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Abstract
In this paper, we propose an efficient yet effec-
tive train-time pruning scheme, Parameter-free
Differentiable Pruning (PDP), which offers state-
of-the-art qualities in model size, accuracy, and
training cost. PDP uses a dynamic function of
weights during training to generate soft pruning
masks for the weights in a parameter-free man-
ner for a given pruning target. While differen-
tiable, the simplicity and efficiency of PDP make
it universal enough to deliver state-of-the-art ran-
dom/structured/channel pruning results on various
vision models. For example, for MobileNet-v1,
PDP can achieve 68.2% top-1 ImageNet1k ac-
curacy at 86.6% sparsity, which is 1.7% higher
accuracy than those from the state-of-the-art algo-
rithms. PDP also improved the top-1 ImageNet1k
accuracy of ResNet18 by over 3.6% and reduced
the top-1 ImageNet1k accuracy of ResNet50 by
0.6% from the state-of-the-art.

1. Introduction
Deep neural networks (DNN) have shown human perfor-
mance on complex cognitive tasks (Silver et al., 2018), but
their deployment onto mobile/edge devices for enhanced
user experience (i.e., reduced latency and improved pri-
vacy) is still challenging. Most such on-device DNN sys-
tems are heavily resource-constrained, thus requiring high
power/compute/storage efficiency (Howard et al., 2017;
Vasu et al., 2023; Wang et al., 2019; Wu et al., 2018).

Such efficiency can be accomplished by mixing and match-
ing various techniques, such as designing efficient DNN ar-
chitectures like MobileNet/MobileViT/ MobileOne (Mehta
& Rastegari, 2022; Sandler et al., 2018; Vasu et al.,
2023), distilling a complex DNN into a smaller archi-
tecture (Polino et al., 2018), quantizing/compressing the
weights of DNNs (Cho et al., 2022; Han et al., 2016; J. Lee,
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2021; Li et al., 2019; Park & Yoo, 2020; Zhao et al., 2019),
and pruning near-zero weights (Kusupati et al., 2020; Liu
et al., 2021; Peste et al., 2021; Sanh et al., 2020; Wortsman
et al., 2019; Zafrir et al., 2021; Zhang et al., 2022; Zhu &
Gupta, 2018). Also, pruning is known to be highly comple-
mentary to quantization/compression (Wang et al., 2020b)
when optimizing a DNN model. However, pruning comes
at the cost of degraded model accuracy, and the trade-off is
not straightforward (Kusupati et al., 2020).

Hence, a desirable pruning algorithm should achieve high
accuracy and accelerate inference for various types of net-
works without significant training overheads in costs and
complexity. In this work, we propose a simple yet effective
pruning technique, Parameter-free Differentiable Pruning
or PDP, which uses a dynamic function of weights to gen-
erate soft pruning masks for the weights themselves. PDP
requires neither additional learning parameters (Zhang et al.,
2022) nor complicated training flows (Peste et al., 2021),
yet offers precise control on the target sparsity level (Kusu-
pati et al., 2020), while pushing the state-of-the-arts in ran-
dom/structured/channel pruning.

• PDP outperforms the state-of-the-art schemes on a va-
riety of models and tasks by being differentiable and
parameter-free without complex techniques.

• PDP offers a universal approach for efficient ran-
dom/structured/channel pruning, while delivering a high-
quality model optimization for a given pruning target.

• With a dynamic function of weights, PDP generates a
soft pruning mask without training, and thus does not
require gradient synchronization and SGD-update.

2. PDP: Parameter-free Differentiable Pruning
Complex pruning schemes do not always yield the best qual-
ity results, and their complexity and cost can make them
impractical and difficult to use. The proposed Parameter-
free Differentiable Pruning (PDP) is a highly effective and
efficient scheme that generates soft pruning masks using a
dynamic function of weights in a parameter-free and differ-
entiable fashion. Since PDP is differentiable, the task loss
can directly guide the pruning decision, offering an effec-
tive pruning solution. Simultaneously, being parameter-free,
PDP can be fast and less intrusive to the existing training
flow. Overall, PDP finds a weight distribution that is best
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(a) PDP training flow (b) Probability plot by w ∈ R[0,1] with t = 0.6

Figure 1. Computing z(w),m(w) for the chances for Z and M with t for the equal chance to be in Z and M .

for task loss and pruning. Instead of having extra parame-
ters, PDP indirectly influences the weight distribution for
high-quality pruning. For example, if a weight w is des-
tined to be pruned for some reason, instead of having a new
parameter to denote "to-prune", PDP lets SGD gradually
make w itself smaller relatively against other parameters
in the same entity, increasing its chance to be pruned over
time. We will first discuss the benefits of PDP over existing
differentiable pruning approaches in Section 2.1, present
PDP in Section 2.2, then show the extension to structured
and channel pruning in Section 2.3.

2.1. PDP Benefits

Learning/generating pruning masks with extra parameters al-
lows the pruning decision to be driven by a task loss through
back-propagation rather than the weight value itself (i.e., a
hard mask will zero out the gradient of a pruned weight),
but comes with the following issues.

• A pruning mask is (or derives from) a learnable parame-
ter, increasing the trainable parameter count significantly
and making the training process slow and complex (Elk-
erdawy et al., 2022; Romero et al., 2022; Sanh et al.,
2020; Savarese et al., 2020; Zhang et al., 2022).

• A hard mask is approximated into a soft mask using
a differentiable function, without guaranteeing the key
properties of a pruning mask, such as the [0,1] value
range or monotonicity (Ramakrishnan et al., 2020).

2.2. PDP Algorithm

To address the drawbacks of existing differentiable pruning
algorithms, we propose PDP. A soft mask should ideally
represent the chance of a weight w being in one of two
symbolic states, "to-prune" (noted as Z) or "not-to-prune"
(noted as M ), without requiring extra parameters or expen-
sive book-keeping. While the chance of w being in either
state is not straightforward to compute, PDP generates a
soft mask based on the fact that there exists an equal chance
point for both states. Let us consider differentiable func-
tions, z,m : R[0,∞] 7→ R[0, 1], to compute the chances

of being in Z and M , which must satisfy the following
conditions as a soft mask for magnitude-based pruning:

• z(|a|) < z(|b|) for |a| > |b|: a weight with a smaller
magnitude has a higher chance to be in Z.

• m(|a|) > m(|b|) for |a| > |b|: a weight with a larger
magnitude has a higher chance to be in M .

• z(w) +m(w) = 1 for any w: the total probability is 1.

z(w) =


1 if w = 0

0 if |w| = ∞
1
2 if |w| = t

Then, by the mono-
tonicity and continu-
ity, there exists t ∈
R≥0 such that z(t) =

m(t) = 0.5 (the equal chance for Z and M ), which leads
to the following boundary conditions on the left. Any func-
tion that satisfies these conditions can be used to compute
m(w) as a soft mask of w for train-time pruning. Let denote
that topK(X, k) is selecting the largest k elements from a
matrix X , abs(X) is an element-wise absolute operation,
and n(X) returns the element count. In PDP, we uniquely
identify t for a given prune ratio r ∈ [0, 1) for a layer with
a weight matrix W as in Fig. 1 (a).

• The sparsity r for each W can be easily obtained by
sorting the weights from the network by magnitude after
a few epochs w.r.t the global target sparsity as a one-time
task, or set by a user.

• Right after the SGD weight update, t is computed for
the weights W in each layer or entity. The role of t
is to abstract the current weight distribution of each
layer/entity for pruning.

• During forward-pass, a soft mask, m(w) for the weight
w is computed and applied for the masked weight ŵ,
which is differentiable. τ is the temperature parameter.

• Computing t and generating ŵ repeat iteratively to adapt
to the updated weight distribution.

Figure 1 (b) shows how the value of t is obtained in PDP
and a soft mask is computed. Specifically, t is set to the
value that is halfway between the largest pruned weight and
the smallest unpruned weight when a hard mask is applied
for a given sparsity ratio r. This ensures that each weight
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(a) ResNet18 (sparsity: 85.5%) (b) ResNet50 (sparsity: 89.8%) (c) MobileNet-v1 (sparsity: 86.6%)

Figure 2. PDP-powered pruning (in white box markers) delivers the Pareto superiority to the other schemes (i.e., the top-bottom corner
is the best trade-off) for ResNet18, ResNet50, and MobileNet-v1 on ImageNet1k. The size of markers indicates the relative training
overheads. The detailed numbers are in Table 5 in Appendeix.

has an equal probability of being pruned or kept. As a result,
PDP satisfies all the constraints for z and m. More details
on PDP training flow are in Section C in Appendix.

PDP uses a dynamic function of t to generate soft pruning
masks of W without the need for any extra trainable param-
eters. Instead, PDP lets the weights of the network adjust
themselves such that the information that would otherwise
be learned by the extra trainable parameters is instead fused
into the weights themselves and their distribution. This is
possible because each weight w is not only a coefficient in
a layer, but also an indicator of the relative chance of that
weight being pruned against the other weights in W . This
relative chance is from the value of t in Figure 1 (b).

2.3. PDP for Structured and Channel Pruning

The simplicity and non-intrusive nature of PDP make it
readily applicable to differentiable structured and channel
pruning. As an example of structured pruning, we consider
N:M pruning, where only N weights are kept out of every
M consecutive weights. N:M pruning is attracting high re-
search and industrial attention because top-of-the-line GPUs
support 2:4 configuration (Jeff Pool, 2021). To apply PDP to
N:M pruning, we apply it to every M consecutive weights
of the layer, as if the layer were composed of many sub-
layers, each with M weights. Since N:M dictates the target
sparsity, we can easily find the threshold t and generate the
soft mask, as shown in Figure 1 (a).

Channel pruning is another type of structured pruning that
can be easily applied to PDP with minor modifications. To
do this, we first compute the L2 norm of each channel in
the layer, and then use these norm values (in place of the
absolute values of the weights in Figure 1(a)) to compute a
soft mask for each channel. Using the soft mask to prune
all the corresponding weights in the channel will make the
channel pruning process differentiable. For the illustrations
on N:M and channel pruning usine PDP, please refer to
Fig. 7 in Appendix.

3. Experimental Results
We compared PDP with state-of-the-art random, structured,
and channel pruning schemes on various computer vision
models. We used two x86 Linux nodes with 8 NVIDIA
V100 GPUs on each in cloud. All cases were trained
from scratch. More experimental results and the hyper-
parameters are in Section E and Table 3 in Appendix.

Random Pruning: We compared PDP with the latest prior
arts, STR (Kusupati et al., 2020), GMP (Zhu & Gupta,
2018), DNW (Wortsman et al., 2019), GraNet (Liu et al.,
2021), OptG (Zhang et al., 2022), and ACDC (Peste et al.,
2021) on ResNet18, ResNet50, and MobileNet-v1 (He
et al., 2016; Howard et al., 2017) with the ImageNet1k
dataset (Deng et al., 2009). Since all of these schemes have
been experimented only with ResNet50 and/or MobileNet-
v1, we reproduced the pruning results in our controlled
environment with the identical data augmentations by run-
ning the official implementations from the authors (Kusu-
pati et al., 2020; Liu et al., 2021; Peste et al., 2021; Zhang
et al., 2022) or verified implementations from the prior
arts (Wortsman et al., 2019; Zhu & Gupta, 2018) as in
Section F in Appendix. We measured the accuracies and
Multiply-Accumulate Operation (MAC) during inference on
each experiment with layer fusion (i.e., BatchNorm folding),
and mainly focused on the high-sparsification cases. In our
experiments with ImageNet1k, all layers are pruned.

Since each algorithm used a different number of epochs and
showed results at different sparsity levels, a) we ran STR
first to set the target sparsity levels for all the networks for
fair comparisons, because all other schemes can control the
sparsity level precisely, b) we trained ResNet18/50 for 100
epochs and MobileNet-v1 for 180 epochs following (Kusu-
pati et al., 2020; Liu et al., 2021; Peste et al., 2021; Zhang
et al., 2022) except STR (which diverged with more epochs
for MobileNet-v1). For PDP, we fixed the target sparsity
for each layer based on the global weight magnitude at the
epoch 16 and started pruning at the rate of 1.5% of the target
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Network Method Batch size #epochs N:M avg GPU
2:4 4:8 1:4 2:8 cost ($)

ResNet18 LNM 256 120 69.6 70.2 65.1 68.4 395
PDP 1024 100 70.2 70.1 68.7 69.1 275

ResNet50 LNM 256 120 74.6 75.1 74.1 75.0 812
PDP 1024 100 75.9 75.8 75.0 75.3 380

Table 1. Structured Pruning: PDP can be directly to do N:M pruning due to its generality. PDP delivers the superior results than the latest
N:M pruning in (Zhou et al., 2021) at 46% less training cost.

Method Batch size #epochs Top-1 (%) MAC drop (%)
NISP ? 90 75.3 44.0
DCP 256 60 75.0 55.0
SCP 256 100 75.3 54.3
PDP 1024 100 75.9 54.9

* SCP, DCP, and NISP reported only ResNet50 results with MAC drop instead of sparsity.
Hence, for PDP, we report the nearest MAC drop we obtained (54.9%) at 57% channel sparsity.

Table 2. Channel Pruning: the generality of PDP helps deliver the state-of-the-art results without modifications.

sparsity per epoch for all the experiments which correspond
to s = 16 and ϵ = 0.015 in Algorithm 1 in Appendix. For
detailed experiment configurations, please refer to Table 3.
Every experiment began with a randomly initialized model
(i.e., no pre-trained model). For PDP, we had the following
variants to show the value of PDP with the same training
overhead or per-layer pruning budgets.

• PDP-base globally computes the target sparsity by
abs(W ) at epoch 16 across all the layers.

• PDP-base+ is the same as PDP-base yet with more
epochs to match the GPU cost of ACDC.

• PDP-str/optg uses the per-layer sparsity from
STR/OptG as input to normalize the MAC.

Our experimental results are highlighted in Fig. 2, where the
size of circles indicates the relative training overhead due
to pruning. Note that we used only one single node with 8
GPUs due to the limitation in the official implementations
for GraNet and OptG, thus both have the advantage of
not having the inter-node communication cost. Also, each
approach imposes a different level of training-time overhead,
mainly due to the various complexities of training flow and
pruning itself as captured in Fig. 2. Overall results can be
summarized as follows:

• PDP showed the best the model accuracy: PDP-base
on ResNet18 delivered 69% Top-1 accuracy which is
superior to other schemes but at higher MAC than only
STR and OptG.

• PDP offered the better model accuracy for a given prun-
ing target: With the custom sparsification target for each
layer, PDP-str/optg demonstrated the 2-3% higher Top-
1 accuracy at the same MAC, demonstrating the effec-
tiveness of the proposed method.

• When we use the similar GPU budget for additional
epochs with ACDC which is noted as PDP-base+, our

method further improved the Top-1 accuracy from 69%
to 69.5% for ResNet18 and from 74.7% to 75.3% for
ResNet50 with slight fewer MACs.

Structured/Channel Pruning: We compared PDP-driven
N:M pruning and channel pruning on the ImageNet1k
dataset (Deng et al., 2009). For N:M pruning, we repro-
duced the LNM (Zhou et al., 2021) results using the public
code base but without the color augmentation to keep the
experimental environment normalized. For PDP, we sim-
ply reused the hyper-parameters and configurations as in
Table 3 in our Appendix, and the top-1 accuracies by var-
ious N:M configs with ImageNet1k on ResNet18/50 are
presented in Table 1. We can observe that PDP outperforms
LNM on all the test cases, even with 4x larger batch size in
20 fewer epochs. LNM training cost is also much higher
than PDP because of its costly weight regularization and
complex back-propagation scheme.

For channel pruning, we compared PDP with SCP (Kang
& Han, 2020a), NISP (Yu et al., 2018), and DCP (Zhuang
et al., 2019). Note that SCP uses the β in BatchNorm to
select the channels to prune (i.e., beta ≤ ϵ), hence appli-
cable to limited types of networks only. We again reused
the hyper-parameters and configurations as in Table 3 in our
Appendix for PDP, and the top-1 accuracy with ImageNet1k
on ResNet50 is reported in Table 2 where we can see that
PDP shows superior performance for channel pruning.

4. Conclusion
We showed that a simple and universal pruning method PDP
can yield the state-of-the-art random/structured/channel
pruning quality on popular computer vision models. Our
method requires no additional learning parameters, yet
keeps the training flow simple and straightforward, mak-
ing it a practical method for real-world scenarios.
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(a) ResNet18

(b) ResNet50

(c) MobileNet-v1

(d) MobileNet-v2

Figure 3. Layer-wise sparsity allocation from the experiments in Table 2.
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(a) ResNet18

(b) ResNet50

(c) MobileNet-v1

(d) MobileNet-v2

Figure 4. Layer-wise Inference MAC distribution from the experiments in Table 2.
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Dense GraNet STR OptG ACDC PDP
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Table 4. The weight histograms in log scale for MobileNet-v1 in Table 2.
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A. Training Configurations and Hyper-parameters
Since some techniques in Sections 2 and 3 require extra training parameters and pruning scheduling as shown in Table ??,
we disclose the training configurations and hyper-parameters we found the best in Table 3.

B. Trade-off in Pruning
Pruning for DNN requires exploring a good trade-off between model accuracy and inference latency under a given pruning
target. Such a challenge can be elaborated with the MobiletNet-v1 Dense case in Fig. 5 where the following observations
can be made:

• The earlier layers have significantly fewer parameters than the later layers while still having comparable inference
MACs as shown in (a). For example, the final classifier, which is a linear layer, has the lowest inference MAC but the
2nd largest parameters.

• When per-parameter inference MAC is computed as in (b) (which is in log-scale), we can easily see that the parameters
in the earlier layers get much more involved in the inference than those in the later layers. For example, the MAC-per-
parameter for the last classifier is only 1.

Then, with a given pruning target, one pruning scheme can favor heavily pruning the classifier, as it is easier to hit the target
without affecting model accuracy much (i.e., each parameter shows up only once in the forward pass), but this would fail to
reduce the inference MAC enough. Then, the other scheme may favor aggressively pruning the earlier layers to significantly
minimize the inference latency at a much greater risk of degrading the model accuracy. Therefore, it is critical to find a good
balance between accuracy and inference speed. According to our experimental results, PDP can accomplish such a balance
using differential pruning w.r.t. the task loss. Such trade-off can be optimized differently depending on whether a particular
sparsity pattern or structure is enforced.

(a) Normalized inference MAC and parameter count for each layer.

(b) The inference MAC per parameter for each layer.

Figure 5. Layer-wise Inference MAC and Parameters from the MobileNet-v1 Dense case in Table 2.
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Network Method Top-1 GPU$ MAC Network Method Top-1 GPU$ MAC
Sparsity (%) cost($) (×e6) Sparsity (%) cost ($) (×e6)

Dense 69.8 167 1814.1 Dense 76.1 248 4089.2
GMP 65.2 217 263.5 GMP 73.6 483 419.0
DNW 64.4 206 263.5 DNW 70.7 466 419.0

GraNet∗ 66.0 198 539.6 GraNet∗ 72.5 321 868.0
ResNet18 STR 66.7 171 334.6 ResNet50 STR 72.8 417 373.7

85.5% OptG∗ 65.5 277 223.7 89.8% OptG∗ 72.1 591 333.0
ACDC 68.7 356 502.8 ACDC 74.7 635 735.6

PDP-base 69.0 169 408.6 PDP-base 74.7 325 502.8
PDP-base+ 69.5 336 405.1 PDP-base+ 75.3 610 483.0

PDP-str 68.6 169 334.7 PDP-str 74.0 325 373.7
PDP-optg 68.5 174 223.7 PDP-optg 74.2 332 332.9

Dense 70.9 277 568.7 Dense 71.9 297 300.8
GraNet∗ 61.4 367 145.7 GraNet∗ 56.3 439 103.4

MobileNet-v1 STR 61.7 176 47.2 MobileNetv-2 STR 60.0 285 40.6
86.6% OptG∗ 66.3 340 87.4 80.2% OptG∗ 65.4 545 76.8

ACDC 66.5 641 124.5 ACDC 64.1 812 93.9
PDP-base 68.2 281 88.3 PDP-base 66.8 354 95.3
PDP-str 65.3 307 47.2 PDP-str 60.7 307 40.6

PDP-optg 68.2 297 87.3 PDP-optg 66.5 343 76.6
$ the GPU cost ($) is based on a commercial cloud spot instance pricing.
* used only one with 8 GPUs due to the limitations in the public code.

Table 5. PDP compared with other unstructured pruning algorithms on ImageNet1K shows the best trade-off among accuracy, inference
MAC, and training overheads. More results are available in Section E in Appendix.

Random Pruning: Unstructured schemes make individual and independent pruning decision for each weight to maximize
the flexibility and minimize the accuracy degradation. Simple and gradual/iterative pruning based on the weight magnitude
has been studied extensively (Frankle & Carbin, 2019; Gale et al., 2019; Han et al., 2015; Zhu & Gupta, 2018). In these
schemes, once a weight is pruned, it does not have the second chance to become unpruned and improve the model quality.
To address such challenges, RigL (Evci et al., 2020) proposes to grow a sparse network by reallocating the removed weights
based on their dense gradients. Applying brain-inspired neurogeneration (i.e., unpruning some weights based on gradients)
and leveraging pruning plasticity is proposed (Liu et al., 2021). Altering the phase of dense and sparse training to accomplish
co-training of sparse and dense models is studied, which results in good model accuracies on vision tasks (Peste et al., 2021).
Unlike other magnitude-driven pruning, supermask training (Zhou et al., 2019) integrated with gradient-driven sparsity
is proposed in (Zhang et al., 2022), where accumulated gradients are used to generate binary masks and straight-through
estimator (Bengio et al., 2013) is used for backward propagation. Based on the lottery hypothesis (Frankle & Carbin, 2019),
pruning in one-shot with heuristics (Tanaka et al., 2020) or gradient-driven metrics (Wang et al., 2020a) is explored.

Structured/Channel Pruning: Unstructured pruning limits inference latency speedup as it suffers from poor memory
access performance, and does not fit well on parallel computation (Anwar et al., 2017; Liu et al., 2022). Recent research
extends unstructured pruning by imposing a particular sparsity pattern during pruning at the cost of lower model predictive
power, but increases the hardware performance during inference. One popular and effective form of structured pruning is
channel pruning, where some channels with negligible effects on the model accuracy are discarded (He et al., 2017; Kang &
Han, 2020b; Li et al., 2017). Using regularization to prune weights in a block is proposed in (Lagunas et al., 2021). (Kang &
Han, 2020a) leverages the β in BatchNorm to select the channels to prune (i.e., beta ≤ ϵ) with ReLU assumed, which limits
its applicability to wider set of DNNs. N:M pruning enforces that there are N non-zero weights out of every consecutive M
weights (Zhou et al., 2021) which enables a compact memory layout and efficient inferences on hardware (Jeff Pool, 2021;
Mishra et al., 2021; Zhou et al., 2021). A non-differentiable method for N:M pruning with complex back-prorogation based
on STE is presented in (Zhou et al., 2021).
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Algorithm 1 Training flow for PDP

1: procedure TRAIN(ϵ, s, r,W = [W0,W1, ...])
2: for epoch e in [0, 1, 2, s) do
3: for each mini-batch do
4: forward with [W0,W2, ...]
5: backward-pass and update W
6: end for
7: end for
8: Wp = topK(−abs(W ), r · n(W ))

9: [r0, r1, ...] = [
n(Wp∩W0)

n(W0)
,
n(Wp∩W1)

n(W1)
, ...]

10: for epoch e in [s, s+ 1, s+ 2, ...] do
11: [r̂0, r̂1, ...] = min(1, ϵ · (e− s)) · [r0, r1, ...]
12: for each mini-batch do
13: for i ∈ {0, 1, ...} do
14: Wh = topK(abs(Wi), (1− r̂i) · n(Wi))
15: Wl = topK(−abs(Wi), r̂i · n(W )i)
16: ti = 0.5{min(Wh) +max(Wl)}
17: end for
18: for i ∈ {0, 1, ...} do
19: [Zi,Mi] = softmax(

[t2i J,Wi◦Wi]
τ ) //element-wise

20: Ŵi = Mi ◦Wi //element-wise
21: forward-pass with Ŵi

22: end for
23: backward-pass and update W
24: end for
25: end for
26: Wi = ⌊Mi⌉ ◦Wi,∀i ∈ {0, 1, ..}
27: end procedure

C. PDP Algorithm and Training Flow
In order to obtain t in Fig 1, PDP needs a target pruning ratio r. The pruning ratio can be computed by selecting the
top weights with larger magnitudes across all the layers and then instantly convert the selections into the per-layer ratios.
Another way is to handcraft per-layer ratios, or reuse an existing configuration. Also, PDP is using the softmax operation
which makes the softness concentrated over the weights around the t (as shown in Fig. 1). Hence, we gradually increase the
target pruning ratio from 0 to r so that all low magnitude weights in the pruning range have a chance to use a soft-mask and
settle down smoothly. For that purpose, we introduce a scaling step ϵ to let each weight have opportunities to leverage a
soft-mask at least once, which leads to the training flow in Algorithm 1.

In lines 2-7, a normal training is performed for the first s epochs. Then, in lines 8 and 9, the per-layer target pruning ratio is
computed by selecting the bottom r · n(W ) weights globally in terms of the magnitude. Then, in the remaining epochs,
we use PDP to generate soft-masks as in the line 15, while gradually increasing the target ratio as in lines 10 and 11. The
updated weight distribution is captured by updating ti as in the line 16 for all weight matrices. Once the entire training is
over, we binarize the last mask for each weight to output the fully pruned weight for inference as in the line 26.

Overall, the average runtime complexity of PDP is O(W ), as we only need to exercise topK algorithm (i.e, sorintg W is
not necessary).

D. Ablation Study: Hyper-Parameter τ search
In the current PDP implementation, we use a global τ to control the level of softness in the pruning mask. Therefore, the
selection of τ affects the model predictive power and should be carefully tuned. In order to explore the methodology for the
τ search, we tried various values for MobileNet-v2 training, and the results are plotted in Fig. 6. The selection of τ affects
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the model predictive power as shown in Fig. 6 where there appears to be an optimal τ . For examples of MobileNet-v2,
τ = 1e− 4 is the best value and is used for all the experiments in Section 3.

Figure 6. MobileNet-v2 with varying τ values.

Since, Fig. 6 shows a concave curve, one could use a binary search to find the best τ values w.r.t. the top-1 accuracy. Also, it
could be possible to cast τ as a learnable parameter for each layer or apply some scheduling to improve the model accuracy
further (as future work), but still both approaches need an excellent initial point which can be found using a binary search
technique.

E. Additional Result for Section 3.
Different approaches made different sparsity allocations per the characteristics of the algorithm for a given pruning target,
which results in complex trade-offs between model accuracy and inference speed. We report the detailed sparsity and
inference MAC break-down for each layer in Fig. 3 and Fig. 4 on ImageNet1k and summarize our observations as follows:

• OptG prunes the early convolution layers quite aggressively in ResNet18 and ResNet50, which leads to very low
inference MACs as shown in Fig. 2 (a) and (b), yet at the cost of the worse Top-1 accuracy. For example, the inference
MAC of ResNet18 from OptG is more than 2x less than that from ACDC,

• Interestingly, STR becomes aggressive in pruning the early convolution layers in MobileNet-v1/v2, while OptG does
not expose such behavior to MobileNet-v1/v2 (unlike it did for ResNet18/50). Such characteristics also favor the
low inference latency over the model accuracy. Also, STR tends not to prune the last linear layer much as discussed
in (Kusupati et al., 2020).

• Unlike OptG and STR, ACDC does not prune the early convolution layers much for the tested networks, but prunes
somewhat actively for the late convolution and linear layers, which leads to high model accuracies at the cost of higher
inference latencies.

• PDP is somewhat between STR and ACDC and modest across all layers in pruning allocation for all the networks,
leading to superior accuracy and inference trade-offs. For example, the layers model.13.3 of MobileNet-v1 and
features.17.conv.1.0 of MobileNet-v2 have the most difference among algorithms, and PDP is modest in pruning these
two layers.

• OptG has very low inference MACs on the earlier layers of ResNet18 and ResNet50 due to its aggressive pruning on
these as seen in Fig. 3 (a) and (b), which leads to the extremely low inference latencies as shown in Fig. 2 (a) and (b).

• GraNet tends to prune the earlier layers less but the later layers more in general which explains why GraNet shows
the highest inference MACs in Fig. 2.

Table. 4 shows the pruned weight histograms of MobileNet-v1 from Table 2. We can observe that each algorithm affects the
weight distribution in a slightly different way.

• STR prefers to split the distribution more widely than others. For the example of the layer 5.0, STR clearly separated
the positive and negative weights with a wide gap centered at the zero, while others sis not, except PDP created a slight
dip around the zero to create mild separation.
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Network Method Sparsity (%)
80 70 60 50

MobileNet-v1
PDP 69.5 71.0 71.6 71.9
OptG 68.1 69.1 69.6 69.7

ACDC 68.5 69.9 70.9 71.4

ResNet-18 PDP 69.8 70.8 71.0 71.3
ACDC 69.4 70.3 70.6 70.8

Table 6. Top-1 accuracy with ImageNet1k: PDP outperforms other schemes with various pruning rates.

Network Method Validation Sparsity (%)
dataset 80 70 60 50

Bert
PDP matched 83.7 84.0 84.3 84.7

mismatched 83.4 83.8 84.4 84.5

OptG matched 80.3 80.7 81.3 81.2
mismatched 80.1 80.7 80.5 81.0

Table 7. Accuracies with MNLI benchmark: PDP maintains the similar accuracy lead over other schemes.

(a) 1:4 pruning (75% sparsity) (b) Channel pruning (50% sparsity)

Figure 7. PDP is simple and universal enough to be applied directly to structured and channel pruning.

• PDP tends to spread out the sparsified weight distributions more than others. For the example of the fc layer, the
weights from PDP range from -0.5 to 2.0, while those from others are from -0.5 to 1.5. On the other hand, GraNet
tends to keep the weight distributions tight.

We also experimented with varying pruning rates for PDP, OptG and ACDC for MobiletNet-v1 and ResNet-18 with
ImageNet1k, and Bert with MNLI benchmark under the same configurations as in Section 3. Overall, all tested schemes
delivered higher accuracy with lower pruning rate, yet we can observe that PDP keeps its superiority to other schemes over
all the tested pruning rates.

F. Code References
• Dense https://pytorch.org/vision/stable/index.html

• GradNet https://github.com/VITA-Group/GraNet

• OptG https://github.com/zyxxmu/OptG

• ACDC https://github.com/IST-DASLab/ACDC

• STR https://github.com/RAIVNLab/STR

• GMP https://github.com/RAIVNLab/STR

• DNW https://github.com/RAIVNLab/STR

• CS https://github.com/lolemacs/continuous-sparsification

• LNM https://github.com/NM-sparsity/NM-sparsity
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