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ABSTRACT

Achieving both speed and accuracy is a central challenge for real-world robot
manipulation. While recent imitation learning approaches, including vision-
language-action (VLA) models, have achieved remarkable precision and gener-
alization, their execution speed is often limited by slow demonstration via teleop-
eration and by inference latency. In this work, we introduce a method to acceler-
ate any imitation policy that predicts action chunks, enabling speeds that surpass
those of the original demonstration. A naive approach of simply increasing the
execution frequency of predicted actions leads to deviation from desired robot
states and task failure, as it alters the underlying transition dynamics and encoun-
ters physical reachability constraints over shorter time horizons. These errors are
further amplified by misaligned actions based on outdated robot state when using
asynchronous inference to eliminate pauses during inference. Our method RACE
addresses these challenges with a three-part solution: 1) using desired robot states
as imitation targets instead of commanded actions, 2) re-timing action chunks to
execute them as fast as the robot’s physical limits allow, and 3) a test-time search
for sampling aligned action chunk that maximizes controllability from the cur-
rent robot state and dynamic. Through simulation and real-world experiments, we
show that our method achieves up to a 4× acceleration over the original policy
while maintaining high success rates.

1 INTRODUCTION

Original Policy RACE
Figure 1: RACE. We propose a method that accel-
erates the execution speed of imitation policies.

High execution speed of robots is crucial in
real-world manipulation tasks for productivity
and throughput, making them practically appli-
cable. Accordingly, speed is an essential di-
mension of improvement, on par with precision
and generalization. For instance, furniture as-
sembly contains a lot of precise insertion, and
fruit packaging should generalize to different
colors and shapes of various fruits, while these
industrial applications require high efficiency.
There are numerous other examples, such as
cooking robots, surgical robots, and cleaning robots that collectively require precision, general-
ization, and speed. Recent imitation learning approaches have achieved notable precision through
task-specific training of action chunk policies (Zhao et al., 2023; Chi et al., 2023) and generaliza-
tion via multi-task pre-training of vision-language-action (VLA) models (Brohan et al., 2023; Black
et al., 2024) on large-scale datasets (Khazatsky et al., 2024; O’Neill et al., 2024). However, these
imitation learning methods have fundamental limitations in terms of speed: because they imitate
the behavior of demonstration data, their speed is also constrained by the speed of the demonstra-
tion. Furthermore, the unintuitive interface of teleoperation often bottlenecks demonstration speed,
resulting in slow execution of policies, especially for high-precision tasks. In this work, we focus
on accelerating the execution of imitation policies beyond demonstration, while maintaining the
precision and versatility of the policies.

Intuitively, increasing action execution frequency should speed up the policy. However, acceler-
ating robot imitation policies beyond demonstration speeds in this direction presents two primary

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

challenges. First, naively increasing execution frequency results in the robot deviating from desired
states for two main reasons: the underlying transition dynamics are altered because the controller
has less time to execute each command, and the required high-speed movements may become phys-
ically unreachable by exceeding the robot’s torque and velocity limits. This deviation from the
desired trajectory, which we refer to as “state error” throughout the paper, accumulates during open-
loop execution when using action chunks, often leading to task failure. Second, inference delays
become a speed bottleneck for increased acceleration rate. While using asynchronous inference
can eliminate pauses due to inference delays, it introduces a new problem of misalignment. With
asynchronous inference, the policy generates actions while previous actions are executed; thus, the
new actions are based on an outdated robot state, while the robot has already moved according to
the previous actions. This creates a discrepancy between the plan and the robot’s actual state that
degrades controllability and amplifies errors.

Our main contribution is Reachability-aware Accelerated Chunk Execution (RACE), a method that
accelerates action chunk imitation policies by systematically addressing the physical challenges of
moving faster than demonstrations. To counter the state error caused by altered control dynamics,
RACE first train the policy to imitate the reached states1 from demonstrations instead of action
commands, making the imitation target robust to execution timing. To follow these states as fast
as possible, it then applies time-optimal path parameterization to each action chunk (i.e., “state
chunk” in our algorithm), creating a dynamically feasible, adaptively timed trajectory that respects
the robot’s kinodynamic limits. Finally, to combat misalignment from asynchronous inference,
RACE employs a test-time search that samples and selects the future action chunk forming the
smoothest, most controllable path from the robot’s current state. RACE achieves Pareto-optimal
performance, reaching over 2x demonstration speed in simulation tasks and 4x original policy speed
in real-world high-precision tasks, all without degrading success rates. On practical, throughput-
intensive tasks, it doubles the throughput of a pre-trained Vision-Language-Action (VLA) model.

2 RELATED WORKS

Imitation Learning. Imitation Learning (IL) has surged with transformer- and diffusion-based poli-
cies (Zhao et al., 2023; Lee et al., 2024; Kim et al., 2024; Chi et al., 2023; Team et al., 2024; Black
et al., 2024), enabling expressive imitation of demonstrations. Action chunking (Lai et al., 2022;
Zhao et al., 2023; Chi et al., 2023) stabilizes temporal behavior and shortens the effective horizon,
improving precision. Vision-Language-Action models (Brohan et al., 2023; Zitkovich et al., 2023;
Kim et al., 2024; Black et al., 2024; Physical Intelligence et al., 2025) trained on large datasets (Ebert
et al., 2021; Walke et al., 2023; Khazatsky et al., 2024; O’Neill et al., 2024) leverage visual and lin-
guistic prior with multi-task learning, broadening generalization across manipulation tasks. While
standard Imitation Learning predicts actions, our formulation of utilizing desired states relates to
Learning from Observation (LfO) (Torabi et al., 2018; Burnwal et al., 2025). However, unlike typ-
ical LfO methods that assume fixed execution speeds, RACE uniquely adapts the execution timing
of these state trajectories via optimal control to satisfy physical constraints.

Accelerating Inference Speed. Lines of work accelerate the inference speed of imitation policies.
Diffusion-policy accelerations reduce sampling steps or distill to few-step policies (Høeg et al.,
2024; Prasad et al., 2024; Wang et al., 2024; Song et al., 2023b). Parallel decoding predicts action
chunks in a single pass (Song et al., 2025; Kim et al., 2025). Faster inference does not by itself
guarantee faster execution. We view these methods as complementary to RACE for reducing latency.

Accelerating Execution Speed. Only a small body of work directly targets the speed of execu-
tion. Real-time chunking (Black et al., 2025) improves asynchronous consistency and often yields
speedups. DemoSpeedup (Guo et al., 2025) accelerates policies by entropy-based downsampling
and is complementary to RACE, which can be combined at training time for additional speedup.
Perhaps the most similar works is SAIL (Arachchige et al., 2025), which increases action frequency
with task-specific rules. We compare SAIL directly in Section 4.1.3.

Time Optimal Path Parameterization. Time Optimal Path Parameterization (TOPP) seeks the
minimum-time traversal of a fixed path under kinodynamic limits. Classical Numerical-Integration

1we use “reached state” when referring to robot states in the dataset and “desired state” for states that the
policy should predict and the robot should reach during rollout
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Figure 2: Method Overview. RACE has three main components: I. predict desired robot states
as actions to make control robust under a shorter time horizon (§3.1) II. time optimal planning of
state trajectory that considers reachability under kinodynamic limits (§3.2) III. test-time search of
smooth, controllable chunk given the current robot state after asynchronous inference (§3.3).

(NI) methods integrate along switching curves of feasible accelerations (Bobrow et al., 1985; Shin
& McKay, 1985; Shiller et al., 1996). Convex Optimization (CO) solves for a squared-speed pro-
file with improved robustness (Verscheure et al., 2009; Lipp & Boyd, 2014). TOPP-RA (Pham &
Pham, 2018) propagates controllable velocity sets with series of low-dimensional linear programs
and achieves NI-like speed with CO-like robustness. RACE use TOPP-RA to retime predicted state
trajectories under torque and velocity constraints.

Test-time Search and Alignment Test-time search/alignment (TTS/TTA) treats inference as on-the-
fly optimization toward an objective-aligned distribution. Best-of-N (BoN) (Touvron et al., 2023;
Gui et al., 2024; Beirami et al., 2024; Huang et al., 2025) is simple yet powerful approach, which
samples N candidates from the base model, scores them with the task objective, and returns the
top one. Similarly, sampling-based optimization underpins classic model-based control, including
CEM (De Boer et al., 2005) and MPPI (Williams et al., 2015), where objectives encode physical
costs (Williams et al., 2018; Sundaralingam et al., 2023). For learning-based robot control, value-
guided MPC/CEM (Chua et al., 2018; Hansen et al., 2023) and guided diffusion (Nakamoto et al.,
2024; Wang et al., 2025) steer action inference, yet explicit alignment to physical properties remain
less explored. We align action chunk sampling with trajectory-level physical criteria to improve
controllability and reduce execution time under kinodynamic constraints.

3 RACE: REACHABILITY-AWARE ACCELERATED CHUNK EXECUTION

Accelerating robot beyond demonstration speed pose fundamental challenge: improving the policy
beyond given data, which standard imitation learning methods are not capable of. Though rein-
forcement learning approaches can improve pre-trained imitation policies, they require additional
rollouts, and most prior works focus on improving task success (Mark et al., 2024; Wagenmaker
et al., 2025) rather than execution speed. We instead take a simpler way based on imitation learning
and focus on following the action sequence generated by the policy at a higher speed. We propose
RACE with three main components as solution:

3.1 DESIRED STATES AS ACTIONS

When rolling out action generated by policy, we may generate and execute the action at a higher
frequency, expecting the robot to reach the desired states at the same rate of acceleration. We first

3
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explain why this naive approach fails. Action a leads from current state s to next desired state s′

following the transition dynamic P (s′|s, a). Specifically for robots, these action commands are the
input to the underlying low-level controller that outputs joint torques to control the robot, where
these low-level controllers modulate the transition dynamics of robot states. A common convention
in current imitation learning frameworks is using the same low-level controller for teleoperation and
policy execution. If we execute the action at a higher frequency, that is, a shorter time for each single
action, the low-level controller will lead the robot to a different state, hence altering the transition
dynamics. To illustrate, when using PD controller, it applies a force proportional to the difference
between the current state and the action command. As the time of force applied decreases, it will
lead to a different state from the original desired state, resulting in state error. Furthermore, in an
open-loop execution setting, as for action chunk policies, these errors accumulate, leading to larger
deviations from the desired states.

To fix this, RACE directly imitates reached states in the demonstration, training or fine-tuning the
model on state and next-state pairs, instead of state and action pairs. and use it as action command
for low-level controller to accurately track the desired states. Then, we can utilize different low-level
controllers during rollout, perhaps with higher gain, to minimize the tracking error, i.e., discrepancy
from the desired state. For instance, by using a higher gain with the aforementioned PD controller,
it applies a higher force to the robot, enabling the robot to reach the desired state even in a shorter
time. In other words, by using desired states as actions instead of original action commands together
with low-level controller with better tracking during execution, Thus, this enables the robot to track
the desired states, making the transition dynamics more robust to execution timing changes. Note
that even when action commands are absolute actions, there is a difference between the action and
the reached state, and increasing gain during teleoperation to track the action accurately will make
the robot excessively reactive, making teleoperation harder. From this point, the term “action” will
refer to the desired state unless explicitly stated as “action command”.

Additionally, the gripper can fail to grasp the target object with accelerated execution due to slow
gripping. We increased the gripper speed for our method and all baselines for acceleration in our
experiments for fair comparison, unless explicitly mentioned.

3.2 REACHABILITY-BASED TIME OPTIMAL PLANNING OF CHUNK EXECUTION

Even if we use the desired state directly as an action and use a different controller from teleoper-
ation, the desired state may not be reachable due to physical constraints, such as joint torque or
velocity constraints. With the previously illustrated high-gain PD controller, as the desired state gets
farther from the current state as the acceleration rate increases, the controller will exert high force
and exceed the torque constraint at some point. Thus, we need to adaptively accelerate the robot
depending on the current and desired state. To solve this problem, RACE apply Time-Optimal Path
Parameterization based on Reachability Analysis (TOPP-RA) (Pham & Pham, 2018) on the state
trajectory generated by the action chunk policy.

Given a geometric path q(s) ∈ Rn representing the robot joint configuration parametrized by a
scalar s ∈ [0, send], TOPP-RA finds a time parameterization s(t) that satisfies given constraints
while minimizing the total duration T . To do so, it projects generalized second-order constraints
(Hauser, 2014) defined by A(q)q̈ + q̇⊤B(q)q̇ + f(q) ∈ C into the path phase-space defined by
squared velocity x = ṡ2 and pseudo-acceleration u = s̈. This yields the path constraints:

a(s)u+ b(s)x+ c(s) ∈ C(s), (1)

where the coefficients are explicitly defined as a = Aq′, b = Aq′′ + q′⊤Bq′, and c = f .

TOPP-RA discretizes the path into s0, . . . , sN . Given the final state set KN , it performs a backward
pass to recursively find the controllable set Ki, defined as the interval of states capable of reaching
Ki+1 using admissible controls satisfying equation 3.2. Finally, starting from K0, the algorithm
performs a forward pass that recursively selects the highest reachable x in the next controllable set.

To apply TOPP-RA in our setting, RACE interpolates the generated action chunk, which is a se-
quence of state waypoints, using a cubic spline with current velocity as a boundary condition to de-
fine path q(s). To satisfy the boundary condition, RACE set initial state as ṡ20 = 1, and ṡ2N,min = 0,
ṡ2N,max = 1 to give degree of freedom for last state. This enables the robot to follow the given action
chunk in the fastest way under constraints.

4
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However, a solution of TOPP-RA doesn’t always exist. When the initial state is not controllable,
that is, not in K0, it means there is no sequence of admissible controls that can follow the given
path. In these cases, RACE fall back to the original control frequency without acceleration and keep
replans after reaching the next waypoint until a solution exists.

3.3 TEST-TIME SEARCH OF CONTROLLABILITY-MAXIMIZING ACTION CHUNK

Asynchronous inference can overcome the speedup bottleneck due to pauses from inference delays,
but it introduces the unique challenge of predicting actions for a future state that is inherently uncer-
tain. To compensate for state execution during inference, we typically discard the first few actions
of the new chunk based on the elapsed time. However, heuristic discarding fails to address two
fundamental IL-specific failures caused by the stochastic latency of large models. First, due to drift
during the large inference window, the robot’s actual state upon receiving the new chunk often differs
significantly from the policy’s expected start state. This discrepancy can place the robot in a state
xcurrent that is uncontrollable with respect to the new trajectory, meaning the immediate torque
required to merge onto the new path exceeds physical limits. Second, unlike geometric planners,
generative policies are probabilistic. Small variations in state or noise can lead to bifurcation where
the new action chunk is topologically inconsistent with the currently executing one. This creates a
sharp discontinuity at the handover point that is physically impossible to track at high speeds.

Crucially, both phenomena lead to the same critical failure mode where the TOPP solver fails be-
cause no valid time-parameterization exists that satisfies the system’s kinodynamic constraints given
the misaligned initial state. While previous methods utilize action inpainting (Black et al., 2025;
Arachchige et al., 2025) to encourage consistency, they do not explicitly guarantee physical feasi-
bility under these varying constraints.

To resolve this, we utilize test-time search (TTS) to explicitly select action chunks that maximize
smoothness and minimize curvature. This objective is not arbitrary and is directly linked to solv-
ability. With misaligned actions or bifurcations, the path curvature at the handover point spikes
and requires immense torque to change direction. By selecting the candidate that minimizes this
curvature, we effectively reduce the actuation demand. This maximizes the volume of the initial
controllable set K0 and ensures that the robot’s current drifted state remains controllable, allowing
the TOPP solver to successfully find a valid, high-speed execution plan even under severe asyn-
chronous misalignment.

Specifically, we utilize Best-of-N sampling (Touvron et al., 2023; Beirami et al., 2024) where we
sample multiple action chunks and select the one that maximizes the following objective related to
the smoothness of the path:

J(q(s)) =
send∫ send

0
||q′′||2ds

(2)

where q(s) is given by interpolating current state and generated action sample with current velocity
as boundary condition, and send in the numerator is for length normalization. q(send) can be interme-
diate action instead of last action in the chunk, in which its index in the chunk is a hyperparameter.

By optimizing this objective, we can increase the size of the controllable state set together. To see
this, calculate the coefficients in Equation 3.2:

a(s) := A
(
q(s)

)
q′(s), c(s) := f

(
q(s)

)
,

b(s) := A
(
q(s)

)
q′′(s) + q′(s)⊤B

(
q(s)

)
q′(s), C(s) := C

(
q(s)

)
.

Note that the only coefficient that contains q′′ is b(s), coefficient of ṡ2. While multiple path sam-
ples are generated, they are all conditioned on common initial state (q(0),q′(0)). Consequently,
the path curvature, q′′ becomes the most sensitive and dominant term distinguishing the samples.
Over a short planning horizon, variations in the path’s position q are minimal, while any significant
variation in the path’s tangent q′ over a short horizon necessitates a large magnitude in q′′. When
the difference in q′′ is dominating, b(s) can vary largely, which then directly determines the size of
admissible state-control pairs. Larger smoothness, i.e., smaller curvature, will lead to smaller |b(s)|
and allow each state ṡ2 to have a larger set of admissible controls that can potentially lead to the
next controllable set, hence the size of the controllable set also increases. Formal proposition for
this statement and proofs can be found in Appendix B.

5
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Figure 3: Task Overviews. Top: Simulation Tasks, Bottom: Real-world Tasks.

This approach shares conceptual similarities with Model Predictive Control (MPC) (Williams et al.,
2015) in using horizon-based optimization. However, unlike standard MPC, which typically uses
random or gradient-based sampling, RACE utilizes the imitation policy itself as a generative sampler
to preserve the naturalness of human demonstrations. Furthermore, our optimization objective is
novel: we optimize for controllability volume by incorporating smoothness of the path to counter
the specific misalignment challenges of asynchronous policy execution.

4 EXPERIMENTS

4.1 SIMULATION EXPERIMENTS

We seek to increase execution speed without sacrificing accuracy. We evaluate speed–accuracy
trade-offs of RACE in simulation (§4.1) and on hardware (§4.2), then analyze the contributions
of states-as-actions (§3.1), time-optimal planning (§3.2), and test-time search (§3.3) in ablations
(§4.3.1, §4.3.2). Detailed explanation of environment and task setting, baselines, and metrics are
provided in Appendix E

Common baselines. Action Fast-forward increases the frequency of executed action commands by
the same ratio (e.g. 1x, 2x, 4x) where 1x corresponds to the original policy. State Fast-forward use
desired state as action and increases execution frequency by the same ratio. Action Fast-forward
(Async) combines Action Fast-forward with asynchronous inference, which predicts the next chunk
of action commands while execution and switches to the next chunk after discarding a number of
actions executed during execution. Action Fast-forward (Inpainting) is systematically identical to
Action Fast-forward (Async), but inpaints on the previous chunk, like RTC (Black et al., 2025).

For simulation experiments, we use manipulation tasks from Robomimic (Mandlekar et al., 2021),
which are Lift, Can, Square, and Tool Hang. While Lift and Can are sufficient with standard pick
and place, Square and Tool Hang require insertion with high precision, making it more challenging
for acceleration. To decompose the effect of inference delay, we use both settings with and without
inference delay

4.1.1 WITHOUT INFERENCE DELAY

Setup. We trained diffusion policy (Chi et al., 2023) with prediction horizon Tp = 32 on 200
proficient human (PH) demonstration data provided by Robomimic for 1000 epochs, save every 50
epochs, and select best performing epoch based on 50 rollouts. We separately trained models that
predict action commands and reached states as imitation targets. For evaluation, 200 rollouts are
done for each data point. We mainly focus on two metrics: success rate and speedup over demon-
stration, defined as the average duration of successful episodes divided by the average duration of
demonstrations in the dataset. For baselines, we compare with Action Fast-forward and State Fast-

6
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Figure 4: Simulation Experiments Results. Speedup over Demonstration vs. Success Rate plots.
Left, Right: results with and without inference delay. Top: average performance over all 4 tasks,
Bottom: performance for each 4 tasks. RACE (red start) achieve Pareto-optimal performance in
speed-success trade-off, with up to 2x speedup without degradation in success rate, especially promi-
nent in precise tasks (Square, Tool Hang). It also maintains similar performance with asynchronous
inference under inference delays. Note that the standard error bars may be smaller than the marker.

forward with 20Hz (1x), 40Hz (2x), 80Hz (4x). For RACE, we excluded test-time search since we
aren’t using asynchronous inference.

Results. Figure 4 (a) shows the trade-off between speed and success rate and how RACE achieve
Pareto-optimal performance by improving speed while maintaining a high success rate. As accel-
eration increases, the success rate of naive fast-forward methods decreases due to larger state error,
especially for high-precision tasks like Square and Tool Hang. In contrast, RACE exceptionally per-
forms well on these precise tasks, achieving even higher speed up compared to naive fast-forward
methods with 80Hz while rating a similar success rate with the original policy in Tool Hang. Even
when using the desired state as action, there isn’t much improvement in the Pareto curve, confirming
the importance of time-optimal planning by considering the reachability of the states.

4.1.2 WITH INFERENCE DELAY

Setup. The setup closely follows 4.1.1, using the same trained models. The injected inference delay
is 0.1 seconds, where the number of actions executed during inference depends on the acceleration
rate. For baselines, we used Action Fast-forward (Async) and Action Fast-forward (Inpainting) with
20Hz (1x), 40Hz (2x), 80Hz (4x).

Results. Figure 4 (b) shows how RACE perform when using asynchronous inference with inference
delays. Compared to Figure 4 (a), RACE achieves a similar success rate, indicating its robustness to
inference delays. In contrast, baseline methods have larger drops in performance as the acceleration
rate increases, especially in Square and Tool Hang. Even though inpainting helps improve, it’s
insignificant compared to RACE that achieve Pareto-optimality.

4.1.3 COMPARISON WITH SAIL

Additionally, we directly compare RACE with SAIL (Arachchige et al., 2025), a recent work
that also accelerates imitation policies and outperforms prior methods such as AWE (Shi et al.,

7
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2023) and BID (Liu et al., 2025), when adapted for acceleration. SAIL similarly uses state
as actions to mitigate transition dynamic change, but does not use TOPP or test-time search.

Table 1: SAIL vs. RACE. Success Rate (SR) and
Speedup over Demonstration (SOD) in Robomimic.

SAIL RACE (Ours)

Task SR ↑ SOD ↑ SR ↑ SOD ↑

Lift 0.930 2.520 0.995 2.068
Can 0.890 1.970 0.965 1.805
Square 0.750 1.620 0.805 1.819
Tool Hang 0.610 0.940 0.715 2.053

Instead, SAIL trains the model to predict
whether to accelerate or not based on geomet-
ric complexity analysis, where the accelera-
tion rate should be tuned for each task. Also,
SAIL generates new actions conditioned on
the previous chunk to increase action consis-
tency when the state error of previous actions
is below some threshold. Compared to SAIL,
RACE adaptively selects the acceleration rate
of the action chunk via TOPP at inference-
time in task-agnostic way and bypasses the
need of training a conditional model by uti-
lizing test-time search. Comparison of the
two methods is done in Robomimic setup of
Arachchige et al. (2025), but with torque constraints enabled. The results are shown in Table 1.2
RACE outperforms SAIL in terms of success rate across all tasks, hence achieving a maximal speed
up without sacrificing the accuracy of the original policy. Furthermore, it also gains better speed
up in precise tasks (Square, Tool Hang), demonstrating the effectiveness of RACE for precise tasks
under physical constraints.

4.2 REAL-WORLD EXPERIMENTS

4.2.1 HIGH-PRECISION TASK
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Speedup over Demonstration
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RACE (Ours)
Demonstration

Figure 5: Door Insertion Results.

Setup. For precise manipulation task in real-world,
we use Door Insertion from FurnitureBench (Heo
et al., 2023), one of the most precision-demanding
subtask from the benchmark. Model training and
evaluation closely follow 4.1 with some differences
including that 50 rollouts are done per each data
point, with more details in Appendix E. For base-
lines, we used Action Fast-forward and Action Fast-
forward (Async) with 10Hz (1x), 20Hz (2x), 40Hz
(4x), 80Hz (8x; not for Async as it had near-zero
success).

Results. Similar to simulation experiment results in
4.1.1 and 4.1.2, RACE achieves Pareto-optimial per-
formance with maximal speedup without degrada-
tion in success rate, depicted in Figure 5. One thing
worth noting is that RACE not only scores a similar
success rate to the original policy, but achieves task completion speed far past baselines, including
one with an 8x acceleration rate. We conjecture that by minimizing state error and maximizing
controllability to closely follow the desired state trajectory, RACE prevent leading robots to out-of-
distribution states, reducing both failures and mistakes that hinder fast task completion

4.2.2 THROUGHPUT-INTENSIVE TASK

Setup. We benchmarked methods on two throughput-intensive tasks: Fruit Packaging and Trash
Cleaning. We used opensource π0.5 fine-tuned on DROID dataset3 with additional fine-tuning as
detailed in Appendix E. For baselines, we used Action Fast-forward with 15Hz (1x), 45Hz (3x)
and Action Fast-forward (Async) with 15Hz (1x), 30Hz (2x) since higher frequency led to severe
constraint violations for Async.

2The results are directly given by the authors of Arachchige et al. (2025) to incorporate torque constraints.
Note that the base policy success rate of SAIL was 66% for Tool Hang, which is lower than 69% of our base
policy

3https://github.com/Physical-Intelligence/openpi?tab=readme-ov-file#model-checkpoints
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Figure 6: Throughput-intensive Tasks Results. Time vs. Cumulative Successes plots representing
the progress of tasks over time. Both Fruit Packaging and Trash Cleaning have 15 objects on the
table. RACE achieves the highest throughput in all time.

Results. Figure 6 shows the cumulative successes across baselines and RACE in the two tasks.
RACE clearly reach more successes in the same time compared to baselines, establishing enhanced
throughput. It evidences that RACE can speed up while maintaining the versatility of VLA. One
common failure mode of acceleration baselines was missing the object when grasping, resulting in
low throughput even with high velocity. By improving precision, RACE reduces these mistakes and
fully benefits from the increased execution speed.

4.2.3 DYNAMIC TASK

To evaluate RACE under external dynamics, we tested a ”Conveyor Belt Pick” task where the robot
must pick a moving juice pack (Figure 7). We fine-tuned the π0.5 model on 106 demonstrations. We
evaluated performance at the original conveyor speed and at a 2.5× unseen speed.

Results. As shown in Table 8, RACE maintains high success rates even at 2.5× conveyor speed,
whereas baselines fail. This demonstrates that RACE can generalize effectively to predictable exter-
nal dynamics where the policy accounts for object motion, minimizing performance degradation.

Figure 7: Conveyor Setup

Original Speed 2.5× Speed
Method SR Time (s) SOD SR Time (s) SOD

Base (15Hz) 0.03 21.3 0.61× 0.00 - -
Base (45Hz) 0.27 15.4 0.84× 0.00 - -
RACE 0.63 9.8 1.32× 0.53 6.4 2.02×

Figure 8: Real-world Semi-Dynamic Task Results

4.3 ABLATIONS

4.3.1 TIME OPTIMAL PLANNING OF STATE TRAJECTORY MINIMIZES STATE ERRORS

To see how RACE reduces state error and improves performance, we compared RACE to Action
Fast-forward and State Fast-forward baselines from 4.1.1. We used Square, Tool Hang, and Door
Insertion, the set of most precision-demanding tasks in our evaluations. We measure the deviation
of the current joint state from the desired joint state, defined as ’joint error’, as a metric for state
error, for both single and chunk-level actions. Figure 9a shows how minimizing state error directly
contributes to improving both success rate and speed, where RACE achieves the lowest error level
and highest performance. The chunk-level error plot illustrates how state error accumulates during
open-loop execution with naive acceleration, while RACE maintain low error. By accurately fol-
lowing the desired states, RACE prevent the robot from going to OOD states and lead to faster task
completion.
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Figure 9: (a) Joint error: deviation of current joint from desired joint, Chunk-level error: joint error
for each action in the chunk. (b) Smoothness: scaled version of Equation 3.3, Controllability: size of
initial controllable set K0, Consistency: minus of euclidean distance with previous chunk. Arrows
indicate whether higher is better (↑) or lower is better (↓)

.

4.3.2 TEST-TIME SEARCH ALIGNS ACTIONS WITH CURRENT STATES

To confirm that test-time search makes RACE robust to inference delay, we stress tested the al-
gorithm with artificially longer inference time. Specifically, in the Fruit Packaging task, we add
additional time delays to make the inference delay 0.2 seconds when the actual delay is shorter,
but increased timem limit to 2-minute. We compare RACE with RACE without test-time search to
decompose the effect of test-time search. Metrics are defined in E.5. Figure 9b shows how test-
time search improves smoothness and controllability together, supproting he claims in Section 3.3.
Furthermore, increased controllability makes trajectory tracking more accurate, lowering joint error.
Also, aligning actions with the current state implicitly promotes consistent actions, even without
explicit objectives like inpainting. As a whole, these improvements contribute to higher throughput,
thus performance of RACE even with high inference delays.

5 CONCLUSION

Practical manipulation demands both accuracy and speed, yet strong IL policies are bottlenecked by
demonstration speed. We present RACE, a policy-agnostic, task-agnostic approach that (1) trains
policies to predict desired state trajectories, (2) time-optimally plans the execution, and (3) selects
most controllable chunks via Best-of-N during asynchronous inference. RACE achieves beyond-
demonstration execution at high success in both simulation and real-world, with especially large
gains on precise tasks. Together, these results alleviate the speed bottleneck while preserving the
precision and generality of modern imitation policies.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide comprehensive details on our methodology
and experimental setup. Appendix E consolidates our experimental protocols, covering the poli-
cies (including diffusion policies and π0.5), datasets (RoboMimic PH and custom hardware data),
evaluation metrics, and baseline configurations. Furthermore, as stated in Appendix D, detailed
implementations of our core algorithm are available in the supplementary material. We will re-
lease the full codebase, complete with all configuration files, demonstration counts, and evaluation
scripts, upon publication. Videos of the real-world experiments are available at https://drive.
google.com/drive/u/0/folders/1l1d3_sOZoWZP2_QwRDgBPoxD808iWotS.
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A PRELIMINARIES FOR PATH CONTROLLABILITY ANALYSIS

For rigor and clarity in the subsequent proofs, this section revisits and formalizes the necessary
definitions from Time-Optimal Path Parameterization (TOPP-RA).

Definition 1 (Path State and Control). For a given geometric path q(s), the system’s state is defined
by its squared velocity along the path, x = ṡ2. The control input is the path acceleration, u = s̈.

Definition 2 (Discretized Dynamics and Constraints). The path is discretized into points s0, . . . , sN .
The dynamics over a segment of length ∆i = si+1 − si are given by the linear relation xi+1 =
xi + 2∆iui. At each point si, the robot’s physical constraints are projected into a linear constraint
on the path state and control:

aiui + bixi + ci ∈ Ci
where Ci is a convex polytope representing the set of feasible actuator efforts (e.g., joint torques).

Definition 3 (Admissible Controls and States). For a given state xi at path point si, the set of
admissible controls Ui(xi) is the set of all path accelerations that satisfy the system’s physical
constraints:

Ui(xi) := {ui ∈ R | aiui + bixi + ci ∈ Ci}

A state xi is considered admissible if this set is non-empty. The set of admissible states Xi is
therefore the set of all non-negative squared velocities for which an admissible control exists:

Xi := {xi ∈ R≥0 | Ui(xi) ̸= ∅}

Definition 4 (Controllable Set). The desired final state set, IN , is a given interval of squared
velocities at the end of the path.

The controllable set, Ki ⊆ Xi, is the set of all states xi from which it is possible to find a sequence
of admissible controls to reach the desired final state set. It is computed recursively backwards,
starting with KN = IN ∩ XN , via the one-step set Qi:

Ki = Qi(Ki+1) := {xi ∈ Xi | ∃ui ∈ Ui(xi) s.t. (xi + 2∆iui) ∈ Ki+1}

B PROOF OF CONTROLLABILITY MAXIMIZATION

Proposition 1. Let qA(s) and qB(s) be two piecewise C2-continuous paths, and let the robot’s
dynamic coefficient functions be Lipschitz continuous (Assumption 1). If Path B is a sufficiently
smoother than Path A as defined by Assumptions 2 and 3, then for any given desired final state, the
controllable state set for Path B, KB , is a superset of the controllable state set for Path A, KA.

KA
i ⊆ KB

i ∀i ∈ [0, N ]

Assumption 1 (Lipschitz Continuity of Dynamics). The functions defining the robot’s dynamics,
A(q), B(q), and f(q), are Lipschitz continuous with constants LA, LB , and Lf respectively over
the relevant workspace.

Assumption 2 (Geometric Proximity). Path B is in a small neighborhood of Path A. There exist
small positive constants ϵq and ϵq′ such that for all s ∈ [0, send]:

∥qB(s)− qA(s)∥ ≤ ϵq and ∥q′
B(s)− q′

A(s)∥ ≤ ϵq′

Assumption 3 (Sufficient Smoothing Condition). Path B is significantly smoother than Path A. Let
∆q′′(s) = q′′

A(s)− q′′
B(s). The reduction in the second derivative is large enough to dominate the

bounded variations from the first-order geometric changes. There exists a margin δ > 0 such that
for any state x ≥ 0 and any s ∈ [0, send]:

∥A(qA)∆q′′(s)x∥ ≥ Ka|umax|+Kbx+Kc + δ

where umax is the maximum possible path acceleration and Ka,Kb,Kc are positive constants de-
rived from the Lipschitz constants and path geometry bounds.
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Discussion of Assumptions First, we assume the system’s dynamic matrices are Lipschitz contin-
uous (Assumption 1). This means the forces and accelerations change predictably and are bounded
in response to changes in the robot’s configuration. This assumption is standard for physical sys-
tems, as the dynamic matrices are derived from continuous properties like mass and inertia, which
do not exhibit discontinuities in the robot’s workspace.

Second, we assume geometric proximity between the paths being compared (Assumption 2), mean-
ing candidate paths remain in a small neighborhood of each other. This is a direct consequence of
our Best-of-N sampling algorithm. Since all action chunks are sampled from the same state and ap-
plied over a short horizon, the resulting trajectories naturally form a tight bundle in the configuration
space, making this assumption valid by the design of our method.

Finally, we assume the sufficient smoothing condition holds (Assumption 3). This posits that the
dynamic benefit from a significantly reduced path curvature (q′′) is large enough to outweigh the
minor dynamic variations caused by the geometric proximity. This assumption is a statement on the
efficacy of our proposed objective function, J(q). The objective is explicitly designed to find a path
that maximizes smoothness. Therefore, this assumption is that our optimization successfully finds
a candidate within the sampled bundle for which the “signal” of improved smoothness is stronger
than the “noise” of geometric deviation.

Lemma 1. Given the Assumptions, the interval of admissible path accelerations for Path B is a
superset of that for Path A.

UA
i (xi) ⊆ UB

i (xi) ∀xi ≥ 0

Proof. The polytope Ci is defined by inequalities {nT
k τ ≤ dk}. The path constraint is thus

nT
k (aiui + bixi + ci) ≤ dk for all k. The change in the constraint function from Path A to Path B is

∆Ck = nT
k (∆aiui +∆bixi +∆ci). We decompose the coefficient change ∆bi into the part from

q′′ and the part from first-order path changes: ∆bi = (AB,iq
′′
B,i −AA,iq

′′
A,i) + (q′

B,i
TBB,iq

′
B,i −

q′
A,i

TBA,iq
′
A,i). Let ∆bpert be the collection of all terms in ∆ai,∆bi,∆ci not involving q′′

A −q′′
B .

The change can be expressed as ∆Ck = nT
k (−AA,i(q

′′
A,i − q′′

B,i)xi + Perturbations). Using As-
sumptions 1 and 2, the magnitude of the perturbation terms can be bounded: ∥nT

k (Perturbations)∥ ≤
Ka|ui| + Kbxi + Kc. Assumption 3 states that the magnitude of the dominant beneficial term,
∥AA,i(q

′′
A,i − q′′

B,i)xi∥, is strictly greater than this upper bound. This guarantees that ∆Ck is nega-
tive for any control ui on the boundary of admissibility for Path A, moving the constraint boundary
outward. This enlarges the feasible set of accelerations, so UA

i (xi) ⊆ UB
i (xi).

Proof of Proposition. The proof proceeds by backward induction on the path index i.

Base Case (i = N ): The controllable set at the final point is KN = IN ∩XN . From Lemma 1, we
have established that UA

N (xN ) ⊆ UB
N (xN ). This implies that if a state xN is admissible for Path A

(i.e., UA
N (xN ) is non-empty), it must also be admissible for Path B. Therefore, the set of admissible

states XA
N ⊆ XB

N . As the desired final state IN is identical, it follows that IN ∩ XA
N ⊆ IN ∩ XB

N ,
and thus KA

N ⊆ KB
N .

Inductive Step: Assume that for an arbitrary step i+ 1, the hypothesis holds: KA
i+1 ⊆ KB

i+1. We
must show this implies KA

i ⊆ KB
i . Let xi be an arbitrary state in KA

i . By definition, there exists an
admissible control uA

i ∈ UA
i (xi) such that the next state, xA

i+1 = xi + 2∆iu
A
i , is in KA

i+1. From
Lemma 1, uA

i is also an admissible control for Path B, so uA
i ∈ UB

i (xi). Applying this control
yields the same next state, xB

i+1 = xA
i+1. From our inductive hypothesis, since xA

i+1 ∈ KA
i+1, it must

follow that xA
i+1 ∈ KB

i+1. We have thus shown that from state xi, there exists a control for Path
B that reaches the target set KB

i+1. By definition, this means xi ∈ KB
i . Since this holds for any

xi ∈ KA
i , we have proven KA

i ⊆ KB
i .

By the principle of backward induction, the proposition holds for all i ∈ [0, N ].
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C ILLUSTRATIVE EXAMPLES

To further motivate the components of RACE, we provide concrete examples contrasting our ap-
proach with naive baselines

Desired States as Actions. Consider a teleoperation scenario where a user provides a gentle ”move
forward” command. If naively executed at 4× speed, a standard controller processing action com-
mands might overshoot due to momentum. By treating the reached state (geometry) as the target and
using a stiff, high-gain controller, RACE tracks the intended geometry precisely rather than simply
replaying motor commands that are inappropriate at high speeds.

Time Optimal Planning. Consider a pick-and-place motion transitioning from a vertical lift to a
horizontal transfer, creating a sharp corner in the path. A naive 4× speedup would demand torque
exceeding motor limits at this turn, triggering a protective stop. TOPP anticipates this bottleneck,
automatically slowing down only for the high-curvature segment to satisfy torque constraints, then
aggressively accelerating on straight sections to minimize total duration.

Test-time Search. Due to inference delay, the robot might physically drift left while the new plan
assumes it is centered. Naively executing the new plan would cause a sudden ”jerk” to the right.
TTS samples multiple future chunks and selects one that curves smoothly from the current leftward
velocity, preventing control instability and bifurcation.

D IMPLEMENTATION DETAILS

Detailed implementation can be found in submitted supplementary material that contains code with
the main algorithm of RACE.

D.1 SYSTEM INTEGRATION

Integrating physics-based planning into a stochastic generative pipeline introduces unique system-
wide challenges.

Queue Management with Timestamps. Unlike deterministic control loops, VLA inference la-
tencies are large and stochastic. To prevent executing outdated plans, we attach precise execution
timestamps to each action chunk based on inference start time, ensuring correct temporal ordering
and discard logic.

Constraint Margins. In real-world hardware, hitting exact torque limits can trigger protective stops
due to unmodeled friction or noise. We apply a safety margin (e.g., 90% of nominal limits) during
TOPP planning to ensure robustness while still enabling high-speed execution.

E EXPERIMENT DETAILS

This appendix consolidates training and evaluation details for reproducibility. It covers common
settings, baseline implementations, task-specific protocols, and metrics used throughout Section 4.

E.1 COMMON ENVIRONMENT AND POLICIES

Policies. We use diffusion policies (Chi et al., 2023) for simulation and Door Insertion tasks, and
π0.5 (Physical Intelligence et al., 2025) for Fruit Packaging and Trash Cleaning tasks.

Datasets. For simulation we use RoboMimic proficient-human (PH) datasets (Mandlekar et al.,
2021) for Lift, Can, Square, and Tool Hang. For Door Insertion, we collect 150 task-specific demon-
strations as described below. For Fruit Packaging and Trash Cleaning, there is no additional data
collected and only fine-tuned on subset of DROID dataset, detailed below.

Evaluation metrics. We report Success Rate (SR) and Speedup over Demonstration (SOD). SOD
is defined as the ratio between the average duration of successful episodes and the average duration
of the demonstrations in the dataset. When plotting SR vs. SOD, each point corresponds to one
frequency setting or method variant.
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E.2 BASELINE IMPLEMENTATIONS

Action Fast-forward. This baseline accelerates the base policy by executing its action commands
at a higher frequency without any timing or dynamics compensation. In simulation, we evaluate at
20 Hz (original), 40 Hz (2×), and 80 Hz (4×), using the same action horizon Ta=16 across methods.
The policy produces a chunk of Ta actions; as soon as the previous chunk finishes executing, the next
chunk is generated and executed back-to-back (i.e., no inference-delay handling in this synchronous
setting).

State Fast-forward. This variant feeds the policy’s desired states (learned “reached states”) di-
rectly as the command stream at 40 Hz and 80 Hz, mirroring Action Fast-forward’s acceleration but
with state targets instead of action commands. It is equivalent to adopting only the first compo-
nent of RACE (using desired state as action) without time-optimal path parameterization (TOPP) or
test-time search, and it uses Ta=16 like the other simulation baselines.

Action Fastforward (Async). This is the asynchronous acceleration baseline. While the robot
executes the tail of the current chunk, the policy simultaneously infers the next chunk; upon comple-
tion, we discard the portion of the current chunk already executed during inference and then switch
to the freshly generated chunk. In simulation, inference is triggered immediately after the previous
inference finishes (purely asynchronous scheduling). In the real world (Door Insertion), we adapt
the trigger: the policy begins inference when the remaining actions in the current chunk fall below
N̂discard plus a safety margin (“spare” actions), using Ta=24 and 8 spare actions to cushion unex-
pected latency. N̂discard is estimated from a queue of observed inference delays using the maximum
latency as a robust bound; we then set Ndiscard=

⌊
fexec · τ̂inf

⌋
once the next chunk is ready. We evalu-

ate at 10/20/40/80 Hz; note that 80 Hz is excluded for Action Fastforward (Async) in Door Insertion
due to near-zero success at that rate.

Action Fastforward (Inpainting). This baseline augments Action Fastforward (Async) by condi-
tioning the newly generated chunk on the previously executed chunk (inpainting), following prior
asynchronous control practices such as RTC (Black et al., 2025) and SAIL (Arachchige et al., 2025).
Concretely, we employ pseudoinverse guidance (Song et al., 2023a) with diffusion models to guide
the next-chunk generation toward consistency with the trailing segment of the prior chunk; an anal-
ogous adaptation for flow models (Pokle et al., 2023) is used in RTC. Operationally, scheduling and
chunk-switching mirror Action Fastforward (Async); the difference is the conditional sampling that
encourages cross-chunk continuity.

Setting-specific hyperparameters. Simulation (Robomimic). All synchronous baselines use
Ta=16; acceleration rates are 20/40/80 Hz. Action Fastforward (Async) and Action Fastforward (In-
painting) use the same action-frequency grid and purely asynchronous scheduling (no extra safety
margin). Real-world: Door Insertion. Action Fast-forward pauses after executing a chunk of
Ta=16 while waiting for the next chunk; Action Fastforward (Async) uses Ta=24 with 8 spare ac-
tions and a max-latency queue for robust discard estimation; we test 10/20/40/80 Hz and omit 80 Hz
for the async baseline due to failures. Real-world: Throughput tasks. For Fruit Packaging and
Trash Cleaning, Action Fast-forward uses Ta=8 and is evaluated at 15/45 Hz; Action Fastforward
(Async) uses Ta=15 with 7 spare actions at 15/30 Hz to avoid severe constraint violations observed
at higher rates.

Notes on intent and limitations. These baselines isolate distinct failure modes under acceleration:
(i) Action Fast-forward stresses state-tracking under faster open-loop actions; (ii) State Fast-forward
tests whether using desired state targets alone (without TOPP) suffices; (iii) Action Fastforward
(Async) exposes misalignment from inference latency; and (iv) Action Fastforward (Inpainting) ex-
amines whether chunk-consistency alone mitigates async misalignment. Together, they form the
reference set used in the main text comparisons and ablations.

E.3 SIMULATION PROTOCOL

Tasks. Lift, Can, Square, Tool Hang from RoboMimic (Mandlekar et al., 2021). Square and Tool
Hang require precise insertion and are sensitive to tracking error when accelerating.
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Training. We train diffusion policies with prediction horizon Tp=32 on 200 PH demonstrations
for 1000 epochs, checkpoint every 50 epochs, and select the best epoch via 50 rollouts. We train
separate models that predict action commands and desired (reached) states as imitation targets.

Evaluation. Unless stated otherwise, we average 200 rollouts per point.

Frequencies. We evaluate at 20, 40 (2×), and 80 Hz (4×). Action horizon Ta=16 unless specified.

Synchronous setting. A new chunk is generated only after the previous chunk finishes execution,
which isolates tracking/controllability effects without inference delay.

Asynchronous setting. We inject a 0.1 s inference delay. During inference the running chunk
continues; when the next chunk arrives we discard and replace the actions produced during the
delay window. Exact discard rules are shared across methods.

E.4 REAL-WORLD PROTOCOL

High-precision: Door Insertion (FurnitureBench). We use the FurnitureBench cabinet setup
(Heo et al., 2023) and evaluate the Door Insertion subtask that requires precise insertion after place-
ment.

Training. We collect 150 demonstrations with a SpaceMouse and train a diffusion model that jointly
predicts action commands and desired states; we use the checkpoint at epoch 800 for all methods.

Baselines.

• Action Fast-forward: same as simulation, but in hardware the policy pauses after executing a
chunk of length Ta=16 to wait for the next chunk.

• Action Fast-forward (Async): inference starts when the remaining actions in the current chunk
fall below the expected number of discarded actions plus 8 spare actions; we set Ta=24. The
time between inferences adapts to the acceleration rate. We estimate the number of discarded
actions using the maximum over a running queue of recent delays, similar to Black et al. (2025).

Frequencies. 10, 20 (2×), 40 (4×), and 80 Hz (8×). We exclude 8× for Action Fast-forward
(Async) due to near-zero SR.

Evaluation. 50 rollouts per point.

Throughput: Fruit Packaging and Trash Cleaning. We used opensource π0.5 fine-tuned on
DROID dataset4 with additional fine-tuning on subset of DROID (task : put, place, pick, move,
object : marker, cup—object, block) for two seperate model that predicts action command and
desired state. Each task uses a language instruction (“Put the fruits in the box.”, “Put the trashes
in the trash bin.”). We evaluate cumulative successes over 60 s with 15 objects and 5 rollouts per
method. One fruit placed in the box or one trash placed in the bin counts as one success.

Models. We start from the open-source π0.5 checkpoint5 and apply additional fine-tuning on DROID
subsets. We train two variants that predict action commands or desired states, respectively, and use
them consistently across methods.

Baselines and frequencies.

• Action Fast-forward: Ta=8 at 15 and 45 Hz (3×).
• Action Fast-forward (Async): Ta=15 with 7 spare actions at 15 and 30 Hz (2×). Higher rates

caused severe constraint violations in our setup.

E.5 METRICS

Success Rate (SR). Fraction of rollouts that satisfy the task’s success predicate.

Speedup over Demonstration (SOD). SOD= avg. duration of successful episodes
avg. duration of demonstrations . The demonstration dura-

tion is measured from the training set statistics for the corresponding task.

4https://github.com/Physical-Intelligence/openpi?tab=readme-ov-file#model-checkpoints
5https://github.com/Physical-Intelligence/openpi
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Joint error. Time-averaged ℓ2 distance between executed joint positions and the retimed desired
joint trajectory.

Smoothness. Equation 3.3, which is arc-length–normalized curvature of the joint-space spline fitted
to a chunk, multiplied 100 for scaling. Lower curvature implies higher tolerance to torque and
velocity limits, hence larger controllable sets.

Controllability. Size of the initial controllable set K0 for the retimed trajectory under joint velocity,
acceleration, jerk, and torque limits.

Consistency. Negative Euclidean distance between the new chunk a0:N and the executed segment
of the previous chunk aprev

s:s+N at the handoff: −∥a0:N − aprev
s:s+N∥, where N is the number of actions

executed during inference and s is the starting index in the previous chunk.

E.6 COMPARISON TO SAIL

We reproduce the SAIL evaluation protocol (Arachchige et al., 2025) with the following adjustments
for comparability:

• Enable torque constraints to test reachability under realistic physical limits.
• Use a fixed delay of 4 action steps rather than wall-clock time to align asynchronous scheduling.
• Sweep identical frequency grids and use the same controller as in our experiments.

Table 1 reports SR and SOD under these settings.

F ADDITIONAL EXPERIMENT RESULTS

F.1 COMPONENT-WISE ABLATION

To disentangle the contributions of TOPP and TTS, we evaluated RACE variants on the precision-
demanding Square and Tool Hang tasks. As shown in Table 2, removing TOPP significantly reduces
speed (SOD), while removing TTS degrades Success Rate (SR). RACE achieves Pareto-optimal
performance only when both components are combined.

Table 2: Component-wise Ablation on Simulation Tasks

Square Tool Hang
Method SR ↑ SOD ↑ SR ↑ SOD ↑
RACE (Ours) 0.86 1.74 0.62 1.86
w/o TTS 0.81 1.74 0.59 1.85
w/o TOPP 0.85 1.42 0.61 1.36
w/o TOPP, TTS 0.82 1.43 0.59 1.39

G VIDEOS

Videos of real-world experiments can be found in https://drive.google.com/drive/u/
2/folders/1l1d3_sOZoWZP2_QwRDgBPoxD808iWotS.

H LLM USAGE

LLMs are used for polishing writing in Section 2, 5 and Appendix E.
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