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ABSTRACT

Unsupervised Skill Discovery (USD) aims to autonomously learn a diverse set
of skills without relying on extrinsic rewards. One of the most common USD
approaches is to maximize the Mutual Information (MI) between skill latent vari-
ables and states. However, MI-based methods tend to favor simple, static skills
due to their invariance properties, limiting the discovery of dynamic, task-relevant
behaviors. Distance-Maximizing Skill Discovery (DSD) promotes more dynamic
skills by leveraging state-space distances, yet still fall short in encouraging com-
prehensive skill sets that engage all controllable factors or entities in the envi-
ronment. In this work, we introduce SUSD, a novel framework that harnesses
the compositional structure of environments by factorizing the state space into
independent components (e.g., objects or controllable entities). SUSD allocates
distinct skill variables to different factors, enabling more fine-grained control on
the skill discovery process. A dynamic model also tracks learning across fac-
tors, adaptively steering the agent’s focus toward underexplored factors. This
structured approach not only promotes the discovery of richer and more diverse
skills, but also yields a factorized skill representation that enables fine-grained
and disentangled control over individual entities which facilitates efficient train-
ing of compositional downstream tasks via Hierarchical Reinforcement Learning
(HRL). Our experimental results across three environments, with factors ranging
from 1 to 10, demonstrate that our method can discover diverse and complex skills
without supervision, significantly outperforming existing unsupervised skill dis-
covery methods in factorized and complex environments. Code is available at the
anonymous repository: https://anonymous.4open.science/r/SUSD.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton et al., 1998) has made significant strides in solving complex
tasks, such as strategic games (Schrittwieser et al., 2020; Badia et al., 2020; Mnih et al., 2013)
and robotic manipulation (Gu et al., 2016; Andrychowicz et al., 2020), especially when supported
by well-shaped, dense reward functions (Booth et al., 2023; Tang et al., 2025; Silver et al., 2018).
However, in many real-world settings, rewards are sparse and tasks are long-horizon, making learn-
ing much harder.

Humans often solve new problems by leveraging previously acquired skills rather than learning from
scratch. This intuition can be transferred to RL by enabling agents to acquire a repertoire of reusable
skills, reducing the need for task-specific training. This strategy, known as USD, has become widely
used in recent RL research (Eysenbach et al., 2019; Liu & Abbeel, 2021; Campos et al., 2020;
Achiam et al., 2018). Precisely, in USD approach, an agent is placed in an environment without
any predefined reward function and learns to acquire as many diverse and distinct skills as possible
solely through interaction with the environment. Afterwards, these learned skills are leveraged by a
high-level policy or zero-shot goal-reaching methods to solve a variety of downstream tasks.

Two main branches of USD have gained popularity. The first focuses on MI methods (Eysenbach
et al., 2019; Sharma et al., 2019; Kamienny et al., 2022; Kim et al., 2023), that aim to maximize
the mutual information between latent skills and states. The second branch centers on DSD meth-
ods (Park et al., 2024; 2023; 2022; Kim et al., 2024; Rho et al., 2025), that seek to maximize state
changes along skill-specific directions. While MI-based methods often suffer from issues related
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Factorized 
Embedding

Factor weighing

Curiosity Based

Figure 1: Illustration of the SUSD Method. (a) In the skill learning stage, factorized embedding
ϕ of the current and next state is passed through the corresponding mapping function ϕ(.) to obtain
a skill latent embedding. Additional details about factorized embedding are shown in (b), where
factor si, i ∈ {1, ..., N}, is mapped to its embedding through the function ϕi. These embeddings,
together with the skill factor inputs, are used to compute the intrinsic reward ri of factor i. In the
curiosity-based factor weighting module, a density model takes the full current state as input and
estimates the probability of each next-state factor given the current state − log q(sit+1|st). These
probabilities are then used as weights to scale the factor-wise intrinsic rewards, which are summed
to form the final intrinsic reward for training the skill policy. (c) In the task learning stage, the
learned skill policy is frozen as a low-level policy, while a high-level policy πhigh is trained to select
a skill z every L steps by maximizing the task reward rtask.

to invariance to transformations, an aspect discussed in prior work (Park et al., 2024; 2023), DSD
methods attempt to encourage more dynamic behaviors by maximizing state-space distances. How-
ever, the latent space of DSD methods mostly emphasize only easily controllable factors. Therefore,
although state-of-the-art DSD methods perform well in simple environments such as Ant, HalfChee-
tah, and Walker (Todorov et al., 2012; Brockman et al., 2016; Towers et al., 2024), their performance
degrades in more complex environments consisting several controllable elements. This bias arises
because DSD lacks explicit mechanisms to ensure skill diversity across all controllable components.
As a result, the learned skill latent spaces tend to underrepresent harder-to-control or less immedi-
ately responsive elements, limiting the overall expressiveness and coverage of the discovered skills.

To address these limitations, we propose a factorized embedding approach that explicitly leverages
the inherent factorization of the environment’s state space, an inductive bias commonly present in
structured domains such as multi-object environments. In our framework, the state space is decom-
posed into factors, each corresponding to a distinct subset of controllable features. We associate a
dedicated subset of skill variables with each factor, enabling the agent to develop localized skills
within each subspace. This decomposed skill representation also naturally supports composability
of skills through chaining which makes the learned behaviors more reusable for downstream tasks.
Furthermore, in contrast to existing DSD methods that treat the state space holistically and fail
to account for the varying difficulty of controlling different factors, we introduce a curiosity-driven
factor weighting mechanism. This component dynamically adjusts the learning emphasis across fac-
tors based on the agent’s progress, encouraging exploration of underdeveloped or harder-to-control
components as others are mastered.

The main contributions of our work are as follows: (1) We propose a novel method for skill learning
in environments where the state space can be meaningfully decomposed into subspaces, leveraging

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

this inductive bias to learn a repertoire of skills that collectively cover the entire state space. (2)
We design an adaptive weighting mechanism that assigns greater emphasis to less explored factors,
encouraging balanced skill acquisition. (3) We evaluate our approach across multiple environments
and experiments, demonstrating that our method outperforms leading DSD methods as well as the
MI-based simple and factorized approaches.

2 RELATED WORKS

2.1 UNSUPERVISED SKILL DISCOVERY

USD methods aim to enable an agent to learn a diverse repertoire of skills without relying on pre-
defined tasks. These learned skills can later be used to solve downstream tasks either in a zero-shot
manner or as components of high-level policy strategies. Research in this area can be broadly catego-
rized into two main directions: (1) Approaches that maximize the MI between skill latent variables
and the states. (2) DSD methods, which introduce various distance metrics to explicitly encourage
distinguishable behaviors across skills. Our method is built upon the DSD framework.

2.1.1 MUTUAL INFORMATION-BASED SKILL DISCOVER

These methods aim to maximize the MI between states and latent skills, I(S;Z), encouraging dif-
ferent skills to induce distinct and diverse behaviors. This objective is generally intractable, and
previous studies approached it using two main strategies: (1) reverse mutual information (Reverse-
MI), and (2) forward mutual information (Forward-MI). As regard to Reverse-MI (Mazzaglia et al.,
2023; Kamienny et al., 2022; Wang et al., 2024; Kim et al., 2023; Hu et al., 2024; Eysenbach et al.,
2019), optimization is in the form of I(S;Z) = H(Z) − H(Z|S), where H(Z) is a constant due
to assuming a the skill prior distribution p(z) is fixed. In this approach, a variational lower bound
of I(S;Z) is obtained as I(S;Z) = Ez,s[log p(z | s)]− Ez[log p(z)] ≥ Ez,s[log qθ(z | s)] + const
in which a neural network qθ(z|s) is typically used to model p(z|s). Regarding Forward-MI
(Liu & Abbeel, 2021; Laskin et al., 2022; Sharma et al., 2019), optimization can be expressed as
I(S;Z) = H(S)−H(S|Z). To approximate H(S|Z), a neural network is typically used to model
a variational distribution. Additionally, maximizing H(S) can be achieved through entropy estima-
tion techniques. A key limitation of these methods is their invariance to scaling or any invertible
transformation of input variables. As a result, they tend to learn simple behaviors—such as opening
the arm—while failing to capture more dynamic and complex skills (Park et al., 2022; 2023).

2.1.2 DISTANCE-MAXIMIZING SKILL DISCOVERY

Several recent works have adopted DSD to discover diverse and meaningful skills (Park et al., 2022;
2023; 2024; Rho et al., 2025; Kim et al., 2024). DSD utilize the Wasserstein dependency measure
as a learning objective for USD, defined as:

IW (S;Z) =W(p(s, z), p(s)p(z)) (1)

where W(·, ·) denotes the Wasserstein distance. In contrast to I(S;Z) = DKL(p(s, z)||p(s)p(z))
in which Kullback–Leibler divergence, DKL, is insensitive to the underlying geometry of the state
space, the Wasserstein-based objective explicitly accounts for state-space distances.

DSD methods can intuitively be simplified and expressed as aiming to maximize the state change
along the direction specified by the skill z with the following objective (Park et al., 2024):

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤z

]
s.t. ∥ϕ(s)− ϕ(s′)∥L ≤ d(s′, s), ∀(s, s′) ∈ Sadj

(2)

where, Sadj denotes the set of adjacent state pairs in the Markov Decision Process (MDP), and L is
a norm (L2 norm is common in prior works).

The main difference between our work and others is that they typically consider relatively simple
environments, such as Ant and HalfCheetah (Todorov et al., 2012; Brockman et al., 2016; Towers
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et al., 2024), where the state can be easily mapped to a low-dimensional latent space via ϕ(·). Such
simple environments with well-defined mapping from state space to latent space can allow them to
easily cover the state space. In contrast, they struggle in more complex, object-centric environments
where multiple objects and agents are present and even a simple action can simultaneously affect
several factors.

2.2 STATE SPACE FACTORIZATION IN RL

Many works leverage knowledge of state factorization for various purposes, including planning
(Wang et al., 2022), data augmentation (Pitis et al., 2020), providing intrinsic rewards (Wang et al.,
2023; Choi et al., 2024), and goal-conditioned learning (Chuck et al., 2025). Recently, some methods
(Hu et al., 2024; Wang et al., 2024; Chuck et al., 2023) have been proposed that consider interactions
among objects in the environment and leverage this inductive bias with mutual information objec-
tives to discover diverse skills. For example, DUSDi (Hu et al., 2024) learns disentangled skills
where each skill component influences a specific factor, while SkiLD (Wang et al., 2024) induces
different interaction graphs to capture object relationships. Although, utilizing the compositional
structure of environments help to discover more diverse skills, the existing DSD methods have not
yet exploited the state factorization and miss an opportunity to better structure the skill learning
process and uncover more comprehensive and composable behaviors.

3 PRELIMINARIES AND PROBLEM SETTING

An MDP is defined by the tuple (S,A, r, p), where s ∈ S denotes a state in the state space, a ∈ A
an action in the action space, p(·|s, a) the transition probability function, and r : S × A → R+ the
reward function. In this work, we focus on a specialized class of MDPs designed for unsupervised
skill discovery in reward-free Factored Markov Decision Processes (FMDPs) (Kearns & Koller,
1999; Osband & Van Roy, 2014; Mohan et al., 2024). There is a long line of prior work (Wang
et al., 2024; Hu et al., 2024; Wang et al., 2023; Eysenbach et al., 2019; Pitis et al., 2020; Choi
et al., 2024) has adopted Factored Markov Decision Processes (FMDPs) as their environmental
framework. In such settings, the state space is structured as a Cartesian product of N subspaces:
S := S1×· · ·×SN , where each Si corresponds to a distinct factor of the environment. Each skill is
represented by a latent vector z ∈ Z , where the skill space is factored as Z := Z1×· · ·×ZN , with
each factorZi ∈ RD

i . As a result, the overall skill space lies in R
∑N

i=1 Di . A shared skill-conditioned
policy π(a|s, z) maps states and skill vectors to an action distribution. While the skill space Z can
be either discrete or continuous, we focus on the continuous setting in this work. Nonetheless, our
method is readily applicable to discrete skill spaces too as mentioned in Appendix F. To collect a
skill trajectory, we sample a skill z from a predefined skill prior distribution p(z) at the beginning
of an episode. We then roll out the skill policy π(a|s, z) with the sampled z for the entire episode.
For the skill prior, we use a standard normal distribution.

In settings where the true state vector is available, the underlying factors can typically be derived
directly. When only pixel-based observations are accessible, an encoder can be employed alongside
representation learning techniques to extract disentangled factors from the visual input. However,
we assume direct access to the underlying state vector that is available in many environments.

4 METHOD

Existing DSD methods tend to focus on easily controllable state factors and lack mechanisms to en-
courage diversity across all controllable aspects. To address this, we propose a factorized embedding
framework for DSD methods that decomposes the state space into distinct controllable factors, en-
abling localized and composable skill learning. Additionally, we introduce a curiosity-driven factor
weighting mechanism that adaptively emphasizes harder-to-control factors during training.

In this section, we first describe how the observation space, skill latent space, and mapping function
are factorized (Section 4.1). Then, we explain how the weight of each factor is computed, which re-
flects the extent of the agent’s struggle with that factor and, consequently, its curiosity to acquire the
corresponding skill (Section 4.2). Finally, we present the SUSD method in its entirety, detailing its
intrinsic reward, the loss functions used for network updates, and the overall algorithm (Section 4.3).
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Figure 2: Left: The state s is passed to the density model, which estimates the mean and variance of
q(s′|s). These statistics are then partitioned by factors to obtain q(s′i|st)

2
i=1. Right: Point x shows

high probability in factor 1 but low probability in factor 2—a distinction that cannot be leveraged by
the CSD method, which assigns a single weight to the entire state transition rather than to individual
state factors.

4.1 FACTORIZED DSD

We factorize the observation space into N factors {si}Ni=1, each corresponding to a meaningful com-
ponent of the environment. In essence, we leverage the compositional structure of the environment
as an inductive bias to guide this partitioning of the observation space. More precisely, different
controllable elements in the environment (e.g., the target, agent, and ammo in the 2D-Gunner (Lowe
et al., 2017)) can be considered as different state factors. Moreover, each skill vector z is composed
of N factors, each of dimension D. Specifically, for every state factor si, we associate a latent skill
factor zi within the skill vector. This design enables the agent to learn localized skills specialized to
each subspace, improving both disentanglement and control. More precisely, the function ϕ, which
maps the state space to the skill latent space, is structured as N separate networks where each net-
work i takes the si as input and outputs ϕi(s

i). Therefore, the original optimization problem defined
in Eq. 2 is converted to the following factorized version:

sup
π,{ϕi}N

i=1

Ep(τ,z)

N∑
i=1

T−1∑
t=0

(ϕi(s
i
t+1)− ϕi(s

i
t))

⊤zi

subject to
N∑
i=1

∥ϕi(s
′i)− ϕi(s

i)∥2 ≤ 1, ∀(s, s′) ∈ Sadj (3)

4.2 CURIOSITY-BASED FACTOR WEIGHTING

Inspired by (Park et al., 2023) which prioritizes state transitions that are difficult to achieve under
the current skill policy, we aim to encourage the discovery of hard-to-learn behaviors. To this end,
we train a density model qθ(s′|s) = N (µθ(s),Σθ(s)) on (s, s′) tuples collected by the skill policy
and a negative log-likelihood of a transition from the current skill policy, − log qθ(st+1|st), is used
as a controllability-aware distance function. It assigns high values for rare transitions while assigns
small values for frequently visited transitions.

As discussed in Section 4.1, we factorize the state space into N distinct factors. This raises the
question of which factors the agent should attend to at each timestep and how much importance
each factor should receive. In this section, we begin with a lemma that allows us to reformulate
Eq. 2 so that the distance term is incorporated directly into the objective, rather than appearing in a
constraint. Using this lemma, we then derive our final objective function.
Lemma 4.1. In the DSD optimization problem (Eq. 2), we can include the distance term as a
coefficient alongside the intrinsic reward. More generally, Eq. 2) can be reformulated as follows:

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

d(s′, s)(ϕ(st+1)− ϕ(st))
⊤z

]
s.t. ∥ϕ(s)− ϕ(s′)∥L ≤ 1, ∀(s, s′) ∈ Sadj

(4)
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The proof of this lemma is provided in Appendix A and is adapted from (Kim et al., 2024).

To move beyond the coarse-grained weighting used in (Park et al., 2023), which assigns a single
curiosity score per transition, we propose a fine-grained factor-wise weighting mechanism that dy-
namically adjusts the contribution of each state factor during training. Specifically, to compute the
factor-wise curiosity signals − log qθ(s

i
t+1|st), we feed st into the network to obtain µθ(st) and di-

agonal Σθ(st) of a multivariate Gaussian distribution. Since the marginals of a Gaussian distribution
are themselves Gaussian, we can easily extract the marginal mean and variance for each state factor
by partitioning µθ(st) and Σθ(st) according to the predefined factorization of the observation space.
The resulting factor-wise parameters are used to calculate the curiosity weight for each factor as:

− log qθ(s
i
t+1 | st) ∝ (sit+1 − µi

θ(st))
⊤Σi

θ(st)
−1(sit+1 − µi

θ(st)) (5)

The square root of − log qθ(s
i
t+1 | st) can be interpreted as a valid distance metric and thus in-

corporated into the objective defined in Eq. 4 according to Lemma 4.1. The curiosity-based fac-
tor weighting module is shown on the bottom of Figure 1. Furhermore, Figure 2 shows how this
mechanism provides curiosity-based factor weighting. In this figure, the point x may have a high
probability mass under the first factor while it has a low probability mas under the second one.
This indicates that more weight should be assigned to the second factor transition than the first one
while coarse-grained view of states, as used in CSD (Park et al., 2023), overlook such factor-level
controllability.

Accordingly, we our final optimization problem as follows:

sup
π,{ϕi}N

i=1

Ep(τ,z)

T−1∑
t=0

N∑
i=1

√
− log qθ(sit+1|st)(ϕi(s

i
t+1)− ϕi(s

i
t))

⊤zi

subject to
N∑
i=1

∥ϕi(s
′i)− ϕi(s

i)∥2 ≤ 1, ∀(s, s′) ∈ Sadj (6)

4.3 SUSD TRAINING

We optimize our objective using dual gradient descent (Park et al., 2024; 2023; 2022). That is, with
a Lagrange multiplier λ ≥ 0, we use the following dual objectives to train SUSD:

rSUSD
i := (ϕi(s

i
t+1)− ϕi(s

i
t))

⊤zi, (7)

JSUSD,ϕi := E
[
rSUSD
i + λ ·min

(
ε, 1− ∥ϕ(sit+1)− ϕ(sit)∥

)]
, (8)

JSUSD,λ := −λ · E
[
min

(
ε, 1− ∥ϕ(sit+1)− ϕ(sit)∥

)]
, (9)

R :=

N∑
i=1

√
− log qθ(sit+1|st)rSUSD

i (10)

where R is the intrinsic reward for the skill policy, and JSUSD,ϕi and JSUSD,λ are the objectives for
ϕi and λ, respectively. We update for each factor independently. The variables st+1 and st are
sampled from a state pair distribution p(st+1, st) that imposes the constraint in Eq. 6. The slack
variable ε > 0 prevents the gradient of λ from always being nonnegative. Using these objectives,
we train SUSD by optimizing the policy using Eq. 10 as the intrinsic reward, while updating the
other components using objectives in Eqs. 8 and 9.

The skill policy π(a | s, z) is trained with Soft Actor-Critic (SAC) (Haarnoja et al., 2018) according
to the obtained reward in Eq. 10 as an intrinsic reward. We train the other components with stochas-
tic gradient descent. We summarize the training procedure of SUSD in Algorithm 1. Implementation
details are provided in Appendix E.
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Algorithm 1 SUSD: Structured Unsupervised Skill Discovery

1: Initialize skill policy π(a | s, z), function
{
ϕi(s

i)
}N

i=1
conditional density model qθ(s′i | s),

Lagrange multiplier λ
2: for i← 1 to #epochs do
3: for j ← 1 to #episodes per epoch do
4: Sample skill z ∼ p(z)
5: Sample trajectory τ with π(a | s, z)
6: end for
7: Fit conditional density model qθ(s′|s) using current trajectory samples
8: Update ϕi(s

i) with gradient ascent on JSUSD,ϕi ▷ Eq. 8
9: Update λ with gradient ascent on JSUSD,λ ▷ Eq. 9

10: Update π(a | s, z) using SAC with intrinsic reward R ▷ Eq. 10
11: end for

5 EXPERIMENTS

In evaluating SUSD, we begin by describing the experimental setup, including details of the en-
vironments and baselines (Section 5.1) and then address three key questions: Q1: In factorized
environments, do our discovered skills outperform other unsupervised reinforcement learning meth-
ods on downstream tasks? (Section 5.2) Q2: In unfactorized environments, does our method remain
competitive with alternative baselines? (Section 5.3) Q3: Does our method truly account for all
factors during the skill-learning phase? (Section 5.4)

5.1 EXPERIMENTAL SETUP

We compare our method against five state-of-the-art unsupervised skill discovery approaches and
evaluate these methods in five environments including factorized and unfactorized ones.

Baselines: We evaluate our approach against three DSD based methods, namely LSD (Park et al.,
2022), CSD (Park et al., 2023), and METRA (Park et al., 2024), as well as DIAYN (Eysenbach et al.,
2019) which serve as representative MI-based method and DUSDi (Hu et al., 2024) as a factorized
MI-based method. Additional information about these methods have been presented in Appendix D.
More details about the hyperparameters are provided in Appendix E.

Environments: We evaluate our method on the HalfCheetah and Ant environment (Todorov et al.,
2012; Brockman et al., 2016) to demonstrate its applicability to unfactorized settings. The 2D-
Gunner is a relatively simple domain, where a point agent can navigate inside a continuous 2D
plane, collecting ammo and shooting at targets. Multi-Particle is a multi-agent domain modified
based on (Lowe et al., 2017) and this modified version has been introduced in (Hu et al., 2024). In
this domain, a centralized controller simultaneously controls 10 heterogenous point-mass agents to
interact with 10 stations, where each agent can only interact with a specific station. The Kitchen
environment (Zhu et al., 2020; Wang et al., 2023) features a robotic arm and multiple objects, in-
cluding butter, a meatball, a stove, and a button. In this environment, the agent must learn cookery
skills, such as placing the butter or the meatball in the pot. An overview of all environments is
shown in Figure 5. The majority of our evaluation focuses on more complex environments, namely
Multi-Particle and Kitchen. Further details on the environments and downstream tasks are provided
in Appendices B and C, respectively.

5.2 EVALUATING FACTORIZED ENVIRONMENTS

In this section, we evaluate the impact of SUSD on factorized environments (Q1) by assessing the
performance of our method and the baselines across all downstream tasks in the MP and Kitchen
environments. We apply a simple factorization strategy where each entity is treated as a distinct
factor. Additionally, we can incorporate the agent’s state into the entity factors to more accurately
capture the causal influence of the agent on the entities in the latent space. Additional details on
factorization and further experimental results are provided in Appendix H. As shown in Figure 3,
our method generally outperforms all compared methods by a good margin, demonstrating its effec-
tiveness and its ability to leverage the structure of the environment. Moreover, for the Kitchen as a
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Figure 3: Training curves of SUSD and baseline methods on multiple downstream tasks in the Multi-
Particle and Kitchen environments. Each plot shows the mean and standard deviation of returns over
3 random seeds.

more complex environment (with a high-dimensional observation space), a larger gap is observed.
For an ablation study demonstrating the impact of the curiosity-based weighting mechanism, please
refer to Appendix G.

5.3 UNFACTORIZED ENVIRONMENTS

To answer (Q2), we evaluate the performance of our method in the Ant and HalfCheetah envi-
ronment (Todorov et al., 2012; Brockman et al., 2016). These environments are relatively sim-
ple, consisting of a single agent (e.g. the ant) that can move freely, without any explicit structure.
We compare our method to other USD baselines on zero-shot goal-reaching, as described in ME-
TRA (Park et al., 2024) (this technique can be for DSD-based methods). It evaluates the agent’s
ability to achieve goals without additional training. In this task, the agent is allowed 20K steps to
accumulate as much reward as possible. To reduce the impact of randomness, we run the experiment
across eight different seeds. The results are shown in Figure 6.

5.4 RICHNESS OF FACTORIZED LATENT SKILLS

We conduct two experiments to measure the richness of latent skill embedding (Q3), In the first ex-
periment, we analyze the Multi-Particle environment and show that SUSD achieves relatively higher
state coverage across different factors compared to other baselines. In the second experiment, we
demonstrate that our method learns a richer latent skill embedding, capturing a more comprehensive
representation of all factors and outperforming other prior DSD-based approaches.
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5.4.1 STATE COVERAGE ACROSS FACTORS

We evaluate SUSD by randomly selecting a skill every 200 steps and collecting 20K rollout steps
in the Multi-Particle environment. For each factor (agent), we compute the number of unique states
it visits, rounding the agent’s positions to determine distinct states. In Multiple-Particle environ-
ment that contains 10 agents, we report the minimum state coverage across agent factors as Worst
Agent State Coverage, and the mean state coverage as Average Agent State Coverage. As shown
in Figure 4, SUSD achieves substantially better coverage than the baselines, particularly DUSDi.
This trend is also observed in 2D-Gunner. This result highlights that SUSD not only learns diverse
skills but also ensures balanced exploration across all factors, including the weakest one. Additional
comparisons with DUSDi, as another factorized method, are provided in Appendix H.

(a) Worst Agent State Cov. in MP (b) Avg. Agent State Cov. in MP (c) Agent State Cov. in 2D-Gunner

Figure 4: Comparison of state/factor coverage across different factorized environments.

5.4.2 FACTOR DECODING

The objective of this experiment is to demonstrate that our method can learn a latent skill embed-
ding that captures comprehensive, compositional information about all factors. Specifically, map-
ping observations into the latent skill space via the function ϕ(.) should produce embeddings that
encode meaningful information for each factor. By training a decoder on top of these embeddings to
reconstruct the observations, we can evaluate reconstruction quality using factor-wise MSE. A high-
quality latent skill embedding will yield low MSE for each factor, outperforming other baselines and
indicating that the embedding effectively captures all relevant information necessary to reconstruct
the observations. The factor-wise reconstruction errors from this experiment are reported in Table 1,
with details of the training process provided in Appendix J.

Table 1: Factor decoding errors across different factorized environments.

Env
Method SUSD METRA CSD LSD

Multi-Particle 0.060 0.147 0.313 0.308
Kitchen 0.014 0.028 0.049 0.038
2D-Gunner 0.080 0.186 0.404 0.224

6 CONCLUSION

Although excellent prior works in unsupervised skill discovery have successfully learned diverse
behaviors without supervision, these methods often struggle in complex environments—settings
with multiple objects.To address this limitation, we introduced a DSD-based method designed to
handle factorized environments by leveraging the environment’s structure as an inductive bias to
learn diverse skills. We propose a factorized embedding architecture and allocate a subset of skill
variables to each controllable factor to avoid underrepresention of harder-to-control elements of the
environment in the skill latent space. Moreover, we reformulate the DSD optimization problem and
integrate the concept of curiosity-based factor weighting, which dynamically identifies the factors
requiring more attention and adjusts the reward weights for each factor accordingly. We empirically
demonstrate that SUSD enables agents to acquire diverse and dynamic skills in factorized environ-
ments.
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Torres. Explore, discover and learn: Unsupervised discovery of state-covering skills. In Interna-
tional conference on machine learning, pp. 1317–1327. PMLR, 2020.

Jongwook Choi, Sungtae Lee, Xinyu Wang, Sungryull Sohn, and Honglak Lee. Unsupervised object
interaction learning with counterfactual dynamics models. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pp. 11570–11578, 2024.

Caleb Chuck, Kevin Black, Aditya Arjun, Yuke Zhu, and Scott Niekum. Granger-causal hierarchical
skill discovery. arXiv e-prints, pp. arXiv–2306, 2023.

Caleb Chuck, Fan Feng, Carl Qi, Chang Shi, Siddhant Agarwal, Amy Zhang, and Scott Niekum.
Null counterfactual factor interactions for goal-conditioned reinforcement learning. In Interna-
tional Conference on Learning Representations, 2025.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Machine Learning,
2019.

Shixiang Gu, Ethan Holly, Timothy P Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation. arXiv preprint arXiv:1610.00633, 1(1), 2016.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. In International conference on machine learning, 2018.

Jiaheng Hu, Zizhao Wang, Peter Stone, and Roberto Martı́n-Martı́n. Disentangled unsupervised
skill discovery for efficient hierarchical reinforcement learning. Advances in Neural Information
Processing Systems, 37:76529–76552, 2024.

Pierre-Alexandre Kamienny, Jean Tarbouriech, Sylvain Lamprier, Alessandro Lazaric, and Ludovic
Denoyer. Direct then diffuse: Incremental unsupervised skill discovery for state covering and
goal reaching. In International Conference on Machine Learning, 2022.

Michael Kearns and Daphne Koller. Efficient reinforcement learning in factored mdps. In IJCAI,
volume 16, pp. 740–747, 1999.

Hyunseung Kim, Byung Kun Lee, Hojoon Lee, Dongyoon Hwang, Sejik Park, Kyushik Min, and
Jaegul Choo. Learning to discover skills through guidance. Advances in Neural Information
Processing Systems, 36:28226–28254, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hyunseung Kim, BYUNG KUN LEE, Hojoon Lee, Dongyoon Hwang, Donghu Kim, and Jaegul
Choo. Do’s and don’ts: Learning desirable skills with instruction videos. Advances in Neural
Information Processing Systems, 37:47741–47766, 2024.

Diederik Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In International
conference on learning representations (ICLR), volume 5. California;, 2015.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, MA NYU, Aravind Rajeswaran, and Pieter
Abbeel. Contrastive intrinsic control for unsupervised reinforcement learning. In Proceedings of
the 36th International Conference on Neural Information Processing Systems, pp. 34478–34491,
2022.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pp. 6736–6747. PMLR, 2021.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Pietro Mazzaglia, Tim Verbelen, Bart Dhoedt, Alexandre Lacoste, and Sai Rajeswar. Choreog-
rapher: Learning and adapting skills in imagination. In International Conference on Learning
Representations, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Aditya Mohan, Amy Zhang, and Marius Lindauer. Structure in deep reinforcement learning: A
survey and open problems. Journal of Artificial Intelligence Research, 79:1167–1236, 2024.

Ian Osband and Benjamin Van Roy. Near-optimal reinforcement learning in factored mdps. Ad-
vances in Neural Information Processing Systems, 27, 2014.

Seohong Park, Jongwook Choi, Jaekyeom Kim, Honglak Lee, and Gunhee Kim. Lipschitz-
constrained unsupervised skill discovery. In International Conference on Learning Represen-
tations, 2022.

Seohong Park, Kimin Lee, Youngwoon Lee, and Pieter Abbeel. Controllability-aware unsuper-
vised skill discovery. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp. 27225–27245.
PMLR, 23–29 Jul 2023.

Seohong Park, Oleh Rybkin, and Sergey Levine. Metra: Scalable unsupervised rl with metric-aware
abstraction. In International Conference on Learning Representations, 2024.

Silviu Pitis, Elliot Creager, and Animesh Garg. Counterfactual data augmentation using locally
factored dynamics. Advances in Neural Information Processing Systems, 33:3976–3990, 2020.

Seungeun Rho, Laura Smith, Tianyu Li, Sergey Levine, Xue Bin Peng, and Sehoon Ha. Language
guided skill discovery. In International Conference on Learning Representations, 2025.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Machine Learning, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Chen Tang, Ben Abbatematteo, Jiaheng Hu, Rohan Chandra, Roberto Martı́n-Martı́n, and Peter
Stone. Deep reinforcement learning for robotics: A survey of real-world successes. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 28694–28698, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Zizhao Wang, Xuesu Xiao, Zifan Xu, Yuke Zhu, and Peter Stone. Causal dynamics learning for task-
independent state abstraction. In Proceedings of the 40th International Conference on Machine
Learning, 2022.

Zizhao Wang, Jiaheng Hu, Peter Stone, and Roberto Martı́n-Martı́n. Elden: Exploration via local
dependencies. Advances in Neural Information Processing Systems, 36:15456–15474, 2023.

Zizhao Wang, Jiaheng Hu, Caleb Chuck, Stephen Chen, Roberto Martı́n-Martı́n, Amy Zhang, Scott
Niekum, and Peter Stone. Skild: Unsupervised skill discovery guided by factor interactions.
Advances in Neural Information Processing Systems, 37:77748–77776, 2024.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiri-
any, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot
learning. arXiv preprint arXiv:2009.12293, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF LEMMA 4.1

We first start with Eq. 2:

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤z

]
s.t. ∥ϕ(s)− ϕ(s′)∥2 ≤ d(s, s′), ∀(s, s′) ∈ Sadj. (11)

Let the scaled state function be defined as ϕ̃(s) := ϕ(s)
d(s,s′) . Then, we can transform the constraint

term in Eq. 11 as follows (since d(s, s′) ≥ 0):

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

(ϕ(st+1)− ϕ(st))
⊤z

]
s.t. ∥ϕ̃(s)− ϕ̃(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj. (12)

By replacing ϕ(s) with ϕ̃(s) · d(s, s′) in Eq. 12, we obtain:

sup
π,ϕ

Ep(τ,z)

[
T−1∑
t=0

d(st, st+1)
(
ϕ̃(st+1)− ϕ̃(st)

)⊤
z

]
s.t. ∥ϕ̃(s)− ϕ̃(s′)∥2 ≤ 1, ∀(s, s′) ∈ Sadj.

(13)

B ENVIRONMENT DETAILS

B.1 ANT

As shown in Figure 5(a), the Ant (Todorov et al., 2012; Brockman et al., 2016) environment has an
episode length of 200 steps. The observation space consists of a single factor representing the state
of the Ant that is 29-dimensional. The action space is continuous, corresponding to the control of
the Ant’s joints, and has 8 dimensions.

B.2 HALFCHEETAH

As shown in Figure 5(b), the HalfCheetah (Todorov et al., 2012; Brockman et al., 2016) environment
has an episode length of 200 steps. The observation space consists of a single factor representing
the state of the cheetah and is 18-dimensional. The action space is continuous, corresponding to the
control of the cheetah’s joints, and has 6 dimensions.

B.3 GUNNER

As shown in Figure 5(c), in the 2D-Gunner (Hu et al., 2024) environment, the blue star marks
the position of the agent, the blue line marks its shooting direction, the red diamond marks ammo
location, and the orange cross marks the target position. The agent has a 18-dimensional observation
space, consisting of 3 state factors: Agent Position, Ammo State, Target State. The action is 6-
dimensional, 2 for agent movement, 3 for ammo pickup, and 1 for shooting direction.

B.4 KITCHEN

As shown in Figure 5(d), the Kitchen (Hu et al., 2024; Zhu et al., 2020) environment contains a robot
arm, a piece of butter, a meatball, a pot, a stove with its switch, and a target location marked in red.
The agent operates in a 4-dimensional action space, while the observation space is 142-dimensional.
This observation can be decomposed into seven components: 33 dimensions for the arm, 22 for the
pot, 18 for the meatball, 19 for the button, 22 for the stove, and 14 for the target.
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a) Ant b) HalfCheetah c) 2D Gunner d) Kitchen e) Multi-Particle

Figure 5: Benchmark Environments

B.5 MULTI-PARTICLE

As shown in Figure 5(e), agents are represented by small circles, while stations are represented by
large circles. Agents can only interact with stations of the same color. The Multi-Particle (Lowe
et al., 2017) environment has a 70-dimensional observation space, composed of 10 state factors that
capture the states of each agent and its corresponding landmark. The action space is 50-dimensional,
with 5 dimensions per agent controlling their movements and interactions with the landmarks.

C DOWNSTREAM TASKS

C.1 ANT

Multi-goal Ant (Park et al., 2024): The task requires the agent to reach four target goals, each
within a radius of 3. Each goal is randomly selected from the region [sx − 7.5, , sx + 7.5] × [sy −
7.5, , sy + 7.5], where (sx, sy) denotes the agent’s current position in the x-y plane. The agent is
awarded 2.5 upon reaching a goal. A new goal is generated either when the current goal is reached
or if the agent fails to reach it within 50 steps.

C.2 HALFCHEETAH

HalfCheetahGoal (Park et al., 2024): The task is to reach a target goal (within a radius of 3) that is
randomly sampled from [−10, 10]. The agent receives a reward of 10 upon reaching the goal.

C.3 GUNNER

Unlimited Ammo (unlim) (Hu et al., 2024): In this downstream task, targets appear at random lo-
cations, and the agent must approach and shoot each target to score. Since ammunition is unlimited,
the agent does not need to collect any.

Limited Ammo (lim) (Hu et al., 2024): This downstream task differs from the ”Unlimited Ammo”
task in that the agent begins without ammunition and must collect it before shooting, while all other
aspects remain unchanged.

C.4 KITCHEN

Put Butter in the Pot (BiP): In this downstream task, the agent’s goal is to place the butter in the
pot and keep it there. It receives a reward of 1 for each step during which the task is successfully
maintained.

Put Meatball in the Pot (MiP): In this downstream task, the agent’s goal is to place the meatball in
the pot and keep it there. It receives a reward of 1 for each step the task is successfully maintained.

C.5 MULTI-PARTICLE (MP)

Sequential interaction (seq) (easy, medium, hard) (Hu et al., 2024): In this task, agents are re-
quired to interact with their assigned stations following the sequence given by an instruction at the
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(a) Zero-shot Goal Reaching for Ant (b) Zero-shot Goal Reaching for HalfCheetah

Figure 6: Zero-shot goal reaching performance of policies learned by skill discovery methods across
8 random seeds. SUSD achieves competitive results in both unfactorized environments.

start of each episode. Interacting with stations out of sequence incurs a penalty. In the easy version,
the sequence has length 2; in the medium version, length 3; and in the hard version, length 4.

Food-poison (fp) (easy, medium, hard, difficult) (Hu et al., 2024): In this downstream task, each
station delivers either food or poison to its corresponding agent. Agents must decide whether to
interact with their station based on a sequence of binary indicators provided at the beginning of each
episode. The easy version uses a sequence of length 2, the medium version length 5, the hard version
length 8, and the difficult version length 10.

D COMPARED METHODS

LSD (Park et al., 2022), CSD (Park et al., 2023), and METRA (Park et al., 2024) are the compared
DSD-based methods. LSD measures the distance between states using the ℓ1 norm, defined as
d(s′, s) = ∥s′ − s∥. CSD defines distance in terms of transition probabilities, d(s′, s) = p(s′|s).
METRA employs temporal distance, given by d(s′, s) = 1 for the adjacent states in the trajectories.
In contrast, DIAYN trains a discriminator to predict the corresponding latent variable z from a given
state. Among recent skill learning methods, DUSDi (Hu et al., 2024) leverages the compositional
structure of environments by incorporating mutual information (MI) between skill components and
state factors into its objective. Specifically, the agent is rewarded for maximizing the MI between
each state factor and its corresponding skill component, while minimizing the MI between that
component and all other state factors. Although SkiLD (Wang et al., 2024) also adopts environment
factorization, it is constrained to environments with a small state space and a limited number of
actions. As a result, we were unable to evaluate it on the environments introduced in this work.

E IMPLEMENTATION DETAILS

Dimension of the latent space. For unfactorized environments (i.e., Ant and HalfCheetah), we set
the latent skill dimension to D = 2 for all evaluated methods. In factorized environments, we use the
hyperparameter settings for DUSDi as reported in its paper (Hu et al., 2024). For SUSD, the number
of factors is set equal to the number of entities, and we also use skill dimension of D = 2 for each
factor in all environments. Therefore, we set N = 3 in 2D-Gunner (for agent, amno, and target),
N = 7 in Kitchen (for arm, butter, meatball, button, stove, pot and target entities), and N = 20 for
Multi-partcle (for 10 agents and 10 stations). When grouping agent and station in this environment,
we consider N = 10 factors. Appendix I show that higher dimensions of latent space generally do
not improve the results of baseline methods (i.e., CSD, METRA) on Multi-Particle environment.

High-level controllers for downstream tasks. In Figure 1, we evaluate the learned skills on down-
stream tasks by training a high-level controller πh(z | s, sinfo), which selects a skill every K = 5
environment steps for both MP and Kithchen. At each selection step, the high-level policy chooses
a skill z, and the pre-trained low-level skill policy πl(a | s, z) executes this skill for the next K
steps. High-level controllers are trained using SAC (Haarnoja et al., 2018) for continuous skills,
with hyperparameters identical to those used in the unsupervised skill discovery methods (Table 3).
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Table 2: Hyperparameters for unsupervised skill discovery methods.

Hyperparameter Value
Learning rate 0.0001
Optimizer Adam
# episodes per epoch 8
# gradient steps per epoch 50
Minibatch size 256
Discount factor γ 0.99
Replay buffer size 106

# hidden layers 2
# hidden units per layer 1024
Target network smoothing coefficient 0.995
Entropy coefficient 0.1 (Adaptive)
SUSD ϵ 10−6

SUSD initial λ for each factor 3000
# Number of factors N 10 (MP), 7 (Kitchen), 3 (Gunner), 1 (Ant, HalfCheetah)
# Dimensions of each factor in Z 2

Table 3: Hyperparameters for downstream policies.

Hyperparameter Value

# training epochs 104

# episodes per epoch 1
# gradient steps per epoch 50
# skill sample frequency R 10
Replay buffer size 106

Target network smoothing coefficient 0.995
Entropy coefficient 0.1 (Adaptive)
Skill range [−1.5, 1.5]ND

Zero-shot goal-conditioned RL. In Figure 6, we evaluate the zero-shot performance of our method
against other DSD baselines on goal-conditioned downstream tasks in the Ant and HalfCheetah
environments. The skill vector z is recomputed at every step.

We present the full list of hyperparameters used for skill discovery methods in Table 2.

F EXTENSION TO DISCRETE SKILL SPACE

For discrete skills, we construct the skill space as Z := Z1 × · · · × ZN , where N is the number
of factors and each Zi is a D-dimensional one-hot vector, Zi ∈ {0, 1}D. Although we concatenate
this skill vector with the observation to feed into the skill policy, using a one-hot representation for
each factor can lead to skill learning collapse. Details on this collapse are discussed in prior DSD-
based methods (Park et al., 2022; 2024). To prevent this collapse, we compute the intrinsic reward
such that the sum over each factor in the skill vector is zero-mean. This is done using the formula in
Eq. 14. Assume that the k-th dimension of factor Zi is 1:

ri = [ϕ(sit+1)− ϕ(sit)]k −
1

N − 1

∑
j∈{1,2,...,D}\{k}

[ϕ(sit+1)− ϕ(sit)]j . (14)

To evaluate the effectiveness of our discrete approach, we implement the discrete skill space in the
2D-Gunner environment and compare its performance side by side with the continuous skill space,
as shown in Figure 7. As shown, the two methods achieve very similar performance on downstream
tasks, indicating that our discrete skill formulation is competitive with the continuous one.
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Figure 7: Comparison of discrete and continuous skill spaces in the 2D-Gunner environment.

Figure 8: Effect of the curiosity-based weighting module

G ABLATION STUDY

In this study, we isolate and evaluate the impact of the curiosity-based weighting module by remov-
ing it. This allows us to measure the performance drop when only factorization is used. As shown in
Figure. 8, the performance declines compared to our full method that incorporates both factorization
and curiosity-based weighting.
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Figure 9: Factorization in Multi-Particle: grouping each agent with its station outperforms treating
objects independently.

Figure 10: Impact of increasing skill dimensionality on baseline USD methods. Even when METRA
and CSD increase their skill dimensionality from 2 to 20, their performance remains below SUSD.

H FACTORIZATION AND FURTHER EXPERIMENTS

DUSDi has carefully engineered factors of the state as mentioned in (Hu et al., 2024). Furthermore,
by leveraging knowledge of downstream tasks, the observation space is filtered to focus exclusively
on discovering skills that are directly relevant for solving these tasks through HRL. In contrast, we
adopt a simpler approach by assigning attributes related to different environmental entities to distinct
factors, with the agent factor that can be concatenated to other factors to facilitate the discovery of
interactions more easily. In the Multi-Particle environment with 20 objects (agents and stations),
we group each agent with its corresponding station as a single factor leads to better performance
compared to a factorization treating each object (i.e., agent or station) as a separate factor. Figure 9
compares these two factorizations, showing that incorporating prior knowledge (of requiring each
agent to interact with its own station) to align factorization with downstream task structure improves
results.

I IMPACT OF INCREASED SKILL DIMENSIONALITY ON BASELINE
PERFORMANCE

Previous USD methods do not exhibit significant performance gains merely by increasing the di-
mensionality of the skill space. In Figure 10, we show that even when the skill dimensionality of
METRA and CSD is increased from 2 to 20, their performance still does not match ours. This
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highlights a significant gap and demonstrates that leveraging the environment’s factorized inductive
bias, together with a curiosity-weighted approach, can achieve better performance than merely in-
creasing skill dimensionality. It is worth noting that we use D = 2 for all factors across different
environments.

J TRAINING DETAILS FOR FACTOR DECODING

For decoding, we use an MLP having one-hidden layer (with ReLU (Agarap, 2018) activation
function) optimized with Adam (Kinga et al., 2015) and mean squared error (MSE) loss for 100
epochs with learning rate 0.0001 and batch size 1024. Training data is collected from 100K roll-
out steps. Every 200 steps, we sample a random skill and store the corresponding (state, skill)
pair at each step. We use 80% of the collected data for training and 10% for evaluation and 10%
for test. The decoder consists of a hidden layer. We use cross-validation to determine the opti-
mal hidden size for each method. For the Multi-Particle environment, candidate hidden sizes are
{30, 35, 40, 45, 50, 55, 60, 65}. For 2D-Gunner, the candidate values are {10, 12, 14, 16} and for
the Kitchen environment are {20, 30, 40, 50, 60, 70, 80, 90}.

K THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used Large Language Models (LLMs) only in a limited way, specifically for minor writing polish
and phrasing suggestions.
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