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ABSTRACT

Inference-time alignment, the approach of adapting pre-trained models to rewards
through reinforcement learning, has proven highly effective in enhancing the per-
formance of language models. Despite its practical success, theoretical analysis
remains underdeveloped, and in particular, only a limited number of studies ad-
dress the practical setting where neural networks are employed as reward mod-
els. In this paper, we investigate the advantages of neural networks in inference-
time alignment. Assuming that the true reward function lies in anisotropic Besov
spaces, we derive upper bounds on the regret with respect to the number of oracle
queries when using a neural network as a reward estimator. We further investigate
the limitations of linear reward estimators, and show that neural networks are su-
perior owing to their ability to adapt to the smoothness of functions. Finally, we
demonstrate that, with an algorithm that iteratively and actively learns the reward
model from the responses of the trained model, smaller regret can be achieved, as
neural networks adapt to local structures.

1 INTRODUCTION

Inference-time compute (Brown et al., [2024; Snell et al., 2024} [Wu et al.|, [2024b; OpenAl, 2024;
Guo et al.l|2025)) has been attracting attention as a new paradigm for further enhancing the perfor-
mance of pre-trained language models (LMs). By effectively leveraging the computational budget
available at inference time, one can enhance the quality of model outputs without being restricted
to pre-constructed datasets. A variety of techniques are included in this paradigm, e.g, long chains
of thought (Wei et al.| [2022; |[Li et al.), self-evaluation and revision of own outputs (Zheng et al.,
2023 |Wu et al.| 2024a), and exploration of improved responses (Yao et al., 2023; Zhang et al.,
2024). Among these approaches, inference-time alignment, a framework to sample responses for
LMs to maximize the reward via reinforcement learning, has been shown to offer a simple yet highly
effective means of improving performance.

The methods for inference-time alignment has been widely studied from theoretical perspectives.
For example, [Yang et al.| (2024); Beirami et al.| (2025); Mroueh & Nitsure| (2025) analyzed the
performance of Best-of-/V alignment, which is the most basic method for inference-time alignment.
Moreover, [Huang et al.| (2025a) pointed out the limitations of Best-of-N alignment, proposed a
new method based on y2-divergence regularization. While these studies give insights on how each
method is effective, their analysis mainly under the fixed reward model and do not incorporate the
process of training the reward model. [Foster et al.|(2025) has analyze the training of reward models
and show the advantage of multi-turn exploration method. However, their analysis focuses on the
setting where the reward model is a linear estimator, which is far from practical settings where neural
networks are used. This raises the following question:

What advantages do neural networks offer for inference-time alignment,
and how can we unlock their full potential?

More concretely, our question is how feature learning ability of neural networks can help the perfor-
mance of inference-time alignment. Actually, to minimize the regret, we need to make our model’s
distribution concentrate around the optimal location. However, the optimal response can be located
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on just a single point in a high dimension space, which makes deep learning more advantageous due
to its feature learning ability. For that purpose, we consider an anisotropic Besov space (Nikol’skii}
1975; |Vybiral, 2006; [Triebel, 2011) as the model of the true reward, and see how neural network is
effective to maximize the reward. Especially, we theoretically compare the performance of neural
networks with that of linear estimators which is a class of estimators that cannot perform feature
learning. Moreover, we consider a multi-step update of inference alignment in which we iteratively
update our reward and policy models by observing reward oracles at each round. Then, we see how
the regret will be improved by this multiple-update approach.

Contributions. Our contributions are summarized as follows:

1. Regret bound for neural network reward estimator. We derive an upper bound of the regret
for inference-time alignment when the reward function lies in anisotropic Besov spaces. The
anisotropic Besov space is a general function class that has different smoothness toward different
directions. In addition to that, a function in the class has non-uniform smoothness over the
input domain, which requires our estimator to perform feature learning to achieve the optimal
estimation error rate (Suzuki & Nitanda,[2021)). We utilize a regret bound by|Huang et al.|(2025a)
that characterizes the regret bound by the squared loss error and the coverage which represents
how large the pretrained generative model has mass around the maximum reward point (Jin et al.,
2021} [Xie et al., 2021; |Zhu et al.,|2023; |Zhan et al.|[2024; |L1 et al., |2023}; Xiong et al., 2024).

2. Superiority of neural networks against linear estimators. We demonstrate that neural net-
works can adapt to local smoothness of the true reward function and generate responses with
higher rewards compared to any linear estimator for approximating the reward model. We show
sub-optimality of alignment methods based on a reward model estimated by a linear estimator by
leveraging the fact that linear estimators cannot achieve optimal rate to estimate the reward func-
tion, while deep learning achieves faster rate. This highlights the advantage of feature learning
ability by neural networks in reward maximization.

3. Improved analysis of regret by multiple-step update. We also analyze an algorithm that
iteratively and actively learns the reward model from the responses of the trained model, and
show that it achieves a smaller regret. Since our theoretical analysis requires boundedness of the
coverage throughout the algorithm, we utilize a novel Gaussian perturbation technique. With the
help of this method, we show that the regret is improved by multiple-step updates.

1.1 OTHER RELATED WORKS

Capabilities of Neural Networks in Regression. Theoretical analysis of neural networks and its
superiority over other models has extensively studied in the context of regression problems. For
example, Schmidt-Hieber| (2020) and |Suzuki| (2018)) showed that neural networks can achieve mini-
max optimal rates for estimating functions in Holder spaces and Besov spaces, respectively. |Suzuki
& Nitandal (2021)) extended the analysis to the case of anisotropic Besov spaces. They also showed
the lower bounds on the estimation error for linear estimators, demonstrating the superiority of neu-
ral networks over linear estimators. Hayakawa & Suzuki| (2020) also analyzed the upper bounds
for neural networks and lower bounds for linear estimators, and showed that neural networks are
superior to linear estimators for function classes with sparsity. Furthermore, [Petersen & Voigtlaen-
der| (2018)) and [Imaizumi & Fukumizu| (2019) analyzed the estimation error of neural networks for
complicated functions with piecewise smoothness. Unlike these studies, our analysis focuses on
the setting of inference-time alignment, which aims to find the response that maximizes the reward
function, rather than minimizing the estimation error.

Theoretical Analysis on Maximization of Black-box Functions. Our study is highly related to
the literature of black-box optimization. In particular, previous studies such as Minsker (2012),
Minsker| (2013)), (Grill et al.| (2015), [Wang et al.| (2018)) and |Singh! (2021)) consider the setting where
the objective function lies in RKHS, Holder or Besov spaces, sometimes with additional assumptions
on the structure of the function. While some of the techniques from these studies can be applied to
our analysis, this paper differentiates itself in two aspects: (i) our analysis considers the setting
of inference-time alignment, where the function to maximize is conditioned by a prompt; (ii) we
assume some additional structure on the reward function, and demonstrate how the advantage of
neural networks and multi-step training emerge.
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1.2 NOTATIONS

Let dx,dy € Z( be the dimensions of prompts and responses, respectively, and d = dx + dy.
Let Qx = [0,1]%x,9Q, = [0,1]%,Q = [0, 1]%. Let A be the Lebesgue measure on . For a function

1/
FrQ=Rlet|fl, = fllLoq = (ol fIPde) " for 0 <p < oo, and || fll o = || £ll g =
sup,cq | f(z)|. For ¢ > 0, aset S, a metric p, let B(z, ¢; p) be the p-ball with center x and radius ¢,
and \(; S, p) be the t-covering number of S C R with respect to p.

2 PROBLEM SETTINGS

2.1 INFERENCE-TIME ALIGNMENT

Inference-time alignment is a problem of generating a response y € {2y with high response for a
given prompt € x. More formally, let Px be a distribution on 2x and 7.(y | ) be a base
policy, which is typically a pre-trained language model. Let r° : Q — [—R, R] (R > 0) be a reward
function that evaluates the quality of the response y for the prompt 2. We can only access the reward
function via an oracle defined as

rt=r(z,y) +€ €~ N(0,0%), (1)
which returns a noisy observation of the reward for a given pair of prompt and response. Since the

observation of reward is expensive (e.g., it requires human evaluation), we can only access a limited
number of samples from the oracle.

The theoretical evaluation of inference-time alignment is based on regret defined as
I (1) := Eanpy [17(2) = By (1) [r° (2, 9)]]

where r*(x) := maxycq, r°(,y) is the maximum reward for the prompt x. The goal of inference-
time alignment is to find a policy 7 that minimizes the regret J () for a fixed oracle size n.

As a technical assumption, we assume that it holds that p < me(y | ) < P for all z € Qx and
y € y, where p,p > 0 are universal constants.

2.2  DEFINITION OF ANISOTROPIC BESOV SPACE

In this paper, we assume that the reward function 7° lies in an anisotropic Besov space. Roughly
speaking, the anisotropic Besov space has a function class that has a different smoothness toward
different directions. Feature learning ability plays essential role to estimate a function in this class
because it is required to capture this anisotropic smoothness adaptively from data to achieve the
optimal rate (Suzuki & Nitanda, [2021)). We provide its formal definition here.

For a function f : R — R, we define the r-th difference of f in the direction h € R% as
ML) = AT )@+ h) — Ay )(), AY(f)(@) = f(a),
for z € Q with z + rh € Q, otherwise, let A} (f)(z) = 0.
Definition 1 (Modulus of Smoothness). For a function f € LP(Q) where p € (0, o0], the r-th modu-

lus of smoothness of f is defined by w;.,(f,t) = suppera;jn; <t I1AL(H)llp, t = (1, ta), ti >
0. B

In short, the modulus of smoothness is the LP-norm of the r-th order finite derivative. With this
modulus of smoothness, we define the anisotropic Besov space B;’q(ﬂ) for s = (s1,..., sd)—r €

RY , as follows.
Definition 2 (Anisotropic Besov Space B, (2)). For 0 < p,q < 00, 8 = (s1,- - ,8q)| € RL,
7= max; |s;| + 1, let the seminorm | - s be

1/q
o o ] (S Ry (@b 2 b)) (g <o),
P SUPy>0 2kw,. , (f, (27k/s1 L 2_k/sd)), (g = 00).
The anisotropic Besov space B, ,(2) is defined as By ,(2) = {f e L) | | fllps, < oo}.

where the norm ||~HB;(I(Q) is defined by Hf”Bg,q =fll, +1flBs,-
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Intuitively, the parameter s represents the smoothness of each coordinate of the function. If s; is
large, then the function is smooth in the ¢-th coordinate. When s; = - -- = s4 = s, the anisotropic
Besov space B, (£2) matches with the Besov space B, ,(£2) (DeVore & Popov,|1988; DeVore et al.,
1993). Moreover, p = q = oo, then B, (€2) coincides with the Holder space C*(2) (Triebel, 2011).
The parameter p represents uniformity of the smoothness over the input space 2. We see that, when
p is small, the smoothness of functions in the class is guaranteed only in a average sense over the
domain €2, hence the function can have a bumpy shape around some input point x. The feature

learning ability plays a crucial role to detect such a bumpy point to achieve the optimal rate (Suzuki,
2018).

-1
Throughout this paper, for the smoothness parameter s € Rio, let 5 := (Z?Zl 1 /sj) ,
5 := max;=1,.45;, and s := minj—; __ 45;. We can regard s as the “total smoothness” that
summarizes the smoothness toward all directions. Moreover, let ps, (p € [1,00)) be the met-

. d d 0\ 8/ (P9) J
ric on R defined by ps ,(z,y) = (Zj:l lz; — yj|ps_;/§> for z,y € R% We also define

e\ S/3 s d
Ps,0(@,y) i= (maxj_1,. qlz; — ?JJ'|SJ/§)S = max;_y, . q|z; — y;|*/° forz,y € R

3 SUPERIORITY OF NEURAL NETWORKS OVER LINEAR ESTIMATORS

In this section, we consider a single-step update method for inference-time alignment. For the align-
ment, we use the InferenceTimePessimism(Huang et al.,|2025a) in which we generate responses
following an updated distribution which is constructed so that it has higher probability for responses
with higher estimated rewards. Here, we utilize the neural network to estimate the reward function,
and we freeze the reward function once it is estimated. In that sense, we say it is single-step update.
To find higher reward responses, we need to estimate the reward function as accurate as possible.
Indeed, we show that neural networks can achieve a smaller regret compared to linear estimators
because the neural network achieves higher accuracy in estimating the reward, in which the non-
uniformity of the smoothness of the anisotropic Besov space plays the essential role. Here, a linear
estimator is a class of estimators that cannot perform nonlinear feature learning depending on the
output ()1

For the analysis, we put the following assumption.

Assumption 3. For a reward function r° € By () (p,q € [1,00], s € RY .5 > 1/p), we define
Se(z) :={y | r*(x) —r°(z,y) < e} and S¢ := {(z,y) | r*(x) —r°(x,y) > €}. Lety € [0, ﬁ)
be a constant. Then, we assume that it holds \(Sc(x)) 2 € forall e > 0 and x € Qx.

Assumption [3] assumes that the super-level set has a sufficiently large volume. Technically, this
assumption guarantees that there exists a comparator policy with small coverage (See Lemma|[I9|for
details). We will prove that neural networks can capture the large super-level set, thereby achieving
a small regret (Theorem [, while linear models cannot (Theorem 3)).

3.1 UPPER BOUND OF REGRET FOR NEURAL NETWORK REWARD ESTIMATORS

We first present the upper bound of the regret that can be achieved by neural networks. Due to the
feature learning ability of neural networks, we obtain better estimation of the reward so that we can
achieve better regret.

Class of Neural Networks. To obtain the regret bound for neural network estimators of the reward,
we formally define the class of neural networks used in this paper. Let ) := max{0, -} be the ReLU
activation function. Then, a neural network with depth L and width W is defined as

f(x) = (Apn(-) +br) oo (Aan(-) +b2) o (Arz + by),

where A; € R¥+1%di p, ¢ R+t for i € [L] withd; = d,dr,1 = 1, and max; d; < W. Then,
we define the class ®(L, W, S, B) of neural networks with depth L, width W, sparsity .S and norm

"The map ps,p, (p € [1, 00]) is indeed a metric. See Lemmafor the proof.
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Algorithm 1 Inference-Time Pessimism (InferenceTimePessimism(x, 7,7, N, 1))

Input: Prompt x, policy m, reward model 7, sample size NV, regularization .
Draw i.i.d. samples y1,...,yn ~ 7(- | z).
Compute normalization constant §(z) such that +; Zfil [F(z,y;) — 0(z)]4 = p.

Set M := p~'(R — 8(x)) and and w(y | z) := p~ ' [F(z,y) — O(x)]4.
Sample y as y ~ RejectionSamplingy 1/ (w; mrer, 7).
return: response .

AN

bound B as
L
(I)/(L7VV>S7B) = {f ‘ m?“X{”AlHom [b:llc } < B, Z(”AZHO + [[billo) < 5}7
i=1

where || - || is the maximum absolute value of the entries (£°°-norm as a vector) and and || -
|lo is the number of non-zero elements (¢°-norm as a vector). The ¢°-norm constraint imposes
sparsity of the model that controls the complexity of the model appropriately. Due to the technical
convenience to analyze the estimation error, we consider the class of clipped neural networks defined
as ®(L, W, S, B) := {min{max{f,—R},R} | f € ®'(L,W, S, B)}. Since the clipping function
can be realized by ReLU units, this setting is not far from practical scenarios.

Algorithm and Theoretical Guarantee. Here, we present how to generate the responses with
higher reward through the reward estimation. First, we generate n input-prompts 1, ..., z, i.i.d.
from Px, and for each i € [n], we generate the responses y; ~ Tyef(- | 2;) from our pretrained
reference model. Then, we observe noisy reward oracles as 1"3 = 71°(xy,y:) + & asin @ where
& ~ N(0,0?) is the observation noise. Then, we fir the neural network model to the observed
reward by empirical risk minimization:

n

r:= argmin Z(TJ — T(miayi))Qv
re®(L,W,S,B) i=1

where L, W, S, B will be set appropriately depending on the smoothness of the true regret and the
data size. Here, we denote by D" = {(z;,y;)},. Using the estimated reward 7, we update the
generative model in accordance to the reward. For ;¢ > 0 (which can be dependent on ), we define
mx by
mx( @)= argmax By p[f(,y)] =1 X @ || met(- | 2)),
p:density on Qy

where x2(+||-) is the x?-square divergence defined as x?(y||v) := 1E, [( 3£ — 1)2] Then, we can
write 7% in a closed form as

7rff(y | 2) = meet (y | ) [N_l(?(xay) - 9#)]_,_7

where 6, is the normalizing constant such that [7X(y | x)dy = 1
InferenceTimePessimism (Algorithm | is a practical algorithm to get samples from ”;Pf?v
that approximates 7, where N € Zs is a function that determines the number of samples to be

drawn from e (- | ).
Then, the response ynn () for a prompt x is generated by ynn (x) ~ 772‘715\,(- | z).

Theorem 4. Suppose that we set the parameters of the network as L = O(logN),W =
O(Nlog N),SO(Nlog? N),log B = O(log N) for N = n7erT sufficiently large. Then, under
Assumption 3] the estimator yxn satisfies

Epn [EJL’NPX [E?/JNN(E)NﬂZe.SN [T* (.’L‘) —r° (:L‘7 @\NN(‘T))]]] SnTEIEA

?(Huang et al., [2025b) showed that y>-divergence provides more robust estimate to over-optimization and
then better regret than the usual KL-divergence regularization. Hence, we also employ y2-divergence in this

paper.
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25
It is known that n~ Z5+1 is the minimax optimal rate (Suzuki & Nitanda) [2021) in terms of L?-norm
to estimate a function in the anisotropic Besov space. The regret bound is slower than this rate up

2
to O(n=+ ). This difference is a cost to convey the L?-norm error to the error to find the maximum
of the true reward. However, due to the volume condition of the upper level set (Assumption [3), the
L2-norm estimate can be converted to L°-norm type bound locally around the global optimal point.

The key of the proof of this theorem is the regret bound given by (Huang et al., 2025a)) that charac-
terizes the balance between the reward estimation error and the coverage of the reference measure.
Let eay(2) := Eyor,.o(o)[(F(2,y) — °(x, y))?] be the L*-estimation error of our reward estimator
7. For two policies, we define the coverage between them as

m (y\w)} )

m2(y|x)

C((L’; 1, ’/TQ) = Ey,\,ﬂ.lum) |:
Then, for any comparator policy 7*, it holds that InferenceTimePessimism satisfies

Ey,\,ﬂ.* [7‘0 (x, y)} — Eywwza’sN(~\ac) [7’0 (l’, y)]

S o Clas ™, er) + 1 emy(@) + 1t - equ(@) exp <01<l1t~zjim> @

for any p > 0 (Huang et al.l[2025a)). From this relationship, we see trade-off between the estimation
error eﬁM and the coverage. To obtain a better regret, the reference model m..¢ should “cover” a
region around the maximum reward point and the reward function should be estimated accurately.
As we will see in the next section, deep neural network attains better estimate than the linear model

that gives advantage to neural network for achieving smaller regret.

3.2 LIMITATION OF LINEAR ESTIMATORS

Next, we compare the bound obtained in the last section with that of the linear estimators. The linear
estimator is a class of estimators that can be written as

(@) = > yigi(z; X,
i=1

where X" := (x1,...,x,), and ¢;(-; X™) are measurable functions that depend on x and X"
but not on y1, ..., y,. This estimator includes wide range of estimators such as k-NN regression,
kernel ridge regression with a fixed kernel function, and sieve estimators. The linear estimator
cannot calculate nonlinear effect from the output and thus cannot conduct nonlinear feature learning
depending on the output y (while it is allowed to conduct feature learning merely depending on input
as performed in PCA). This difference induces the following sub-optimal rate.

Theorem 5 (Limitation of Linear Estimators). For any § > 0, there exists a set Fs of reward
functions that is a subset of reward functions satisfying Assumption[3|such that the following holds.

2

o T ro = s — .
(i) inf 70 SUPfoer, Ep, [Hf —f L’-’(PX):| > n~ 715, where v = 2(1/p — 1/2);

(ii) There exists a function g € L*(Q2) such that ||g — f||12(q) = 6 forall f € Fs;

(iii) maxyeq, r°(z,y) — g(z,y) = 574

The item (i) implies that this lower bound of estimation rate matches the lower bound for B; , shown
in|Suzuki & Nitanda|(2021). This indicates that the assumption of the volume of super-level set does
not help improve the estimation rate of linear estimators. Moreover, item (ii) and (iii) imply that it
is possible that the estimator with L? error less than § cannot distinguish the functions in s, and

the regret can be as worse as 5§/ 2+ n particular, if § is the estimation error of linear estimators,

i.e., 0 ~ rf% the regret can be n_ﬁ%ﬁ in the worst case, which is slower than the
rate of neural networks. This particularly due to the fact that the linear estimators cannot perform
future learning. The sub-optimality appears especially when p is small, that is, the target function
has a bumpy shape around some point x. The linear estimator is not as good as neural networks
to adaptively find such a bumpy location due to lack of feature learning ability, which leads to the
sub-optimal rate as shown above.
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Algorithm 2 Multi-step Training for the Reward Model (MultiStepAlignment(myef, 7))
Input: Base policy 7.¢, size of oracle queries n.

Train the reward model 77 := argmin, ¢z, 1.5, ) T 1ymot (M@, Ye) — 2.

Set 77(7—) «— WM_PeS [7-(-("—_1)7 7/:(7—)7 ]\7(7-)7 //()(7-)7 0-(7')] #Trie,sN + N(0, (U(T))Zldy)
end for
return: policy 7(7).

1: Set 70 := 7p, T := [logn], ng := |n/T].

2: forr=1,...,Tdo

3: Set the hyperparameters N(7), p(7) (7).

4: Draw ng samples {xt}trgﬁrq)noﬂ ~ Px.

5: Foreacht = (1 — 1)ng + 1,...,7ng, draw y; ~ 77D (- | z;).

6: Observe the reward {TZ}Z?T%)HOH for {(z, yt)}tzl?rfl)noﬂ using the oracle (T).
7

8:

9:

0:

—

4 INFERENCE-TIME ALIGNMENT WITH NEURAL NETWORKS

In this section, we propose a multi-step algorithm for inference-time alignment while we considered
a single-step method in the previous section. By extending the algorithm to multi-step, we can make
use of a stronger assumption on the regret so that we obtain a better regret bound. We also provide
a theoretical guarantee of the regret bound for the proposed algorithm with respect to the size of
oracle queries n.

4.1 ALGORITHM: MULTI-STEP TRAINING FOR THE REWARD MODEL

The concrete procedure of our proposed algorithm is described in Algorithm 2] Basically, it repeats
the alignment method in the previous section multiple times. However, as we have seen in (2), our
policy should have a small coverage C(x; 7*, mor). When we update our policy multiple-times, it is
expected that our policy will “concentrates” around the maximum reward point. To achieve this, we
iteratively update the reward function and sampling.

In each step 7, we generate ng query points { (xt,yt)}g(OT_l)no 4, from our current generative
model 7(7~1):

FO(yle) = 7D ) |77 (@) — 07 /)]
for the reward estimate 7(") at 7-th round, where ;(7) is set appropriately. However, we only
have L?-norm guarantee of our reward estimate 7("), which is not sufficient to bound the coverage
C(x;m*,7(7)). For that purpose, we mollify the density 7(™) of our policy by adding the Gaussian
noise NV (0, 0214, ) to each generated point so that the distribution of our generated points can cover
the maximum reward point with non-vanishing probability. This guarantees a bound on the cover-

age and then we obtain a proper convergence of regret as shown below. The resulting distribution is
referred to as °* in Algorithm 2]

4.2 THEORETICAL GUARANTEE
Now, we give the regret bound for the multi-step algorithm (Algorithm [2)). Since we need a bound
on the coverage during the update, we put the following assumption.

Assumption 6. For a reward function r° € B, () (p,q € [1,00],s > d/p), we define S :=
{(z,y) | r*(x) — r°(x,y) > €}. We use the following assumptions.

(A1) There exists constants 3,y with 0 < 8 < v < 3 — 1/p such that B(y*(x), /%) C S(x)
B(y*(x),e?/?) for all e > 0 and © € Qx, where y*(x) := arg max, ¢, 7°(x,y).

N

(A2) There exist constants co,Co > 0 such that Ng 2(Se,d) < C’o(l + )“(/f((f;)) for all €, €

(0, col, where Vy(r) ~ r°/% is the volume of ps »-ball with radius .
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Remark. (A1) requires that the super-level set be concentrated around the maximizer, with both
lower and upper bounds imposed on the distance from the maximizer. The lower bound on this
distance is necessary for the algorithm to capture the rough location of the super-level set, while
the upper bound is required to narrow down the position of y*(x) within the super-level set. A
simple example is the case where r°(z, -) is locally strongly convex around y*(z). In this case, the
assumption holds with 8 = v = d/2. (A2) is an assumption brought from Wang et al.|(2018), which
is a literature on the oracle complexity for optimization of Holder smooth functions. This imposes
a regularity condition of the set S.. This assumption is satisfied, for example, when S, is a finite
union of p, o-balls.

Then, we have the following regret bound for our algorithm.

Theorem 7. Let r° € B3 () be the reward function, and assume that s € R, p,q € [1,00],
5 > 1/p. Moreover, we assume that r* € By (Qx), v > 2 and 3 € [0,1/2(5 — 1/p)). Ad-
ditionally, assume that it holds, for any = and step 7, it holds E, [(7\")(z,y) — r°(z,y))?] <

CE,~pE, [(7"\(7) (z,y) — r°(x,y))?] for some constant C > 0. Then, under (Al) and (A2), the
output =) of Algorithm satisﬁes

25
: : logn ) 7 4
a7 (2) = Byurin b )] 5 (122 poly log(n).

where u = %% (% + 25211), ¢ € (0,5—1/p)and o := min(1,5 — 1/p) are constants.
This theorem implies that by learning the reward estimator using multi-step as shown in Algorithm[2]
the regret with respect to the oracle size n is improved by a factor of ﬁ (> 1). This factor depends
on 3, which represents the smallness of the super-level set of the reward 7°(x, ). As [ increases,
the regret rate also improves. From this observation, it follows that through multi-step training, the
neural-network-based reward estimator is able to capture the super-level set effectively.

4.3 PROOF SKETCH

The key factor of proof of Theorem [/|is to show that neural networks can adapt to the small super-
level set of r°. The following lemma indeed demonstrates this fact.

Lemma 8 (Estimation Error under Large Expected Reward). Assume that the reward function r° €
B;q(ﬂ) and the distribution Px satisfy the same conditions as in Theorem [7] Moreover, suppose
that 7 is a policy satisfying E,..p, [r*(z) — ]EyNTr(.‘m)[ro (z,9)]] < 7. Let D,, = {(wi, yi, TZ)}?ZI
be a dataset where x; ~ Px, y; ~ 7(- | x;), and 1“3 = 1r°(x;,y;) + & with & ~ N(0,02). Then,
under (A1)~(A4), the estimator 7 of ° defined as 7 := arg min,.c g1, w,5,5) 2 i1 (7 (T4, Yi) — rj)z,

satisfies
~ 2B<_ __25
ED,L |: |T - rOHiz(PX@ﬂ_) ,S T2§+§1 .n 2§z+1 10g4<n)7

where Ep  is the expectation with respect to the dataset D,,.

When 5 = 0, the above lemma matches the existing results on the convergence rate of regression
by neural networks for anisotropic Besov space (Suzuki & Nitandal [2021)) (up to log-factors). We
can see that if S becomes larger and the super-level set of r° becomes smaller, the estimation error
rate improves. By using this lemma, we can prove that during multi-step training, at each step, both
the improvement of the regret 7 and the improvement of the reward estimation rate are repeated.
Ultimately, after log n steps, the rate in the Theorem [7)is achieved.

5 CONCLUSION

This paper gives a convergence analysis of neural networks for test-time alignment problem; re-
ward maximization. We consider a setting where the true reward is in an anisotropic Besov space
where a function in the function class has non-uniform smoothness over the input space and to-
ward different directions. Due to the feature learning ability of neural networks, it was shown
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that InferenceTimePessimism with neural networks can outperform a linear estimator based ap-
proach in terms of regret when the uniformity of the smoothness p is small. In addition to that, we
proposed a multiple-step update method for test-time alignment, and analyzed the regret bound for
this method. Under an assumption that the super-level set of the reward is concentrated around the
maximizer, we showed that the multiple-step method can improve the regret by refining the estimate
of the location of the reward maximizer.

Limitation and Future Work. Although we showed improvement of regret by the multiple-
step update in Theorem [7, we imposed a rather strong condition E, [(7(7)(z,y) — r°(z,y))?] <
CE,p Ey[(7 (z,y) — r(x, y))?]. This condition was used to covey a expected squared loss to

a uniform bound to uniformly upper-bound the coverage. An interesting future work is to relax this
condition or propose a new method to overcome this difficulty.

LLM USAGE STATEMENT

LLM were used solely for editing and refining the writing, including correcting grammar and im-
proving sentence structure. They were not used to generate any original content or ideas, nor deriv-
ing the proofs.
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This work is purely theoretical and has no ethical concerns. For reproducibility, we stated all as-
sumptions in the main text and provided all proofs in the appendix.
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—— Appendix —

A ADDITIONAL NOTATIONS

For s € R, let |s| := Z?Zl |s;|? and 8" = [s}]9_, := [s/s;]9_,. For s € R%, and k € Z, let
d
Ikllg = Zj:l U%’;J
Let € : R — Rand K,,, : R — R be functions defined as
1 ifzx €][0,1]
’C — ) ’
(z) {O otherwise,
Km(z)=(*---xK)(z),
m + 1 times

where f x g(z) := [ f(x — t)g(t)dt is the convolution of functions f and g. The function K,,

is called the cardinal B-spline of order m. Then, for k € Nyg and j = (j1,...,5q) € Z9, let
My ;- R? — R be the function defined as

d
M (z) = H’Cm(QLkSiJCBi — Ji)s

i=1
Intuitively, the integer k controls the spacial resolution, and j controls the location of the function.
We also remark that the support of M, ,g{ ; 1s the hyper-rectangle written by

d
Supp(M,ij) = H [2—Lksiin72_LksiJ(ji +m+1)|.
i=1

Moreover, let J (k) be the set of j € Z¢ such that supp(M,ij) NQ#0,ie.,
J(k) == Ji(k) x - x Ju(k),

where , /
Ji(k) == {=m,—m+1,... 2ksi) 1 olksily

B PROOF OF THEOREM

We first introduce the following proposition, which is convenient to analyze the limitation of linear
estimators.

Proposition 9 (Theorem 3.3 in Hayakawa & Suzuki| (2020)). Let F be a class of functions on (),
and conv(F) be the convex hull of F defined as

conv(F) := {Zaif,; |meN, feF,a ZO,Z%‘: 1}.

i=1 i=1
Then, it holds that

F-r

F-r

2
} = inf sup EDH{

L2(Px) Filinear foEconv(F)

2
_inf sup ]Epn[ ep J.
X

f:linear feeF

This proposition states that the excess risk of estimating the function in F by linear estimators
coincides with that in the convex hull of F. Therefore, if the function class F is not convex, linear
estimators tend to perform poorly since they have to estimate a larger class of functions conv(F).

Next, we prove the following lemma.

Lemma 10. Letn) > O and~y € (0,5—1/p). Suppose that R := {Rx, ..., Ry} is a family of disjoint
hyper-rectangles in Q with volume A(R;) ~ n" (I € [L]). Then, there is a family of functions ¥
satisfying the following three conditions:

12
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(A) Forally € U, mingeq ¥ (z) = 0 and max,cq ¥(x) = n;

(B) There is a one-to-one correspondence 1) > R, between ¥ and R such that supp(¢)) C R,
for the corresponding R,,;

(C) It holds ||Y|| L2(q) ~ n*T7 forall ¥ € ¥;
(D) Foralle € (0,n) andp € U, it holds \N({x | n — (x) < €}) 2 €7;
(E) It holds ¥ C B; ,(S2).

Proof. Let x,, the center of R,,. Let ¢ : Q — [0, 1] be a function in C°° such that
=1+1/2% — pgo(z,0)* if ps2(z,0) <1/2,
P(x)¢ =0 if ps2(x,0) > 1,
€(0,1) otherwise,

where o := %g Let ¢y(z) == A -¢((x — z;)/n). We prove that U := {¢1,...,9r} satisfies
the desired conditions. Conditions (A) and (B) are obviously satisfied. As for (C), the necessary
condition to hold A — ¢;(z) < €is ps2((x — 21)/n,0)* < €/A. Therefore, we have

Az | A=u(@) < e}) 2 n™*(e/A) ) = /3 (efA) 2 &,
which implies (C). Finally, we prove (D). Since 1) is in C*°, it holds ¢ € Bf;,q(Q). O

Finally, we prove Theorem 3}

Proof of Theorem[D] Let U = {41, ...,1} be the function class given in the above lemma. Let
{0, 00), - Ly, lf,(k))} be the set of pairs of [L] satisfying the following conditions:

(@) m; # 1} foralli € [J(k)];
®) @) [ (V) e PI=1}~{W@T) | (L) € PU =1} ~ J(k)/M;
(c) Ry, Nsupp M,‘ij = ng N supp M,f’j = Qforall j € [J(k)].

Then, let us define the finite function class JF as follows:

Fo:=F1UF,
where

Fro=A{M{; + ¢, =y |j €[TR}, For=A{M{; =y, + vy | j € TR}
Then, for any f1, fo € Fo, it holds
1 = Foll 2y < Ifill 2oy + Ifoll 2oy S 0247
Moreover, we define F := conv(Fy). Since it holds
SO+, =) + S (M =, + ) = MY,

we have

F2o{M, | jez supp(M{;)NQ+#0}=G.
Suzuki & Nitanda| (2021) proved in Theorem 5 that it holds

F-r

> n 25+i—v ,

2 25w
_inf sup EDH{ Lep J pe
X

f:linear fo€g
where v := 2(1/p — 1/2).. Therefore, using Proposition[9] we have
~ 2 ~ 2
inf sup EDn“f—fO ] = inf sup EDTL“f—fO ]
f:linear foeF L2(Px) f:linear f°€conv(F) L2(Px)

2 inf sup Ep, {Hf— f°
f:linear fe€g

2
L2(PX):|

25—v

Z n- ZEHi-v,

which completes the proof. O

13
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C PROOF OF LEMMA [8

In this section, we consider a general regression problem for anisotropic Besov spaces. Specifically,

we consider f € By , and let f be an estimator of f° defined as

n

f:: arg min Z(yi—f(xq;))Q, 3)

FE(LW,5,B) =1

where x1,...,x, are i.i.d. samples from a distribution Py, and y; = f°(z;) + & with & ~
N(0,0%). We denote D,, := {(z;,y;)},—, as the dataset.

Lemma 3]is directly derived from the following theorem by setting g(z) = r*(z) — r°(z,y).

Theorem 11 (Localized Estimation Error for Anisotropic Besov Spaces). Let f,g € B;q(ﬂ) with

p,q € (0,00, s € RS, and 5 > 1/p, suppose that f(x) € [—F, F) and g(x) € [0,T) for all z € Q
with some F,T > 0. Let Q; := {x € Q| g(x) <t} fort € [0,T] with some T > 0. Assume that

the following three conditions hold for some constants Cy, co, 7 > 0, and B € [0, m> :
(i) Forall v € (0,co) andt € [0,T), it holds N 2(1; Q) < Co (1 + M) ™%/%).
(ii) Forallt € [0,T), it holds \(€;) < 9.
(iii) It holds By py [g(X)] < T.

Let < be a constant such that ¢ € (0,8 — 1/p) for p < oo, and < = S for p = co. Moreover, let
f € ®(L,W, S, B) be a estimator defined as (@) with

L<logN, W<N, S<NlogN, logB <logN,

_1 _ 2B8< = .
where N = n75F1 725%1, If 7=Y/% < N, it holds

-

F-r

2 28¢ 2%
< 725F1 . 2541 ]0g4(n)’
L2 (Px)

where Ep, is the expectation with respect to the dataset D,,.

In the rest of this section, we prove Theorem[T1]

C.1 APPROXIMATION ERROR ON A SMALL SET

We first prove the following theorem, which gives the approximation error bound for a fixed small
set ) C Q.

Theorem 12 (Approximation Error for Anisotropic Besov Spaces). Let Q' C Q be a measurable
set satisfying No(Q',1) < Co(1+ )\(Q/)L_E/S) Sor all v € (0,c¢q] with some constants Cy, co >
0. Assume that f € BS (Q) with p,q € (0,00, s € R%,, and 5 > 8o, where &y := (1/p —
1/r)+. Moreover, suppose that m € N satisfies 0 < s < min{m,m — 1+ 1/p}. Letv €
(0, ng“ ), and N € Nsq be a sufficiently large integer. We define N' := \(QV)T> N and € :=
N3+ H(1/p=3)+ log™ " N. Then, there exists an FNN f € W(L, W, S, B) with

L=Lo, WENW,, SZ(L-LWIN'+N, B=0oW /s

such that || f — f°|| -y S N 7%, where

dvm

Lo:=3+2 {logQ < ) + 5} [logy(d Vv m)], Wy = 6dm(m + 2) + 2d.

€Cd,m

and cq ., is a constant depending only on d and m.

We use the following lemma for the proof of Theorem [I2]

14
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Lemma 13 (Lemma 2 of |Suzuki & Nitanda (2021)). Suppose the function f € B, ,(2) and the
constants m € N, b, v satisfy the same conditions as in Theorem[I2] For an integer K € N, let

N = [2”K lls —‘ Moreover, we define € as the same way as in Theorem Then, there exists fn

such that || f = fnllpr o) < N—% ||f||Bs‘ ,and fn can be written as

In(z) = Z O‘k,Jng Z Z O‘kJMk] Z Zak,thjl

(k,j)EEN k=0 jeJ(k k=K+1 i=1
where K* = [K(1 T %)W’ ne = ’VQHKHS’*V(HkHs/*”K”s')—‘ (k=K +1,... K", {ji)™,
J(k), and the coefficients (cu, j)k,; satisfies max(y jyepy |0k j| S 9K*(5/3)-(1/p—3)+

We also employ the following lemma to provide the upper-bounds the required number of terms in
the decomposition of f for approximating on the small set €'.

Lemma 14. Let 1 > 0, s = [s1,...,84] € R:;and A C R be a compact set. Moreover, let
Q1,..., QN C Qbe ps o-balls with radius . Suppose that Q);’s are pairwise disjoint, and each Q);
intersects with A. Then, there exists a constant C1 > 0 such that N < Cy - N5 2(A, 1), where C1 is
a constant that only depends on d and s.

Proof. From the definition of the covering number, we can take the cover { B s(z;, L)};nzl of A
with m = Ng2(A,¢) and 21, ..., 2, € A. Moreover, since Q;’s are ps oo-balls with radius ¢, for

s\ 8/3 , -
any x,y € Q;, we have (maxje[d] lz; — yj|5’/§> < i oy —y |7 < /5 forall j € [d).

Since each @; have intersection with A, there exists j(i) € [m] such that Q; N Bs 2(z;(;),t) # 0.
This implies that we can take z € Q; N Bs 2(z;(;), ¢), and thus for any y € Q;, we have

Ps,2(Ys i) < ps2(y, 2) + ps,2(2,75())

s/25
= ((yl —2)P e (g — Zd)%d/é) T
_ .\ 8/25 _
< (dLQs/é) +o=(1+d¥%)..

Therefore, it holds Q; C B 2(x(;), (1 + d®/?%),). Taking the union of i = 1,..., N, we have

U@CUBSNM (1+a/*)0) UBsz (a7, (1 + d=/*)0).

i=1 i=1 j=1

The volume of the left-most and right-most sets can be evaluated as follows:
3 3 1
A(U Qz) — N /st Fsa — NS
i=1

U Blas, (14 d2)0) | < Noo(A,0) - A(Blay, (1+d2)0) S N (A1) - 5505
j=1

Comparing the two volumes, we have N < Nj2(A, ), which completes the proof of the first
part. O

Now, we prove Theorem [12}

Proof of Theorem([I2} Let fy = Z(,w.)eEN oz;w»M,?’j be the approximation of f given
in Lemma Then, we have [f — fnllzr S N‘§||f||35,q. Let Ef :=

{(k,j) € Ex | (k,j) € En, (supp M,ij) QY+ (2)}, and

By i={j € N| (k,j) € Ex} = {j € N| (k.j) € Ew, (supp M) €Y £ 0},

15
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for k € [K*]. Then, we define f}; as

K*
/o . d . d
fv= D g =D Y oM.

(k.j)EEY k=0jeEy |
By the definition of E'y;, we have fx(z) = fj (z) for any z € Q.

Next, we evaluate the number of terms in the decomposition of fj, i.e., |[E|. The support of
M, ,f ; 1s the hyperrectangle obtained by, for each coordinate, scaling the support [0, m + 1] of the
one-dimensional B-spline NV,,, by 2ksi) and translating it by j;. The ¢-th edge length e; this hyper-
rectangle is (m + 1)27Fsi) < 2(m 4 1)27%%i = 2(m + 1)27%5/5:_ Therefore, for any , y in the
support of M ,f’ ;» We have

.....

Therefore, using Lemma with ¢ = 2(m 4 1)*/£27%5/3 we have we have

.....

_ _ _ _,a-1 -
|Env il S Noa(€,20m + 1)72275/%) S A@) [ R/ = A@)2h/?

Moreover, for k > K, we have ‘E}Vk’ <ng < 2l Kl —v(lklly = IIKlls) | Hence, for any K° > K,
we have
KO K*
EAESS (1 n )\(Q/)Qkﬁ/g) TS oKl LKL,
k=0 k=K°+1
Let us dermine K° to make the right-hand side the minimum. Since 1+ A(©')2%* is increasing, and
2l Kller =ikl =IIK12r) is decreasing with respect to k, for the best choice of K°, we have

AQ)2K 3/ o QKL= (K = 1K),

The right-hand side equals to 258/5-(K°s/5=K5/5) yp to a constant factor. Therefore, we have

9= (1+¥)(K°=K)-s/5 )\(Q/)’

which implies 2(K°=K)'s/5 ~ \(Q//)~ T4 For K° satisfying this condition, we have

~ 1—2s/3 1—2-vs/s
() - 255/ N@) T 4 2K N
A

v

()7 2Kl — \(Q)TF7 . N.

S
S

The remaining part of the proof is adapted from the proof of Proposition 2 of |Suzuki & Nitanda
(2021). Specifically, from Lemma 1 of [Suzuki (2018), for all k and j, there exists an FNN M, ;

such that HZ\/Z,?j — M,f]H (=) < ¢, and Z\/Zgj =0inx ¢ [0,m + 1]¢. Using these networks, we
) Vs oo (R4 .
can construct f € (L, W, S, B) with L, W, S, B as in the statement of the theorem such that
fa)y="3" anM{;(2).
(k.J)EEY
Then, we have
N@) = f@ < D gl | M () - M (@)
(k.J)EEY

<e Z |ak,j| : ]lsupp M,‘ij ({E)
(k.j)EEY
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For each = € (, the number of (k, j) such that z € supp My ; is at most (m + 1)4(1 + K*).
Combining with the upper-bound max j)e my, |ovk,;| given in Lemmal[13] Therefore, we have

fr(@) = f(@)] <e max Jag |- (m+ 1)1+ K*)
(k,9)EEY
< GQK*~(§/5)~(1/Z>—5)+(1 + K*).
Since it holds
9K (5/3) ~ 9K(s/3)-(14+v7") o QZL]LKé/SjJ-(HV’I) — ol Kl (v o 1!

we have 1 )
@) = f(z)| S eNUFH /P 0g N < N5

Moreover, the absolute values of parameters used in M ; is at most 2K™ < NdA+vT)(1/p=8)4
which completes the proof. O

C.2 LOCALIZED APPROXIMATION ERROR BOUND

Next, we prove the following theorem, which considers the family of sublevel sets of g as in Theo-
rem[T1]

Theorem 15 (Localized Approximation Error for Anisotropic Besov Spaces). Suppose that the
functions f, g, the family of sets {4 }1c(0,1), and the constants Cy, co, T, 3, < satisfy the same con-
ditions as in Theorem Moreover, suppose that m € N satisfies 0 < § < min{m, m — 1+ 1/p}.
Let N € Ry be a sufficiently large real number. Then, there exists an FNN f € V(L, W, S| B)
with

L<logN +logr™!, W <Nlogr '+ 7%,

S < NlogNlogr ' +7 Y logr™", logB <logr™!,

such that || f — f°|| 12y S N~ 5rPE-1/P),

Proof. Applying Theorem 12| with » = oo, we have that, for all ¢ € [0, T, there exists an FNN
fi e (L', W/, S;, B) with
L' Slog(e™!) log(NglogN> Slog N’ +logt™!,
W, < N'Wy <N,
S; < N'logN + N’ < N'(log N 4 logt™1),
B' S,
such that

vs

i < (]\[’)*gtﬁg

sup () = f*(@)] S N7 (N) 50

Leta_; = Oand a; = 27 fori = 0,...,I with I := [log,(2F/7)]. Then, fori = 0,...,I and
any N € R, we can construct an FNN f; € U(L;, W;, S;, B;) with

Li SlogN +logr™!, W; <N, S;<N(ogN+logr™!), B; <1,
such that sup,cq, |fi(z) — fo(x)| < N~=%(2'7)P<. Moreover, applying Theorem (12| for g with
N« 77YSand 7 <+~ T, we have an FNN g € W(L, W,, Sy, B,) with

LySlogr™t, W, < /3, Sy S T3 log 7L, log By, Slog77 1,
such that sup,cq, |g(z) — g(z)| < 7/8.

Fori = 0,...,1I, we can construct an FNN ¢, € ®(L,W, S, B) with L, W, S < 1 and log B <
log 7! such that

0 (x <aj—1—71/4),

(x—ai—1+nm)/(2n) (a1 —7/4<x<a_1—71/8),
di(z) =41 (ai-1+n<z<a;—71/4),

(a; +n—12)/(2n) (a; —T/4 <z <a; —T1/8),

0 (a; — 7/8 < x).

17
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Then, we have ZI.I:O ¢i(x) = 1 forall z € [0,2F]. Moreover, since ¢;(x) > 0 only if €
[a;—1 — 7/4,a; — 7/8], the necessary condition to ¢;(g(z)) > 0is g(x) € [a;—1 — 37/8,a,].

Now, we define f as
I

flz) =2 6i(g(x)) filx).

i=0
Let us consider z € € such that g(x) € [a;—1,a;] for some ¢ € [0,I]. Then, we have g(z) €
[a;—1 — 37/8, a;], which implies then ¢;(g(z)) = 0 for j # ¢,7 — 1. Therefore, we have
|f(@) = f°(@)| < i(G@)|fi(x) = F° (@) + dim1(G(@))| fary (@) — f°(2)]
< max{|fi(z) — f°(@)], [ far_s (2) = f(2) |}
SN2
Moreover, for z ~ Px, the probability of z € [a;_1, a;] can be bounded as

Eonpy[9(2)]

- < 9= (=1),
2i=1r -

Py py[9(2) € [aim1, ai] < Ppopy[g(a) > 277 17] <
Therefore, we have

. ol12
Hf _ f HLZ(P)() = E{L’NPX[
I
<3 N,y [g(@) € a1, 0]

=0

2

fla) = fo@)]]

I

< N—2§7_2,8< 2(22,{3<—1)i
=0

< N_2§T2B§.

Finally, since ¢(g(z)) and f;(x) are bounded by constants for all z € 2, Lemma [23]implies that
there exists an FNN f € W(L, W, S, B) with

L <logN + log7—t, W < Nlogm !+ T_l/g,
S < NlogNlogr ' +7 Y5 logr™!, logB <logr!,
such that || f — f||oc < N~°77<. Then, we have
1f = Follzacpxy < I = Fllezpsy + 1 = Follacpey S N3P,
which completes the proof. O
C.3 PROOF OF THEOREM[L]]

Finally, we prove Theorem T1]

We utilize the following proposition for the proof.

Proposition 16 (Schmidt-Hieber| (2020); Hayakawa & Suzuki| (2020)). Let F be a set of functions.
Let f be the least-squares estimator in F:

f:: argminZ(yi - f(zi))Q,

fer =

Assume that || f]lcc < F and ||flloc < F forall f € F. If 6 > 0 satisfies N (6, F, || - ||loc) = 3,
then it holds that

EDn“f—fo

log N6, 7 - )

n

. o2 2 2
sc[;g;nf—f o) + (F2 +0%) 5(F +0),

2
L2(PX):|

where C > 0 is a universal constant.

18
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To upper bound the covering number of the function class of FNNs, we use the following result.

Lemma 17 (Lemma 6 of [Suzuki & Nitanda (2021)). The covering number of ®(L, W, S, B) can be
bounded as

log N (8, ®(L, W, S, B), ||||.) <2SLlog((B+1)(W +1)) + Slog (67 'L),
Now, we prove Theorem [T}
Proof of Theorem[I1] The proof is basically the same as that of Theorem 2 of [Suzuki & Nitanda

(2021)). The difference is that our proof explicitly provides the dependency on 7.

In the following, we assume that N > 7~ /%, Then, the configuration of L, W, S, B in Theorem
can be simplified as

L<logN, W<NlogN, S<Nlog?N, logB <logN.
Let 7 := ®(L, W, S, B). Then, the covering number of the function class F can be bounded as
log N (6, F, |||l o) S Nlog® N(log N + loglog N) + N log® N(log((S*l) + loglog N)
< Nlog” N(log® N +log(671)),
Using Proposition|16|and setting 6 := 1/n, estimation error can be bounded as

2 ~ R Nlog® N(log® N +log(6~')) 1
B |7 £ | S 171 7)), L
L2(Px) Lo (supp(Px)) n n
< N2, N log® N(log® N + logn) n l
~ n n
Let us set N = n 3577 73577, Then, if N > 7=1/3, we have
~ 2 25 28s
E l — f° < pT 2 logt(n),
| P T
which completes the proof. O

D PROOF OF THE REGRET BOUND

For the convenience of the discussion below, we define C(z; 71, m2) and C(m1, m2) for two policies
1,2 as

m(y | )
ma(y | )

The value C(z; 71, m2) is referred to as the coverage in|[Huang et al.| (2025a). This value is known
to play an important role in the regret analysis of inference-time alignment. Specifically, this value
quantifies how well the policy 7, induced by the pre-trained model captures the comparator policy

*.

Cla;mi,m2) = Eyr, () { }, C(my,ma) := By py [C2; 71, m2)].

D.1 PREPARATIONS: PROPERTIES OF InferenceTimePessimism
For y > 0, we define 7 by

mx(-Ja) = argmax Eyp[f(@,y)] — - X3 || met(- | 2)).
p:density on Qy

Then, we can write ﬂ'ij in a closed form as
Xy | @) = met(y | @) [ (Fla,y) = 0,)]

where 0,, is the normalizing constant such that [ 7X(y | #) dy = 1. InferenceTimePessimism is
a practical algorithm to get samples from szfv that approximates 7X, where N € Z~ ¢ is a function
that determines the number of samples to be drawn from m.o¢ (- | ).

Now, we present the regret bound of InferenceTimePessimism inHuang et al.|(2025a)).
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Proposition 18 (Theorem 4.1 in |[Huang et al.| (2025a)). Let 7 be an arbitrary estimator of reward
r°, and we define eqy(x) := By r (1) [(F(z,y) — r°(2,y))?]. Moreover, let T* be a comparator
policy, Then, InferenceTimePessimism satisfies

Ewar* [TO (.23, y)] - Eywﬂ'fffNHw) [TO (33, y)]

N
SO ) Gule) Ol ) + 7 ylo) et exv i )

for some constant Cy > 0. Setting i ~ @@ g N > ?2( C(m;i(;“)) it holds

C(m;ﬂ'*ﬂ"ref) RM )

By [ 9)] = By, (1[0, 9)] S 4/Cs 7 ) - ().

D.2 ANALYSIS FOR THE FIRST STEP
In this section, we analyze the regret of InferenceTimePessimism when the reward function 7°
belongs to the anisotropic Besov space B, ,(€2).

We first prove the following lemma, which is important to connect (A1) of Assumption[6]and Propo-
sition[T8}

Lemma 19. Suppose that r° € B | (Q) satisfies (A3) of Assumption@ Then, for any € > 0, there
exists a comparator policy w} satisfying the following two conditions:

(i) ]EINPX [T* (SC) - Eywwj(~|aﬁ) [To (1'7 y)ﬂ <k¢ (ii) C(ﬂ—:v 7Tlfef) <e .

Proof. If we set the policy 7} as
115'5 (z) (y)
A(Se(x))

then the two conditions are satisfied. Indeed, the condition (i) is satisfied since

me(y | ) =

IE‘I‘I’\/PX [T*(Z) - ]EyNTI':(|£) [To(x7 y)” - EibNPX [Ey'\fﬂ':(\x)[r* (IL’) —r° (:L'a y)”

[e SEE A(&(m))}

S EINPX
= 6’

and the condition (ii) is satisfied since

* * 2
) =B B [ Z] | [ L)

Tret (Y ‘ T Teet (Y | )

< Eumpy U L/AS(@)” dy} S Epnpy {

p

-
<e 7.

el

This completes the proof. O

In this subsection, the reward model 7 is trained with n samples drawn from Px ® 7t (- | ). The
true reward value are queried from the oracle, thus we obtain n samples {(z;, y;, 7°(x;, yi)) } 1 q.
Using these samples, we can construct an estimator 7 € ®(L, W, S| B) of r° satisfying

1/2 ~ __5
=7 =72 (pyomey S 1T

€RM = (EwNPx [eRM(x)Q])

Theorem 20. Let r° € B, () with s € R4, p,q € [1,00], § > 1/p. Suppose that n oracles can

be used during training. Under Assumption@ wielsv achieves

Eompy [ (2) = By, 1o (@, 9)]] S cin” S ™57 75,

_ 8§ _.2(+47) _& 2004
Sfor p=n" 2 17287 and N Z n%+1 7247 log(n).
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Proof. Let m} is the policy satisfying the conditions of Lemma [T9] for an arbitrary ¢ > 0. Then,
Proposition |'1;8| implies that

Ey~7r;f [7“ (xa y)] - EywwfisNHz) [,ro (;U, y)]

N
S (s, 7Tlrcf)l/zem'l(x) + - Clay ml, Trer) + /“71 : ng(x) + #71 - enn() exp<01('lj%+u))

Taking the expectation over x ~ Px and using Cauthy-Schwarz inequality, we have
Eunpy [Ey: [1°(2, )] = Byt 1oy [ (2, 9]
* 172 *
,S (E.’IJNPX [C(a:, Tes 7"'1ref)])1/2 : (]EJJNPX [Ggm(l")]) / + 120 ExNPX [C(l‘, Tes 71'ref)]

A B )] + 17" B @] o0 ()

1/2

S (€ moet)?  (Bompy [a(@)]) " 4 i Crf , Trer)

. 1 9 1/2 pN
+ 12 Eszx [GRM( )] + M ' (EwNPx [eRM(x)D " exXp ((j’l(_R_’_’u)) )

If we set

o O o) ™2+ (Bampy [20(@)])) 2, N 2 7 og(Bam py [24(2)])

then we have

Eonpy [Eyn: 1@, 9)] = By, 1oy (@ 0)]| S (€2 meat)? - (B [ (@))%,

Using the property of 7 in Lemma (ii) and the error bound of (E,~ py [eay(z)]) '/2 we have
Eompy [Eyor: (@, 9)] = Eynr, (1) 1°(@,9)]| S €7F om0,
Combining this and the property of 7 in Lemma@ (i), we have
Eunpy (@) =yt (o)1 (2, 9)]]

)
< Esnupy [T* (r) — EyNW: [r°(z, y)H +Ezopy [Eywrg‘ [r°(z,y)] — EyrvrrfjsN [r°(z, )]

The right-hand side is minimized when € ~ nfﬁ'ﬁ. Thus, we have
Eonry [(@) = By, (1o r°(2,9)]| S n7 75 501,

Moreover, we have

g 5 .2(0+v) 5 . 2(049)

,u/:n%‘b«u Ty T B = By N 2 pBE 2 log(n).

D.3 IMPROVED REGRET VIA MULTI-STEP TRAINING

We now analyze the multi-step training algorithm described in Algorithm 2] First, we prove the
following lemma, which corresponds to Lemma[T9]in single-step analysis.

Lemma 21. Suppose that r° € By | (Q) satisfies (A1) of Assumptlonﬂ Moreover, let T be a policy
satisfying By py By (o) [r* (x) —7° (2, y)] < 7. Additionally, let 7 (- | x) is a distribution of y + z
where y ~ 7(- | x) and z ~ ./\/'(0,021). Then, for any € € (0,7), if 0% ~ 728/ there exists a
comparator policy 7} satisfying the following two conditions:

(i) Epopy [7“* () = Eymrs () [7° (2, y)]] <, (ii) C(ml,7r) <e 7.
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Proof. As same as Lemma|[I9] we set the policy 7} as

. Ls () ()
mi(y | @) = o
A(Se(z))
The condition (i) can be confirmed by the totally same calculation as Lemma [T9] To discuss the
condition (ii), we first lower bound the density of 7. For y € S.(x), we have

1 - —2|)?
iy | ) = W/w(z | z)exp<”i‘/202”> de

1 / - ly — =|*
> m(z | x)exp| ————— | d=.
(2mo2)d/2 Sa00(2) 202

Fory € Sc(z),2 € Sac-(x), it holds that ||y — z|| < [ly|| + [|z]| < €*/¢ 4+ (2CT)#/4 by (AD).
Therefore, we have

1 (874 4 (207')'6/‘1)2) ~
ﬁyw>exp<— / m(z | x)dz
(y|z) 0B} o) (z ] x)

202

B/d B/d)2
exp — (/e 4 (2CT)P/%)
202

L L2 9728/d
~ (2mo2)d/2 P~ 202 )’

Py r™(x) —r°(z,y) <207 =1 =Py zjn)r(x) — r°(z,y) > 207]

) Pyzimr (@) —r(z,y) < 2C07]

By setting 02 = 972%/4 /2, we have

1
~ > - 0
(ylz) 2 Gro

Therefore, we have

which completes the proof. O

Proof of Theorem[]} We define eg,[)(x) = Eywwﬁfl)(,w)[(?ﬁ)(x,y) — r°(x,y))%]"/? and

1/2
)= (]EIN Pyl (m)2]> . Moreover, let 7{”) be the policy which is the

pure output of InferenceTimePessimism, i.e., the distribution of samples drawn from
InferenceTimePessimism before adding Gaussian noises. We note that 1 4+ E- - % Puz, =

E .
For 7 = 1, Theorem 2 in |Suzuki| (2018) and Theorem@implies that
1 1
i = Eonpy e (2)7]

25
T 2541 2
Sng log” ng

Rgl) = ExNPX [T* (LC) - Ey~7r£”(<|m) [ro ((E, y)]]
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Next, we derive the relation between RET), R(T), e&ﬂ) and RSTH). First, we evaluate the regret
R(7) of the policy 7(7). We have

o ]‘ T y_ z 2 o
Eymr(f)(‘u)[r (z,y)] = W))Q)CZ/Z/WS )(Z | x)exp(”Q(O_W)r (z,y)dydz

! ") ly ="\ -
> (27r(0'(7'))2)d/2/7r. (Z|$)6Xp(2(o_(7_)2 r°(z, z) dy dz
|
1

|y —

)
“@er | ”Y“”)“p( 2o )'T°<$vy>—r0<wvz>|dydz

2|
)?
> /wET)(z | )r°(x, z) dydz — Ww/ﬂy)(z | x) exp (—%) llyl|* dy dz

= Eyw.,rif>(.|x) [T ( )] o ( (r )a
for some constant C”” > 0, where « := min(s — 1/p, 1). Therefore, we have
R = By [7(2) = Byt 4o [P 9)]] S R+ (07),
Using Theorem[TT] we have

61(?.7I’-I+1) = EINPXEyNTr(T+1)('|x) [(T(T+l)(xa y) - ro(xa y))2]
_2Bs
S [RE+ @] g T dog?(no).

By setting o(7) ~ (R{)28/4, we have
20

R < (R(.T))T

2B 2afBs

it S (RED)F B, 7 og? (ng).
and Lemma@implies that there exists a comparator policy 77 _ satisfying
Eonry [1'(@) = Eyur: (@ p)l] 6 Clat,,m) < 1RO,
Therefore, the same analysis as Theorem @implies that
741 * o

REMY = Epopy [1(@) = B, o ([ (@ 0)]]

< Eonry |1 (@) = By, [1°(0,9)]] + Bany [Eyons [°(2.9)] =B, _ oo [°(@,9)]]

Seted (ROYE. LD,

The right-hand side is minimized when e ~ (R(T))g . eﬁ@*l))ﬁ. Thus, we have

(
7£ 1, 2¢ 1 s
R(T+1) < (R(T)) 24y d (2+25+1)n5m =t logﬁ(no).

Let u := %% (% + 2§i1>‘ Then, we have

u uT 1
R <n iy s (bt )polylog(n)

25 1-uT

1

1 2+~ 25+1 1—u

< ( Ogn) poly log(n).
n

—1
'blogn an" logb
=€

Fora,b € (0,1),n logn i5 convergent to 1 as n — oo, the component including

(%)a'blog " is bounded by some constant. Thus, we have
1 23 1
1 27~ 25F1 1—u
R S ( o8 ") poly log(n),
n
which complets the proof. ]
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E AUXILIARY LEMMAS

E.1 GUARANTEES FOR THE METRIC pp, 4

In this section, we provide some facts on the map pp, 4.

Lemma 22. Let ¢ € (0,1, p1,...,pa € (0,1/q] be some constants. We define pp , : R?> — Rxg
by ppq(z,y) == (Zle |z; — yi\pi>q. Then, pp q is a metric on R%. Moreover, the volume of the
ball ?(w,r; Pp.q) centered at x € R with radius v > 0 is given by N(B(z,7;pp.q)) = Cp.q.d -

1sd 1 .
r1 ==L pi where Cp 4 4 s a constant that only depends on p, g, d.

Proof. First, we show that pj, , is a metric. The symmetry and the equivalence of p, , = 0 and
x = y are trivial. We show the triangle inequality. Let p; := |z; — y;|"*? for i € [d]. Since it holds
1/piq > 1, for any x,y, 2 € R?, we have

1
(i —y)" 9+ (yi — 2)" )70 > (2 —yi) + (yi — 21) = @0 — 23,

which implies p;(z;, y;) + pi(yi, 2i) > pi(2s, ;). Therefore, for each i € [d], p; is a metric on R.
Hence, we have

d q d q
Ppoa(@, %) = (me,zn“ﬂ < (Z <pi<xi,yz->+pi<yi,zz->>”q>
=1 i=1
d q d q
: (ZP*WZ‘)W) *(sz‘@m”q) = pa(9) + Pp.a(y:2).

Here, in the second inequality, we applied Minkowski’s inequality with 1/¢ > 1. This completes
the proof.

Next, we consider the volume of the ball B(z, 7; pp,q). We have

AB(@.ripa) = [ Ay -+ - dag
2;>0,5 z} i <rl/a
2/ Hui/pi_ldul"'dxd (Uz :x::h)
uiEO,Z uig"'l/q i
o~ r% 2 p%’
which completes the proof. 0

E.2 APPROXIMATION POWER OF NEURAL NETWORKS

In this section, we provide an approximation of elementary functions using neural networks.

Lemma 23 (Schmidt-Hieber| (2020)). For any € > 0, there exists a neural network ¢ €
®(L, W, S, B) with

L<log(l/e), W1, SSlog(l/e), BSH,
such that

sup |o(z,y) —xy| <e.
z,y€[-C,C]
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