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ABSTRACT

The task of identifying multimodal image-text representations has garnered in-
creasing attention, particularly with models such as CLIP (Contrastive Language-
Image Pretraining), which demonstrate exceptional performance in learning com-
plex associations between images and text. Despite these advancements, ensuring
the interpretability of such models is paramount for their safe deployment in real-
world applications, such as healthcare. While numerous interpretability methods
have been developed for unimodal tasks, these approaches often fail to transfer ef-
fectively to multimodal contexts due to inherent differences in the representation
structures. Bottleneck methods, well-established in information theory, have been
applied to enhance CLIP’s interpretability. However, they are often hindered by
strong assumptions or intrinsic randomness. To overcome these challenges, we
propose the Narrowing Information Bottleneck Theory, a novel framework that
fundamentally redefines the traditional bottleneck approach. This theory is specif-
ically designed to satisfy contemporary attribution axioms, providing a more ro-
bust and reliable solution for improving the interpretability of multimodal models.
In our experiments, compared to state-of-the-art methods, our approach enhances
image interpretability by an average of 9%, text interpretability by an average of
58.83%, and accelerates processing speed by 63.95%. Our code is publicly acces-
sible at https://github.com/LMBTough/NIB.

1 INTRODUCTION

CLIP (Contrastive Language-Image Pretraining) has rapidly become a pivotal model in the field
of multimodal learning, especially excelling in its ability to connect the visual and textual modali-
ties (Lin et al., 2023). By training on large-scale image-text pairs collected from the internet, CLIP
is capable of performing zero-shot classification and image-text retrieval tasks, making it an indis-
pensable component of modern generative artificial intelligence (Novack et al., 2023; Jiang & Ye,
2023). With its strong visual-textual understanding capabilities, CLIP can generate, classify, and
explain content without the need for fine-tuning, providing robust support for various generative
AI applications. As one of the most representative Multimodal Image-Text Representation (MITR)
methods, CLIP’s core strength lies in mapping images and texts into a shared embedding space,
significantly enhancing the performance of multimodal tasks.

Despite its outstanding performance in MITR tasks, developing effective interpretability methods to
reveal CLIP’s decision-making mechanisms has become increasingly important. The black-box na-
ture of CLIP’s multimodal embeddings presents significant challenges in high-risk applications such
as medical diagnosis and content moderation, where transparency and reliability are crucial (Eslami
et al., 2021; Tong et al., 2024; Yuan et al., 2024; Zhu et al., 2024b). A deeper understanding of how
CLIP establishes associations between visual and textual representations is essential to ensure the
transparency and trustworthiness of its outputs.

There have been numerous interpretability methods focused on unimodal tasks Ribeiro et al. (2016);
Sundararajan et al. (2017); Zhu et al. (2024a), but these methods are not designed for the unique
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characteristics of MITR tasks, resulting in suboptimal performance when directly applied to such
tasks. However, there are existing interpretability methods specifically developed for MITR tasks.
Despite their development, these methods often suffer from randomness issues, requiring additional
sampling or loss information (Wang et al., 2023), which leads to a crisis of trust in the interpretability
method itself. These issues will be further analyzed in the related work section.

Given that CLIP can generate unique image and text representations without the need for additional
samples and can directly establish their correlations, it is possible to design an interpretability al-
gorithm that unveils the mechanisms behind these correlations without requiring extra sampling.
M2IB (Wang et al., 2023), based on the Information Bottleneck Principle (IBP), proposes an inter-
pretability method that does not require additional samples. This method controls the amount of
feature information through a Bottleneck layer and optimizes the parameters of this layer to maxi-
mize the mutual information between the representations and the task target while minimizing the
correlation between the representations and the original sample. Although IBP has a solid theo-
retical foundation in information theory, in practice, its reliance on hyperparameters and random
sampling often introduces bias into the interpretation results. We will discuss this issue in detail in
Section 3.2.

To address the aforementioned challenges, we propose a novel Narrowing Information Bottleneck
Theory (NIBT). Through rigorous theoretical derivation, NIBT effectively eliminates the random-
ness and hyperparameter dependency in IBP, resulting in more deterministic interpretability out-
comes. Additionally, we introduce a new concept of negative property, which identifies feature
dimensions that negatively impact the model’s predictions, further enhancing the model’s inter-
pretability. Our Contributions as follows:

• We systematically summarize existing MITR interpretability methods and highlight the
limitations.

• We propose and derive the novel Narrowing Information Bottleneck Theory, which enables
interpretation of MITR tasks without randomness, while preserving the advantages of the
IBP.

• Our research significantly improves the interpretability of the CLIP model, and we release
our method as open-source for further research and application.

2 RELATED WORK

2.1 CONTRASTIVE LANGUAGE-IMAGE PRETRAINING (CLIP)

Radford et al. (2021) introduced CLIP, which learns multimodal embeddings of images and text by
training image and text encoders on large-scale image-text paired data. This enables CLIP to estab-
lish connections between the two modalities within a unified embedding space, facilitating zero-shot
transfer, where the model can make predictions based on natural language descriptions without re-
lying on task-specific labeled data. However, the complexity of these multimodal tasks necessitates
a focus on interpretability to ensure that the model’s decisions are grounded in meaningful features.
Studying the interpretability of CLIP helps verify whether the model genuinely understands the
relationship between vision and language, as opposed to relying on spurious correlations in the data.

2.2 TRADITIONAL INTERPRETABILITY METHODS

Traditional interpretability methods for deep learning models were initially designed for unimodal
tasks. Early methods, such as Saliency Maps, generate fine-grained heatmaps by computing the
gradient of the model’s output with respect to input pixels. However, these methods are sensitive
to noise and often yield coarse explanations. Grad-CAM (Selvaraju et al., 2017), by computing
the gradient of activation maps in convolutional layers, produces class-specific heatmaps, making
the explanations more intuitive, particularly for convolutional neural networks (CNNs). RISE (Pet-
siuk et al., 2018) further advances the field by introducing a black-box method that applies random
masks to different regions of the input image, observes changes in the model’s output, and gener-
ates heatmaps that account for both global and local interpretability. RISE’s advantage lies in its
model-agnostic nature, making it applicable to any architecture. However, due to its reliance on

2



Published as a conference paper at ICLR 2025

random sampling, it is computationally expensive and may introduce some noise. LIME Ribeiro
et al. (2016), another black-box method, perturbs the input locally and trains a surrogate model to
provide locally linear explanations, making it applicable to any model, though it can sometimes pro-
duce inaccurate explanations in complex tasks. Overall, these interpretability methods designed for
unimodal tasks do not perform well in multimodal tasks, as we demonstrate in our experiments.

With the introduction of the Sensitivity Axiom and Implementation Invariance Axiom by Sundarara-
jan et al. (2017), point-wise interpretable methods have rapidly evolved. The Sensitivity Axiom
requires the sensitivity of a model’s output to align with its attribution values, while the Imple-
mentation Invariance Axiom demands that functionally equivalent models yield the same attribution
results, regardless of implementation. Currently, the most advanced attribution methods based on
adversarial attacks Jin et al. (2024), such as AGI (Pan et al., 2021) and MFABA (Zhu et al., 2024c),
satisfy both axioms and have shown strong interpretability for traditional CNN models. However,
these methods have not been optimized for multimodal tasks, and directly modifying their loss func-
tions for multimodal tasks is infeasible. Moreover, they are primarily designed for unimodal tasks,
rely on downstream tasks for explanations, and lack adaptation to multimodal contexts. As a result,
while traditional interpretability methods have made progress in unimodal tasks, there remains a
significant gap in addressing multimodal tasks and novel models like CLIP, requiring further opti-
mization and extension.

2.3 INTERPRETABILITY METHODS FOR MULTIMODAL TASKS

Currently, existing interpretability methods for multimodal tasks still exhibit several limitations that
require improvement, as shown in Table 1. In the following sections, we will provide a detailed
explanation of the causes and effects of these limitations.

No Extra Example indicates that no additional samples are required during the interpretation pro-
cess, which is crucial because in real-world scenarios, we do not know what samples to select, nor
can we explain why a particular pair of samples are correlated. For instance, if we aim to explain
which parts of an image depict a cat, the image in the CLIP model already exhibits high activation
with respect to the text cat. Therefore, we should not need to reference 100 additional images of cats
and 100 images without cats. A well-trained model that already understands the semantics should
not require such sampling. No Randomness means that the calculation process involves no ran-
domness, as randomness reduces trust in the interpretability method. No Specific Structure means
that the method does not depend on a particular model structure. No Info Loss ensures that no in-
formation is lost during the interpretation process, such as interpreting only a subset of the model’s
output. Current Model indicates that the method explains the model as it currently exists, without
constructing a new model for interpretation. No Downstream Task means that no downstream tasks
are required for the explanation process.

Table 1: Comparison of interpretability methods based on several criteria: whether they require
no extra examples, no randomness, need no specific structure, avoid information loss, explain the
current model, and don’t rely on downstream tasks.

Method No Extra Example No Randomness No Specific Structure No Info Loss Current Model No Downstream Task
COCOA ◦ ◦ • ◦ • •
TEXTSPAN ◦ ◦ ◦ ◦ • •
Hossain et al. ◦ ◦ • ◦ • •
LICO ◦ ◦ • ◦ ◦ ◦
FALCON ◦ ◦ • • • •
M2IB • ◦ • ◦ • •
NIB (Ours) • • • • • •

M2IB (Wang et al., 2023) introduced a multimodal information bottleneck method aimed at ex-
plaining the decision-making process of vision-language pre-trained models by compressing task-
irrelevant information to highlight key predictive features. However, this approach introduces ad-
ditional complexity, which will be analyzed further when discussing the IBP theory. Similarly,
COCOA (Lin et al., 2022) extended Integrated Gradients (IG) to multimodal tasks by incorporating
positive and negative sample pairs in its loss function, but this requires sampling additional relevant
examples, introducing extraneous information that may not be directly relevant to explaining the
current sample.
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Other methods like TEXTSPAN (Gandelsman et al., 2023) and Hossain et al. also suffer from sam-
ple dependency. TEXTSPAN requires constructing a specific text set to calculate similarity with
the image, limiting its scope to predefined sets, while Hossain et al. relies on selecting training
data samples based on L2 distance in the embedding space, which is not always feasible in prac-
tical settings. LICO (Lei et al., 2024) attempts to create an interpretable model by retraining it
to maintain feature relationships between text and image, but this results in explaining the newly
trained model rather than the original one, and randomness is introduced through batch sampling.
FALCON (Kalibhat et al., 2023) explains each dimension in the feature space by finding images
that highly activate a specific feature, but this approach does not provide explanations for individual
samples, limiting its applicability. Overall, many of these methods face challenges such as reliance
on additional samples, randomness, or structural dependencies, making them less suitable for clear,
direct explanations of pre-trained models.

3 PRELIMINARY

3.1 PROBLEM DEFINITION

Following the setup of CLIP (Radford et al., 2021), a trained MITR model can be defined as follows:
let fI : Rn → Rd denote the image encoder, which transforms an input image xI ∈ Rn into a d-
dimensional image representation; fT : Rm → Rd denote the text encoder, which transforms an
input text xT ∈ Rm into a d-dimensional text representation. We can use cos ⟨fI(xI), fT (xT )⟩
to evaluate the matching performance between the visual and textual modalities. Additionally, the
representations can be directly applied to downstream tasks (Sanghi et al., 2022; Zhou et al., 2023).
In the following, we use f to represent either fI or fT . By substituting f with fI , we obtain the
results associated with the image modality, and similarly, we can derive the results for the text
modality.

For an L-layer neural network, we can decompose it into the concatenation of two neural networks
f1−l ◦ f l−L(x) at the l-th layer. For ease of expression, we use z = f1−l(x) to represent the latent
feature of the intermediate layer.

Our goal is to construct an interpretability method A that yields A(x) ∈ R|x|. The larger the value
of A, the more important that dimension is for the representation.

3.2 THE INFORMATION BOTTLENECK PRINCIPLE

The information bottleneck principle (Tishby et al., 2000), based on information theory, introduces
the bottleneck to control the amount of information passing through it, aiming to find the minimal
feature encoding that retains the least amount of information from the original sample while preserv-
ing the necessary information for a given task. For ease of reading and understanding, we provide
a brief explanation and simplify the notation, with more detailed analysis provided in Appendix A.
The goal of the information bottleneck principle is to construct an optimization function and find the
optimal parameter λ:

λ∗ = max
λ

I(z̃, Y )− βI(z̃, x;λ) (1)

where I(x, Y ) = H(x)−H(x|Y ) = H(Y )−H(Y |x) represents the mutual information between
events x and Y , which can be interpreted as the reduction in uncertainty about event x after ob-
serving event Y . Intuitively, the stronger the correlation between the two, the greater the reduction
in uncertainty, and thus the larger the mutual information. Here, x represents the input sample, z̃
represents the encoding of x, which can be understood as the extracted features, and Y represents
the given task. λ controls the size of the bottleneck. We emphasize the Key Point 1: λ∗ represents
the value of λ when the mutual information between the encoding and the task is maximized while
minimizing the correlation with the original sample (i.e., extracting as few features as possible). The
optimization process follows (Schulz et al., 2020).

4 METHOD

In this section, we first deconstruct how the Information Bottleneck Principle extracts the impor-
tance distribution of sample features and analyze the shortcomings of applying this theory to the
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interpretability of deep learning. We then introduce our Narrowing Bottleneck Theory, which is
rigorously derived and applied to the interpretability of Multimodal Image-Text Representations.

4.1 ANALYSIS OF THE INFORMATION BOTTLENECK PRINCIPLE (IBP)

Several works (Wang et al., 2023; Schulz et al., 2020) have applied the IBP to the interpretability
of neural networks. Their approach typically involves inserting a Bottleneck layer at the l-th layer
of the neural network, with λ ∈ R|z| controlling the amount of information in the l-th layer feature
z = f1−l(x). The optimal solution for λ, based on Equation 1, is found through gradient descent
iterations, and the control is achieved as follows:

z̃ic(λ) = λic · zic + (1− λ)ε, ε ∼ N(µ, σ2) (2)

Here, following the Grad-CAM approach (Selvaraju et al., 2017), the dimension of z is split into two
parts for discussion: i represents the spatial encoding, and c represents the channel encoding (for
instance, z ∈ Rw×h×c, where w, h, and c represent width, height, and channels, respectively. The
w × h portion is simplified as i). The noise distribution follows ε ∼ N(µ, σ2), and any distribution
independent of z can be used, but a normal distribution is chosen for computational simplicity. The
parameters σ2 and µ can be arbitrarily specified. When λ = λ∗, the importance of zi is given
by

∑
c DKL(P (z̃ic(λ)|x)∥N(µ, σ2)). Intuitively, this measures the uncertainty allowed in the i-th

feature dimension under the condition of the Key Point 1. If this dimension is very close to an
independent noise distribution of sample x, a small KL divergence implies irrelevance to x, i.e.,
unimportance, and vice versa.

(a) M2IB (b) NIB (Ours) (c) M2IB (d) NIB (Ours)

Figure 1: Illustrations of feature attributions produced by different methods.

While the IBP theory itself is solid, its application faces several limitations as following:

1. the optimization process introduces randomness, as the calculation of I(z̃, Y ) depends on
z̃ic(λ), which involves sampling noise λ. This results in numerous local optima in the
optimization of λic, leading to variations between runs.

2. the hyperparameter β in the optimization objective significantly influences the interpretabil-
ity results (Wang et al., 2023). β controls the trade-off between the two mutual information
terms, allowing different task information to result in entirely different explanations.

3. the KL divergence is always positive, preventing the explanation from reflecting negative
properties (As shown in Figure 1, our proposed method successfully distinguishes and ex-
cludes negative properties from the explanation. In Figure 1d, the M2IB method continues
to highlight irrelevant negative features, such as the cat’s face, even when the subject is a
dog. However, in Figure 1b, our method correctly ignores these negative properties, focus-
ing on more relevant, positive features, showcasing its improved attribution performance.)

4. the explanation results do not directly reflect the association between feature dimensions
and I(z̃, Y ) (the explanation is derived by optimizing Equation 1 to obtain λ, followed by
computation).

To address the three above issues, we propose the Narrowing Bottleneck Theory.
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4.2 THE NARROWING INFORMATION BOTTLENECK THEORY

In this section, we introduce three core theorems of the Narrowing Bottleneck Theory and propose
our Narrowing Information Bottleneck Method (NIB) algorithm based on them.

We continue to introduce a Bottleneck layer at the l-th layer and use λ to control the information flow,
while the scalar λ serves as a universal update parameter for each layer, the flow of information for
each feature dimension is determined independently. More Details of λ please refer to Appendix G

z̃ic(λ) = λ · zic + ε, ε ∼ N(0, σ2) (3)

However, unlike Equation 3, we use the same scalar λ ∈ R to control all dimensions of z. Addi-
tionally, we assume that the noise follows a distribution with zero mean and variance σ2, and we
eliminate the noise weighting factor 1 − λ (as long as the noise distribution is independent of z,
this modification does not affect the bottleneck’s properties). zic is deterministically obtained by the
model, ensuring there is no inherent randomness in its computation.

For simplicity, we present an equivalent form, where I represents the identity matrix:

z̃(λ) = λ · z + ε, ε ∼ N(0, σ2I) (4)

Theorem 1 (Narrowing Information Bottleneck). Given 0 ≤ λ1 < λ2 ≤ 1, we have
sup I(z̃(λ1), x) < sup I(z̃(λ2), x), and when λ = 0, we have I(z̃(0), x) = 0.

Proof. We start by expressing the mutual information I(z̃, x) as:

I(z̃, x) = Ex [DKL [P (z̃ | x)∥Q(z̃)]−DKL [P (z̃)∥Q(z̃)]]

≤ Ex

[
DKL

[
P (z̃ | x)∥Q̃(z̃)

]] (5)

Given that P (z̃(λ) | x) = N(λz, σ
2I), we can compute the difference between the mutual informa-

tion at two values of λ as follows:

sup I(z̃(λ1), x)− sup I(z̃(λ2), x) = Ex

[
1

2
· 1

σ2

(
λ2
1 − λ2

2

)
∥µ∥2

]
(6)

Since (λ2
1 − λ2

2) < 0, it follows that:

sup I(z̃(λ1), x) < sup I(z̃(λ2), x) (7)

This completes the key proof. Further details can be found in Appendix B.

Theorem 1 shows that by decreasing the value of λ, we can reduce the mutual information
between x and its encoding, and when λ = 1, I(z̃(λ), x) reaches its maximum value. Since
the computation involves noise sampling, we aim to remove the randomness caused by Theorem 1,
which leads us to Theorem 2.

Theorem 2. When σ2 → 0, given 0 ≤ λ1 < λ2 ≤ 1, we have:

sup
σ2→0

I(z̃(λ1), x) < sup
σ2→0

I(z̃(λ2), x) (8)

In Theorem 2, we demonstrate that the conclusion of Theorem 1 holds as σ2 tends to zero. Specifi-
cally, as σ2 → 0, z(λ) converges to λz. In practical scenarios, due to precision limitations, the two
expressions will become indistinguishable, effectively eliminating any inherent randomness.

Theorem 3. Given the function I(z̃, Y ), the following holds:∑
i

∑
c

∫ 1

0

∂I(z̃(λ), Y )

∂z̃ic(λ)

∂z̃ic(λ)

∂λ
dλ = I(z̃(1), Y )− I(z̃(0), Y ) (9)

Building on Theorem 2, we can adjust the value of λ to control the size of I(z̃(λ), x). When λ = 0,
I(z̃(λ), x) is minimized, and when λ = 1, I(z̃(λ), x) is maximized. Therefore, I(z̃(λ), x) can be
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viewed as a function of λ, where the process from 1 to 0 corresponds to the bottleneck transitioning
from fully open to completely closed. The importance A(zi) of zi can be expressed as:

A(zi) =
∑
c

∫ 1

0

∂I(z̃(λ), Y )

∂z̃ic(λ)

∂z̃ic(λ)

∂λ
dλ (10)

The total importance across all dimensions of z equals the loss in I(z̃(λ), x) caused by narrow-
ing the bottleneck from fully open to closed. Negative values are also allowed, as some features
may reduce I(z̃(λ), x). This process eliminates the need for balancing two mutual information
terms, thus avoiding the introduction of the β hyperparameter and preventing instability in the inter-
pretability results.

For the design of I(z̃(λ), x), we follow the work of Wang et al. (2023), using cos ⟨fI(xI), fT (xT )⟩
as an equivalent replacement. It is worth noting that if we aim to obtain the attribution result for the
image modality, I(z̃(λ), x) becomes cos

〈
f l−L(λf1−l(xI)), fT (xT )

〉
. Additionally, since i in zi

represents the spatial encoding corresponding to the original encoding, the importance distribution
of the original sample features A(x) can be obtained by performing linear interpolation on λ from 0
to 1, as described in (Wang et al., 2023; Schulz et al., 2020). Theorem 2, Theorem 3, and the proofs
of the Sensitivity and Implementation Invariance axioms are provided in the Appendix.

5 EXPERIMENTS

5.1 MODELS AND DATASETS

In this study, we follow the experimental setup of M2IB (Wang et al., 2023), utilizing the pre-
trained CLIP model with a Vision Transformer (ViT-B/32) (Dosovitskiy, 2020) as the visual en-
coder. CLIP’s joint optimization of image and text alignment has demonstrated outstanding per-
formance in multimodal tasks. We conduct experiments on three different datasets: Conceptual
Captions (Sharma et al., 2018), ImageNet (Deng et al., 2009), and Flickr8k (Hodosh et al., 2013).
Each of these datasets has unique characteristics, providing diverse visual and textual inputs for
the model. Conceptual Captions is a large-scale image-text alignment dataset containing automati-
cally generated image-text pairs, helping the model learn a shared feature space between vision and
language. ImageNet, a classic image classification dataset, contains a large number of annotated im-
ages and a wide range of class labels, making it a standard dataset for training and evaluating visual
models. Flickr8k is a relatively small image-text alignment dataset consisting of 8,000 images and
their corresponding natural language descriptions, commonly used to assess multimodal alignment
in image captioning and text generation tasks.

5.2 PARAMETER SETTINGS

We reduced the number of parameters required by the IBP-based method while retaining the core
hyperparameters used during the generation of saliency maps, including the number of iterations
(num steps) and the layer number.

num steps: Number of Iterations The num steps parameter refers to the number of iterations used
during gradient optimization, and it primarily affects the precision. It determines how many updates
are made to the feature maps in each layer during gradient backpropagation. A larger num steps
generally leads to higher precision, as the model is given more iterations to accumulate gradients
and refine attribution results. However, as the number of iterations increases, so does the compu-
tational cost, necessitating a balance between accuracy and efficiency in practical applications. In
our experiments, num steps is set to 10, which has been experimentally verified to provide a higher
precision result while maintaining relatively low computational overhead.

layer number: Layer Number The layer number refers to the identifier of the specific layer chosen
from the neural network model as the bottleneck layer. In this study, we selected the 9th layer
(layer number = 9), indicating that we extract the hidden states from the 9th layer for generating
saliency maps. The choice of this layer is motivated by the fact that intermediate layers typically
contain rich contextual information, reflecting both low-level features and some high-level abstract
representations. Specifically, using the hidden states from the 9th layer allows us to capture the
model’s intermediate features, avoiding the low-level signals from early layers or the overly abstract
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representations from deeper layers. The feature maps from this layer have been shown in practice
to effectively support the generation of saliency maps, striking a balance between feature detail and
semantic representation.

5.3 EVALUATION METRICS

In the evaluation of attribution algorithms, traditional insertion score and deletion score metrics rely
on task-specific confidence outputs. However, as our experiments do not include task labels or confi-
dence information, incorporating downstream task outputs would weaken the generality of the inter-
pretability methods. Additionally, the metric ROAR+ (an Extension of ROAR (Hooker et al., 2019)),
which requires retraining the model after removing key features, incurs a high computational cost,
particularly when dealing with complex models and large-scale datasets, significantly increasing
time and resource consumption. For these reasons, we reference two model-output-based evaluation
methods proposed by Wang et al. (2023): Confidence Drop and Confidence Increase (Chattopad-
hay et al., 2018), to evaluate the performance of attribution algorithms.

The Confidence Drop and Confidence Increase are evaluation metrics used to assess the effective-
ness of attribution methods. The former measures whether model performance decreases when less
important features are removed, with the ideal scenario being that only high attribution scores are
retained and the removal of other features does not significantly impact performance. A lower value
of Confidence Drop indicates better performance of the attribution method. The latter evaluates
whether removing noisy information from the input enhances the model’s confidence, with the ex-
pectation that the removal of irrelevant features should increase the model’s confidence. A higher
value of Confidence Increase indicates better performance of the attribution method. Both metrics
serve to gauge whether the attribution method effectively identifies and preserves important features
while mitigating the impact of noise.

5.4 BASELINE

We compare our proposed Narrowing Information Bottleneck (NIB) method against several well-
established attribution techniques to evaluate its effectiveness. The baseline methods include
M2IB (Wang et al., 2023), RISE (Petsiuk et al., 2018), Grad-CAM (Selvaraju et al., 2017), the
method by Chefer et al. (2021), Saliency Maps (Simonyan, 2013), MFABA (Zhu et al., 2024c), and
FastIG (Hesse et al., 2021).

5.5 RESULT

Table 2: Performance comparison of the proposed NIB method with existing attribution methods
across three datasets: Conceptual Captions, ImageNet, and Flickr8k. The evaluation metrics in-
clude Image Confidence Drop, Image Confidence Increase, Text Confidence Drop, Text Confidence
Increase, and Frames Per Second (FPS). Lower confidence drop and higher confidence increase indi-
cate better performance, while higher FPS reflects better computational efficiency. NIB consistently
achieves superior performance in both accuracy and efficiency across all datasets.

Dataset Method M2IB RISE Grad-CAM Chefer et al. (2021) SM MFABA FastIG NIB (Ours)

Conceptual
Captions

Img Conf Drop ↓ 1.1171 1.4197 4.1064 2.0138 10.4351 10.1878 10.5117 0.9439
Img Conf Incr ↑ 39.3 28.8 20.2 33.65 2.95 2.6 2.9 42.5

Text Conf Drop ↓ 1.706 0.8002 1.7994 0.9333 1.0723 1.0503 0.9718 0.2705
Text Conf Incr ↑ 37.4 43.95 34.4 45.3 40.05 36.25 41.25 43.95

FPS ↑ 0.6621 0.1 1.1686 1.272 0.928 0.2494 0.9384 1.5817

ImageNet

Img Conf Drop ↓ 1.1615 1.001 2.5483 1.6636 4.7331 5.0242 4.7905 0.9012
Img Conf Incr ↑ 49.4 54 33.9 44 16.4 12.7 16.9 53.1

Text Conf Drop ↓ 2.6018 0.9928 2.6424 1.6732 1.7631 1.7437 1.6486 0.4193
Text Conf Incr ↑ 25.4 46.8 25.7 29.9 33.1 28.5 34.8 56.1

FPS ↑ 0.7995 0.1084 2.3115 2.7867 1.5711 0.2758 1.5384 2.4481

Flickr8k

Img Conf Drop ↓ 1.4731 3.01 5.1869 2.6214 12.154 12.07 12.2244 1.4495
Img Conf Incr ↑ 28.1 5.7 13.6 26.8 0.1 0.1 0.1 28.1

Text Conf Drop ↓ 2.0783 0.8914 2.1823 1.362 1.0797 1.1551 1.3098 0.4562
Text Conf Incr ↑ 34.7 46.4 34.2 42.6 45.9 42.6 43.9 55.3

FPS ↑ 0.7397 0.1076 1.958 2.4601 1.3973 0.2748 1.3944 2.1995
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The performance of our proposed NIB (Narrowing Information Bottleneck) method is compared
with several existing attribution methods, including M2IB, RISE, Grad-CAM, and others, across
three different datasets: Conceptual Captions, ImageNet, and Flickr8k. The evaluation is based on
four key metrics: Image Confidence Drop, Image Confidence Increase, Text Confidence Drop, and
Text Confidence Increase. Additionally, the computational efficiency is assessed through Frames
Per Second (FPS).

On the Conceptual Captions dataset, NIB demonstrates superior performance with an Image Con-
fidence Drop of 0.9439, outperforming M2IB by 0.1732 units and Grad-CAM by 3.1625 units.
Similarly, NIB achieves an Image Confidence Increase of 42.5, surpassing Grad-CAM by 22.3 units
and RISE by 13.7 units, reflecting its strong ability to improve model focus by removing irrelevant
features. For text-based metrics, NIB shows a notable improvement in Text Confidence Drop, with a
1.4355 unit advantage over M2IB and a 1.5289 unit gap with Grad-CAM. In terms of computational
efficiency, NIB achieves the highest FPS of 1.5817, providing a substantial performance boost over
RISE and other methods.

In the ImageNet dataset, NIB maintains its leading position, with the lowest Image Confidence
Drop (0.9012), outperforming M2IB by 0.2603 units and Grad-CAM by 1.6471 units. Additionally,
NIB achieves the highest Image Confidence Increase of 53.1, showing a 19.2 unit improvement over
Grad-CAM and a 3.7 unit improvement over M2IB. For text metrics, NIB continues to excel with the
lowest Text Confidence Drop (0.4193), representing a 2.1825 unit gap over M2IB and a 2.2231 unit
gap over Grad-CAM. The FPS score for NIB is also competitive at 2.4481, showing high efficiency
in real-time applications.

On the Flickr8k dataset, NIB achieves the lowest Image Confidence Drop (1.4495), only slightly
better than M2IB by 0.0236 units, but significantly outperforms Grad-CAM by 3.7374 units. In
terms of Image Confidence Increase, NIB ties with M2IB at 28.1, while exceeding Grad-CAM by
14.5 units. NIB also leads in Text Confidence Drop, with a score of 0.4562, outperforming M2IB by
1.6221 units and Grad-CAM by 1.7261 units. The computational efficiency of NIB remains high,
with an FPS of 2.1995, reflecting its ability to maintain high-speed performance compared to slower
methods like RISE.

In summary, the proposed NIB method consistently outperforms existing attribution techniques
across all datasets, providing better attribution accuracy and computational efficiency. The improve-
ments in both Confidence Drop and Confidence Increase metrics demonstrate NIB’s capability to
identify key features and remove irrelevant ones, enhancing the interpretability and robustness of
multimodal models. Please see the attribution results images in the GitHub repository.

6 ABLATION RESULT

6.1 ABLATION STUDY OF num steps

Table 3: Ablation study results on the num steps parameter, comparing different values (5, 10,
15, and 20) across three datasets: Conceptual Captions, ImageNet, and Flickr8k. The evaluation
metrics include Image Confidence Drop, Image Confidence Increase, Text Confidence Drop, and
Text Confidence Increase.

Dataset num steps Img Conf Drop ↓ Img Conf Incr ↑ Text Conf Drop ↓ Text Conf Incr ↑

Conceptual
Captions

5 0.9386 42.4 0.2056 43.4
10 0.9439 42.5 0.2705 43.95
15 0.9424 42.75 0.3688 44.9
20 0.9378 43.05 0.4701 44.3

Imagenet

5 0.9554 51.5 0.3164 56.7
10 0.9012 53.1 0.4193 56.1
15 0.9558 53.4 0.4563 56.4
20 0.9691 54.3 0.4957 56.4

Flickr8k

5 1.4547 26.7 0.3766 54.1
10 1.4495 28.1 0.4562 55.3
15 1.4443 26.7 0.6222 53.2
20 1.4504 27.3 0.8326 52.5
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In the ablation study of the num steps parameter, we investigate the impact of varying the number
of optimization iterations on the performance of our proposed NIB method. As shown in Table 3,
we conducted experiments with num steps values of 5, 10, 15, Target Layer Number fixed at 9, and
20 across the three datasets.

The results indicate that as the number of steps increases, there is a trade-off between attribution
accuracy and computational cost. For Conceptual Captions, increasing num steps from 5 to 20
slightly improves the Text Confidence Drop but shows diminishing returns after num steps = 10,
with only minor improvements in accuracy but a noticeable increase in computational overhead.
Similar trends are observed in ImageNet and Flickr8k, where the best performance in terms of Image
and Text Confidence Drop occurs at num steps = 10. Beyond this point, the gains are marginal, and
the results suggest that setting num steps to 10 provides an optimal balance between accuracy and
efficiency.

6.2 ABLATION STUDY OF target layer

Table 4: Ablation study results on the target layer parameter, comparing layers 3, 6, and 9 across
the Conceptual Captions, ImageNet, and Flickr8k datasets. The evaluation metrics include Image
Confidence Drop, Image Confidence Increase, Text Confidence Drop, and Text Confidence Increase.

Dataset target layer Img Conf Drop ↓ Img Conf Incr ↑ Text Conf Drop ↓ Text Conf Incr ↑

Conceptual
Captions

3 0.8616 42.2 1.2758 38.7
6 0.8514 43.55 0.9867 40.1
9 0.9439 42.5 0.2705 43.95

ImageNet
3 0.6889 57 2.3727 31.9
6 0.7793 56.1 2.4207 32.5
9 0.9012 53.1 0.4193 56.1

Flickr8k
3 1.3022 26.5 1.5068 43.1
6 1.2875 28.3 1.1981 46.9
9 1.4495 28.1 0.4562 55.3

In the ablation study of the target layer parameter, we explore the impact of selecting different layers
for generating saliency maps. Specifically, we evaluate the performance of layers 3, 6, and 9 across
the Conceptual Captions, ImageNet, and Flickr8k datasets, with num steps fixed at 10.

The results in Table 4 reveal that layer 9 generally yields the best performance across all datasets.
For Conceptual Captions, layer 9 achieves the lowest Text Confidence Drop (0.2705) and the high-
est Text Confidence Increase (43.95), indicating that the saliency maps generated from this layer
provide the most accurate and interpretable attributions. Similarly, in the ImageNet dataset, layer 9
performs well, with a moderate Image Confidence Drop (0.9012) and the highest Text Confidence
Increase (56.1), demonstrating that it effectively captures important features for both image and text
alignment.

In contrast, selecting earlier layers (3 and 6) results in higher Confidence Drop scores, particularly in
the Text Confidence Drop metric, suggesting that these layers lack the necessary high-level semantic
information. Therefore, the results indicate that layer 9 strikes an optimal balance between capturing
rich feature representations and providing interpretable attributions, making it the most effective
choice for generating saliency maps in the NIB method.

7 CONCLUSION

This paper introduces the Narrowing Information Bottleneck Theory (NIBT) to address the chal-
lenges of randomness and hyperparameter sensitivity in explaining multimodal models like CLIP.
By re-engineering the traditional Bottleneck method, NIBT improves interpretability for both image
and text representations. The proposed method demonstrates superior performance in terms of both
attribution accuracy and computational efficiency across multiple datasets. These advancements
contribute to a more transparent and reliable interpretation of complex multimodal tasks, paving the
way for broader applications of explainable AI in high-stakes environments.
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REPRODUCIBILITY STATEMENT
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A PRINCIPLES OF INFORMATION THEORY

A.1 PROPERTIES OF MUTUAL INFORMATION

1. Non-negativity
I(X;Y ) ≥ 0

2. Symmetry
I(X;Y ) = I(Y ;X)

3. Relationship with Conditional Entropy and Joint Entropy

I(X;Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )

= H(X,Y )−H(X|Y )−H(Y |X)

4. Relationship with Kullback-Leibler (KL) Divergence

I(X;Y ) =
∑
y

p(y)
∑
x

p(x|y) log2
p(x|y)
p(x)

=
∑
y

p(y)DKL(p(x|y)∥p(x))

= EY [DKL(p(x|y)∥p(x))]

B PROOF OF THEOREM 1

I[x, z̃] = Ex [DKL[P (z̃ | x)∥P (z̃)]]

=

∫
x

p(x)

(∫
z̃

p(z̃ | x) log p(z̃ | x)
p(z̃)

dz̃

)
dx

=

∫
x

∫
z̃

p(x, z̃) log
p(z̃ | x)
p(z̃)

q(z̃)

q(z̃)
dz̃dx

=

∫
x

∫
z̃

p(x, z̃) log
p(z̃ | x)
q(z̃)

dz̃dx+

∫
x

∫
z̃

p(x, z̃) log
q(z̃)

p(z̃)
dz̃dx

=

∫
x

∫
z̃

p(x, z̃) log
p(z̃ | x)
q(z̃)

dz̃dx+

∫
z̃

p(z̃)

(∫
x

p(x | z̃)dx
)
log

q(z̃)

p(z̃)
dz̃

= Ex [DKL[P (z̃ | x)∥Q(z̃)]]−DKL[P (z̃)∥Q(z̃)]

≤ Ex [DKL[P (z̃ | x)∥Q(z̃)]]

Given this, we can simplify the final result as:

I(z̃, x) = Ex [DKL (P (z̃ | x)∥Q(z̃))−DKL (P (z̃)∥Q(z̃))]

≤ Ex

[
DKL

(
P (z̃ | x)∥Q̃(z̃)

)]
z̃(λ) = λz + ε, ε ∼ N(0, σ2I)

is equivalent to:

z̃ic(λ) = λzic + ε, ε ∼ N(0, σ2)

Given that:

P (z̃ | x) = N(λz, σ
2I),
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we let Q(z̃) ∼ N(0, σ2I). Note that Q(z̃)’s covariance matrix can be σ2I since activations after
linear or convolution layers tend to follow a Gaussian distribution (Klambauer et al., 2017).

DKL(P (z̃ | x)∥N(0, σ2I)) =
1

2

[
tr
(
Σ−1Σ

)
+ (µ− 0)TΣ−1(µ− 0)− i× c

]
Since the covariance matrices of P (z̃ | x) and N(0, σ2I) are the same, tr(Σ−1Σ) = i × c, and
log

(
det(Σ)
det(Σ)

)
= 0, the remaining term simplifies to:

DKL(P (z̃ | x)∥N(0, σ2I)) =
1

2
· 1

σ2
∥µ∥2

Thus, we have:

sup I(z̃, x) = Ex

[
1

2
· 1

σ2
∥µ∥2

]
Given that P and Q follow normal distributions with means µp and µq , and covariance matrices Σp

and Σq , respectively, we use the following KL divergence formula:

DKL(p(x)∥q(x)) =
1

2

[
(µp − µq)

⊤Σ−1
q (µp − µq) + tr(Σ−1

q Σp)− n
]

sup I(z̃(λ1), x)− sup I(z̃(λ2), x) = Ex

[
1

2
· 1

σ2

(
λ2
1 − λ2

2

)
∥µ∥2

]
= Ex

[
1

2
· 1

σ2

(
λ2
1 − λ2

2

)
∥µ∥2

]
Since λ1, λ2 ∈ [0, 1] and λ1 < λ2, we have:

sup I(z̃(λ1), x) < sup I(z̃(λ2), x)

Thus, Theorem 1 is proven. When λ = 0, we have:

P (z̃(0) | x) = N(0, σ2I),

which is the same as Q(z̃), leading to:

DKL(P (z̃(0) | x)∥Q(z̃)) = 0

Hence, I(z̃(0), x) = 0.

C PROOF OF THEOREM 2

When σ → 0, we have:

Ex

[
1

2
· 1

σ2

(
λ2
1 − λ2

2

)
∥µ∥2

]
→ 0, as λ2

1 − λ2
2 → 0−

Thus, Theorem 2 is proven.

D PROOF OF THEOREM 3

The proof follows the standard method of change of variables in integral calculus. Detailed steps
can be found in textbooks on calculus.
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E PROOF OF SENSITIVITY AXIOMS

∑
i

∑
c

∫ 1

0

∂I(z̃(λ), Y )

∂z̃ic(λ)

∂z̃ic(λ)

∂λ
dλ = I(z̃(1), Y )− I(z̃(0), Y ) (11)

As shown in Equation 11, the total importance across all dimensions of z corresponds to the de-
crease in I(z̃(λ), Y ) as the bottleneck narrows from fully open to fully closed, thereby satisfying
the Sensitivity Axioms.

F PROOF OF IMPLEMENTATION INVARIANCE AXIOMS

By applying the chain rule, the proposed method inherently satisfies the Implementation Invariance
Axiom.

G DETAILS OF λ

Although λ remains consistent across dimensions within a layer, the actual updated values vary
depending on the magnitude of each feature. For example, if a feature has a magnitude of 8 and
λ is set to (1/4), the final updated value will be 2. In contrast, if another feature dimension has a
magnitude of 6, the updated value will be 1.5. These variations ensure that our theoretical properties
hold and that the bottleneck effect is applied dynamically based on the specific characteristics of
each feature.

H SENSITIVITY OF M2IB TO THE β HYPERPARAMETER

Table 5: Effect of the β Hyperparameter on Confidence Metrics for the M2IB Method Across Dif-
ferent Datasets

Dataset Conceptual Captions Imagenet Flickr8k

β
Img Conf

Drop ↓
Img Conf

Incr ↑
Text Conf

Drop ↓
Text Conf

Incr ↑
Img Conf

Drop ↓
Img Conf

Incr ↑
Text Conf

Drop ↓
Text Conf

Incr ↑
Img Conf

Drop ↓
Img Conf

Incr ↑
Text Conf

Drop ↓
Text Conf

Incr ↑
0.01 0.8738 38.65 0.9779 44 0.835 52.6 1.1897 41.7 1.2544 27.3 1.1789 47.6
0.02 0.8886 39.05 0.93 45.25 0.8714 52.8 1.3856 35.8 1.2635 27.6 1.0784 48.8
0.03 0.9144 39.2 0.9591 46.35 0.9138 51.8 1.5526 32.6 1.282 28 1.174 47.6
0.04 0.943 39.15 1.077 45.4 0.9534 51.5 1.7488 30.8 1.3025 28.6 1.2631 47.7
0.05 0.9699 38.95 1.1631 44.7 0.9929 50.8 1.8996 31.4 1.3266 29 1.3423 46.4
0.06 1.0003 38.35 1.2813 42.9 1.0387 50 1.9928 29.9 1.3525 28.6 1.444 45.2
0.07 1.0325 38.15 1.3853 41.6 1.0842 50 2.1209 30.4 1.382 28 1.5843 43.3
0.08 1.0627 38.15 1.4937 39.75 1.1249 50 2.2748 27.1 1.4126 28.4 1.7559 41
0.09 1.0918 38.3 1.6044 39.15 1.1634 50.4 2.3936 25.9 1.444 28.5 1.8962 37.9
0.1 1.1244 38.4 1.7059 37.4 1.203 49.8 2.5389 24.7 1.4731 28.1 2.0783 34.7
0.2 1.4748 35.85 2.4205 27.85 1.4989 45.9 3.621 18.3 1.8176 27 2.8446 26.4
0.3 1.8328 32.1 2.7202 24.95 1.7226 42.4 4.1689 13.7 2.2708 24.7 3.0958 23.1
0.4 2.1324 29.95 2.8379 23.5 1.8277 40.8 4.3674 12.9 2.6872 22.5 3.2358 21.4
0.5 2.3452 28.4 2.9112 22.8 1.9042 39.9 4.4614 12.4 3.0238 19.9 3.2889 21.7
0.6 2.5184 25.95 2.9522 22.6 1.9561 38.8 4.5032 12.2 3.2989 18.2 3.3116 21.6
0.7 2.6748 25.3 2.9737 22.4 2.0037 37.5 4.5393 12.1 3.549 16.4 3.3198 21.7
0.8 2.8316 23.9 2.9863 22.35 2.0717 36.7 4.5558 12.1 3.7771 15.5 3.3254 21.7
0.9 2.9715 23.25 2.9947 22.15 2.1504 35.5 4.5649 12.1 3.9766 14.3 3.3289 21.7

As shown in the table 5, the β hyperparameter has a significant impact on the performance of the
M2IB method, indicating that the method is sensitive to variations in β. As β increases, the values
of both Image Confidence Drop (Img Conf Drop ↓) and Text Confidence Drop (Text Conf Drop ↓)
increase noticeably across the Conceptual Captions, Imagenet, and Flickr8k datasets. This demon-
strates that as β grows, the model’s performance deteriorates on these metrics. Similarly, the values
of Image Confidence Increase (Img Conf Incr ↑) and Text Confidence Increase (Text Conf Incr ↑)
decrease as β increases, further illustrating the influence of this hyperparameter on model behavior.

For instance, when β increases from 0.01 to 0.9, on the Conceptual Captions dataset, the Image Con-
fidence Drop rises from 0.8738 to 2.9715, and the Text Confidence Drop rises from 0.9779 to 2.9947,
while the Image Confidence Increase decreases from 38.65 to 23.25, and the Text Confidence In-
crease decreases from 44 to 22.15. This trend is consistent across other datasets, particularly when
β is larger, leading to more pronounced performance degradation. Therefore, it can be concluded
that the M2IB method is highly sensitive to the β hyperparameter, and tuning β has a substantial
effect on the confidence metrics of the model.
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Table 6: Expanded the scope of num steps ablation study

Dataset num steps target layer Img Conf Drop Img Conf Incr Text Conf Drop Text Conf Incr

Conceptual Captions

3 9 0.9649 42.5 0.2066 43.5
8 9 0.9424 43.2 0.2409 43.2

13 9 0.9422 42.8 0.3268 44.75
18 9 0.9408 42.9 0.4288 45

ImageNet

3 9 0.9698 51.7 0.3746 56.3
8 9 0.9438 53 0.4046 56.9

13 9 0.9506 53 0.4444 57.3
18 9 0.9648 53.9 0.4935 56

Flickr8k

3 9 1.4636 25.5 0.3875 51
8 9 1.4526 26 0.4324 55

13 9 1.4437 26.5 0.5525 53.6
18 9 1.4463 27.1 0.7381 53

Table 7: Expanded the scope of target layer ablation study

Dataset num steps target layer Img Conf Drop Img Conf Incr Text Conf Drop Text Conf Incr

Conceptual Captions

10 2 0.8577 41.95 1.1717 40
10 4 0.8338 43.6 1.2319 37.2
10 5 0.8106 43.95 1.5805 34.5
10 6 0.8514 43.55 0.9867 40.1
10 7 0.8911 43.75 0.8798 39.4
10 8 0.8898 41.6 0.3655 43.75

ImageNet

10 2 0.7062 54.5 2.1586 33.7
10 4 0.72 55.1 2.625 31.8
10 5 0.7906 55 3.496 19.9
10 6 0.7793 56.1 2.4207 32.5
10 7 0.8931 54.8 1.4745 47.4
10 8 0.9258 52.7 0.985 49.8

Flickr8k

10 2 1.2641 28.1 1.2748 44.4
10 4 1.283 27.7 1.4821 40.9
10 5 1.247 27.4 2.0031 36.5
10 6 1.2875 28.3 1.1981 46.9
10 7 1.3609 28.6 1.2775 43.1
10 8 1.2881 28.8 0.9316 46.3

I EXPANDED ABLATION STUDY OF num steps AND target layer

We expanded the scope of our ablation studies with additional results, as shown in Tables 6 and 7
in the supplementary material, to provide a more comprehensive analysis of hyperparameter inter-
actions.

Table 8: Forward and backward passes of NIB compared to other methods

Method Forward Backward

NIB 12 10
RISE 301 0

Grad-CAM 3 2
Chefer et al. 3 0

SM 3 0
MFABA 21 10

M2IB 22 20
FastIG 3 0

17



Published as a conference paper at ICLR 2025

Figure 2: Attribution result of RSICD dataset

J COMPUTATIONAL EFFICIENCY

As outlined in Table 8, NIB achieves superior efficiency in terms of forward and backward passes
compared to other methods. The efficiency of our method scales independently of model complexity
and dataset size, as demonstrated in our evaluation.

K ATTRIBUTION RESULTS

To provide further insights into generalization, we have generated attribution examples using the
RSICD remote sensing dataset. Figure 2 indicates that the proposed method could generalise effec-
tively to other domains.
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