.2	118.1	36.1	54.6	45.1	54.5	66.7	55.4	51.7	54.3
InternViT2.5-6B [18]	59.9	72.3	59.4	35.2	72.5	75.5	68.9	64.9	88.2	80.2	115.0	92.2	136.3	116.3	68.0	49.6	44.5	47.0	62.6	45.8	48.9	48.5
PE _{core} G	60.8	69.9	65.4	36.7	71.1	73.3	65.9	60.7	88.4	78.0	112.5	91.6	133.6	112.4	66.6	52.0	42.3	53.1	62.9	51.4	48.8	53.6
PE _{lang} G	72.4	80.5	84.4	48.3	76.4	78.1	75.2	65.4	90.1	81.8	120.1	96.6	140.0	123.6	71.3	58.0	48.0	60.1	69.4	62.0	52.4	56.0

Table 5: **MLLM Results.** We benchmark PE_{lang} vs. other frozen vision encoders with Llama 3.1-instruct 8B [80] as the LLM. PE_{lang} shows strong performance across all benchmarks, outperforming much larger models. †Interpolated without extra training. See Appendix D.4 for more results.

Perception Encoder: Spatial Alignment

Unlike for language alignment with an MLLM, the best way to spatially align a model is not obvious. However, the path becomes clear when we study an apparent dichotomy in §3 for PEcore: higher level spatial tasks like detection and depth estimation perform optimally around layer 40, while low level tasks like tracking perform the best at around layer 30. Upon analyzing the features directly (see Appendix E.1), we find that *locality* begins to deteriorate starting at layer 33 due to global tokens [23].

Alignment Method. Following these insights, we design our spatial alignment method with two goals in mind: (1) keep the high level features around layer 40 in tact while (2) improving the locality of the features for lower level tasks. To address (1), we simply finetune PE_{core} using its own frozen layer 41 features as a teacher with heavy regularization (DropPath [49], LayerScale [132], 75% masking [144]). Then, we enforce spatial correspondence for (2) using SAM 2.1 [108] mask logits. That is, unlike [44, 107, 116], we do not directly use SAM features but instead sample 32×32 points in a grid and concatenate the SAM 2.1 mask logit for each into a single feature map. As shown in Appendix Fig. 19, this provides features with strong locality. See Appendix B.3.1 for training details.

Effects. In Fig. 9, we compare layerwise performance of the original PEcoreG checkpoint compared to aligning to the teachers described above. We denote aligning to *both* teachers as PE_{spatial}G. Aligning to PE_{core}G layer 41 alone performs generally well on all tasks, but has lackluster performance on tracking, where percise locality is necessary to define boundaries. In contrast, aligning to SAM 2.1 mask logits lowers last layer performance on every task but tracking. Thus, the optimal approach is to combine both teachers. As a result, PE_{spatial}G not only lifts the features for all tasks to the end of the network, but it also improves over self-alignment, especially on tracking and semantic segmentation. Notably, PE_{spatial}G's tracking performance is lower than the SAM-aligned model, but it is still ahead of other methods while being generally good, see results.

Last Layer Visualization. In Fig. 10, we visualize last layer features for PEcore G and the 3 aligned models, with similar colors denoting similar features. In the first column, we see why the last layer performance of PE_{core} is so poor: while it contains information about the salient objects, it seems to have lost spatial coherence. Aligning to the model's own layer 41 features fixes this, but its spatial quality is lacking. In contrast, the model aligned to SAM 2.1 mask logits has great locality, but no semantics (e.g., low similarity between cats in row 1 and cows in row 2). PE_{spatial} retains the semantics of PE_{core} while producing high quality spatial features.

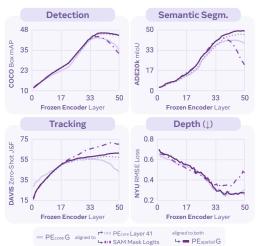


Figure 9: **Spatial Alignment** of PE_{core}G.

Figure 10: Last Layer Visualization using PCA (see Appendix B.3.2). More in Appendix E.4.

	1	Гrackir	ıg	Seg	gmenta	tion	Depth				
	DAV	IS (†)	[101]	ADE	20k (†	[164]	NYU (\psi) [120]				
Encoder	Best	Last	Idx	Best	Last	Idx	Best Last		Idx		
SigLIP-so400M [158]	48.7	36.3	16/27	40.1	38.3	22/27	.339	.369	21/27		
SigLIP2-so400M [135]	51.4	45.3	15/27	44.0	42.9	24/27	.306	.329	25/27		
DINOv2-L [96]	58.7	58.2	23/24	47.3	47.3	24/24	.297	.308	23/24		
DINOv2-g [96]	58.5	58.5	40/40	48.7	48.4	37/40	.279	.290	27/40		
PE _{core} G	56.8	42.8	32/50	41.5	41.5 38.6		.249	.309	39/50		
PE _{spatial} G	61.5	61.5	50/50	49.3	48.9	49/50	.262	.275	46/50		

Table 6: Frozen Dense Prediction for the best and Table 7: End-to-End Detection using Mask last layers of each model. Details in Appendix B.3.3. R-CNN [42]. Details in Appendix B.3.4.

	LVIS	S [40]	COC	O [74]
Encoder	AP_{box}	AP _{mask}	AP_{box}	AP _{mask}
MetaCLIP-G [150]	45.1	41.9	53.2	46.7
SigLIP2-so400M [135]	49.3	45.6	56.0	49.4
SigLIP2-g-opt [135]	52.9	48.5	57.1	50.2
DINOv2-L [96]	46.7	43.5	55.7	49.0
DINOv2-g [96]	51.5	47.3	57.2	50.0
PE _{core} G	51.9	47.9	57.0	49.8
PE _{snatial} G	54.2	49.3	57.8	50.3

Results. In Tab. 6, we compare performance on dense tasks with a frozen encoder with a fixed 448 resolution, reporting both best layer performance and last layer performance. Across the board, PE_{spatial}G outperforms other state-of-the-art models, with its features well aligned to the last layer. In Tab. 7, the same is true when end-to-end finetuning for detection on both LVIS [40] and COCO [74]

Encoder	Params	Detector	COCO AP _{box}
SwinV2-G [78]	3.0B	HTC++ [14]	62.5
Swin-L [77]	0.3B	DINO [159]	63.2
InternImage-G [142]	3.0B	DINO [159]	65.3
EVA02-L [34]	0.3B	CoDETR [165]	65.9
PE _{spatial} G	1.9B	DETA [97]	66.0

Table 8: **SOTA Setting Detection** on COCO val. Recipe in Appendix B.3.5.

with a fixed 1024 resolution using Mask-RCNN [42] and ViTDet [71]. Finally, in Tab. 8, we provide a system-level comparison *vs.* the absolute state-of-the-art on COCO val2017. With only Object365 [117] as extra detection data, PE_{spatial}G can match the performance of more complex models tuned for detection, while only using a simple DETR-style decoder [11, 97]. PE_{spatial}G marks the first general, contrastively pretrained model to accomplish this.

6 Related Work

Vision-language pretrained models have served as foundation for zero-shot image classification and image-text retrieval [50, 103, 114], open-vocabulary detection [62, 92, 93] and segmentation [22, 27], and multimodal large language models (MLLMs) [3, 5, 76, 91, 98, 131]. PE iterates on this paradigm.

Contrastive Language-Image Pretraining. The early works of Virtex [26], ICMLM [112], and ConVIRT [161] developed the techniques for learning through contrastive objectives between vision and language modalities. Subsequently, vision encoders such as CLIP [50, 103] and ALIGN [53] scaled these techniques to much larger datasets and model sizes, popularizing vision-language contrastive learning. A series of open-weight contrastive models have been developed to enhance the performance and robustness of CLIP [32, 70, 114, 126, 150, 158]. PE is among this effort.

Existing Techniques. Various techniques used in this work have been explored before. BASIC [99] and LAION [114] explored scaling the batch size up to 160K, and shows the benefits of large batch sizes during training. EVA-CLIP [127] uses LAMB optimizer [154] for large batch training of clip models. Rotary positional embedding (RoPE) [124] has been successfully adopted in large language models. In vision transformers [2, 47] adopted 2D rotatory positional embeddings. For data engine, a series of works focus on large-scale sourcing and filtering through efficient data curation [32, 38, 114, 150] and explore recaptioning training images using MLLMs or VLMs [31, 63, 94, 149]. We extend these concepts to create a robust training recipe and to extend data engines to video.

Intermediate Layers Are Better. Most vision encoders rely on the last layer to extract features. However, when trained on proxy or self-supervised tasks, the last layer is often not the ideal candidate for other tasks [8, 15, 16, 29, 83, 104, 118, 125, 139, 157, 163]. This has been shown for image coloration [160, 163], next token prediction [15, 29, 104], image generation [83, 157], and to a limited extent in CLIP models [125]. In contrast to these works, we first show the same behaviors across multiple classes of models simultaneously. Then we study this behavior for PE specifically in depth, and show it is possible for CLIP training to produce rich spatial and language features in intermediate layers *on par with the best existing models for each*. Finally, we show how to align these features with short finetuning steps to obtain state-of-the-art on a wide variety of tasks. Unlike other alignment [3, 18, 19, 65, 80, 129, 141] and feature combination [44, 107, 116, 157] methods, our main goal is not to instill a large amount of new knowledge into the model, but instead to bring out and refine the latent strong general features that already exist in the original PE model.

7 Conclusion

In this work, we have presented Perception Encoders (PE), a family of best-in-class foundation models comprising PE_{core} , PE_{lang} , and $PE_{spatial}$. We have shown that PE_{core} can outperform the leading models in zero-shot image recognition, while also excelling in zero-shot video recognition. We have demonstrated that PE_{lang} outperforms the best vision encoders for use in multimodal large language models, often by a large margin. We have established that $PE_{spatial}$ outperforms the long-standing state-of-the-art in object detection with a simpler decoder. Throughout all of this, one conclusion is abundantly clear: Perception Encoder unlocks the potential to scale simple contrastive vision-language pretraining to address a wide range of downstream vision tasks.

Additional Contributors and Acknowledgments. We would like to thank Abhimanyu Dubey, Adel Ahmadyan, Andrew Westbury, Arkabandhu Chowdhury, Azita Shokrpour, Babak Damavandi, Chay Ryali, Ching-Feng Yeh, Cyprien de Lichy, Didac Suris Coll-Vinent, Dong Wang, Filip Radenovic, George Orlin, Han Zou, Harry Tran, Jitendra Malik, Joelle Pineau, Joseph Greer, Kavya Srinet, Kirmani Ahmed, Laura Gustafson, Lu Zhang, Muhammad Maaz, Natalia Neverova, Nicolas Carion, Oleksandr Maksymets, Ramya Raghavendra, Romy Luo, Ronghang Hu, Sam Doud, Sasha Mitts, Sean Bell, Shane Moon, Shuming Hu, Soerian Lieve, Stephane Kasriel, Valentin Gabeur, Vanessa Stark, Vignesh Ramanathan, Vivian Lee, Xuan Hu, Yang Li, and Ziyang Wang for their contributions and support for the project. And we thank you, the reader, for reading this far.

References

- [1] Harsh Agrawal, Karan Desai, Yufei Wang, Xinlei Chen, Rishabh Jain, Mark Johnson, Dhruv Batra, Devi Parikh, Stefan Lee, and Peter Anderson. Nocaps: Novel object captioning at scale. In *ICCV*, 2019.
- [2] Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jessica Chudnovsky, Diogo Costa, Baudouin De Monicault, Saurabh Garg, Theophile Gervet, Soham Ghosh, Amélie Héliou, Paul Jacob, Albert Q. Jiang, Kartik Khandelwal, Timothée Lacroix, Guillaume Lample, Diego Las Casas, Thibaut Lavril, Teven Le Scao, Andy Lo, William Marshall, Louis Martin, Arthur Mensch, Pavankumar Muddireddy, Valera Nemychnikova, Marie Pellat, Patrick Von Platen, Nikhil Raghuraman, Baptiste Rozière, Alexandre Sablayrolles, Lucile Saulnier, Romain Sauvestre, Wendy Shang, Roman Soletskyi, Lawrence Stewart, Pierre Stock, Joachim Studnia, Sandeep Subramanian, Sagar Vaze, Thomas Wang, and Sophia Yang. Pixtral 12b. arXiv:2410.07073, 2024.
- [3] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-VL: A versatile vision-language model for understanding, localization, text reading, and beyond. *arXiv:2308.12966*, 2023.
- [4] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan Gutfreund, Josh Tenenbaum, and Boris Katz. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. In *NeurIPS*, 2019.
- [5] Lucas Beyer, Andreas Steiner, André Susano Pinto, Alexander Kolesnikov, Xiao Wang, Daniel Salz, Maxim Neumann, Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele Bugliarello, Thomas Unterthiner, Daniel Keysers, Skanda Koppula, Fangyu Liu, Adam Grycner, Alexey A. Gritsenko, Neil Houlsby, Manoj Kumar, Keran Rong, Julian Eisenschlos, Rishabh Kabra, Matthias Bauer, Matko Bosnjak, Xi Chen, Matthias Minderer, Paul Voigtlaender, Ioana Bica, Ivana Balazevic, Joan Puigcerver, Pinelopi Papalampidi, Olivier J. Hénaff, Xi Xiong, Radu Soricut, Jeremiah Harmsen, and Xiaohua Zhai. PaliGemma: A versatile 3b VLM for transfer. arXiv:2407.07726, 2024.
- [6] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-NMS-Improving object detection with one line of code. In ICCV, 2017.
- [7] Daniel Bolya, Chaitanya Ryali, Judy Hoffman, and Christoph Feichtenhofer. Window attention is bugged: how not to interpolate position embeddings. In *ICLR*, 2023.
- [8] Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, and Pascal Vincent. Guillotine regularization: Why removing layers is needed to improve generalization in self-supervised learning. arXiv:2206.13378, 2022.
- [9] Gary Bradski. The OpenCV library. Dr. Dobb's Journal: Software Tools for the Professional Programmer, 2000.
- [10] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet: A large-scale video benchmark for human activity understanding. In CVPR, 2015.
- [11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In ECCV, 2020.
- [12] Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng, Vashisht Madhavan, Omer Bar-Tal, Jeng-Neng Hwang, Saining Xie, and Christopher D. Manning. AuroraCap: Efficient, performant video detailed captioning and a new benchmark. In *ICLR*, 2025.
- [13] David L. Chen and William B. Dolan. Collecting highly parallel data for paraphrase evaluation. In ACL, 2011.
- [14] Kai Chen, Jiangmiao Pang, Jiaqi Wang, Yu Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei Liu, Jianping Shi, Wanli Ouyang, Chen Change Loy, and Dahua Lin. Hybrid task cascade for instance segmentation. In CVPR, 2019.
- [15] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, and Ilya Sutskever. Generative pretraining from pixels. In *ICML*, 2020.

- [16] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *ICML*, 2020.
- [17] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni, Piotr Padlewski, Daniel Salz, Sebastian Goodman, Adam Grycner, Basil Mustafa, Lucas Beyer, Alexander Kolesnikov, Joan Puigcerver, Nan Ding, Keran Rong, Hassan Akbari, Gaurav Mishra, Linting Xue, Ashish Thapliyal, James Bradbury, Weicheng Kuo, Mojtaba Seyedhosseini, Chao Jia, Burcu Karagol Ayan, Carlos Riquelme, Andreas Steiner, Anelia Angelova, Xiaohua Zhai, Neil Houlsby, and Radu Soricut. Pali: A jointly-scaled multilingual language-image model. In *ICLR*, 2023.
- [18] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, Lixin Gu, Xuehui Wang, Qingyun Li, Yimin Ren, Zixuan Chen, Jiapeng Luo, Jiahao Wang, Tan Jiang, Bo Wang, Conghui He, Botian Shi, Xingcheng Zhang, Han Lv, Yi Wang, Wenqi Shao, Pei Chu, Zhongying Tu, Tong He, Zhiyong Wu, Huipeng Deng, Jiaye Ge, Kai Chen, Kaipeng Zhang, Limin Wang, Min Dou, Lewei Lu, Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhai Wang. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. arXiv:2412.05271, 2024.
- [19] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. InternVL: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In CVPR, 2024.
- [20] Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark and state of the art. *Proceedings of the IEEE*, 2017.
- [21] Jang Hyun Cho, Andrea Madotto, Effrosyni Mavroudi, Triantafyllos Afouras, Tushar Nagarajan, Muhammad Maaz, Yale Song, Tengyu Ma, Shuming Hu, Hanoona Rasheed, Peize Sun, Po-Yao Huang, Daniel Bolya, Suyog Jain, Miguel Martin, Huiyu Wang, Nikhila Ravi, Shashank Jain, Temmy Stark, Shane Moon, Babak Damavandi, Vivian Lee, Andrew Westbury, Salman Khan, Philipp Krähenbühl, Piotr Dollár, Lorenzo Torresani, Kristen Grauman, and Christoph Feichtenhofer. Perceptionlm: Open-access data and models for detailed visual understanding. arXiv:2504.13180, 2025.
- [22] Seokju Cho, Heeseong Shin, Sunghwan Hong, Anurag Arnab, Paul Hongsuck Seo, and Seungryong Kim. CAT-Seg: Cost aggregation for open-vocabulary semantic segmentation. In *CVPR*, 2024.
- [23] Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need registers. In ICLR, 2024.
- [24] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin Gilmer, Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, Rodolphe Jenatton, Lucas Beyer, Michael Tschannen, Anurag Arnab, Xiao Wang, Carlos Riquelme, Matthias Minderer, Joan Puigcerver, Utku Evci, Manoj Kumar, Sjoerd van Steenkiste, Gamaleldin F. Elsayed, Aravindh Mahendran, Fisher Yu, Avital Oliver, Fantine Huot, Jasmijn Bastings, Mark Patrick Collier, Alexey Gritsenko, Vighnesh Birodkar, Cristina Vasconcelos, Yi Tay, Thomas Mensink, Alexander Kolesnikov, Filip Pavetić, Dustin Tran, Thomas Kipf, Mario Lučić, Xiaohua Zhai, Daniel Keysers, Jeremiah Harmsen, and Neil Houlsby. Scaling vision transformers to 22 billion parameters. In ICML, 2023.
- [25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009.
- [26] Karan Desai and Justin Johnson. VirTex: Learning visual representations from textual annotations. In CVPR, 2021.
- [27] Jian Ding, Nan Xue, Gui-Song Xia, and Dengxin Dai. Decoupling zero-shot semantic segmentation. In *CVPR*, 2022.
- [28] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *ICLR*, 2020.
- [29] Alaaeldin El-Nouby, Michal Klein, Shuangfei Zhai, Miguel Angel Bautista, Alexander Toshev, Vaishaal Shankar, Joshua M Susskind, and Armand Joulin. Scalable pre-training of large autoregressive image models. In *ICML*, 2024.
- [30] David Fan, Shengbang Tong, Jiachen Zhu, Koustuv Sinha, Zhuang Liu, Xinlei Chen, Michael Rabbat, Nicolas Ballas, Yann LeCun, Amir Bar, and Saining Xie. Scaling language-free visual representation learning. arXiv:2504.01017, 2025.
- [31] Lijie Fan, Dilip Krishnan, Phillip Isola, Dina Katabi, and Yonglong Tian. Improving CLIP training with language rewrites. In *NeurIPS*, 2023.
- [32] Alex Fang, Albin Madappally Jose, Amit Jain, Ludwig Schmidt, Alexander Toshev, and Vaishaal Shankar. Data filtering networks. In ICLR, 2024.

- [33] Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. EVA: Exploring the limits of masked visual representation learning at scale. In *CVPR*, 2023.
- [34] Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. EVA-02: A visual representation for neon genesis. *Image and Vision Computing*, 2024.
- [35] Christoph Feichtenhofer. X3D: Expanding architectures for efficient video recognition. In CVPR, 2020.
- [36] Enrico Fini, Mustafa Shukor, Xiujun Li, Philipp Dufter, Michal Klein, David Haldimann, Sai Aitharaju, Victor Guilherme Turrisi da Costa, Louis Béthune, Zhe Gan, Alexander T. Toshev, Marcin Eichner, Moin Nabi, Yinfei Yang, Joshua M. Susskind, and Alaaeldin El-Nouby. Multimodal autoregressive pre-training of large vision encoders. In CVPR, 2025.
- [37] Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li, Tong Xu, Xiawu Zheng, Enhong Chen, Rongrong Ji, and Xing Sun. Video-MME: The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. *arXiv:2405.21075*, 2024.
- [38] Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim Entezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexander Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, and Ludwig Schmidt. DataComp: In search of the next generation of multimodal datasets. In *NeurIPS*, 2023.
- [39] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in VQA matter: Elevating the role of image understanding in visual question answering. In CVPR, 2017.
- [40] Agrim Gupta, Piotr Dollar, and Ross Girshick. LVIS: A dataset for large vocabulary instance segmentation. In CVPR, 2019.
- [41] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016.
- [42] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask R-CNN. In ICCV, 2017.
- [43] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In *CVPR*, 2022.
- [44] Greg Heinrich, Mike Ranzinger, Hongxu, Yin, Yao Lu, Jan Kautz, Andrew Tao, Bryan Catanzaro, and Pavlo Molchanov. RADIOv2.5: Improved baselines for agglomerative vision foundation models. In *CVPR*, 2025.
- [45] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, Dawn Song, Jacob Steinhardt, and Justin Gilmer. The many faces of robustness: A critical analysis of out-of-distribution generalization. In *ICCV*, 2021.
- [46] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. In *CVPR*, 2021.
- [47] Byeongho Heo, Song Park, Dongyoon Han, and Sangdoo Yun. Rotary position embedding for vision transformer. In *ECCV*, 2024.
- [48] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In *NeurIPS Deep Learning Workshop*, 2015.
- [49] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with stochastic depth. In ECCV, 2016.
- [50] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. OpenCLIP, 2021.
- [51] Allan Jabri, Andrew Owens, and Alexei Efros. Space-time correspondence as a contrastive random walk. In NeurIPS, 2020.
- [52] Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim, and Gunhee Kim. TGIF-QA: Toward spatio-temporal reasoning in visual question answering. In *CVPR*, 2017.
- [53] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In *ICML*, 2021.
- [54] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman. The kinetics human action video dataset. *arXiv:1705.06950*, 2017.

- [55] Sahar Kazemzadeh, Vicente Ordonez, Mark Matten, and Tamara Berg. Referring to objects in photographs of natural scenes. In EMNLP, 2014.
- [56] Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali Farhadi. A diagram is worth a dozen images. In ECCV, 2016.
- [57] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick. Segment anything. In ICCV, 2023.
- [58] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In *ICCV Workshop*, 2013.
- [59] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Fei-Fei Li. Visual genome: Connecting language and vision using crowdsourced dense image annotations. *IJCV*, 2017.
- [60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In *NeurIPS*, 2012.
- [61] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. HMDB: a large video database for human motion recognition. In *ICCV*, 2011.
- [62] Weicheng Kuo, Yin Cui, Xiuye Gu, A. J. Piergiovanni, and Anelia Angelova. F-VLM: open-vocabulary object detection upon frozen vision and language models. In *ICLR*, 2023.
- [63] Zhengfeng Lai, Haotian Zhang, Bowen Zhang, Wentao Wu, Haoping Bai, Aleksei Timofeev, Xianzhi Du, Zhe Gan, Jiulong Shan, Chen-Nee Chuah, Yinfei Yang, and Meng Cao. VeCLIP: Improving CLIP training via visual-enriched captions. In ECCV, 2024.
- [64] Hugo Laurençon, Léo Tronchon, Matthieu Cord, and Victor Sanh. What matters when building vision-language models? In NeurIPS, 2024.
- [65] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. LLaVA-OneVision: Easy visual task transfer. TMLR, 2025.
- [66] Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He, Limin Wang, and Yu Qiao. Unmasked teacher: Towards training-efficient video foundation models. In *ICCV*, 2023.
- [67] Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, Limin Wang, and Yu Qiao. MVBench: A comprehensive multi-modal video understanding benchmark. In CVPR, 2024.
- [68] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, Kai-Wei Chang, and Jianfeng Gao. Grounded language-image pre-training. In CVPR, 2022.
- [69] Xianhang Li, Zeyu Wang, and Cihang Xie. An inverse scaling law for CLIP training. In NeurIPS, 2023.
- [70] Xianhang Li, Zeyu Wang, and Cihang Xie. CLIPA-v2: Scaling CLIP training with 81.1% zero-shot imagenet accuracy within a \$10,000 budget; an extra \$4,000 unlocks 81.8% accuracy. arXiv:2306.15658, 2023.
- [71] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer backbones for object detection. In *ECCV*, 2022.
- [72] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. In *EMNLP*, 2023.
- [73] Zhenyu Li, Xuyang Wang, Xianming Liu, and Junjun Jiang. Binsformer: Revisiting adaptive bins for monocular depth estimation. TIP, 2024.
- [74] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.
- [75] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. LLaVA-NeXT: Improved reasoning, ocr, and world knowledge, 2024.
- [76] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. NeurIPS, 2024.
- [77] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *ICCV*, 2021.
- [78] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up capacity and resolution. In CVPR, 2022
- [79] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A ConvNet for the 2020s. In CVPR, 2022.

- [80] AI @ Meta Llama Team. The llama 3 herd of models. arXiv:2407.21783, 2024.
- [81] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2019.
- [82] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. CLIP4Clip: An empirical study of clip for end to end video clip retrieval. *Neurocomputing*, 2021.
- [83] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining Xie. SiT: Exploring flow and diffusion-based generative models with scalable interpolant transformers. In ECCV, 2024.
- [84] Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-ChatGPT: Towards detailed video understanding via large vision and language models. In *ACL*, 2024.
- [85] Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. VideoGPT+: Integrating image and video encoders for enhanced video understanding. arXiv:2406.09418, 2024.
- [86] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained visual classification of aircraft. *arxiv*:1306.5151, 2013.
- [87] Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic benchmark for very long-form video language understanding. *NeurIPS*, 2024.
- [88] Kevis-Kokitsi Maninis, Kaifeng Chen, Soham Ghosh, Arjun Karpur, Koert Chen, Ye Xia, Bingyi Cao, Daniel Salz, Guangxing Han, Jan Dlabal, et al. Tips: Text-image pretraining with spatial awareness. *arXiv:2410.16512*, 2024.
- [89] Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. DocVQA: A dataset for vqa on document images. In WACV, 2021.
- [90] Minesh Mathew, Viraj Bagal, Rubèn Tito, Dimosthenis Karatzas, Ernest Valveny, and CV Jawahar. Infographicvqa. In WACV, 2022.
- [91] Brandon McKinzie, Zhe Gan, Jean-Philippe Fauconnier, Sam Dodge, Bowen Zhang, Philipp Dufter, Dhruti Shah, Xianzhi Du, Futang Peng, Floris Weers, Anton Belyi, Haotian Zhang, Karanjeet Singh, Doug Kang, Ankur Jain, Hongyu Hè, Max Schwarzer, Tom Gunter, Xiang Kong, Aonan Zhang, Jianyu Wang, Chong Wang, Nan Du, Tao Lei, Sam Wiseman, Guoli Yin, Mark Lee, Zirui Wang, Ruoming Pang, Peter Grasch, Alexander Toshev, and Yinfei Yang. MM1: methods, analysis and insights from multimodal LLM pre-training. In *ECCV*, 2024.
- [92] Matthias Minderer, Alexey A. Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. Simple open-vocabulary object detection with vision transformers. In ECCV, 2022.
- [93] Matthias Minderer, Alexey Gritsenko, and Neil Houlsby. Scaling open-vocabulary object detection. In NeurIPS, 2023.
- [94] Thao Nguyen, Samir Yitzhak Gadre, Gabriel Ilharco, Sewoong Oh, and Ludwig Schmidt. Improving multimodal datasets with image captioning. In *NeurIPS*, 2023.
- [95] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number of classes. In ICVGIP, 2008.
- [96] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision. *TMLR*, 2024.
- [97] Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, and Philipp Krähenbühl. NMSstrikes back. arXiv:2212.06137, 2022.
- [98] Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shaohan Huang, Shuming Ma, and Furu Wei. Kosmos-2: Grounding multimodal large language models to the world. *arXiv*:2306.14824, 2023.
- [99] Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu, Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, Mingxing Tan, and Quoc V. Le. Combined scaling for zero-shot transfer learning. *Neurocomputing*, 2023.
- [100] Bryan A Plummer, Liwei Wang, Chris M Cervantes, Juan C Caicedo, Julia Hockenmaier, and Svetlana Lazebnik. Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In *ICCV*, 2015.
- [101] Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017 DAVIS challenge on video object segmentation. arXiv:1704.00675, 2017.

- [102] Viorica Pătrăucean, Lucas Smaira, Ankush Gupta, Adrià Recasens Continente, Larisa Markeeva, Dylan Banarse, Skanda Koppula, Joseph Heyward, Mateusz Malinowski, Yi Yang, Carl Doersch, Tatiana Matejovicova, Yury Sulsky, Antoine Miech, Alex Frechette, Hanna Klimczak, Raphael Koster, Junlin Zhang, Stephanie Winkler, Yusuf Aytar, Simon Osindero, Dima Damen, Andrew Zisserman, and João Carreira. Perception test: A diagnostic benchmark for multimodal video models. In *NeurIPS*, 2024.
- [103] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision. In ICML, 2021.
- [104] Jathushan Rajasegaran, Ilija Radosavovic, Rahul Ravishankar, Yossi Gandelsman, Christoph Feichtenhofer, and Jitendra Malik. An empirical study of autoregressive pre-training from videos. arXiv:2501.05453, 2025.
- [105] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional image generation with CLIP latents. arXiv:2204.06125, 2022.
- [106] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction. In ICCV, 2021.
- [107] Mike Ranzinger, Greg Heinrich, Jan Kautz, and Pavlo Molchanov. AM-RADIO: Agglomerative vision foundation model—reduce all domains into one. In *CVPR*, 2024.
- [108] Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer. SAM 2: Segment anything in images and videos. In *ICLR*, 2024.
- [109] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers generalize to imagenet? In ICML, 2019.
- [110] William A. Gaviria Rojas, Sudnya Diamos, Keertan Ranjan Kini, David Kanter, Vijay Janapa Reddi, and Cody Coleman. The dollar street dataset: images representing the geographic and socioeconomic diversity of the world. In *NeurIPS Datasets and Benchmarks*, 2022.
- [111] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *CVPR*, 2022.
- [112] Mert Bulent Sariyildiz, Julien Perez, and Diane Larlus. Learning visual representations with caption annotations. In ECCV, 2020.
- [113] Mert Bulent Sariyildiz, Philippe Weinzaepfel, Thomas Lucas, Diane Larlus, and Yannis Kalantidis. UNIC: Universal classification models via multi-teacher distillation. In ECCV, 2024.
- [114] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. LAION-5b: An open large-scale dataset for training next generation image-text models. In NeurIPS Datasets and Benchmarks, 2022.
- [115] Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi. A-OKVQA: A benchmark for visual question answering using world knowledge. In *ECCV*, 2022.
- [116] Jinghuan Shang, Karl Schmeckpeper, Brandon B May, Maria Vittoria Minniti, Tarik Kelestemur, David Watkins, and Laura Herlant. Theia: Distilling diverse vision foundation models for robot learning. In *CoRL*, 2024.
- [117] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun. Objects365: A large-scale, high-quality dataset for object detection. In *ICCV*, 2019.
- [118] Shashank Shekhar, Florian Bordes, Pascal Vincent, and Ari Morcos. Objectives matter: Understanding the impact of self-supervised objectives on vision transformer representations. arXiv:2304.13089, 2023.
- [119] Oleksii Sidorov, Ronghang Hu, Marcus Rohrbach, and Amanpreet Singh. Textcaps: a dataset for image captioning with reading comprehension. In ECCV, 2020.
- [120] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
- [121] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition. In *ICLR*, 2015.
- [122] Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang, Xinlei Chen, Devi Parikh, and Marcus Rohrbach. Towards VQA models that can read. In CVPR, 2019.
- [123] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of 101 human actions classes from videos in the wild. *arXiv:1212.0402*, 2012.

- [124] Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. RoFormer: Enhanced transformer with rotary position embedding. *Neurocomputing*, 2024.
- [125] Lin Sun, Jiale Cao, Jin Xie, Xiaoheng Jiang, and Yanwei Pang. CLIPer: Hierarchically improving spatial representation of CLIP for open-vocabulary semantic segmentation. *arXiv:2411.13836*, 2024.
- [126] Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. EVA-CLIP: Improved training techniques for clip at scale. *arXiv*:2303.15389, 2023.
- [127] Quan Sun, Jinsheng Wang, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, and Xinlong Wang. EVA-CLIP-18B: Scaling clip to 18 billion parameters. *arXiv*:2402.04252, 2024.
- [128] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In *ICML*, 2019.
- [129] Gemma Team. Gemma 3 technical report. arXiv:2503.19786, 2025.
- [130] Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. YFCC100M: The new data in multimedia research. *Communications of the ACM*, 2016.
- [131] Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, Ziteng Wang, Rob Fergus, Yann LeCun, and Saining Xie. Cambrian-1: A fully open, vision-centric exploration of multimodal llms. In *NeurIPS*, 2024.
- [132] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé Jégou. Going deeper with image transformers. In ICCV, 2021.
- [133] Hugo Touvron, Matthieu Cord, and Hervé Jégou. DeiT III: Revenge of the ViT. In ECCV, 2022.
- [134] Michael Tschannen, Manoj Kumar, Andreas Steiner, Xiaohua Zhai, Neil Houlsby, and Lucas Beyer. Image captioners are scalable vision learners too. In *NeurIPS*, 2023.
- [135] Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdulmohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff, Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. SigLIP 2: Multilingual vision-language encoders with improved semantic understanding, localization, and dense features. arXiv:2502.14786, 2025.
- [136] Jack Urbanek, Florian Bordes, Pietro Astolfi, Mary Williamson, Vasu Sharma, and Adriana Romero-Soriano. A picture is worth more than 77 text tokens: Evaluating CLIP-style models on dense captions. In CVPR, 2024.
- [137] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In CVPR, 2018.
- [138] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, 2017.
- [139] Matthew Walmer, Saksham Suri, Kamal Gupta, and Abhinav Shrivastava. Teaching matters: Investigating the role of supervision in vision transformers. In *CVPR*, 2023.
- [140] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing. Learning robust global representations by penalizing local predictive power. In *NeurIPS*, 2019.
- [141] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei Du, Xuancheng Ren, Rui Men, Dayiheng Liu, Chang Zhou, Jingren Zhou, and Junyang Lin. Qwen2-VL: Enhancing vision-language model's perception of the world at any resolution. arXiv:2409.12191, 2024.
- [142] Wenhai Wang, Jifeng Dai, Zhe Chen, Zhenhang Huang, Zhiqi Li, Xizhou Zhu, Xiaowei Hu, Tong Lu, Lewei Lu, Hongsheng Li, Xiaogang Wang, and Yu Qiao. InternImage: Exploring large-scale vision foundation models with deformable convolutions. In CVPR, 2023.
- [143] Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng, Zun Wang, Yansong Shi, Tianxiang Jiang, Songze Li, Jilan Xu, Hongjie Zhang, Yifei Huang, Yu Qiao, Yali Wang, and Limin Wang. InternVideo2: Scaling foundation models for multimodal video understanding. In ECCV, 2024.
- [144] Chen Wei, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan L. Yuille, and Christoph Feichtenhofer. Masked feature prediction for self-supervised visual pre-training. In CVPR, 2022.
- [145] Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B Tenenbaum, and Chuang Gan. STAR: A benchmark for situated reasoning in real-world videos. In *NeurIPS*, 2021.
- [146] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2, 2019.
- [147] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https://github.com/facebookresearch/detectron2, 2019.

- [148] Jianxiong Xiao, Krista A. Ehinger, James Hays, Antonio Torralba, and Aude Oliva. SUN database: Exploring a large collection of scene categories. *IJCV*, 2014.
- [149] Hu Xu, Po-Yao Huang, Xiaoqing Ellen Tan, Ching-Feng Yeh, Jacob Kahn, Christine Jou, Gargi Ghosh, Omer Levy, Luke Zettlemoyer, Wen tau Yih, Shang-Wen Li, Saining Xie, and Christoph Feichtenhofer. Altogether: Image captioning via re-aligning alt-text. In EMNLP, 2024.
- [150] Hu Xu, Saining Xie, Xiaoqing Ellen Tan, Po-Yao Huang, Russell Howes, Vasu Sharma, Shang-Wen Li, Gargi Ghosh, Luke Zettlemoyer, and Christoph Feichtenhofer. Demystifying clip data. In *ICLR*, 2024.
- [151] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. MSR-VTT: A large video description dataset for bridging video and language. In CVPR, 2016.
- [152] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2 technical report. arxiv:2407.10671, 2024.
- [153] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. arXiv:2412.15115, 2024.
- [154] Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training BERT in 76 minutes. In *ICLR*, 2020.
- [155] Peter Young, Alice Lai, Micah Hodosh, and Julia Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. TACL, 2014.
- [156] Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui Wu. CoCa: Contrastive captioners are image-text foundation models. *TMLR*, 2022.
- [157] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and Saining Xie. Representation alignment for generation: Training diffusion transformers is easier than you think. In *ICLR*, 2025.
- [158] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In ICCV, 2023.
- [159] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel M Ni, and Heung-Yeung Shum. DINO: DETR with improved denoising anchor boxes for end-to-end object detection. In *ICLR*, 2023.
- [160] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In ECCV, 2016.
- [161] Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, and Curtis P. Langlotz. Contrastive learning of medical visual representations from paired images and text. In *MLHC*, 2022.
- [162] Hanwen Zheng, Sijia Wang, Chris Thomas, and Lifu Huang. Advancing chart question answering with robust chart component recognition. In WACV, 2025.
- [163] Liang Zheng, Yali Zhao, Shengjin Wang, Jingdong Wang, and Qi Tian. Good practice in cnn feature transfer. arXiv:1604.00133, 2016.
- [164] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing through ADE20K dataset. In CVPR, 2017.
- [165] Zhuofan Zong, Guanglu Song, and Yu Liu. DETRs with collaborative hybrid assignments training. In ICCV, 2023.

Appendix

Table of Contents

A	Video Data Engine	20
	A.1 PE Video Dataset (PVD)	20
	A.2 PE Video Dataset Details	21
В	Implementation Details	25
	B.1 PE: Core	25
	B.2 PE: Language Alignment	27
	B.3 PE: Spatial Alignment	28
C	Additional PE _{core} Results	32
	C.1 Robust Image Pretraining	32
	C.2 Additional Video Ablations	33
	C.3 Smaller Models	34
	C.4 Additional Results	35
	C.5 Additional Layerwise Scaling Analysis	37
D	Additional PE _{lang} Results	38
	D.1 Alignment Method Derivation	38
	D.2 Layer Analysis Details	38
	D.3 Unfrozen Encoder Results	39
	D.4 Additional Results	40
E	Additional PE _{spatial} Results	43
	E.1 Alignment Method Derivation	43
	E.2 Layer Analysis Details	44
	E.3 Smaller Models	45
	E.4 Additional Qualitative Results	46
F	Broader Impacts	47

Figure 11: **PE Video Dataset Example.** A sample from PVD, our released video-text dataset. Initial captions are generated by our video captioning model and then refined by human annotators. Annotators are instructed to add details and remove model hallucination. In this example, the model hallucination "a spoon" is removed; and more details such as "glass bowl" and the action "scraping" are added. See Fig. 12 for more. Data at https://ai.meta.com/datasets/pe-video/

A Video Data Engine

A.1 PE Video Dataset (PVD)

For the benefit of the community, we release a new video dataset: PE Video Dataset (PVD). PVD comprises of 1M high-quality and diverse videos with accompanying tags and descriptions. The videos are motion-centered, covering both first-person and third-person views with a wide coverage of scenes.

We additionally select 120K of these videos with the highest degree of motion to annotate with detailed captions by generating synthetic captions using our video captioner (§2.2) and employing 200 annotators to verify and refine them. We ask the human annotators to improve the synthetic captions by removing any hallucinations, correcting words that describe the video inaccurately, eliminating repetitive or redundant words to make the caption more concise, and adding any missing actions being performed in the video.

We release two versions of annotations for the 120K PVD subset: (1) Human verified captions: extended summaries with an average length of 57.1 words that provide a high-level description of each video. These captions are suitable for CLIP-style training. (2) Long automated captions: detailed and fine-grained descriptions with an average length of 111.7 words that capture spatial and temporal events. These captions are ideal for fine-grained video understanding.

Videos	998,862
Human Captions	118,862
Total Duration	4625 hrs
Duration (s)	16.7 ± 9.8
Human Caption Length	57.1±25.4
Model Caption Length	111.7±43.2

Table 9: **PVD Stats.**

In Fig. 11, we visualize a video example together with their model and human captions from PE Video Dataset (See Fig. 12 for more). The dataset statistics are summarized in Tab. 9. Finally, We use 105K of these refined samples to improve the data engine (§2.2 phase 2) and 15K as a high-quality video retrieval benchmark.

PVD Benchmark. We use 15K of the human-refined video-caption pairs as a held-out test set, which we introduce as a new video retrieval benchmark, PVD Benchmark, to evaluate finegrained video-caption alignment. We follow the format of MSR-VTT [151] to construct the benchmark. We select videos from 10 different categories, including hand actions, object interactions, food preparation, work activities, outdoor scenes, animals, water scenes, object handling, close-up shots, and nature scenes, with an overall average caption length of 51.7 words (see Appendix A.2.1 for statistics). We use PVD Benchmark to evaluate SigLIP [158], SigLIP2 [135], InternVL [19], and PE models, and the results can be found in Tab. 25.

A.2 PE Video Dataset Details

As mentioned above, PVD consists of 1M videos, 120K of which have human-refined video captions and are selected for high motion content. We also select 15K from the 120K videos as a benchmark.

A.2.1 PVD Benchmark Distribution

Category	Number of videos	Avg. Caption Length
Hand Actions	2143	54.2
Object Interactions	1864	42.6
Food Preparation	1691	56.8
Work Activities	1689	47.8
Outdoor Scenes	1558	50.7
Animals	1423	50.9
Water Scenes	1337	44.6
Object Handling	1307	51.6
Close-up Shots	1122	45.1
Nature Scenes	866	38.4

Table 10: **PVD** Benchmark Statistics. We created a dataset of 15K videos together with human-verified captions. The videos are motion-centered, covering both first-person and third-person views with a wide coverage of scenes.

A.2.2 Video Data Filtering Pipeline

The goal of video data filtering is to identify videos that contain motions such as object motion, camera motion, interaction between objects, human actions, sequences of actions, and manipulation of objects, while rejecting videos with static scenes, like landscapes, or those that are artificial or highly edited.

To achieve this, we created a video filtering pipeline consisting of the following steps:

Step 1: Compute motion features. For each video, we compute a list of features from video frames, including frames per second (fps), number of frames, number of I-frames, motion vector magnitude, and motion vector variance, using off-the-shelf tools like OpenCV [9].

Step 2: Extract video frame features. For each video, we uniformly sample three frames and encode them using a DINOv2 model [96] and a SigLIP model [158].

Step 3: LLM Features. For each video, we also run a multimodal large language model (LLM) like Llava-Onevision QwenLM 2 0.5B [65] to extract MLLM features. We composed a list of 26 questions and performed MLLM inference on the videos. The questions can be found here in §A.2.3.

Step 4: Video Quality Scoring. We combine all the features collected so far and use a random forest model to predict a score between 0 and 5. To train the model, we manually annotated approximately 1,000 videos with scores between 0 and 5. A low score indicates that the video is almost static and can be nearly summarized by a single frame, while a high score indicates that there are multiple temporal events in the video, requiring several frames to accurately caption it. We use these annotated videos as training data to fit a random forest model for video quality score prediction.

Step 5: We apply k-means clustering to the videos and rank them within each cluster. By selecting the top-ranked videos from each cluster, we effectively reduce the number of duplicated videos in the final dataset.

A.2.3 LLM Feature Extraction

We use LLaVA-OneVision [76] model to extract LLM features from the videos. For each video, we prompt with 26 different questions to extract features ranging from, "is the video a landscape video?" to, "are there any moving objects in the video?" The features are then used by a random forest model to determine the video quality score.

```
Is the camera capturing the scene static? Reply yes or no.
Is the camera capturing the scene moving? Reply yes or no.
Is the video capturing a landscape? Reply yes or no.
Is the video capturing a static scene? Reply yes or no.
Is the scene captured from a distance? Reply yes or no.
Is the video captured with a drone? Reply yes or no.
Is the video computer-generated? Reply yes or no.
Is the video content abstract? Reply yes or no.
Is there something moving through the scene? Reply yes or no.
Is there someone doing something in the video? Reply yes or no.
Are there several things moving in the video? Reply yes or no.
Is there an object that is being manipulated? Reply yes or no.
Are there animals in the video? Reply yes or no.
Is the scene mostly static? Reply yes or no.
Are things occluding each other in this video? Reply yes or no.
Is there something obstructing the view apart from the watermark? Reply yes or no.
Is there a large number of things in the video? Reply yes or no.
Are there more than 5 different objects in the video? Reply yes or no.
Is it hard to keep track of some entities because they are moving so much? Reply yes
or no.
Is someone looking at a phone, a tablet or a computer screen? Reply yes or no.
Are they looking at a phone, a tablet or a computer screen during the whole video?
Reply yes or no.
Are there several moving persons in this video? Reply yes or no.
Are there several moving animals in this video? Reply yes or no.
Are there several objects in this video? Reply yes or no.
Are there several similar-looking objects in the video? Reply yes or no.
Do they look similar? Reply yes or no.
```

A.2.4 Video Caption

LLM Summarization prompt

LLM Summarization prompt 72 tokens

Create a concise caption of a video using the provided metadata, video caption, and frame captions.

TASK: Extract key information from the captions and combine it into an alt text format using single phrase or set of phrases that includes all relevant details. Steps to Follow:

- 1. Review the metadata (title and description) for general context, you can rely it for entity names but do not rely on it as the primary source of information for your caption.
- 2. Blend title / description with video caption and frame captions for the main storyline $\,$
- 3. Extract the most relevant and concise information.
- 4. Combine extracted information into a alt text format using short phrase or set of phrases with approximately 120 tokens, considering special characters like comma as part of the token count.
- 5. Prioritize including all key information over sentence structure or grammar.
- 6. Minimize the use of special characters and focus of key information. What to Avoid:
- Avoid adding or inferring information not present in the original metadata and captions.
- Avoid using complex sentence structures or prioritizing sentence flow.
 Create a concise caption of the video based on the metadata, video caption, and frame captions.

A.2.5 Human Caption Refinement

We employ human annotators to perform caption refinement for the LLM-generated captions in PVD, as described in Appendix A.1. Each annotator is paid a fair wage in compliance with all local laws in the annotators' jurisdictions. The refinement task was developed in accordance with an internal review to ensure ethical consideration for the participants. For instance, the annotators are instructed to reject the job completely if the videos contain any explicit content. Otherwise, we provided the following materials for the annotators as instructions for the task:

Goal. Given a video and a caption, directly refine it to make the caption:

- 1. No Repeating:
 - (a) Remove any repeating, redundant information
 - (b) Note it is ok to have fine-grained or atomic information if the caption already contains it, if the information is still unique
- 2. Accurate:
 - (a) Every word in the caption is describing a fact in the video
 - (b) If anything doesn't exist in the video at all, remove it
 - (c) If anything is incorrect comparing to what the video shows, correct it
- 3. Action Focus:
 - (a) Add any missing major action information into the caption
 - i. As mentioned in 1. above, if an atomic action exists already, it is ok to keep it. No need to remove it. We only care about adding the missing major actions back.

In summary, the submitted caption should have **no repeating** information, every single word in the caption is **accurate** reflecting a fact in the video, and all **major actions** shown in the video have been **covered**.

Refinement Criteria. Use the following guidelines for correcting errors:

- 1. Error: If some words describe something doesn't show clearly in the video
 - Remove it from the caption
- 2. Error: If some words describe something in the video but incorrectly
 - Correct it from the caption to describe the fact in the video
- 3. Error: Repeating or redundant words
 - Merge words from the caption to make it concise and accurate or just remove it if no need of merge
- 4. Error: Action related words
 - If atomic actions exist, No need to remove it. Only remove words for Errors 1 and 3
 - If major actions miss, Add them back into the caption, in a concise and natural way. E.g.
 - (a) If the missing actions can just be integrated as just a part of the original sentence, then just integrate it
 - (b) If a new sentence is more natural to add the missing action back, then just add a new sentence.

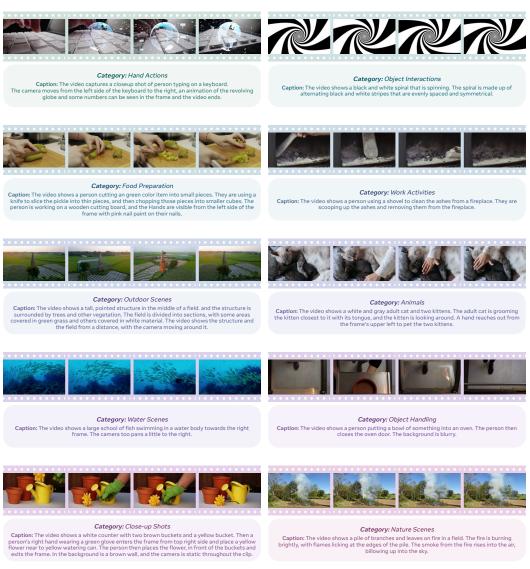


Figure 12: **More PE Video Dataset Examples.** For each of the ten categories, we randomly pick one video and show its video caption. The captions were generated by our video data pipeline and then refined by human annotators.

B Implementation Details

B.1 PE: Core

We provide additional implementation details for building PE_{core} . Our implementation is based on OpenCLIP.¹

B.1.1 Architecture and Training Setups

Model Architecture. Following CLIP, PE_{core} comprises a Transformer-based [138] vision and a text encoder. We employ customized Transformer configurations as detailed in Tab. 11. For pooling, we an attention pooling block in the style of SigLIP [158] with 8 heads from the last-layer feature to construct image and video embeddings. Regarding positional embedding, we use 2D RoPE [124] for relative positional embeddings and 2D learnable absolute positional embeddings (abs) the same size as the model's input resolution. We interpolate positional embeddings to enable support for various resolutions beyond the default. The text context length is 72 for G-scale and 32 for B and L-scale models. Originally a bug, we find it optimal to *not disable the class token* when using attention pooling for smaller models. Thus, the B and L models use a class token, then the attention pooling layer probes all features at once (class token included). Finally, we use an input mean and standard deviation of (0.5, 0.5, 0.5) for simplicity.

Scale	Tower	Params	Width	Depth	MLP	Heads	CLIP	Pooling	Positional	Resolution &	Patch Size	Class Token
							Dim		Embedding	Context Len		Register
В	Vision	0.09B	768	12	3072	12	1024	Attn Pool	RoPE+Abs	224	16	✓
ь	Text	0.31B	1024	24	4096	16	1024	EOS Token	Abs	32	-	-
т.	Vision	0.32B	1024	24	4096	16	1024	Attn Pool	RoPE+Abs	336	14	1
L	Text	0.31B	1024	24	4096	16	1024	EOS Token	Abs	32	-	-
G	Vision	1.88B	1536	50	8960	16	1280	Attn Pool	RoPE+Abs	448	14	Х
G	Text	0.47B	1280	24	5120	20	1280	EOS Token	Abs	72	-	=

Table 11: **PE** Model Configurations with full details.

PE Core Training. As discussed in §2.3, the training of PE_{core} involves three stages: 1) image pretraining; 2) image and video finetuning; and 3) an additional model distillation for smaller models. These three stages work together to develop a robust and effective PE_{core} model.

We first provide training recipes for 1) image pretraining in Tab. 12 and 2) video finetuning in Tab. 13.

config	values	config	values	config	values
optimizer	LAMB	optimizer	LAMB	optimizer	LAMB
β_1, β_2	(0.9, 0.95)	β_1, β_2	(0.9, 0.95)	β_1, β_2	(0.9, 0.95)
weight decay	0.05	weight decay	0.05	weight decay	0.05
learning rate	2e-3	learning rate	1e-6	learning rate	1e-6
batch size	131,072	batch size	4096	batch size	16384
warm-up steps	2K	warm-up steps	2K	warm-up steps	2K
training steps	443K (B, L) / 656K (G)	training steps	5.4K	training steps	269K
data quantity	5.4B	data quantity	22M	data quantity	5.4B
samples seen	58B (B, L) / 86B (G)	samples seen	22M	samples seen	4.4B
max logit scale	100	max logit scale	100	max logit scale	100
mask reg ratio mask reg batch	0.4 8192	number of frames	8	teacher logit scale	200 (§C.3)
	112-160-224 (B)		aspect jitter ar (0.75,1.33) rand crop s (0.08,1)	data aug	None
progressive res	98-154-224-336 (L) 98-154-224-336-448 (G)	data aug	color jitter j (0.32,0,0.32,0) hflip p(0.5)	Table 14: Dis	tillation.
data aug	aspect jitter ar (0.75,1.33) rand crop s (0.08,1) color jitter j (0.32,0,0.32,0)	Table 13: V	ideo Finetuning.		

Table 12: Image Pretraining.

hflip p(0.5)

After training the largest G-scale model, we train the smaller models with image pretraining, then distill with image distillation in Tab. 14, then finally apply video finetuning at the end.

¹https://github.com/mlfoundations/open_clip, MIT License

Distillation Method. To maximize the performance of smaller models (B and L scales in Tab. 2), we employ a distillation finetuning approach [48] using PE_{core}G as the teacher. This process involves a short finetuning schedule where both the student and teacher models encode image and text inputs separately to compute image-to-text and text-to-image similarity distributions, similar to CLIP training [103]. The student's distributions are then optimized to match those of the teacher by minimizing KL-divergence, distilling multimodal relational knowledge from the teacher into the student.

Notably, we find that using a smaller softmax temperature for the teacher's distributions, specifically $0.5 \times$ the temperature used for the student's distribution, significantly enhances the effectiveness of knowledge distillation. By leveraging the strong embeddings provided by $PE_{core}G$, our short distillation finetuning schedule significantly boosts the performance of both B and L scale models of PE_{core} (see Appendix C.3).

B.1.2 Zero-Shot Classification and Retrieval

Zero-Shot Evaluation on Images and Videos. We use CLIPBench² for zero-shot classification and retrieval benchmarking. The benchmark datasets and splits are obtained from the original dataset websites or HuggingFace. We extend the CLIPBench zero-shot evaluation to include video datasets such as MSR-VTT and Kinetics, and will release our model checkpoints, evaluation code, and scripts for reproducibility.

Prompt Design. For zero-shot image-text and video-text retrieval, we rely solely on the original captions without any additional prompts. In contrast, for zero-shot classification, we utilize task-specific prompts graciously provided by the InternVL [19] authors. All additional prompts will be released.

For example, we employ specific prompts for zero-shot image classification on various ImageNet benchmarks (e.g., ImageNet val, ImageNet v2) and video classification on Kinetics datasets (e.g., K400, K600, K700).

7ero-Shot Image Classification Prompts - ImageNet

a bad photo of a {c}. a photo of many {c}. a sculpture of a {c}. a photo of the hard to see {c}. a low resolution photo of the {c}. a rendering of a {c}. graffiti of a {c}. a bad photo of the {c}. a cropped photo of the {c}. a tattoo of a {c}. the embroidered $\{c\}$. a photo of a hard to see $\{c\}$. a bright photo of a $\{c\}$. a photo of a clean $\{c\}$. a photo of a dirty {c}. a dark photo of the {c}. a drawing of a {c}. a photo of my {c}. the plastic $\{c\}$. a photo of the cool $\{c\}$. a close-up photo of a $\{c\}$. a black and white photo of the $\{c\}$. a painting of the $\{c\}$. a painting of a $\{c\}$. a pixelated photo of the $\{c\}$. a sculpture of the $\{c\}$. a bright photo of the $\{c\}$. a cropped photo of a $\{c\}$. a plastic {c}. a photo of the dirty {c}. a jpeg corrupted photo of a {c}. a blurry photo of the $\{c\}$. a photo of the $\{c\}$. a good photo of the $\{c\}$. a rendering of the $\{c\}$. {c} in a video game. a photo of one {c}. a doodle of a {c}. a close-up photo of the {c}. a photo of a {c}. the origami {c}. the {c} in a video game. a sketch of a {c}. a doodle of the {c}. a origami {c}. a low resolution photo of a {c}. the toy {c}. a rendition of the $\{c\}$. a photo of the clean $\{c\}$. a photo of a large $\{c\}$. a rendition of a {c}. a photo of a nice {c}. a photo of a weird {c}. a blurry photo of a {c}. a cartoon $\{c\}$. art of a $\{c\}$. a sketch of the $\{c\}$. a embroidered $\{c\}$. a pixelated photo of a {c}. itap of the {c}. a jpeg corrupted photo of the {c}. a good photo of a {c}. a plushie {c}. a photo of the nice {c}. a photo of the small {c}. a photo of the weird $\{c\}$. the cartoon $\{c\}$. art of the $\{c\}$. a drawing of the $\{c\}$. a photo of the large $\{c\}$. a black and white photo of a $\{c\}$. the plushie $\{c\}$. a dark photo of a $\{c\}$. itap of a {c}. graffiti of the {c}. a toy {c}. itap of my {c}. a photo of a cool {c}. a photo of a small {c}. a tattoo of the {c}.

²https://github.com/LAION-AI/CLIP_benchmark, MIT License

7ero-Shot Video Classification Prompts - Kinetics

a photo of {c}. a photo of a person {c}. a photo of a person using {c}. a photo of a person doing {c}. a photo of a person during {c}. a photo of a person performing {c}. a photo of a person practicing {c}. a video of {c}. a video of a person during {c}. a video of a person using {c}. a video of a person doing {c}. a video of a person during {c}. a video of a person performing {c}. a video of a person practicing {c}. a example of {c}. a example of a person doing {c}. a example of a person during {c}. a example of a person during {c}. a example of a person practicing {c}. a demonstration of {c}. a demonstration of a person doing {c}. a demonstration of a person during {c}. a demonstration of a person during {c}. a demonstration of a person performing {c}. a demonstration of a person practicing {c}. a demonstration of a person performing {c}. a demonstration of a person practicing {c}. a demonstration of a person performing {c}. a demonstration of a person practicing {c}.

Evaluation Method. Several works use different input transformations for different datasets when evaluating zero-shot performance (e.g., [32, 127, 135, 158]). To be as fair as possible, we follow [127] in evaluating with two transformations—center crop and non aspect ratio preserving resize ("squash")—and report the max between the two for all models and all datasets we evaluate. Additionally, ObjectNet has a red border around every image to facilitate deduplication, which we remove for evaluation. Finally, we follow [19] in using *retrieval reweighting* (DSL), applying the softmax score distribution to the similarities used for retrieval:

This slightly improves retrieval for most models, so we do it for all models we evaluate for fairness. Notably, we were able to reproduce the reported numbers for most papers with these techniques, but for cases where we could not, we default to the reported number.

B.2 PE: Language Alignment

We provide details of the MLLM experimental setup in §4. We describe *data*, *model*, and *training* separately.

Data. Our MLLM training contains *warmup* data and *supervised finetuning (SFT)* data. Our warmup data is a 1M subset image-text pairs of our PE_{core} pretraining dataset. For SFT data, we use a diverse data mix consisting of 2.6M unique samples. This dataset is composed of 1.7M³ visual QAs samples from the Cauldron [64], 0.5M grounded QA pairs from Visual Genome [59], Flickr-Entities [100] and Densely Captioned Images [136], 0.1M image-captioning pairs from COCO [74] and 0.3M text-only samples. This comprehensive data mix allows us to thoroughly assess our model's capabilities in various MLLM tasks.

Model. As described in $\S D.1$, we use a simple vision-language model architecture where a vision encoder and a pretrained decoder-only LLM are connected by a vision projector. For all tables, we use either Llama3.1-instruct 8B or QwenLM 2.5-instruct 7B as a language model, and 2-layer MLP as a vision projector. For fair comparison, we use the native resolution for image input. During inference, we evaluate the models on video tasks in *zeroshot* manner: We concatenate all video frames into a sequence and feed to language model, without seeing video samples during SFT. For all video tasks, we use 8 frames with the same native resolution of height and width. For PE_{core} and PE_{lang}, this makes $448 \times 448 \times 8$ input and $32 \times 32 \times 8$ vision tokens.

Training. MLLM training consists of *warmup* and *supervised finetuning (SFT)* stages. In both stages, we freeze vision encoder and train vision projector and LLM. During warmup stage, we use a global batch size of 128 with a learning rate of 1×10^{-4} . We gradually increase the learning rate from 1×10^{-6} to 1×10^{-4} over 120 steps, and follow a cosine learning rate decay schedule to train a total of 8,000 steps. During SFT stage, we use a global batch size 256 with a learning rate of 1×10^{-5} . Similar to the warmup, we gradually increase the learning rate from 1×10^{-7} to 1×10^{-5} over 300 steps, and follow a cosine learning rate decay schedule to train a total of 12.5K steps. We truncate text-sequences longer than 2,048 tokens on top the visual tokens. This makes the maximum sequence length to be (num. vision tokens) +2,048. With 448×448 input resolution and patch size of 14, we set the maximum sequence length to 1,024+2,048=3,072. To represent bounding boxes on output side for image grounding tasks, we simply use text tokens to represent each bounding box:

³We excluded multi-images samples.

each coordinate is normalized between 000 and 999, in "[x, y, x, y]" box format for top-left and bottom-right corners (e.g., [012, 122, 633, 782]).

For all baselines, we search for the **best** intermediate layer features to adapt to LLM. We search over $\{-1, -2, -4, -6, -8, -10, -12, -14, -16, -18, -20, -40\}$ layers (counting from last) and report the best result in average over OCR/Chart/Document Q&A, Visual Q&A, Image Captioning and Video Understanding.

B.3 PE: Spatial Alignment

B.3.1 Training Details

Loss Functions. For self-aligning to frozen $PE_{core}G$ layer 41 features (L_{core}), we minimize the negative cosine similarity:

$$L_{\text{core}} = -\frac{1}{n_{\text{tok}}} \sum \left(\frac{(S_{50})(T_{41})^T}{||S_{50}|| \cdot ||T_{41}||} \right)$$
 (2)

where S_{50} denotes the last layer features of the student, T_{41} denotes frozen layer 41 features from PE_{core}G, and n_{tok} represents the number of tokens. Note that we chose 41 fairly arbitrarily (it is layer 40 when written with indexing from 0). Judging by Fig. 4, any layer around 40 should work (and 39 may be slightly better).

For the encouraging locality loss ($L_{\rm loc}$), we compute the pairwise cosine similarity between a model's own tokens and itself. This forms a "spatial correspondence map" for what tokens should be considered similar. We then compute the same for the student, and minimize the difference between the two with MSE loss:

$$L_{\text{loc}} = \frac{1}{n_{\text{tok}}^2} \sum \left(\frac{(S_{50})(S_{50})^T}{||S_{50}||^2} - \frac{(T_{\text{SAM}})(T_{\text{SAM}})^T}{||T_{\text{SAM}}||^2} \right)^2$$
(3)

where $T_{\rm SAM}$ denotes the "SAM Mask Logits" constructed in §E.1.2. We also find using a temperature (t) on the SAM teacher's pairwise cosine similarity term (x) useful: $e^{t(x-1)}$. The full loss is $L_{\rm spatial} = L_{\rm core} + L_{\rm loc}$.

Hyperparameters. In Tab. 15 we show the training hyperparameters for spatial alignment, finetuned on top of the initial $PE_{core}G$ checkpoint. Then in Tab. 16 and Tab. 17, we show the settings for the two teachers and losses. Note that when running the teachers, we run them on the exact same image as the student (same data aug and all). Additionally, because the SAM 2.1 teacher operates at a resolution of 1024, we upsample the image, generate the mask logits, and then downsample the result. Both teachers are frozen.

config	values	config	values		config	values
optimizer	LAMB	model	SAM 2.1-L		model	PE _{core} G
β_1, β_2	(0.9, 0.95)	layer	mask logits		layer	41
weight decay	0.05	resolution	1024 (interp→448)		resolution	448
learning rate	5e-4					
batch size	12,288	loss	Eq. 3		loss	Eq. 2
warm-up steps	0	loss weight	1		loss weight	1
training steps	24K	temperature	20		45 DE	
data quantity	5.4B (PE _{core} PT Data)			Table	17: PE _{co}	_{re} G Teacher.
samples seen	300M	sample points	32×32 (1024)			
		pred iou threshold	0			
resolution	448	stability score threshold	0			
mask ratio	0.75	mask threshold	0			
mask size	2×2 tokens					
		Table 16: SAM	2.1 Teacher.			
droppath	0.4					
layerscale	0.1					
	aspect jitter ar (0.75,1.33)					
data aug	color jitter j (0.32,0,0.32,0)					
	hflip p(0.5)					

Table 15: Spatial Alignment.

B.3.2 Visualization Method

To visualize the features in Fig. 10 and Fig. 20, our goal is to map a 1536-dimensional space down to 3 dimensions to view how the model encodes each token in relation to each other. One naive approach would be to apply PCA with 3 dimensions across all token in the image. However, we find this alone can be misleading.

Specifically, if the model has rich semantics, it should be the case that most of those 1536 features have some useful information in them. Some of that information could be spatially contiguous, some of it not. We want PCA to only select the *spatially contiguous* information, since we are trying to evaluate the spatial quality of the features. However, naively applying PCA will not necessarily do that, especially for models with information aggregated in "global tokens" (§E.1.1). Despite these tokens carrying important information, they are not spatially contiguous. Thus, if PCA dedicates a large portion of its 3 dimensions to global tokens, the features will *look* like their spatial quality is bad, despite the features containing good spatial information.

So, how do we select for only the *spatially contiguous* information to visualize? The answer is simple: by definition, the spatially contiguous information will be... spatially contiguous. To keep the spatially contiguous information while lowering the impact of the global tokens, we can simply apply a low pass filter to the features (specifically, a gaussian blur with kernel size 3 and a σ of 1). To retain the detail of the original features, we can average the two together. Thus, to visualize features, we use the 3D PCA of the of the following. x denotes the model's output features, and g(x) denotes gaussian blur.

$$0.5x + 0.5g(x, k = 3, \sigma = 1) \tag{4}$$

We show the impact of this in Fig. 13. Blurring the features make them appear more detailed! In reality, that information was always there, just PCA did not show it. Thus, great care must be taken when visualizing high dimensional feature spaces. If they were easy to map to 3 dimensions—you would not need 1536 of them!

Figure 13: **Feature Visualization Ablation.** With raw features (top row), PCA misses spatially contiguous parts of the feature space and instead focuses on global tokens (which carry information but are not spatially coherent). By applying a simple low pass filter (bottom row), we can reveal spatial information that PCA originally missed (see column 2: with raw features, the background looks like a mess, with the low pass filter the tiles become visible).

Then, to map the PCA dimensions to RBG pixel values, we map each PCA component to a corresponding channel in LCh color space, then convert those LCh colors to RGB to get the final image. Note that we use LCh instead of RGB directly for aesthetic reasons, and also because LCh is a cylindrical color space—where smooth changes to the values look like smooth changes in colors to humans—and thus is easier to discern.

B.3.3 Frozen Feature Dense Prediction

We discuss the detailed settings of the results for dense prediction with frozen features in Tab. 6. Each model is evaluated with its native resolution up to 448 or 448 (whichever is optimal).

Zero-Shot Tracking. We evaluate our pretrained models on label propagation task using the protocols in [51, 104] on DAVIS dataset [101]. This evaluation does not require any finetuning or probing, therefore preserves the spatial features in the model. Following Toto [104], we use the features from the last n = 7 frames to find the nearest neighbor patch in the current frame, and then propagate the masks from the previous frames to the current frame. Note that this evaluation method does not require any training.

Semantic Segmentation. For semantic segmentation, we evaluate our pretrained models on ADE20K [164] semantic segmentation task. We use a batch norm and a linear layer to map intermediate spatial features to segmentation masks following [96]. The models are evaluated and then features are resized to 518×518 . We only use features from single layer. The probing layers are finetuned with AdamW [81] with a learning rate of 0.001.

Depth Estimation. For depth estimation on NYUv2 [120], we follow [73, 96]. We use a DPThead [106] on top of our frozen pretrained model and use only single layer features. We scale the size of the DPT-head for each models based on the hidden size for each architecture. Because NYU is a small dataset and the models we evaluate are large, we observe the results for most models are noisy and prone to overfitting. Thus, for fair comparison we train all models for 20 epochs and for all models take the lowest validation loss over all epochs.

Frozen Detection. For the frozen feature detection results presented in §3, we evaluated using Mask R-CNN [42] as a probe. We used a resolution of 1024 for Fig. 4 and 768 for the remaining experiments in §3. Because the backbones were frozen, we did not add any global attention and instead simply tiled the input image with a window size of 32 for the 1024px experiments and 24 for the 768px experiments. All models were interpolated to patch 16. Finally, the backbones were frozen and only the FPN and R-CNN heads trained for 15 epochs on COCO with a stepwise decay LR without drop path.

B.3.4 End-to-End Finetuning Detection and Segmentation

We provide a detailed discussion of settings of end-to-end finetuning on detection and segmentation presented in Tab. 7 using Detectron2 [147]. The hyperparameters can be found in Tab. 18. We find that the default 100-epoch protocol in ViTDet [71, 146] causes overfitting problems in COCO experiments especially for billion-level parameter vision encoders, so we tune the training epochs, learning rate, drop path and learning rate decay accordingly.

The LVIS experiment setting is the same as COCO except all L-size models use learning rate of 2e-4 and all g-size and G-size models use 75 epochs.

config	values	model	lr	epochs	drop path	lr decay	layers	global window index	window size
optimizer	AdamW	MetaCLIP-G	5e-5	75	0.5	0.9	48	(11, 23, 35, 47)	14
optimizer momentum	(0.9, 0.999)	SigLIP2-so	1e-4	100	0.4	0.8	27	(2, 10, 18, 26)	14
weight decay	0.1	SigLIP2-g	5e-5	75	0.5	0.9	40	(9, 19, 29, 39)	14
learning rate schedule	Step-wise decay	DINOv2-L	1e-4	100	0.4	0.8	24	(5, 11, 17, 23)	32
batch size	64	DINOv2-g	5e-5	36	0.5	0.9	40	(9, 19, 29, 39)	32
image size	1024×1024	PE _{core} G	5e-5	75	0.5	0.9	50	(12, 24, 36, 49)	32
augmentation	LSJ [0.1, 2.0]	PE _{spatial} G	5e-5	36	0.5	0.9	50	(12, 24, 36, 49)	32
postional embedding	abswin [7]	•	•						
patch size	16								

Table 18: Settings for End-to-End Finetuning Detection and Segmentation.

B.3.5 System-Level Comparison on Detection

We describe our implementation for system-level comparison to the state-of-the-arts on COCO object detection in Tab 8. Our implementation is based on the DETA repository. We replace the vision encoder with our PE_{spatial} and maintain the same hyperparameters as in the end-to-end finetuning settings, while keeping the detector unchanged. Table 19: Test-Time Aug for system-The training process consists of three stages:

Test-Time Aug	AP _{box}
No TTA	65.2
+ More Queries	65.3
+ SoftNMS [6]	65.8
+ Flip Aug	65.8
+ Multiscale Aug	66.0

level comparison on COCO in Tab. 8.

1. Initial Training: Train on Objects 365 for 12 epochs with an image resolution of 1024×1024 , a total batch size of 256, and a learning rate of 2e-4, which is divided by 10 at the 10th epoch.

⁴https://github.com/facebookresearch/detectron2, Apache 2.0

⁵https://github.com/jozhang97/DETA, Apache 2.0

- 2. **Increasing Resolution**: Continue training on Objects 365 for 6 epochs with a resolution of 1536×1536 , a total batch size of 128, and a learning rate of 5e-5, which is divided by 10 at the 5th epoch.
- 3. **Finetuning**: Finetune on COCO dataset for 12 epochs with an image resolution of 1728×1728 , a total batch size of 64, and a learning rate of 5e-5, which is divided by 10 at the 8th epoch.
- 4. **Further Increasing Resolution**: Further finetune on COCO dataset for 3 epochs with a resolution of 1824×1824 , a total batch size of 64. To save GPU memory, we use SGD optimizer instead of Adam, with a learning rate of 5e-3, which is divided by 10 at the 2th epoch.

We apply a series of test-time augmentations to further improve the performance, see Tab. 19.

C Additional PEcore Results

C.1 Robust Image Pretraining

In Tab. 20, we present the raw data for the robustness metrics in Fig. 2. Across the board, each change improved almost all metrics (with the exception of progressive resolution slightly hurting the average and mask regularization slightly hurting ImageNet Adversarial). The fact that there were no tradeoffs to these changes, indicate that their improvements to the features are general. This could be why most of these changes improved performance for downstream tasks as well.

Note that in §2.1, we only discuss changes that we know to work. There are several changes that we have tried that do not work (i.e., do not improve performance or lower performance). For instance: average pooling instead of using a class token, increasing the text tower size, using hue or contrast jitter, and maintaining the same resolution throughout training but dropping tokens instead of progressive resolution (FLIP-style).

We also find increasing batch size and increasing training iterations for an L scale model to have equivalent effects. This is in contrast to the batch size scaling observed by [158], but it is possible that this difference is down to a hyperparameter issue.

		Zero-Shot Classification									
	Step	Avg Class.	ImageNet val [25]	ImageNet v2 [109]	ObjectNet IN Classes [4]	ImageNet Adversarial [46]	ImageNet Renditions [45]	ImageNet Sketch [140]			
1	Baseline	75.3	78.9	71.9	73.7	68.3	91.1	67.8			
2	Progressive Resolution	75.1	78.9	71.8	72.4	69.9	90.5	67.0			
3	High Batch Size	76.2	79.5	72.8	74.1	71.8	91.0	68.1			
4	LAMB and High LR	76.9	79.9	73.3	74.3	73.5	91.5	68.6			
5	High Resolution (336)	78.3	80.4	73.8	75.6	79.2	92.0	68.8			
6	2D RoPE	79.2	80.7	74.1	77.4	80.9	92.7	69.4			
7	Attention Pooling	80.1	81.0	74.8	78.4	82.9	93.4	69.9			
8	Data Augmentation	80.8	81.1	75.2	80.8	83.1	93.5	71.2			
9	Mask Regularization	80.9	81.3	75.3	80.9	82.8	93.8	71.2			

Table 20: **Robust Image Pretraining Full Results.** Raw results for the robustness metrics metrics in Fig. 2. Almost every change improves every metric, but some metrics are improved more than others (e.g., ObjectNet and ImageNet-A).

Scaling Behavior. In Fig. 14, we show the performance of our recipe (Fig. 2.9) vs. the original CLIP recipe (Fig. 2.1) across S/14, B/14, and L/14 models. For each benchmark, our recipe scales around the same rate or better than the original CLIP recipe. On some difficult datasets like ObjectNet [4] and ImageNet Adversarial [46], our recipe shows distinctly better scaling. This indicates that the improvements in performance were not at the cost of scalability, meaning we can further benefit from scaling the model size.

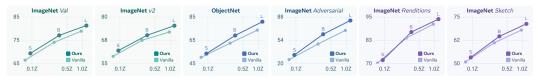


Figure 14: **Scaling Behavior** (**Model Size**). Results before and after our recipe changes (Fig. 2) for S/14, B/14, and L/14 models. Our recipe improves scaling for difficult metrics like ObjectNet [4] and ImageNet Adeversarial [46].

In Fig. 15, we additionally show the performance of our recipe vs. the original CLIP recipe across L/14 models trained with 120K steps (one-third schedule), 240K steps (two-thirds schedule), and 360K steps (full ablation schedule). All models are their own training runs with full learning rate annealing and the progressive resolution schedule adjusted proportionally. We see nearly linear trends for our recipe on most datasets. This suggests we can train longer for more performance, even at L scale and with 24B samples seen already.

Figure 15: **Scaling Behavior** (**Training Steps**). Results before and after our recipe changes for an L/14 model trained with 120K, 240K, and 360K steps, adjusting the learning rate and progressive resolution schedules accordingly. Despite our recipe being much stronger than the original, there is still room for further improvement by training longer.

C.2 Additional Video Ablations

Human Refined Data for Captioning. In Tab. 21, we ablate the captioning performance of our video captioner component in our video data engine with or without human-refined video captioning data. For all benchmarks tested, the human-refined data significantly improves captioning performance.

	AuroraC	Cap [12]	VCG Div	erse [85]	VCG [84]
Captioner	Score	Acc	Score	Acc	Score
PLM	2.2	51.9	3.1	65.1	34.3
PLM + Human-Refined Data	3.4	71.1	3.6	79.4	35.2

Table 21: Video Captioning. Adding human-refined data greatly boosts captioning performance.

Video Scaling Behavior. In Fig. 16, we investigate the impact of scaling recaptioned video data on a later checkpoint of the same image-only model as in Fig. 1. Notably, scaling synthetic video data demonstrates consistent improvement in both image and video benchmarks. Full results of this scaling experiment can be found in the Appendix 13.

In the top row, scaling synthetic video data consistently improves performance on image benchmarks, with monotonic improvements of +1.1% in ObjectNet and +1.6% in ImageNet Adversarial. ImageNet val and ImageNet v2 have smaller gains, with accuracy increases of 0.3% to 0.5%, plateauing at \sim 7M samples. We also observe a significant boost to zero-shot retrieval (here, COCO [74]) of +3.8% to +4.1% top-1 recall.

The video tasks listed in the bottom row demonstrate a consistent story. We observe a significant jump in performance between none and 3M videos across all video classification tasks, indicating that there is a domain gap for image-only models that hinders their ability to perform well on video out of the box. Further scaling synthetic video data leads to substantial performance gains in both video classification and retrieval. Video classification accuracy improves consistently by +5.6% to +11.7% without plateauing, while video retrieval shows significant improvements of +7.7 to +15.3 top-1 recall.

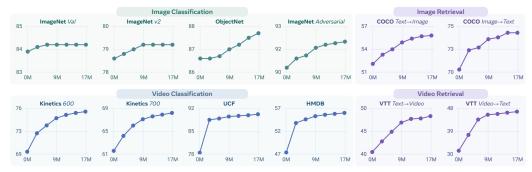


Figure 16: **Video Data Scaling.** Finetuning on videos recaptioned by the PE video data engine from 0M (baseline image-only model) to 17M samples consistently improves both image and video performance, both classification and retrieval.

These experiments highlight the quality of our video data engine and its ability to significantly improve encoder performance, even with only a relatively modest 17M videos compared to the billions of images seen during pretraining. Our video data engine is a vital component in build a strong, unified image-video encoder.

Video Scaling Behavior Detailed Results. The detailed video data scaling results are presented in Tab. 22. Our experiments demonstrate that increasing the number of synthetic video data generated by the proposed video data engine enhances the performance of classification and retrieval on both image and video benchmarks. On image benchmarks, while improvements on ImageNet val and v2 plateaued earlier compared to ObjectNet and ImageNet Adversarial, MS-COCO retrieval performance continued to show gains. On video benchmarks, scaling synthetic video data consistently yields better performance for both classification and retrieval tasks. We expect that further scaling up the video data with our video data engine will continue to drive performance improvements.

Size	e		Imag	ge Zero	-Shot			Video Zero-Shot							
Video Data Si	Average Image	ImageNet val [25]	ImageNet v2 [109]	ObjectNet IN Classes [4]	ImageNet Adversarial [46]	MS-COCO txt→img [74]	MS-COCO $img \rightarrow txt$ [74]	Average Video	Kinetics 400 [54]	Kinetics 600 [54]	Kinetics 700 [54]	UCF 101 [123]	HMDB 51 [61]	MSR-VTT $txt \rightarrow vid$ [151]	$\begin{array}{l} \mathbf{MSR\text{-}VTT} \\ \mathit{vid} \rightarrow \mathit{txt} \ [151] \end{array}$
0M	77.0	83.9	78.6	86.6	90.3	52.1	70.3	57.0	70.3	69.4	61.6	78.5	47.4	40.5	31.4
3M	77.7	84.1	78.8	86.6	90.9	53.3	74.2	61.6	72.4	72.2	64.2	88.5	53.8	42.8	37.6
6M	78.0	84.2	79.0	86.7	91.1	54.0	72.7	63.6	73.5	73.4	66.0	88.9	54.6	44.9	43.6
8M	78.4	84.2	79.2	87.0	91.6	54.9	73.6	64.8	74.5	74.5	67.7	89.5	55.3	46.9	45.5
11M	78.6	84.2	79.2	87.2	91.8	55.4	73.8	65.2	75.1	75.0	67.6	89.7	55.6	47.7	45.8
14M	78.8	84.2	79.2	87.5	91.9	55.7	74.3	65.5	75.4	75.3	67.9	89.9	55.8	47.8	46.3
17M	78.9	84.2	79.2	87.7	92.0	55.8	74.3	65.8	75.7	75.5	68.2	90.2	56.0	48.3	46.7

Table 22: **Scaling Video Data.** Increasing the number of synthetic video data generated by our proposed video data engine consistently enhances the performance of image and video classification and retrieval tasks.

C.3 Smaller Models

Ablation: Distillation Temperature. To optimize the performance of smaller models (B and L-scales in Tab. 2), we utilize a distillation finetuning approach with $PE_{core}G$ as the teacher model. During this process, both student and teacher models encode image and text inputs to compute image-to-text and text-to-image similarity distributions, similar to CLIP training [103]. The student's distributions are then optimized to match those of the teacher by minimizing KL-divergence loss on both image-to-text and text-to-image similarity distributions.

We find that using a fixed and smaller temperature (i.e., higher logit scale), which controls the range of logits in the softmax, significantly enhances the effectiveness of distillation. This results in a sharper distribution for the teacher's distributions. In contrast, the student's temperature remains learnable, consistent with our pretraining procedure and CLIP training.

In Tab. 23, we present an ablation study examining the impact of temperature on the teacher's distribution. For this analysis, we utilize a pretrained *vanilla* CLIP model (ViT-B/14, resolution 224), which serves as a baseline for comparison (see §2.1 for details). The models are finetuned using

	ф		Zero-Shot Classification									
Model	Teacher's Temp	Model Scale	Avg Class.	ImageNet val [25]	ImageNet v2 [109]	ObjectNet IN Classes [4]	ImageNet Adversarial [46]	ImageNet Renditions [45]	ImageNet Sketch [140]			
vanilla pretrained model	-	В	66.2	74.2	67.4	62.5	50.2	83.0	59.8			
	$\times 2$	В	65.2	71.8	65.5	61.4	50.2	83.6	58.6			
distillation	$\times 1$	В	68.0	74.9	68.1	64.7	54.1	85.3	61.1			
uisunauon	$\times 0.7$	В	68.2	75.1	68.2	65.3	54.4	85.1	61.3			
	×0.5	В	68.3	75.2	68.2	65.3	54.2	85.2	61.4			

Table 23: **Ablation Study on Teacher's Distribution Temperature.** We evaluate the effect of varying temperatures on the teacher's distribution, using a pretrained vanilla CLIP model (ViT-B/14, resolution 224) as a baseline (details in §2.1). The models are finetuned via distillation with a short schedule of 50K steps.

distillation with a concise schedule of 50K steps. Notably, our results show that employing a smaller temperature for the teacher's distributions yields improved performance on zero-shot ImageNet benchmarks.

Building strong smaller models. In Tab. 24, we demonstrate our step-by-step training strategy for building strong smaller models at the L scale, as discussed in $\S 2.3$. Specifically, we outline our approach to image pretraining, image distillation, and video finetuning, and distillation. Leveraging the robust foundation established by our pretraining techniques ($\S 2.1$), we show that distilling from PE_{core}G, our strongest unified perception encoder, yields improvements on both image and video benchmarks. Furthermore, a short-scheduled video finetuning provides an additional boost in performance on both benchmarks.

		Image Zero-Shot						_		1	Video Z	ero-Sha	ot			
Model	Stage	Average Imag	ImageNet val [25]	ImageNet v2 [109]	ObjectNet IN Classes [4]	ImageNet Adversarial [46]	MS-COCO txt→img [74]	MS-COCO img →txt [74]	Average Video	Kinetics 400 [54]	Kinetics 600 [54]	Kinetics 700 [54]	UCF 101 [123]	HMDB 51 [61]	MSR-VTT txt→vid [151]	MSR-VTT vid→txt [151]
SigLIP2-L/16	-	76.0	83.1	77.4	84.4	84.3	55.3	71.4	56.2	65.3	62.5	56.8	86.7	49.3	41.5	31.4
$PE_{core}L$	image pretraining	75.1	82.9	76.8	81.8	85.6	53.0	70.4	59.0	68.0	67.7	58.5	85.5	57.7	42.0	33.4
$PE_{core}L$	+image distill from PEcore G	77.6	83.6	78.1	84.4	88.9	56.0	74.7	64.5	73.0	72.6	64.8	86.5	58.0	47.9	48.4
$PE_{core}L$	+video finetuning	78.0	83.5	77.9	84.7	89.0	57.1	75.9	65.3	73.4	72.7	65.3	87.1	58.5	50.3	50.1

Table 24: **Building Strong Smaller Models.** This table illustrates the step-by-step process of developing the $PE_{core}L$ 336px model, as outlined in §2.3. Starting with the pretrained $PE_{core}L$, both image distillation, along with video finetuning, enhance performance across image and video benchmarks, resulting in a unified L-scale model.

C.4 Additional Results

Additional Zero-Shot Benchmarks. We further evaluate PE_{core} on an additional set of zero-shot classification and retrieval benchmarks we construct in Tab. 25 to address key gaps in common benchmarks. For comparison, we also evaluate SigLIP2 [135] and InternVL-C [19] on these benchmarks.

First, we note that the version of ObjectNet [4] that is standard to benchmark robustness (e.g., in Tab. 3) is *not* the full set. ObjectNet consists of 313 classes of objects in challenging and uncommon orientations, locations, and viewpoints. However, the standard version used for benchmarking is a 113 class subset of classes that overlap with ImageNet-1k [25]. Naturally, benchmarking in this way rewards performing well on ImageNet classes over generality. To remove this bias, we construct the full ObjectNet set with all classes and compare to the reduced ObjectNet set in Tab. 25. Surprisingly, we find that while $PE_{core}G$ performs +7.6% over InternVL-C and only +0.2% over SigLIP2-g-opt on the reduced ObjectNet set, it performs +11.8% over InternVL-C and +0.9% over SigLIP2-g-opt on the full set of classes, highlighting PE's generality.

Next, we include iNaturalist [137] as a *zero-shot* benchmark because of its level of specificity with 2,101 fine-grained long-tail classes. PE_{core}G outperforms the next best SigLIP2-g-opt model by +9.6%, emphasizing PE's long tail knowledge. We then evaluate PE's cultural diversity on Dollar

Model	S			Zero	Shot C	lassific	ation	Zero-Shot Retrieval				
Wiodei	Encoder Params	Resolution	Data	ObjectNet [4] IN Overlap (113)	ObjectNet [4] All Classes (313)	iNaturalist 2017 [137]	Dollar St 58 [38, 110]	TextCaps img→txt [119]	TextCaps Flip img→txt [119]	PVD Bench text→vid	PVD Bench vid →txt	
SigLIP2-B/16 [135]	0.1B	224	10B	73.6	59.1	16.9	55.9	72.0	69.8	53.9	60.1	
PE _{core} B	0.1B	224	5.4B	71.9	58.3	25.9	52.1	72.3	71.9	59.8	61.1	
SigLIP2-L/16 [135]	0.3B	384	10B	84.4	73.2	26.7	57.6	78.0	76.2	61.9	67.1	
$PE_{core}L$	0.3B	336	5.4B	84.7	74.3	35.3	59.6	78.5	78.3	64.7	65.2	
InternVL-C [19]	5.5B	224	5B	80.6	67.2	19.4	58.2	72.3	67.8	63.4	65.1	
SigLIP2-g-opt [135]	1.1B	384	10B	88.0	78.1	31.5	59.3	78.8	76.9	62.5	67.1	
PE _{core} G	1.9B	448	5.4B	88.2	79.0	41.1	62.3	78.8	78.7	77.0	76.6	

Table 25: **Additional Zero-Shot Results.** We present several additional zero-shot benchmarks from existing datasets and our own PVD (§A.1) to address evaluation gaps left by standard benchmarks.

Street [110], which consists of images of under-represented populations. We use the version provided by [38] and re-evaluate all models to ensure a fair comparison. Here too we find $PE_{core}G$ to outperform existing methods, with +3.0% over SigLIP2-g-opt. Further, we test OCR performance by setting up TextCaps [119] as a retrieval dataset. Notably, PE_{core} performs on par or better than SigLIP, which is known for good OCR performance. This is potentially surprising, as the horizontal flip augmentation we used during robust pretraining (§2.1) is typically thought to hurt OCR performance. However, instead it seems to have given PE_{core} the ability to read backwards: we test the same TextCaps retrieval but with all images horizontally flipped. Other models suffer from this, but $PE_{core}G$'s performance only drops by 0.1%. Finally, we evaluate $PE_{core}G$ on the PVD benchmark (§A.1), a challenging video retrieval task on 15K diverse and human-refined videos. Here, $PE_{core}G$ significantly outperforms InternVL [19] by +13.6% on text—video and +9.5% to SigLIP2 [135] on video—text.

Frozen Encoder Probing Results. To compare against models that are not capable of zero-shot classification, we additionally evaluate PE_{core} using k nearest neighbors (following [96]), linear probing (following [19]), and attention probing (following [36]) on top of the ImageNet-1k [25] train set. We present these results in Tab. 26 and compare to other encoders using their reported numbers. In every case, PE_{core}G outperforms all existing open encoders, including those with significantly more parameters.

Model	Encoder Params	Resolution	Data	ImageNet [25]	ImageNet [25] apple Linear	ImageNet [25] girl Attention
DINOv2-g [96]	1.1B	224	145M	83.5	86.5	87.2 [†]
RADIOv2.5-g [44]	1.1B	518	-	85.3	-	-
AIMv2 3B [36]	2.7B	448	7.2B	-	-	89.5
InternVL-C [19]	5.5B	224	5B	-	88.2	-
EVA 18B [127]	17.5B	224	2B	-	88.9	-
PE _{core} G	1.9B	448	5.4B	86.8	89.5	89.8

Table 26: **Encoder Probing Results.** We evaluate $PE_{core}G$'s frozen features using the typical probing methods to compare to models without zero-shot support. †from [36].

C.5 Additional Layerwise Scaling Analysis

In the main paper, we explored the scalability of our pretrianing recipe v.s. the original CLIP recipe. However, we only analyzed it there for a single spatial task. To see whether the trend is consistent, we repeat this scaling analysis on a wide variety of downstream language modeling tasks using the same frozen evaluation setup as Fig. 4 and report the results in Fig. 17. Surprisingly, the simple change in pretraining recipe improves scaling for most language tasks as well—including output-side grounding (RefCOCO). Note that in this benchmarking setup, the LLM never sees videos during training so the Video Q&A per-layer results are noisy. Yet, the best layer trend is still the same.

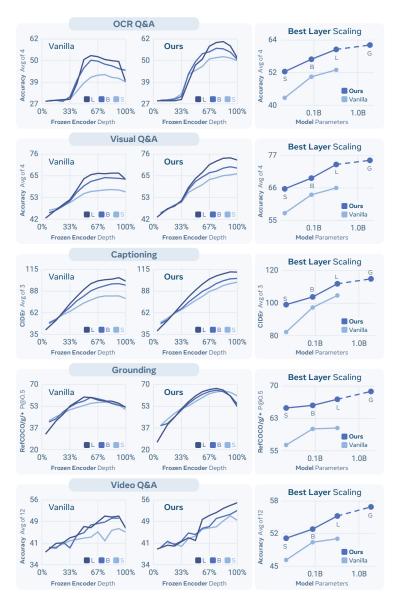


Figure 17: **Further Scalability Analysis.** We repeat the analysis from Fig. 7 on a wide range of downstream tasks by adapting to a language model. Each category is an average of several downstream tasks (see §4).

D Additional PE_{lang} Results

D.1 Alignment Method Derivation

Here we discuss in detail the derivation of the alignment approach discussed in §4. We design the alignment approach not just keeping in midn the best performance, but also ensuring that the resulting aligned model is *general*. That is, we want the aligned model to be transferrable to as many settings as possible regardless of resolution, decoder, or training setup.

MLLM Evaluation Tasks. In this section, our main testbed is to adapt vision encoders to MLLMs and test on various MLLM tasks. We evaluate the downstream performance of each MLLM across five task categories: (1) OCR, Chart, Document Q&A on ChartQA [162], DocVQA [89], InfoVQA [90] and AI2D [56]; (2) Visual Q&A on TextVQA [122], OK-VQA [115], POPE [72], and VQAv2 [39]; (3) Captioning on Flicker [155], COCO [74], and No Cap [1]; (4) Video Understanding on VideoMME [37], STAR [145], TGIF-QA [52], EgoSchema [87], MVBench [67], and PerceptionTest [102]; and finally (5) Grounding on RefCOCO [55].

To arrive at the optimal alignment recipe, we first conduct ablation studies using a 20M subset of the data. In Tab. 27, we ablate the LLM sizes, training parameters, vision projector types, output layers to project, and encoder regularization. We evaluate across OCR Q&A, Captioning, Visual Q&A, and Video Q&A and find the best configuration.

LLM Setup. We explore different *scales* (1B or 3B parameters) and *freezing* weights of the LLM. We observe that going from 1B to 3B parameters increases average score by 1.6 points $(76.5 \rightarrow 78.1)$. Unfreezing the LLM boosts this number to 78.4.

Vision Projector. Using a 2-layer MLP vision projector instead of a linear layer improves the average score from 77.2 to 78.1, while only adding few parameters (13.5M \rightarrow 27M).

LLM scale	LLM unfrozen	Regularization?	Projector	Layer	Avg.	OCR Q&A Average of 4	Captioning Average of 3	Visual Q&A Average of 4	Video Q&A Average of 6
LLM S	etup								
1B			MLP	47	76.5	60.7	115.1	76.0	54.0
3B			MLP	47	78.1	65.9	115.7	76.6	54.1
3B	✓		MLP	47	78.4	65.8	117.6	76.3	53.7
Vision .	Project	or							
3B			Linear	47	77.2	64.5	114.1	76.5	53.7
3B			MLP	47	78.1	65.9	115.7	76.6	54.1
PE Out	tput La	yer							
3B			MLP	50	75.9	56.6	116.7	76.5	53.7
3B			MLP	47	78.1	65.9	115.7	76.6	54.1
3B			MLP	41	76.9	65.5	112.8	75.4	53.9
PE Reg	ulariz	ation							
3B		✓	MLP	47	79.9	69.0	117.5	77.4	55.6
3B	✓	✓	MLP	47	80.1	68.7	118.3	77.0	56.3

Table 27: **Language Alignment.** We find the best configuration to language align PE_{core}G using autoregressive language training.

PE Output Layer. As shown in §3, PE_{core}G has intermediate layers that perform significantly better than the last layer when used as features for certain tasks. However, it is not clear if that same behavior applies when finetuning. We test applying the projector to layers 41, 47, and 50 (the last layer), and find that layer 47 works best. Incidentally, this is also the optimal layer for frozen VQ&A in Fig. 4.

PE Regularization. We apply LayerScale [132] and DropPath [49] to the vision encoder during the alignment, for stabilizing training. This improves the 78.1 average score to 79.9 (+1.8 points). Unfreezing the LLM boosts this number further to 80.1. We choose this configuration (last row) as our final alignment setup.

To construct PE_{lang} , we scale this recipe up the 70M samples covering natural images, documents/charts/diagrams, and videos, perform alignment as described, and extract the resulting vision encoder. Compared to the 20M sample ablation setting in Tab. 27, the final PE_{lang} trained on 70M total samples gives another +2.1 points to 82.2 on the average across OCR Q&A, Captioning, Visual Q&A, and Video Q&A.

D.2 Layer Analysis Details

In Tab. 28, we present the raw numbers for the layer analysis plots in Fig. 8. Note that layer analysis was not performed exhaustively on every layer. Additionally, PE_{lang} removes the last four layers of the model.

	OCR	VQA	Capti	oning	Natura	ıl VQA	Grou	nding
Layer	PEcore	PElang	PEcore	PElang	PEcore	PElang	PEcore	PElang
50	48.6		114.0		74.1		39.1	
49	53.8		114.5		74.9		54.2	
48	56.3		114.8		74.8		55.6	
47	57.3	72.4	113.9	120.1	75.3	78.1	57.8	71.2
46	58.3	72.2	114.1	120.0	75.1	78.2	58.4	70.8
45	59.6	72.0	114.6	119.7	75.1	77.7	61.2	70.7
43	59.9	71.5	113.8	117.7	74.8	77.4	63.1	70.5
42	60.3	71.3	113.1	116.6	73.8	77.2	64.1	70.8
41	60.8	70.7	112.5	115.4	73.3	76.7	66.6	71.2
40	61.4	69.8	112.0	115.0	74.0	76.3	66.5	71.0
39	61.8	70.0	111.0	113.5	74.0	75.6	67.1	71.1
38	62.1	69.3	110.2	112.6	73.9	75.3	68.7	70.3
36	61.3	67.9	108.5	109.4	73.0	74.0	67.8	70.4
34	58.7	65.4	102.8	104.7	70.0	72.2	66.5	69.6
33	57.3	64.1	100.1	102.7	69.0	71.3	65.9	68.9
32	54.2	63.2	96.9	100.1	67.8	70.6	65.5	68.7
31	50.9	60.7	93.2	96.7	65.5	68.7	63.0	67.3
21	29.6	30.3	59.3	71.3	49.1	52.0	41.5	51.6
11	28.8	28.9	47.4	59.0	47.0	49.2	30.9	43.3
2	28.2	28.7	38.6	42.8	43.3	43.8	22.8	27.2

Table 28: Raw Language Layer Analysis Results. The raw values for the plots in Fig. 8.

D.3 Unfrozen Encoder Results

In our standard MLLM evaluation, we always freeze the vision encoder when tuning the LLM for downstream MLLM tasks. This is to ensure that we test the quality of each vision encoder without any bias from our finetuning setup. However, this introduces a lingering question of whether unlocking the encoder during LLM finetuning would eliminate any lead PE_{lang} has over the other models.

Thus, in this section, we repeat the same MLLM evaluations as the main paper but with the encoder unfrozen. Each experiment uses 1024 tokens per image. In Tab. 29, we show the unfrozen encoder results compared to AIMv2 3B [36] and SigIIP2 g-opt [135]. It seems all models, including $PE_{lang}G$, benefit from unlocking the encoder. However, $PE_{lang}G$ still outperforms the other models overall, often by a significant margin.

We perform similar evaluation in Tab. 30, this time comparing across PE_{lang} model scales and to the original PE_{core} . And here we see that both PE_{lang} models significantly outperform the PE_{core} ones in this unfrozen setup, especially for the larger G size. Thus, it seems that a language alignment step is still necessary even when the encoder is unfrozen during MLLM construction.

	0	CR / C	hart / L	oc. Qe	&A		Vi	sual Q	&A			Capt	ioning		2				Video			
Model	Avg. OCR QA	ChartQA Acc. [162]	DocVQA Acc. [89]	Info. QA Acc. [90]	AI2D Acc. [56]	Avg. VQA	TextVQA Acc. [122]	OK-VQA Acc. [115]	POPE Acc. [72]	VQAv2 Acc. [39]	Avg. Cap.	Flicker CIDEr [155]	COCO CIDEr [74]	No Cap CIDEr [1]	Avg. Ground. RefCOCO/g/+[5]	Avg. Video	VideoMME Acc. [37]	STAR Acc. [145]	TGIF-QA Acc. [52]	EgoSchema Acc. [87]	MVBench Acc. [67]	PerceptionTest Acc. [102]
AIMv2 3B [36]	65.0	77.4	68.8	39.4	74.4	76.9	73.1	64.4	88.4	81.7	119.2	97.1	139.7	120.7	69.7	54.3	46.8	53.2	64.5	58.4	48.9	53.9
SigLIP2-g-opt [135]	65.0	77.3	68.6	39.6	74.6	78.8	74.9	67.7	89.5	83.2	120.0	97.9	140.7	121.5	73.4	54.4	43.8	52.7	66.8	59.0	51.2	52.9
PE _{lang} G	72.8	81.6	84.7	48.1	76.8	78.4	74.1	66.9	89.6	82.9	120.8	97.4	141.7	123.4	73.4	57.9	48.0	58.9	70.4	63.0	50.9	56.2

Table 29: MLLM Results with Encoder Unfrozen (PE_{lang} vs. Others). Same setting as Tab. 5 using 1024 tokens per image, but with the vision encoder unfrozen during LLM finetuning.

	0	CR / C	hart / L	oc. Qe	&A		Vi.	sual Q	&A			Capt	ioning		-				Video			
Model	Avg. OCR QA	ChartQA Acc. [162]	DocVQA Acc. [89]	Info. QA Acc. [90]	AI2D Acc. [56]	Avg. VQA	TextVQA Acc. [122]	OK-VQA Acc. [115]	POPE <i>Acc.</i> [72]	VQAv2 Acc. [39]	Avg. Cap.	Flicker CIDEr [155]	COCO CIDEr [74]	No Cap CIDEr[1]	Avg. Ground. RefCOCO/g/+ [5:	Avg. Video	VideoMME Acc. [37]	STAR <i>Acc.</i> [145]	TGIF-QA Acc. [52]	EgoSchema Acc. [87]	MVBench Acc. [67]	PerceptionTest Acc. [102]
PEcoreL	64.4	76.9	70.6	39.1	70.8	75.8	69.7	64.5	88.5	80.3	115.9	93.7	136.8	117.1	70.9	53.3	45.3	52.6	65.4	53.4	50.3	52.8
$PE_{lang}L$	71.2	81.2	82.5	45.6	75.3	76.6	71.7	64.4	89.2	80.9	114.5	85.1	138.7	119.7	73.0	55.5	47.1	55.1	68.4	58.4	49.9	54.3
PE _{core} G	62.8	73.6	67.2	38.5	71.7	76.0	68.9	65.6	88.4	80.9	117.2	94.0	137.9	119.7	69.2	55.0	44.2	56.0	66.3	60.6	50.5	52.5
PE _{lang} G	72.8	81.6	84.7	48.1	76.8	78.4	74.1	66.9	89.6	82.9	120.8	97.4	141.7	123.4	73.4	57.9	48.0	58.9	70.4	63.0	50.9	56.2

Table 30: MLLM Results with Encoder Unfrozen (Core vs. Lang). Same setting as Tab. 5 using 1024 tokens per image, but with the vision encoder unfrozen during LLM finetuning.

D.4 Additional Results

Here we provide additional comparisons of PE_{core} and PE_{lang} with other vision encoders that are popular choices in MLLM literature: MetaCLIP [150], SigLIP2 [135], CLIP [103], AIMv2 [36], DINOv2 [96], and InternViT2.5 [18]. Overall, these encoders span several different pretraining losses (e.g., contrastive, captioning, self-supervised, and mixed supervision), encoder sizes (from 300M to 6B parameters), and resolutions (from 224 to 512). For all vision encoders, we find the best intermediate layers to train MLLM for fair comparison (more details in Appendix B.2).

Main Results. In Tab. 5, we showed benchmarks results for native resolution input across existing encoders, PE_{core} and PE_{lang} . Here we provide additional comments about those results. Notably, AIMv2 [36], InternViT2.5 [18], SigLIP2 [135] and PE_{lang} are trained jointly with a language decoder using next token prediction objective, and thus they perform better overall compared to the base contrastive and self-supervised models across all the metrics. However, PE_{lang} uses a fraction of the training FLOPs for language alignment tuning, while significantly outperforming all vision encoders by large margin (an average of +3.5 points for G and +2.0 points for L).

In Tab. 31, we compare PE_{core} and PE_{lang} with *dynamic resolution* setting [75, 80]. More specifically, we use up to 4 tiles, following after a *thumbnail*, which is a whole image resized into 448×448 . With the maximum number of tiles of 4, the model can cover $\{1 \times 1, 1 \times 2, 1 \times 3, 1 \times 4, 2 \times 1, 2 \times 2, 3 \times 1, 4 \times 1\}$ tile ratios. Similar to the Tab. 5, we show that PE_{lang} largely outperforms the baseline vision encoders by large margins across all categories of MLLM tasks. Note that PE_{lang} has been alignment-tuned with native resolution input, as opposed to *e.g.*, InternViT 2.5, which has been midtrained with dynamic tiling, which shows PE_{lang} 's strong generality for different input formats.

Transferability. As PE_{lang} is aligned with Llama 3.2-instruct 3B, we conduct a separate set of experiments to check if our model performs well with a different base LLM. In Tab. 32 we repeat the native resolution comparison with QwenLM 2.5 7B [153]. Interestingly, PE_{lang} not only outperforms all vision encoders in this setting, but it also outperforms InternViT2.5 [18], which is specifically aligned to QwenLM 2 [152] throughout midtraining. In fact, $PE_{lang}G$ with QwenLM even improves its performance with Llama in some cases like with OCR Q&A and video benchmarks, emphasizing the generality of our language alignment.

Grounding Breakdown. Next, in Tab. 33, 34, 35, we show full RefCOCO/+/g [55] results across all setups. Overall, PE_{lang} L or G show the best performance across all RefCOCO splits, except with Qwen2.5 LM. This is because (1) InternViT 2.5 6B is midtrained with Qwen2 LM, and (2) during pre/mid-training the training data of RefCOCO/+/g are seen.

	su			CR / C	hart / L	oc. Qe	kА		Vi	sual Q	&A			Capt	ioning		5]				Video			t
Model	Encoder Params	Resolution Patch Size	Avg. OCR QA	ChartQA Acc. [162]	DocVQA Acc. [89]	Info. QA Acc. [90]	AI2D Acc. [56]	Avg. VQA	TextVQA Acc. [122]	OK-VQA Acc. [115]	POPE Acc. [72]	VQAv2 Acc. [39]	Avg. Cap.	Flicker CIDEr [155]	COCO CIDEr [74]	No Cap CIDEr [1]	Avg. Ground. RefCOCO/g/+ [5:	Avg. Video	VideoMME Acc. [37]	STAR <i>Acc.</i> [145]	TGIF-QA Acc. [52]	EgoSchema Acc. [87]	MVBench Acc. [67]	PerceptionTest Acc. [102]
256 Tokens per Tile																								
MetaCLIP-L [150]	0.3B	224/14	61.8	71.1	62.5	40.2	73.3	74.6	65.3	64.9	88.5		113.4			116.2		48.0	44.8	47.1	62.7	39.0	46.0	48.3
MetaCLIP-G [150]	1.8B	224/14	60.3	68.1	61.3	39.1	72.8	74.9	65.4	65.9	88.2		114.2			116.5		49.0	46.5	46.5	62.5	45.0	44.7	48.9
PE _{lang} G [†]	1.7B	* 224/14	70.2	79.8	79.1	47.5	74.6	76.0	70.6	64.3	88.3	80.6	116.3	92.0	136.4	120.5	69.5	56.6	49.0	55.9	69.9	61.2	50.0	53.6
576 Tokens per Tile																								
CLIP [103]	0.3B	336/14	69.6	76.8	78.2	50.3	72.9	76.3	71.8	64.9	88.0	80.4	114.0	90.9	134.4	116.6	68.5	50.8	46.6	52.2	65.0	44.6	46.3	49.9
AIMv2-L [36]	0.3B	336/14	66.7	74.1	74.9	45.2	72.4	77.4	73.5	65.6	89.0	81.7	116.4		137.1	119.5	66.6	54.1	43.4	54.3	70.6	56.0	47.3	52.7
SigLIP2-so [135]	0.4B	384/16	55.5	61.4	54.9	33.3	72.3	76.5	70.1	66.0	88.6	81.2	118.0	95.8	138.3	119.8	66.5	54.3	44.9	52.8	66.8	58.6	49.6	53.3
SigLIP2-g-opt [135]	1.1B	384/16	56.2	63.1	55.3	34.0	72.4	77.0	70.3	66.7	89.6	81.6	117.7	94.9	137.8	120.3	66.5	53.9	46.2	53.9	66.6	53.8	48.5	54.7
PE _{lang} G [†]	1.7B*	* 336/14	77.5	82.1	88.5	61.8	77.4	79.7	80.2	66.4	89.8	82.5	120.3	97.4	140.2	123.2	71.9	59.8	49.4	62.7	74.1	64.0	53.1	55.6
1024 Tokens per Tile																								
SigLIP2-so [135]	0.4B	512/16	56.9	66.0	56.5	34.3	70.9	76.4	69.9	66.2	88.4	81.2	117.8	94.7	137.8	120.9	67.8	46.2	47.0	44.9	66.7	39.2	34.5	45.1
$PE_{core}L$	0.3B	448/14	67.1	72.4	78.3	46.4	71.2	76.4	74.0	63.7	88.8	79.0	113.9	91.5	134.5	115.7	62.9	51.4	47.0	51.2	62.7	49.6	47.8	50.1
$PE_{lang}L$	0.3B	448/14	78.3	82.8	89.3	65.2	75.9	78.5	78.8	64.4	89.6	81.3	117.8	94.7	138.1	120.7	71.6	56.5	47.0	57.2	68.0	59.8	52.3	54.7
AIMv2 3B [36]	2.7B	448/14	67.5	73.0	78.2	46.5	72.2	78.8	79.2	66.2	88.3	81.7	119.0	95.8	139.7	121.5	65.1	54.0	49.6	55.4	67.3	49.6	49.9	52.5
InternViT2.5	5.5B	448/14	67.4	74.6	74.3	47.6	72.9	75.9	71.3	64.8	87.7	79.7	110.4	85.3	132.5	113.5	56.8	52.0	46.0	49.6	65.0	50.6	49.6	51.3
6B [18]																								
PE _{core} G	1.9B	448/14	68.0	73.4	81.2	47.6	69.7	76.4	74.3	62.5	89.1	79.6	113.0	91.6	134.5	112.9	67.6	53.2	46.0	54.3	67.0	51.2	48.7	52.0
$PE_{lang}G$	1.7B*	448 /14	78.6	81.8	89.8	67.8	75.0	80.3	82.3	66.7	89.6	82.8	119.6	95.2	140.3	123.4	71.8	59.0	49.6	61.8	73.9	60.0	52.6	56.3

Table 31: **4+1 Tile Llama 8B MLLM Results.** Llama 3.1-instruct 8B [80] is used as a language model. *PE_{lang} has 1.7B parameters since we discard the last 3 layers during language alignment. All MLLMs are trained with dynamic tiling for different image sizes and aspect ratio. We use up to 4 image tiles of 448×448 (or the corresponding resolution for each encoder). The image tiles follow after a *thumbnail* input, similar to prior work [75]. †Evaluation on an model that was interpolated without additional training (i.e., *zero-shot* resolution).

•	ns			CR / C	hart / L	oc. Qe	&A		Vi	sual Q	&А			Capt	ioning		5]				Video			t
Model	Encoder Params	Resolution Patch Size	Avg. OCR QA	ChartQA Acc. [162]	DocVQA Acc. [89]	Info. QA Acc. [90]	AI2D Acc. [56]	Avg. VQA	TextVQA Acc. [122]	OK-VQA Acc [115]	POPE Acc. [72]	VQAv2 Acc. [39]	Avg. Cap.	Flicker CIDEr [155]	COCO CIDEr [74]	No Cap CIDEr[1]	Avg. Ground. RefCOCO/g/+[5	Avg. Video	VideoMME Acc. [37]	STAR Acc. [145]	TGIF-QA Acc. [52]	EgoSchema Acc. [87]	MVBench Acc. [67]	PerceptionTes Acc. [102]
576 Tokens per Image																								
SigLIP2-so [135]	0.4B	384/16	60.5	72.0	59.1	36.7	74.3	76.2	69.0	65.4	89.2	81.1	116.3	91.6	137.3	120.0	70.0	57.0	51.3	55.8	66.0	61.0	51.9	55.7
SigLIP2-g-opt [135]	1.1B	384/16	60.8	71.0	60.4	36.7	75.2	76.8	70.3	65.6	89.5	81.8	118.8	96.4	139.0	121.1	69.9	58.3	52.0	57.6	68.1	62.0	52.8	57.4
PE _{lang} G [†]	1.7B*	* 336/14	66.8	77.5	72.4	41.1	76.4	76.0	67.9	65.4	89.1	81.5	118.8	94.6	139.5	122.3	70.1	60.2	54.6	61.7	69.8	63.6	54.3	57.2
1024 Tokens per Image																								
InternViT2.5 [18]	0.3B	448/14	60.3	75.4	61.1	36.2	68.4	74.2	65.6	63.7	87.8	79.5	112.1	88.5	133.5	114.1	68.1	55.8	50.3	54.7	66.6	59.0	50.6	53.8
SigLIP2-so [135]	0.4B	512/16	66.3	77.2	71.9	42.4	73.9	77.9	74.2	65.6	89.9	81.8	117.1	93.0	138.0	120.3	70.5	55.9	50.3	57.3	67.2	62.6	50.3	47.4
$PE_{core}L$	0.3B	448/14	63.5	73.9	67.4	40.5	72.2	75.7	69.2	64.0	89.4	80.2	113.3	88.7	135.2	115.9	66.5	57.3	49.6	57.8	67.7	60.8	52.3	55.5
PE _{lang} L	0.3B	448/14	70.2	80.6	80.7	46.0	73.5	76.8	72.8	64.1	89.4	81.0	116.4	93.4	137.6	118.1	70.4	58.3	51.6	59.8	67.4	62.2	53.4	55.4
DINOv2 [96]	1.1B	448/14	31.3	21.7	14.7	24.6	64.3	61.0	18.9	59.5	88.9	76.9	110.1	87.3	132.1	110.8	69.3	54.3	46.9	56.5	63.4	56.8	49.7	52.2
AIMv2 3B [36]	2.7B	448/14	66.0	76.7	70.5	41.4	75.2	77.9	74.2	66.2	89.4	81.9	119.2	96.4	139.2	122.0	67.6	56.3	45.9	58.0	67.8	60.8	51.4	53.9
InternViT2.5 [18]	5.5B	448/14	64.2	78.2	65.3	39.6	73.6	76.4	70.1	64.5	89.3	81.7	117.6	95.9	138.4	118.6	72.8	56.1	50.3	59.1	67.3	56.6	51.1	52.2
PE _{core} G	1.9B	448/14	64.8	75.9	68.8	41.6	72.9	75.2	67.9	62.4	89.7	80.7	113.1	91.7	135.2	112.3	70.5	57.0	48.7	58.3	66.9	60.8	52.9	54.5
PE _{lang} G	1.7B*	* 448 /14	72.9	81.6	83.7	49.5	76.7	77.9	74.9	64.5	90.3	81.9	118.9	94.6	139.8	122.3	72.1	60.4	54.1	62.5	68.3	66.6	54.2	56.8

Table 32: **MLLM Results with QwenLM 2.5 7B.** Same setting as Tab. 5, but with QwenLM2.5 7B [153] as the language model. Although PE_{lang} is aligned to Llama3.2 3B, the language alignment transfers well to a different language model.

	ms .					G	roundi	ng			
Model	Encoder Params	Resolution Patch Size	Avg. Ground.	RefCOCO val [55]	RefCOCO testA [55]	RefCOCO testB [55]	RefCOCO+ val [55]	RefCOCO+ testA [55]	RefCOCO+ testB [55]	RefCOCOg val [55]	RefCOCOg test [55]
576 Tokens per Image											
CLIP [103]	0.3B	336/14	65.0	66.7	61.4	71.6	57.6	62.5	54.5	73.2	72.8
AIMv2-L [36]	0.3B	336/14	63.3	65.4	61.6	69.6	55.0	60.0	52.0	71.1	71.5
AIMv2-L Dist. [36]	0.3B	336/14	62.6	64.8	61.0	69.4	54.4	59.0	51.3	70.8	70.0
SigLIP2-so [135]	0.4B	384/16	67.4	68.8	66.5	71.0	60.3	61.8	58.5	76.2	76.0
SigLIP2-g-opt [135]	1.1B	384/16	66.5	67.9	66.1	70.1	58.8	61.7	57.1	75.5	75.0
$PE_{lang} G^{\dagger}$	1.7B*	336/14	68.9	69.8	67.5	73.2	61.5	64.0	60.8	77.3	77.7
1024 Tokens per Image											
InternViT2.5 L [18]	0.3B	448/14	66.9	69.3	66.7	72.6	58.3	63.1	57.2	74.2	74.0
SigLIP2-so [135]	0.4B	512/16	69.6	71.4	69.2	74.4	61.3	64.8	60.3	77.9	77.2
PEcore L	0.3B	448/14	59.7	61.7	55.3	66.9	53.1	58.8	48.0	68.5	67.5
PE _{lang} L	0.3B	448/14	70.5	71.8	70.2	73.0	63.7	66.1	62.7	78.8	78.9
DINOv2 [96]	1.1B	448/14	64.9	67.2	62.5	70.5	57.0	61.0	54.5	73.1	73.1
AIMv2 3B [36]	2.7B	448/14	36.1	37.6	34.1	40.7	32.7	36.2	32.0	36.9	38.6
InternViT2.5 6B [18]	5.5B	448/14	68.0	70.2	67.6	72.2	60.6	64.0	58.7	75.3	75.2
PEcore G	1.9B	448/14	66.6	68.3	64.4	72.3	58.7	62.7	56.0	75.1	75.0
PE _{lang} G	1.7B*	448/14	71.3	71.9	69.9	75.1	64.2	67.3	63.0	79.4	79.2

Table 33: Llama MLLM-Based Zeroshot RefCOCO. With Llama 3.1-instruct 8B [80] as the LLM.

	ns					G	roundir	ng			
Model	Encoder Params	Resolution Patch Size	Avg. Ground.	RefCOCO val [55]	RefCOCO testA [55]	RefCOCO testB [55]	RefCOCO+ val [55]	RefCOCO+ testA [55]	RefCOCO+ testB [55]	RefCOCOg val [55]	RefCOCOg test [55]
576 Tokens per Image											
SigLIP2-so [135]	0.4B	384/16	70.0	73.6	73.0	74.3	60.9	62.7	59.9	78.4	77.2
SigLIP2-g-opt [135]	1.1B	384/16	69.9	73.3	72.4	73.6	60.5	62.3	60.7	78.4	78.2
PE _{lang} G [†]	1.7B*	336/14	70.1	73.4	72.0	75.3	62.0	64.2	61.2	78.4	77.7
1024 Tokens per Image											
InternViT2.5 L [18]	0.3B	448/14	68.1	72.4	69.1	74.1	59.3	62.4	56.6	75.2	75.5
SigLIP2-so [135]	0.4B	512/16	70.5	74.1	73.7	74.4	61.7	62.9	61.0	78.6	77.9
$PE_{core}L$	0.3B	448/14	66.5	70.4	67.8	71.5	57.7	61.1	56.2	75.8	75.3
$PE_{lang}L$	0.3B	448/14	70.4	74.4	72.6	74.6	62.2	64.0	62.0	79.0	78.7
DINOv2 [96]	1.1B	448/14	69.3	73.4	71.1	73.9	60.0	63.9	59.0	76.4	76.7
AIMv2 3B [36]	2.7B	448/14	67.6	71.4	67.7	72.3	59.2	61.2	56.3	76.4	76.4
InternViT2.5 6B [‡] [18]	5.5B	448/14	72.8	77.7	76.5	77.1	63.6	66.0	62.2	80.0	79.5
PE _{core} G	1.9B	448/14	70.5	74.0	71.8	75.8	61.5	64.8	60.1	78.5	77.3
PE _{lang} G	1.7B*	448/14	72.1	75.4	72.9	76.3	64.2	65.9	62.9	79.7	79.7

Table 34: **Qwen MLLM-Based Zeroshot RefCOCO.** With QwenLM 2.5 7B [153] as the LLM. All MLLMs report zeroshot results on RefCOCO/+/g datasets. [‡]Trained with RefCOCO/+/g beforehand.

	ns					G	roundi	ng			
Model	Encoder Params	Resolution Patch Size	Avg. Ground.	RefCOCO val [55]	RefCOCO testA [55]	RefCOCO testB [55]	RefCOCO+ val [55]	RefCOCO+ testA [55]	RefCOCO+ testB [55]	RefCOCOg val [55]	RefCOCOg test [55]
256 Tokens per Tile											
MetaCLIP-L [150]	0.3B	224/14	67.1	69.3	65.0	73.2	60.5	64.9	56.5	74.3	73.4
MetaCLIP-G [150]	1.8B	224/14	66.0	67.9	63.2	71.9	59.2	62.9	55.8	73.8	73.1
PE _{lang} G [†]	1.7B*	224/14	70.3	71.6	69.6	73.7	63.3	66.2	62.6	78.6	78.2
576 Tokens per Tile											
CLIP [103]	0.3B	336/14	68.5	70.7	66.6	74.1	61.1	65.9	58.1	76.0	75.1
AIMv2-L [36]	0.3B	336/14	66.6	68.4	65.5	71.4	59.3	63.4	56.5	74.2	74.2
SigLIP2-so [135]	0.4B	384/16	66.5	67.9	66.1	70.1	58.8	61.7	57.1	75.5	75.0
SigLIP2-g-opt [135]	1.1B	384/16	66.5	68.2	65.6	70.1	59.0	62.3	58.0	74.8	74.0
PE _{lang} G [†]	1.7B*	336/14	71.9	73.6	71.5	74.9	64.8	67.3	63.9	80.4	80.6
1024 Tokens per Tile											
SigLIP2-so [135]	0.4B	512/16	67.8	69.2	67.8	71.2	59.9	62.5	59.0	76.9	76.0
$PE_{core}L$	0.3B	448/14	62.9	65.3	59.9	69.2	56.6	62.2	52.0	70.1	70.0
$PE_{lang}L$	0.3B	448/14	71.6	73.0	70.8	74.3	65.2	67.2	62.9	79.7	79.7
AIMv2 3B [36]	2.7B	448/14	65.1	66.9	62.9	71.1	58.1	62.4	55.6	71.8	72.2
InternViT2.5 6B [‡] [18]	5.5B	448 /14	56.8	61.0	56.4	65.8	51.0	57.0	46.1	58.0	58.9
PE _{core} G	1.9B	448/14	67.6	69.2	65.8	72.4	59.9	64.1	58.3	75.1	75.6
PE _{lang} G	1.7B*	448/14	71.8	72.6	70.7	74.6	64.8	66.6	64.6	80.4	80.3

Table 35: **4+1 Tile Llama 8B MLLM-Based Zeroshot RefCOCO.** With Llama 3.1-instruct 8B [80] as the LLM. We use up to 4 image tiles of the encoder's native resolution, with a *thumbnail* image in front, similar to prior work [75]. [‡]Trained with RefCOCO/+/g beforehand.

E Additional PE_{spatial} Results

E.1 Alignment Method Derivation

Here we detail the analysis performed to arrive at the spatial alignment method discussed in §5.

E.1.1 Core Feature Analysis

We begin by analyzing the spatial properties of the features for $PE_{core}G$ in the range of layers where it performed optimally for zero-shot tracking in §3. In Fig. 18, we plot (1) the pairwise feature cosine similarity between the pink token and all others, (2) the head average attention map for that token, and (3) the full attention matrix $(HW \times HW)$.

An 18 Layer Decoder. Remarkably, the cause for the tracking performance peak at layer 32 is abundantly clear

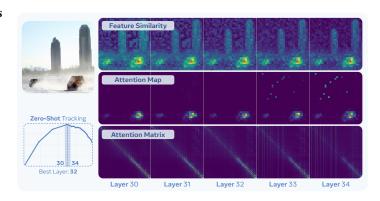


Figure 18: $PE_{core}G$ Feature Analysis. To understand the dichotomy between optimal PE_{core} features for spatial tasks observed in Fig. 4, we analyze the spatial properties of the features between layers 30 and 34.

from observing the visualizations. Up until layer 32, the attention maps remain local. However, that changes abruptly at layer 33, at which point several tokens in the background of the image become "global" tokens. As shown by the vertical lines in the full attention matrix, starting from layer 33 every token attends to them. Thus, every layer 33 and up become part of a *decoder* for global information.

This is not a new phenomenon. Recent work [23] shows this happening in all modern vision transformers above L scale. But notably these "global tokens" are not necessarily harmful. Given the optimal layer for most tasks in Fig. 4 lies within the global token region, the information they aggregate is useful downstream. However, tracking in §3 is zero-shot and relies purely on spatial correspondences, meaning it cannot make use of the global tokens. This explains why tracking peaks right before their introduction, while tasks that rely on semantic understanding or have larger decoders that can benefit from them do well with the later layers.

E.1.2 Spatial Alignment Method

Given the analysis in §E.1.1, we have two objectives in creating a spatial alignment method: (1) we must preserve the optimal *semantic information* of the model (including the global tokens) that peaks around layer 40, and (2) we must do so while emphasizing *local alignment* in service of spatial tasks with shallow decoders. The first can be easily achieved by aligning with the model's own features (e.g., with MaskFeat [144]), but the second is more challenging. To accomplish this, we employ the Segment Anything Model (SAM) 2.1 [108] in a novel way to enforce spatial correspondence information in PE.

Retaining Semantics. To retain the strong semantic features from PE_{core} , we finetune the model with itself as a teacher. Specifically, we train the model to maximize the cosine similarity between its *last layer* and the frozen layer 41 features of its initialization (a layer around the peak for many tasks in Fig. 4). On its own this would be a tautology, so we apply heavy regularization to the student: DropPath [49] and LayerScale [132] similar to language alignment, as well as performing MaskFeat [144] with 75% masking. We keep the teacher fixed in contrast to other state-of-the-art spatial models, which all employ an EMA teacher [96, 135]. This could potentially help, but we opt for simplicity.

Encouraging Locality. While we could "retain" locality by self-distilling from layer 32 features, that may be less effective as we are already distilling another layer of the model. Instead, we turn to a model that is explicitly tuned for locality: SAM [57, 108]. Notably, several works [107, 113, 116]

have shown SAM to *not* be an effective teacher when distilling from multiple sources (though recently [44] has shown it can help with some tricks). However, upon observation of the raw features of SAM 2.1-L (Fig. 19), the main problem may be the same one we are currently trying to solve: *SAM has global tokens as well!* In this case, they appear as dark spots in a grid-like arrangement across all examples in Fig. 19 raw features.

Using the features of a model that itself has global tokens to mitigate the effect of global tokens is dubious at best. But, we do not have to use SAM's features to learn locality. At its core, SAM is a model that transforms points into spatially contiguous masks of select object. If what we want is smooth, locally consistent features, we can use the mask predictions themselves. Specifically, we query SAM 2.1-L with 1024 points arranged in a 32×32 grid. For each point, SAM returns a $H \times W$ mask logit the size of the image, which it normally would threshold and NMS. However, we instead concatenate those logits into a $H \times W \times 1024$ tensor and use that as the feature

Figure 19: **SAM 2.1 Feature Similarity.** The cosine similarity between the pink marked token and all others for SAM 2.1-L [108] features *vs.* our proposed mask logit features.

map for alignment. This explicitly produces locally well-aligned features compared to the underlying feature space and has no spatial artifacts caused by global tokens, as shown in Fig. 19.

Then to align, we distill the spatial correspondences between tokens by computing their pairwise cosine similarity for both the student and the teacher (creating a $HW \times HW$ matrix for each) and aligning them with MSE loss. Unlike SAM's underlying feature space (which [44] shows may be brittle to interpolation), the mask logit features are robust to interpolation, so we simply interpolate them down and train at the PE $_{core}$ model's original 448px resolution. Finally, like for self-distillation we add the same masking and regularization. For both teachers, we apply loss to all tokens and add no extra parameters other than LayerScale.

E.2 Layer Analysis Details

In Tab. 36, we present the raw numbers for the layer analysis plots in Fig. 9. Note that layer analysis was not performed exhaustively on every layer.

		Dete	ction			De				Trac	king			Segme	ntation	
Layer	PEcore	PE Teacher	SAM Teacher	PEspatial	PEcore	PE Teacher	SAM Teacher	PEspatial	PEcore	PE Teacher	SAM Teacher	PEspatial	PEcore	PE Teacher	SAM Teacher	PEspatial
50	35.0	44.4	33.4	44.5	0.31	0.26	0.47	0.28	42.8	57.4	70.3	61.5	38.6	46.1	21.4	48.9
49	37.3	44.8	34.3	44.8	0.29	0.26	0.49	0.28	44.8	57.4	70.2	61.4	39.8	46.2	23.6	49.3
48	38.3	44.8	35.7	45.2	0.28	0.27	0.44	0.28	45.5	57.5	70.7	61.5	40.4	46.3	25.3	49.0
47	39.3	44.7	37.0	45.2	0.28	0.26	0.43	0.27	46.8	57.7	71.2	61.3	40.9	46.6	28.6	49.0
46	39.8	45.0	38.4	45.6	0.27	0.26	0.42	0.26	49.1	57.8	71.3	61.1	41.4	46.3	31.9	49.1
45	40.8	45.0	39.4	45.5	0.26	0.27	0.40	0.27	50.7	57.9	71.5	61.1	41.5	45.8	34.3	48.9
44	41.4	45.3	40.5	45.9	0.26	0.26	0.38	0.27	51.7	58.1	71.1	60.7	41.5	45.6	36.8	48.7
43	41.8	45.4	41.2	45.9	0.26	0.26	0.34	0.26	52.4	58.1	70.4	60.5	41.3	45.5	38.7	48.0
42	42.1	45.4	41.9	46.1	0.26	0.27	0.35	0.26	53.1	58.2	69.8	59.8	41.4	45.1	40.4	47.6
41	42.6	45.4	42.6	46.0	0.26	0.29	0.36	0.27	54.2	58.2	69.2	59.6	41.1	44.6	41.3	46.8
40	42.8	45.4	43.1	46.1	0.26	0.27	0.35	0.29	54.5	57.8	68.5	59.5	41.1	44.4	42.0	46.6
39	42.6	45.1	43.4	45.9	0.25	0.25	0.35	0.26	54.9	57.4	68.0	59.3	41.1	43.7	42.5	46.1
38	43.2	44.9	43.8	45.9	0.25	0.28	0.35	0.26	54.9	56.8	67.6	58.9	40.2	42.8	43.3	45.5
37	43.0	44.4	43.7	45.3	0.28	0.29	0.34	0.28	55.3	56.4	67.2	58.7	40.1	41.4	42.8	44.9
36	42.9	44.0	43.7	44.5	0.29	0.30	0.35	0.30	55.8	56.0	66.7	58.4	39.3	40.1	42.6	43.3
35	42.4	43.1	43.3	44.3	0.29	0.31	0.33	0.29	55.6	55.8	66.3	58.2	38.4	38.9	42.1	42.1
34	42.0	42.5	42.7	43.1	0.29	0.31	0.36	0.29	55.7	55.6	65.8	57.9	38.3	37.5	41.3	41.2
33	41.1	41.2	42.0	42.3	0.30	0.32	0.35	0.32	56.0	55.6	65.4	58.0	36.8	36.3	40.4	40.1
32	40.5	40.4	41.1	41.4	0.31	0.34	0.35	0.33	56.8	55.5	64.9	57.7	36.4	34.6	39.6	38.6
31	38.8	39.1	40.0	39.9	0.34	0.39	0.37	0.37	56.4	55.2	64.3	57.4	34.7	33.2	37.7	36.9
21	24.7	26.9	27.3	27.3	0.51	0.52	0.49	0.52	52.1	52.8	55.2	53.8	16.0	16.8	19.4	19.2
11	19.6	20.5	20.7	20.5	0.56	0.60	0.56	0.60	43.7	40.6	41.7	41.6	8.6	7.9	8.9	8.7
1	12.7	12.1	12.2	11.9	0.66	0.70	0.69	0.70	28.2	16.4	17.5	16.2	3.1	3.0	3.1	3.1
	~												_			

Table 36: Raw Spatial Layer Analysis Results. The raw values for the plots in Fig. 9.

E.3 Smaller Models

We additionally distill smaller models from the original $PE_{spatial}G$ checkpoint by applying the same strategy as in spatial alignment (Sec. 5): train jointly with a semantic teacher loss and a spatial teacher loss. To align $PE_{spatial}G$, the semantic teach was an intermediate layer of the original $PE_{core}G$ model and the spatial teacher was SAM 2.1 [108].

For smaller spatial models, we repeat this alignment by finetuning the corresponding PE_{core} checkpoint with the two loss functions on a portion of the pretraining data. However, unlike $PE_{spatial}G$, we do not align the smaller models to themselves and SAM 2.1. Instead, we set *both* teachers to $PE_{spatial}G$. The semantic pairwise similarity teacher loss is applied directly on the last layer of each model, and the direct distillation semantic teacher loss is applied after a linear layer (to match the feature dimension).

Results for the distilled models are given below in Tab. 37. Each model is trained with 1024 tokens as input (448px for patch 14, 512px for patch 16).

		1	Trackir	ng	Seg	gmenta	tion
		DAV	IS (†)	[101]	ADE	20k (†)	[164]
Encoder	Res/Patch	Best	Last	Idx	Best	Last	Idx
PE _{spatial} G	448/14	61.5	61.5	50/50	49.3	48.9	49/50
PE _{spatial} L	448/14	60.6	60.1	23/24	48.1	48.1	24/24
PE _{spatial} B	512/16	58.9	58.4	11/12	44.4	44.4	12/12
PE _{spatial} S	512/16	57.5	57.5	12/12	37.5	37.5	12/12
PE _{spatial} T	512/16	55.0	54.6	11/12	27.6	27.6	12/12

Table 37: **Distilled Spatial Models**. Smaller spatial models compared to the original PE_{spatial}G teacher checkpoint. Evaluation with the same settings as Tab. 6.

E.4 Additional Qualitative Results

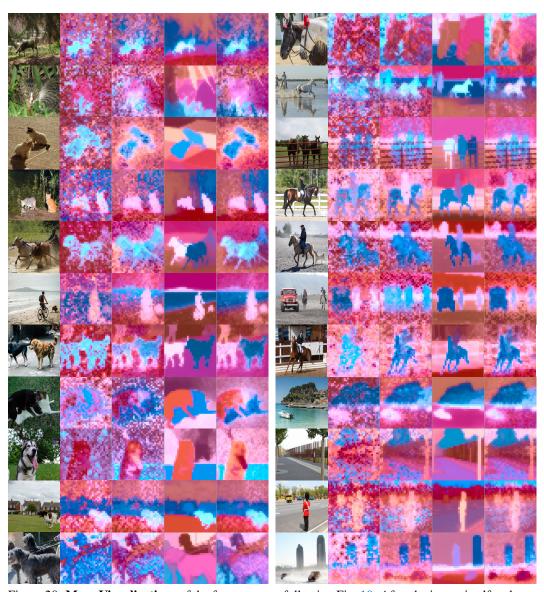


Figure 20: **More Visualizations** of the feature space following Fig. 10. After the image itself, column 1 is $PE_{core}G$ last layer features, column 2 is $PE_{core}G$ aligned to its own layer 41, column 3 is $PE_{core}G$ aligned to SAM 2.1-L [108] mask logits, and column 4 is $PE_{core}G$ aligned to both, denoted $PE_{spatial}G$. See §B.3.2 for visualization method. Example images are from SA-1B [57].

F Broader Impacts

This work covers several artifacts and techniques that may or may not have broader societal impact. In this section, we enumerate those components and discuss what positive and negative implications they may have for each.

 PE_{core} . The core PE model is a CLIP model that matches the given image or video and a string of text. This can be used in data curation, image or video search and retrieval, as well as several downstream use cases where vision and language alignment are necessary. PE_{core} improves upon prior work in this area substantially in both robustness (see Tab. 3) and fairness (see Tab. 25), as well as extending to video (Tab. 4). This has the potential to improve standalone use cases such as search, but also it has the potential to improve downstream machine learning system, for instance by providing better data curation. However, PE_{core} is not perfect and still makes errors (see benchmarks above). This has the potential for negative impact if PE_{core} is used without regard to the possibility of mistakes.

 PE_{lang} . Language alignment extend PE to downstream applications using Multimodal Large Language Models (MLLMs). While, we do not release any complete MLLM artifacts ourselves in this work, the PE_{lang} we intend to release is an important component of such a system. While the usage of PE_{lang} in these systems has the potential to increase performance (especially on tasks requiring OCR, see Tab. 5), all MLLM systems have potential to hallucinate and generate errors. A system developed with PE_{lang} would be no exception to this issue.

 $PE_{spatial}$. Similarly, spatial alignment extends PE to downstream applications such as tracking, segmentation, and detection. $PE_{spatial}$ improves performance in these areas vs. prior models, which has the potential to improve security systems, image editing systems, and other traditional computer vision systems. However, that naturally also comes with the risk that these systems can be used for unintended purposes. To mitigate this, we release only the $PE_{spatial}$ feature encoder and not any of the downstream application heads.

PE Video Dataset (PVD). Along with the models, we also release a novel annotated video-caption dataset consisting of high quality samples selected for high motion content. The captions are generated by an MLLM and then refined by human annotators. Because of the quality of this dataset, this has the potential to improve downstream applications such as video generation, video-language alignment (which is what this work uses it for), and video benchmarking (with our PVD Benchmark). However, it is important to note these captions were initially generated by a model. Even with human refinement, there may be mistakes or hallucinations left in the captions, which could impact downstream use. Similarly, downstream uses of the dataset such as training video generators may have harmful implications. To address this, we will control the access to the dataset as well as include appropriate license terms.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: We show how we build a state-of-the-art CLIP model for images and video in §2, show how the resulting model has general intermediate features in §3, and show how we use alignment tuning to create state-of-the-art models for language tasks in §4 and spatial tasks in §5. In each case, we provide comprehensive analysis and results in both the main paper and appendix.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We try to discuss limitations when appropriate, for instance for video retrieval performance in $\S 2.3$ "zero-shot video results" and PE_{spatial} tracking performance vs. the SAM aligned model in $\S 5$ "effects". Otherwise, we tried to be as comprehensive as possible with evaluations to show the generality of our approach. We also provide evaluation on Dollar St [110] for fairness in the additional benchmarks in Appendix C.4.

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best

judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This work does not contain any theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide thorough experimental and implementation details in Appendix B as well as full descriptions of what and how hyperparameters were obtained in Appendix B. The only caveat is the pretraining data, which we are not allowed to describe. However, we describe the curation and quantity, which are the most important peices for reproduction.

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.

- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We will release evaluation code, checkpoints, and the dataset described in Appendix A.1 upon de-anonymization. However, we cannot provide code for submission due to the difficulty of anonymizing it, or any other private datasets used.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: To the best of our ability, we provide exact experimental details and hyperparameters in Appendix B as well as ablations for obtaining those hyperparameters in the main paper and Appendix B.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the cost of training large models, repeating most of the experiments in the paper would be prohibitively expensive. Thus, we do not provide error bars. However, we attempt to be as thorough as possible by testing on a wide variety of benchmarks.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [No]

Justification: Given the number of experiments conducted in this work, we are unable to give an exhaustive list of compute used for each experiment. However, batch sizes, hyperparameters, and data quantities are provided for each experiment to facilitate reproduction and to give an idea of the compute required. The exact compute cost will depend on the efficiency of the implementation.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the ethical guidelines where applicable: annotators for PVD were compensated according to local laws and regulations and the PVD dataset data we release is properly licensed and conforms to legal and privacy agreements.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Appendix F.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The models we release are feature extractors or CLIP models that align images or videos and text. We do not release any generative or language models that have a high risk for misuse. The PE Video Dataset (PVD) we release originates from officially licensed sources and is not scraped from the web.

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: For code, we cite the repository used and their licenses where applicable in Appendix B, and use private code for the remainder. Models other than our own are used for benchmarking purposes or data generation, and all licenses are followed therein, (e.g., Llama 3 is used for data generation but not to improve a language model, following the Llama 3 license). Code and models released in this paper will be under Apache 2.0 and the PE Video Dataset will be licensed under a non-commercial research license. These licenses will accompany the artifacts when released.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The public release of the models and PE video dataset will include licensing information alongside them as well as the training details presented in this work. However, these assets are not included at submission time, so we mark this as non applicable.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [Yes]

Justification: Instructions and compensation details are included in Appendix A.2.5.

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [Yes]

Justification: A note of the review process is included in Appendix A.2.5.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are used to generate data for our data engine, and the usage of LLMs is thoroughly documented for that purpose (in §2.2 and Appendix A). Otherwise, LLMs were not used to generate any of the techniques or methodology in the paper.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.