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ABSTRACT

Graph Neural Networks (GNNs) are a specialized family of neural networks de-
signed to handle graph-structured data, enabling the modeling of complex rela-
tionships within graphs. Despite significant algorithmic improvements, the issue
of performance evaluation for GNNs has largely been overlooked in the literature.
A crucial but underexplored aspect of GNN evaluation is understanding how er-
rors are distributed across the graph structure, which we refer to as the “structural
error pattern”. To the best of our knowledge, this paper is among the first to high-
light the importance of paying attention to these error patterns, which are essential
not only for model selection—especially in spatial applications where localized or
clustered errors can signal critical issues—but also for providing algorithmic in-
sights into the model’s performance. In this work, we introduce a novel mathemat-
ical framework that analyzes and differentiates evaluation metrics based on their
sensitivity to structural error patterns. Through a thorough theoretical analysis, we
identify the limitations of traditional metrics—such as accuracy and mean squared
error—that fail to capture the complexity of these error distributions. To address
these shortcomings, we propose a new evaluation metric explicitly designed to
detect and quantify structural error patterns, offering deeper insights into GNN
performance. Our extensive empirical experiments demonstrate that this metric
enhances model selection and improves robustness. Furthermore, we show that it
can be incorporated as a regularization method during training, leading to more
reliable GNN predictions in real-world applications.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as powerful models for analyzing graph-structured
data, thanks to their ability to capture complex relational dependencies inherent in graph topolo-
gies. This makes GNNs particularly effective for node-level prediction tasks, such as classification
or regression, where the target prediction is associated with individual nodes and influenced by their
structural context and interactions with neighboring entities. As a result, GNNs have achieved sig-
nificant success across a wide range of applications, including traffic forecasting (Zhao et al., 2019a;
Guo et al., 2019; Zhang et al., 2020; Jiang & Luo, 2022), urban planning (Li et al., 2022; Chen,
2020), environmental monitoring (Zhang et al., 2023; Li et al., 2024), social network analysis (Kipf
& Welling, 2017), and sensor network analysis (Dong et al., 2023; Saadati et al., 2024). In these
contexts, data naturally form graphs, where nodes represent the entities of interest, and edges capture
relationships such as proximity or connectivity. By integrating local node features with structural
relationships across the graph, GNNs can deliver accurate, context-aware predictions that reflect the
underlying structural dynamics and dependencies.

Existing Gaps. Most research on GNNs has focused on algorithmic innovations, architectural im-
provements, and system optimizations, aiming to enhance computational efficiency, scalability, or
predictive performance. However, comparatively little attention has been given to developing evalu-
ation metrics specifically tailored for network applications Bechler-Speicher et al. (2025). Rigorous
evaluation frameworks are essential for reliably assessing model performance and guiding model
selection, which directly impacts practical deployment and real-world effectiveness (Shchur et al.,
2018; Dwivedi et al., 2023). In particular, for network applications, appropriate metrics should
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not only quantify predictive accuracy but also capture critical characteristics of error distributions,
such as clustering or dispersion patterns. Without structure-aware evaluation, practitioners lack
insights into how prediction errors manifest across the graph, hindering their ability to diag-
nose, address, and prevent localized failures effectively. Moreover, as demonstrated in (Huang
et al.) and in this paper, structural error patterns provide valuable insights for improving
GNN frameworks.

Limitations of Existing Evaluation Metrics. Currently, GNN model evaluation predominantly
relies on traditional metrics—such as accuracy (ACC) for node classification or mean squared error
(MSE) for node regression tasks. While these metrics are widely adopted, they evaluate predictions
independently at each node, ignoring the structural context and inter-node dependencies that are in-
herent to graph datasets. As we demonstrate both theoretically and empirically in this paper, such
metrics fail to distinguish between different structural error patterns, including clustered errors and
errors that are randomly distributed across the graph. This limitation is particularly problematic for
real-time and fault-tolerant network systems. For instance, in traffic monitoring, where the graph
structure represents spatial connectivity, clustered prediction errors may indicate localized conges-
tion or sensor malfunctions that require immediate attention, whereas randomly dispersed errors may
simply reflect minor inaccuracies (Xu et al., 2024; Fathurrahman & Gautama, 2024; Moretti et al.,
2025). We illustrate this limitation further through a quantitative example in Appendix D.1. Con-
sequently, the inability of conventional metrics to detect these structural error patterns significantly
restricts practitioners’ capacity for timely identification and intervention in critical regions. Thus,
developing evaluation frameworks explicitly designed to capture and quantify structural error
distributions in GNN predictions is both urgent and essential.

Contributions. In this paper, we address the under-explored yet crucial aspect of evaluating GNNs
within network applications. Specifically, we examine widely used evaluation metrics and identify
their inadequacies in capturing structural prediction error patterns. To overcome these limitations,
we propose a novel structure-aware evaluation metric explicitly designed to quantify and differenti-
ate structural error patterns, enabling precise detection of structural clustering in prediction errors.
The key contributions and findings of this paper are summarized as follows:

• We develop a comprehensive mathematical framework to analyze evaluation metrics commonly
employed in GNN tasks. Extending the concept of expressiveness (Definition 1), originally intro-
duced in the context of the graph isomorphism problem, we formally define and analyze the property
of exchangeability (Definition 2) inherent in traditional metrics such as ACC and MSE. Through rig-
orous theoretical analysis, we demonstrate critical limitations of exchangeable metrics, particularly
their inability to differentiate distinct structural error patterns, such as clustered, dispersed, or ran-
domly distributed errors (Theorem 3.1). This fundamental shortcoming emphasizes the necessity
for metrics explicitly tailored to capturing structural error distributions in GNN predictions.

• Motivated by our theoretical insights, we propose a novel structure-aware evaluation metric,
termed Structural Cluster Statistic (SCS). SCS quantifies structural autocorrelation among predic-
tion errors, effectively identifying structurally clustered error patterns. This metric complements ex-
isting evaluation methods by providing deeper insights into structurally predictive behaviors, thereby
improving both model selection and interpretability in network-structured tasks.

• Beyond evaluation, we demonstrate how our SCS metric can be adapted into a regularization
framework during model training. Specifically, we introduce the Structural-Cluster-Aware (SCA)
learning objective, an extension of SCS designed to explicitly regularize structural error distribu-
tions. Incorporating SCA encourages GNNs to yield predictions with fewer structurally clustered
errors, which is especially advantageous for critical network/graph applications requiring robust and
reliable performance, such as real-time fault-tolerant network systems.

• We extensively validate our proposed metric and regularization approach through empirical studies
involving multiple benchmark and synthetic datasets, as well as representative GNN architectures.
Our results yield several important findings: (1) existing GNN models consistently exhibit struc-
turally clustered prediction errors, highlighting the inadequacy of traditional evaluation metrics; (2)
distinct structural error patterns are significantly influenced by the underlying graph structure (e.g.,
regular versus power-law connectivity) rather than by architectural differences among GNN variants;
(3) our SCA regularization method effectively mitigates structural error clustering, significantly en-
hancing the structural robustness and reliability of GNN predictions.
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2 PRELIMINARY AND BACKGROUND

Graph Data and Network Applications. A graph is formally defined as G = (V, E), where V =
{v1, v2, . . . , vn} denotes the set of nodes (vertices), and E ⊆ V × V represents the set of edges that
capture relationships or interactions between nodes. Each node v ∈ V is associated with a feature
vector xv ∈ Rd, encoding relevant attributes or measurements specific to that node. In network
applications, prediction tasks are commonly defined at the node level, with each node assigned a
label yv ∈ Y . For instance, in environmental monitoring scenarios, the goal might be to classify each
node based on pollution intensity (e.g., low, moderate, or high) using node-specific measurements.
The primary objective is therefore to learn a predictive model that effectively integrates local node
features and graph topology to accurately predict individual node labels. Additionally, we denote the
adjacency matrix as A, the degree matrix as D and the graph Laplacian and normalized Laplacian
matrices as L = D−A and L̂ = D−1/2LD−1/2, respectively.

Graph Neural Networks (GNNs). GNN models broadly fall into three families based on their
approaches for capturing graph structures: message-passing (spatial-based), spectral-based, and
graph transformer methods (see Appendix A for a more detailed introduction and discussion).
Message-passing GNNs capture dependencies by iteratively aggregating and updating node em-
beddings based on local neighborhood information. These models naturally encode local graph
structures without explicit spectral decomposition, making them computationally efficient and in-
tuitive. Spectral-based GNNs define graph convolution operations via spectral filtering based on
the eigen-decomposition of the graph Laplacian. They effectively capture global graph structures
but often require computationally efficient approximations due to complexity constraints. Graph
transformers extend the spatial approach by incorporating self-attention mechanisms, dynamically
adapting the weights of neighboring nodes. This method allows flexible modeling of both local and
global dependencies and often uses positional encodings to further enhance node representations.

Performance Evaluation of GNNs. The performance evaluation of GNN models is typically car-
ried out on a dedicated test set, denoted as Vtest = {v1, v2, . . . , vk} ⊂ V . Ground-truth labels for
these nodes are represented as Ytest = {y1, y2, . . . , yk}, while the predictions from the GNN model
are denoted by Ŷ = {ŷ1, ŷ2, . . . , ŷk}. The evaluation involves quantifying discrepancies between
predicted and true labels using an appropriate performance metric. Formally, given a complete vec-
tor of ground-truth labels Y = [y1, y2, . . . , yk] and corresponding predictions Ŷ = [ŷ1, ŷ2, . . . , ŷk],
we define the error vector ϵ as:

ϵ = (ϵ1, . . . , ϵk), ϵi = f(yi, ŷi),

where f(·) denotes a pointwise loss function that measures the deviation or severity of the prediction
error. Typical examples include the square error f(yi, ŷi) = (yi − ŷi)

2 for regression tasks, or the
misclassification indicator f(yi, ŷi) = I(yi ̸= ŷi) for classification tasks.

3 MAIN RESULTS

In this section, we present our main results. We first introduce a mathematical framework that allows
us to formally analyze the capability of evaluation metrics, highlighting critical limitations inherent
in commonly used metrics. Based on these insights, we propose a novel structure-aware evaluation
metric inspired by Moran’s I statistic Moran (1950), and demonstrate how it can also serve as a
regularizer during the training process.

3.1 LIMITATIONS OF CURRENT EVALUATION METRICS

We first introduce a formal framework to rigorously characterize the capability of evaluation metrics
to differentiate distinct structural error patterns. Inspired by the concept of expressive power in GNN
literature, we define the expressiveness of an evaluation metric as its ability to distinguish between
different error distributions in expectation:
Definition 1 (Distribution Expressiveness of Evaluation Metrics). Let µ(·) be an evaluation metric
mapping the error vector ϵ to a real value. Given two distinct error distributions P1 and P2, we say
the evaluation metric µ can differentiate between these distributions if EP1 [µ(ϵ)] ̸= EP2 [µ(ϵ)].

3
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This definition allows us to formally evaluate how well existing metrics capture meaningful differ-
ences in structural error distributions. Next, we introduce a key property commonly exhibited by
traditional metrics used in evaluating GNN performance.
Definition 2 (Exchangeable Measure). For a graph with N nodes, an evaluation metric µ(·) is said
to be exchangeable if, for any permutation π of node indices {1, 2, . . . , N}, it holds that:

µ(ϵ) = µ(π(ϵ)), where π(ϵ) = [ϵπ(1), ϵπ(2), . . . , ϵπ(N)].

Intuitively, exchangeability implies that the metric’s evaluation does not depend on the ordering of
errors but only on their multiset. Conventional metrics for evaluating GNN performance (e.g., ACC,
MSE, F1-score, AU-ROC) satisfy this definition. For instance, ACC, defined as:

µACC(ϵ) =
1

N

N∑
i=1

I(ϵi = 0),

where I(·) is an indicator function, clearly remains unchanged under any permutation π of the node
indices:

µACC(ϵ) =
1

N

N∑
i=1

I(ϵi = 0) =
1

N

N∑
i=1

I(ϵπ(i) = 0) = µAP(π(ϵ)).

Thus, ACC is exchangeable, and similar reasoning can be applied to other common evaluation met-
rics. However, exchangeable metrics inherently face critical limitations, which we formalize in the
following theorem:
Theorem 3.1 (Limitation of Exchangeable Metrics). Let P1 and P2 be two distinct error distribu-
tions for a GNN on a given graph G. Suppose µ(·) is an exchangeable evaluation metric. Then,

EP1 [µ(ϵ)] = EP2 [µ(ϵ)], provided that EP1 [S(ϵ)] = EP2 [S(ϵ)] ,

where S(ϵ) =
∑

v∈V f(yv, ŷv).

Theorem 3.1 indicates that exchangeable metrics cannot distinguish between error patterns if the
total magnitude or frequency of errors is identical, regardless of how those errors are distributed
over the graphs. These metrics treat errors merely as interchangeable entities, failing to account
for their topological arrangement on the graph. Consequently, such metrics are insufficient for
evaluating GNNs predictive performance, especially in applications where the structure of errors
carries critical information.

Concrete Examples. To illustrate these theoretical limitations more concretely, consider two mod-
els predicting traffic flow in a network, with different error distributions. In the first model, errors are
uniformly distributed across the network with larger individual errors. In the second model, smaller
errors occur, but they are concentrated at specific critical locations. Traditional metrics, such as
MSE, would favor the second model due to its lower average error. However, these metrics fail to
capture the impact of error distribution. Despite smaller average errors, the clustering of errors in
critical areas (e.g., congestion points) can have severe consequences. In contrast, the first model,
though it has larger individual errors, distributes them evenly, leading to a lower risk of localized
failures. This example demonstrates how traditional metrics can overlook critical issues by not con-
sidering the structural distribution of errors. For a detailed quantitative example, see Appendix D.1.

Figure 1 provides a visual illustration, where scenarios exhibit identical counts of correct and in-
correct predictions (i.e., same ACC) but vary significantly in structural error patterns, ranging from
clustered to dispersed distributions. As discussed, this variability is critically important in practi-
cal applications such as traffic management or environmental monitoring, where clustered errors
demand urgent attention. The inability of traditional exchangeable metrics to differentiate these
structurally distinct patterns highlights substantial risks associated with model evaluation and de-
ployment decisions based solely on conventional metrics.

3.2 STRUCTURAL CLUSTERING STATISTICS (SCS)

As illustrated, traditional evaluation metrics typically treat prediction errors independently, neglect-
ing the structural relationships and thus failing to differentiate between randomly distributed errors
and meaningful structural clusters. To address this, we need a metric, which explicitly accounts for
node-to-node relationships within the graph.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) Random Error (b) Cluster Error (c) Dispersed Error

Figure 1: An illustration of distinct structural error patterns. Figure 1(a) (Random Error): Incorrect
predictions (marked by red crosses) are randomly dispersed across the graph. Figure 1(b) (Cluster
Error): Incorrect predictions are concentrated within a localized region of the graph. Figure 1(c)
(Dispersed Error): Incorrect predictions are evenly spaced and distributed apart from one another
across the graph. These differing patterns underscore the necessity of using structure-aware evalua-
tion metrics when assessing GNN predictions.

Limitations of Naive Structural Metrics. A straightforward structural evaluation method might
measure the structural pattern of errors using average shortest-path distances between incorrectly
predicted nodes. However, this naive approach has significant practical limitations. First, it is
computationally expensive, particularly for large graphs. Moreover, in graphs with irregular or
hub-based structures (e.g., power-law distributed graphs), highly connected nodes disproportion-
ately influence distance-based metrics, obscuring genuine structural clustering patterns and limiting
interpretability Barabási (2013).

Formulation of SCS. To address these shortcomings, we introduce the SCS metric, inspired by
Moran’s I statistic. SCS quantifies structural autocorrelation by measuring how prediction errors at
each node correlate with those of neighboring nodes. This property makes it particularly effective
for identifying structural clusters of prediction errors.

Formally, let the prediction error at a test node v ∈ Vtest be defined as ϵv = f(yv, ŷv), where yv is the
ground-truth label and ŷv is the predicted label generated by the GNN. SCS, computed exclusively
over the test set Vtest, is given by:

SCS(ϵ,Vtest) =
k

W

∑
v,u∈Vtest

wvu(ϵv − ϵ̄)(ϵu − ϵ̄)∑
v∈Vtest

(ϵv − ϵ̄)2
, (3.1)

where ϵ̄ = 1/k
∑

v∈Vtest
ϵv denotes the mean prediction error across all test nodes, wvu represents

the connection weight, W =
∑

v,u∈Vtest
wvu is the sum of all connection weights over the test set,

and k = |Vtest| is the number of nodes in the test set.

SCS explicitly quantifies the correlation of prediction errors among neighboring nodes within the
test set. A positive SCS indicates structurally clustered errors, revealing localized regions where the
model fails to accurately capture structural dependencies. Values close to zero indicate randomly
distributed errors, while negative values imply structurally dispersed error patterns, highlighting dis-
crepancies between model predictions and underlying graph structures. By employing this adapted
SCS, we obtain a precise, interpretable, and computationally efficient measure of predictive per-
formance over the graph, thus facilitating targeted model improvements by pinpointing test regions
where GNN models exhibit poor structural predictive capabilities.

3.3 STRUCTURAL-CLUSTER-AWARE (SCA) REGULARIZATION

In previous sections, we introduced the SCS as a robust metric for effectively detecting and quan-
tifying structurally clustered errors in GNN predictions. While identifying these error clusters is
essential, from a practical standpoint, promoting structurally uniform error distributions is equally
critical for real-world network applications. Specifically, structurally correlated prediction errors
can propagate rapidly within real-time and fault-tolerant systems—such as environmental sensor
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(a) planar-power-law (b) planar-regular

Figure 2: An illustration of structural error patterns in graphs with different structures. The x and y
axes represent the coordinates of nodes, and the intensity of the red colour indicates the severity of
prediction errors. As shown, the planar-power-law (left) exhibits pronounced structurally clustered
errors, whereas the planar-regular (right) displays a more dispersed, uniformly distributed error.

networks, smart grids, and critical infrastructure monitoring—potentially leading to biased predic-
tions, localized failures, and suboptimal decision-making (Zhao et al., 2019b; Chu & Sethu, 2010).
Therefore, an important question arises: can we leverage our proposed structural metric to encour-
age GNN models to produce more uniformly distributed prediction errors?

Uniform error distributions offer significant practical benefits. For instance, in environmental moni-
toring, uniformity reduces the likelihood of systematic regional biases, thereby enhancing reliability,
fairness, and accuracy in environmental assessments and policy-making. Similarly, for sensor net-
work deployments, structural uniformity in prediction errors mitigates localized blind spots or overly
concentrated error regions, leading to improved overall system resilience and balanced performance
across the entire graph domain (Chu & Sethu, 2010).

However, directly employing the original SCS formulation as a regularizer presents notable op-
timization challenges. Specifically, the original metric can yield negative and unbounded values,
complicating gradient-based training and potentially causing numerical instability, especially when
prediction variances are small. Minimizing negative structural autocorrelation might inadvertently
promote dispersed error patterns rather than uniformity, contradicting the desired optimization goal.

To overcome these limitations, we propose a modified regularization term, Structural-Cluster-Aware
(SCA) regularizer. This adjusted form, based on a squared version of the SCS metric, ensures the
regularization term is always non-negative and bounded, effectively penalizing significant structural
autocorrelation (either clustered or dispersed). Formally, the SCA regularization term is defined as:

LSCA(ϵ,G, δ) =
(

k

W

∑
i,j wij(ϵi − ϵ̄)(ϵj − ϵ̄)∑

i(ϵi − ϵ̄)2 + δ

)2

, (3.2)

where all variables are as previously defined. We introduce a small positive constant δ in the de-
nominator to ensure numerical stability, particularly in situations where prediction variance is low,
thereby avoiding potential division by zero. In practice, δ is typically chosen as a very small value
(e.g., 10−6), minimally influencing the regularization objective while effectively preventing nu-
merical instabilities. The squared formulation of the SCA regularizer guarantees non-negativity,
explicitly penalizing significant structural autocorrelation (whether clustered or dispersed). This ap-
proach effectively encourages structural uniformity in prediction errors and mitigates localized error
clustering. Integrating this structure-aware regularization into the total loss function results in:

Ltotal = Ltask(Y, Ŷ) + λLSCA(ϵ,G, δ), (3.3)

where λ ≥ 0 is a hyperparameter controlling the strength of the structural regularisation. Employing
this regularizer encourages structurally consistent predictions, enhances robustness to faults (cluster
errors), and ultimately improves the reliability of GNN systems deployed in real-time environments.

4 EMPIRICAL STUDY

In this section, we present an empirical study to investigate the structural characteristics of prediction
errors in GNN models. Specifically, we aim to address the following key research questions:
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Dataset Cora Citeseer California Housing Air Temperature
Model SCS ↓ ACC(%) ↑ SCS ↓ ACC(%) ↑ SCS ↓ MSE ↓ SCS ↓ MSE ↓
GCN 0.21±0.03 84.4±0.5 0.23±0.03 79.2±0.6 0.14±0.02 0.038±3e-3 0.15±0.03 0.031±2e-3
GCN-SCA 0.10±0.01 84.0±0.4 0.11±0.02 78.8±0.5 0.10±0.01 0.040±2e-3 0.09±0.01 0.033±2e-3
GraphSAGE 0.19±0.02 88.5±0.4 0.20±0.03 80.1±0.4 0.13±0.03 0.041±2e-3 0.16±0.02 0.029±2e-3
GraphSAGE-SCA 0.11±0.01 88.2±0.3 0.13±0.02 79.7±0.4 0.08±0.01 0.042±2e-3 0.10±0.01 0.030±1e-3
GAT 0.18±0.03 88.8±0.3 0.19±0.02 80.4±0.5 0.11±2e-3 0.036±2e-3 0.14±0.01 0.027±1e-3
GAT-SCA 0.08±0.01 88.6±0.4 0.09±0.01 80.1±0.4 0.07±0.01 0.040±1e-3 0.09±0.01 0.029±1e-3
ChebNet 0.25±0.02 86.5±0.4 0.26±0.02 77.8±0.5 0.20±0.02 0.043±2e-3 0.19±0.03 0.032±2e-3
ChebNet-SCA 0.15±0.01 86.2±0.3 0.18±0.01 77.4±0.4 0.12±0.01 0.044±2e-3 0.14±0.02 0.033±2e-3
GraphTransformer 0.15±0.02 89.0±0.3 0.16±0.02 81.2±0.4 0.18±0.02 0.035±2e-3 0.18±0.02 0.027±1e-3
GraphTransformer-SCA 0.07±0.01 88.7±0.3 0.10±0.01 80.9±0.4 0.11±0.01 0.035±1e-3 0.12±0.01 0.028±1e-3
Avg. Improvement (%) 47.96 41.35 36.84 32.92

Table 1: Evaluation of GNN models with and without the proposed SCA regularization across clas-
sification (Cora, Citeseer) and regression (California Housing, Air Temperature) datasets. Models
labeled ’-SCA’ indicate training with our proposed regularization. Lower values (↓) indicate bet-
ter performance for SCS and Mean Squared Error (MSE), while higher values (↑) indicate better
performance for accuracy (ACC). Bold entries highlight improvements achieved by incorporating
SCA. The final row summarizes the average percentage of SCS improvement across each dataset,
illustrating that SCA effectively mitigates structural clustering in prediction errors.

(a) ACC Classification (b) SCS Classification (c) MSE Regression (d) SCS Regression

Figure 3: An illustration of the effects of the regularization hyperparameter λ on classification and
regression tasks. Figures 3(a) and 3(b) show that increasing λ reduces structural clustering of errors
(SCS) but simultaneously decreases classification accuracy (ACC). Similarly, Figures 3(c) and 3(d)
illustrate that increasing λ reduces structural clustering in regression errors (SCS) at the expense of
increased MSE. Thus, λ effectively manages the trade-off between structural uniformity of errors
and overall predictive performance.

1. Do existing GNN models exhibit structurally clustered prediction errors, and if so, how do these
clusters differ among various GNN architectures?

2. Is the proposed SCS effective in identifying structurally clustered errors?

3. Can SCA learning effectively mitigate structural clusters in errors?

Implementation details and hyperparameter selections are deferred to the supplementary material.

4.1 EXPERIMENTAL DESIGN

Datasets and Baselines. To comprehensively evaluate our proposed methods across diverse con-
texts, we select benchmark datasets covering both node classification and regression tasks. Specif-
ically, we use two widely adopted citation network datasets for node classification tasks: Cora
and Citeseer(Sen et al., 2008). For node regression tasks, we use two spatially structured real-
world datasets: the California Housing Prices datasetPace & Barry (1997) and the Air Temper-
ature dataset Hooker et al. (2018). Additionally, to investigate how underlying graph structures
influence model performance, we synthesize two planar graph regression datasets characterized
by distinct structural patterns: planar-regular (uniform degree distribution) and planar-power-law
(power-law degree distribution). The procedure for synthesis is provided in the supplementary
material. For GNNs, we select five representative models covering three prominent categories:
message-passing-based GNNs (GCN(Kipf & Welling, 2017), GraphSAGE(Hamilton et al., 2017),
and GAT(Veličković et al., 2017)), spectral-based GNNs (ChebNet(Defferrard et al., 2016)), and
graph transformers (Graph Transformer(Dwivedi & Bresson, 2020)). The implementations for these
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baselines follow widely adopted repositories(Dwivedi et al., 2023; Dwivedi & Bresson, 2020; Hu
et al., 2020), employing standard training procedures and hyperparameter tuning strategies based on
validation sets to ensure fairness.

Evaluation Tasks and Metrics. We conduct evaluation across two distinct prediction tasks: node
classification and node regression. For classification datasets, we measure performance using ACC,
while for regression datasets, we employ MSE. To evaluate the structural characteristics of predic-
tion errors, we use the proposed SCS. Each GNN model is evaluated under two conditions: with and
without our proposed SCA regularization. For all datasets, we adopt either default data splits (where
provided) or apply a standard random split with a 60%/20%/20% ratio for training, validation, and
testing subsets, respectively. All reported results are averaged over five independent trials, ensuring
statistical robustness and reproducibility.

4.2 EXPERIMENTAL RESULTS

Structural Error Patterns. Our first set of experiments investigates whether existing GNNs pro-
duce structurally clustered prediction errors and evaluates if our proposed SCS effectively captures
these patterns. Figure 2 illustrates representative structural error distributions on graphs with dif-
ferent underlying structures. Notably, we observe that the graph structure itself, rather than specific
GNN architectures, primarily determines the structural distribution of prediction errors. Specifi-
cally, planar graphs with power-law connectivity tend to exhibit pronounced structurally clustered
errors, while planar graphs with regular connectivity display more uniformly dispersed errors. Given
that many real-world graphs, such as those found in sensor networks or urban infrastructures, of-
ten exhibit scale-free (power-law) characteristics Barabási (2013), our findings suggest that GNNs
deployed in these contexts will typically produce structurally clustered prediction errors. This obser-
vation is quantitatively confirmed by positive SCS values across all evaluated GNN models (Table 1).
The consistency of these results across different architectures further emphasizes that structural clus-
tering is an intrinsic property related to the underlying graph topology rather than being driven solely
by model-specific factors. These findings not only highlight the critical importance of explicitly con-
sidering error structures on the graph in evaluation but also validate the effectiveness of our proposed
SCS metric in identifying and quantifying structural clustering.

Effectiveness of SCA. We next assess the effectiveness of our proposed SCA regularization
method. Table 1 clearly demonstrates that incorporating SCA significantly reduces structural cluster-
ing of prediction errors (indicated by consistently lower SCS values) across all GNN architectures
and datasets. Particularly notable improvements occur in message-passing-based models such as
GCN, GraphSAGE, and GAT, where structural clustering is substantially reduced by approximately
40%-48%, with only minor degradations in predictive performance (ACC or MSE). Transformer-
based and spectral-based models exhibit slightly smaller reductions, likely due to their inherently
less-clustered baseline error distributions. Nevertheless, these improvements underscore the broad
practical effectiveness of the SCA regularization, particularly valuable for structurally sensitive real-
world applications like environmental monitoring and sensor networks.

Hyperparameter Analysis. Finally, we conduct a sensitivity analysis on the regularization hy-
perparameter λ, which controls the intensity of the SCA objective. As illustrated in Figure 3, in-
creasing λ systematically reduces structural clustering of errors (lower SCS) for both classification
(Figure 3(b)) and regression (Figure 3(d)) tasks. However, these improvements in structural uni-
formity come at a slight cost to predictive accuracy, as demonstrated by decreased ACC scores for
classification (Figure 3(a)) and increased MSE for regression (Figure 3(c)). Consequently, λ acts as
a trade-off parameter balancing the structural uniformity of prediction errors against overall predic-
tive accuracy. Empirically, we identify λ = 0.1 as a favorable setting for our settings, achieving a
substantial reduction in structural clustering without significantly compromising predictive perfor-
mance, as summarized in Table 1.

5 RELATED WORKS

Graph representation learning has received substantial attention recently, driven by the increasing
necessity to effectively analyze complex relational structures embedded within graph data (see com-
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prehensive surveys by Hamilton (2020); Kazemi et al. (2020)). Among various approaches, Graph
Neural Networks (GNNs) have proven particularly effective, achieving state-of-the-art performance
across diverse graph-related tasks, notably in spatial applications such as traffic forecasting, urban
planning, and environmental monitoring (Jiang & Luo, 2022; Dong et al., 2023; Zhang et al., 2023).
Broadly, existing GNN architectures can be categorized into three main classes based on their struc-
tural learning approaches: (1) message-passing methods, which aggregate local neighborhood infor-
mation to capture immediate graph connectivity (Kipf & Welling, 2017; Xu et al., 2020; Veličković
et al., 2017); (2) spectral-based methods, leveraging graph Laplacian eigen-decompositions to en-
code global structural information (Defferrard et al., 2016; Bruna et al., 2013); and (3) graph trans-
former models, utilizing self-attention mechanisms to model long-range node interactions and de-
pendencies (Dwivedi & Bresson, 2020). Given their practical significance, extensive research efforts
have focused on theoretical foundations (Jegelka, 2022; Bronstein et al., 2021), architectural inno-
vations (Wu et al., 2020), and computational optimizations for efficient training and inference of
GNNs (Shao et al., 2024; Fey et al., 2021).

Despite these advancements, recent studies emphasize that inadequate evaluation methodologies re-
main a crucial barrier hindering further progress in the GNN field (Bechler-Speicher et al., 2025;
Shchur et al., 2018). Rigorous and reproducible evaluation frameworks have become recognized as
essential components of trustworthy and robust machine learning research, directly impacting model
selection and practical deployment (Zhang et al., 2021; Pineau et al., 2021). Benchmarking studies
in graph representation learning have comprehensively evaluated GNN performance across diverse
hyperparameter configurations and learning paradigms, highlighting that evaluation outcomes can
differ significantly under inductive versus transductive settings, as well as various temporal scenar-
ios (Dwivedi et al., 2023; Dong et al., 2024; Errica et al., 2019; Hu et al., 2020; Lv et al., 2021).
Furthermore, a growing body of literature has extended these evaluations to temporal domains, as-
sessing the effectiveness of temporal GNN models in dynamic graph settings (Junuthula et al., 2018;
Haghani & Keyvanpour, 2019; Poursafaei et al., 2022; Huang et al., 2024; Su & Wu, 2025).

Nevertheless, a crucial yet underexplored area in current research is the evaluation metrics of GNNs,
particularly regarding structural error distributions. This paper addresses this gap by proposing a
novel evaluation metric explicitly designed to capture and quantify structural clustering patterns in
GNN prediction errors, providing deeper insights for model assessment and deployment.

6 CONCLUDING DISCUSSION

Conclusion. In this paper, we investigated evaluation metrics tailored for GNNs. We identified
key limitations of conventional exchangeable metrics—such as ACC and MSE—in capturing essen-
tial structural error patterns, particularly the distinction between clustered and randomly dispersed
prediction errors. To address these limitations, we proposed SCS, a novel structure-aware evalua-
tion metric, explicitly designed to quantify structural clustering in prediction errors. Additionally,
we introduced an extension of this metric, termed SCA learning, which serves as a regularizer to
mitigate structurally clustered errors during GNN training. Our extensive empirical evaluation con-
firmed that the proposed metric provides deeper insights into structural error distributions, effec-
tively distinguishing among different structural error patterns and improving both model selection
and robustness in network structured tasks.

Limitations and Future Work. An intriguing observation from our empirical study is the strong
relationship between structural error patterns and underlying structural properties of graphs, such
as degree distributions. This correlation likely emerges because GNN predictions inherently de-
pend on the provided graph topology. Further research is needed to thoroughly investigate this
phenomenon and elucidate the precise mechanisms through which graph structure influences GNN
predictive behaviors. Additionally, while our current framework focuses on structural error clus-
tering, incorporating temporal dynamics or other structural patterns into this evaluation approach
represents a promising direction for future work. We provide an extended discussion of these poten-
tial extensions in Appendix D.2. Integrating temporal dimensions would significantly enhance the
applicability and robustness of our framework, enabling more comprehensive evaluations for GNNs
in spatial-temporal contexts.

9
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs only as a general-purpose writing assistant to aid in grammar checking and polishing
the writing. The LLM did not contribute to research ideas, experiment design, theoretical analysis,
or result interpretation.

A DIFFERENT GRAPH NEURAL NETWORKS FAMILIES

Graph Neural Networks (GNNs) have become one of the most effective machine learning methods
for modeling relational and spatial data due to their powerful ability to encode complex structural
dependencies. Based on the approach used to capture graph dependencies, GNN architectures can
broadly be categorized into three main families: spatial-based (message-passing) GNNs, spectral-
based GNNs, and graph transformers. In this section, we provide a comprehensive introduction to
each of these GNN families, highlighting their theoretical foundations, advantages, and practical
considerations.

A.1 SPATIAL-BASED (MESSAGE-PASSING) GNNS

Spatial-based GNNs, also known as message-passing GNNs, operate directly on the graph structure
by iteratively aggregating and updating node representations based on their local neighborhoods.
Unlike spectral methods, they do not require eigen-decomposition of graph matrices, making them
computationally efficient and highly scalable for large graphs.

Formally, the general message-passing paradigm for updating the embedding of node v at layer t
can be expressed as:

h(t)
v = UPDATE(t)

(
h(t−1)
v ,AGGREGATE(t)

(
{h(t−1)

u : u ∈ N (v)}
))

, (A.1)

where h
(t)
v is the embedding of node v at layer t, and N (v) denotes its immediate neighbors. Rep-

resentative models in this category include Graph Convolutional Networks (GCN) (Kipf & Welling,
2017), GraphSAGE (Hamilton et al., 2017), and Graph Attention Networks (GAT) (Veličković et al.,
2017). Spatial-based GNNs naturally encode local structural information and gradually capture
broader structural context as the network depth increases. However, excessively deep message-
passing architectures often suffer from oversmoothing, where node representations converge, reduc-
ing their discriminative power.

A.2 SPECTRAL-BASED GNNS

Spectral-based GNNs leverage graph spectral theory and define graph convolutions using spectral
filtering based on eigen-decomposition of the graph Laplacian. Specifically, given the normalized
Laplacian matrix L̂ = UΛU⊤, where U represents eigenvectors and Λ is a diagonal matrix of
eigenvalues, the spectral convolution operation on node features x with a parameterized filter gθ(·)
is defined as:

x ∗ gθ = Ugθ(Λ)U⊤x. (A.2)

Early spectral-based GNNs explicitly computed the eigen-decomposition, leading to significant
computational complexity. To address this limitation, practical implementations such as Chebyshev
networks (ChebNet) (Defferrard et al., 2016) and the simplified Graph Convolutional Networks by
Kipf & Welling (2017) use polynomial approximations, significantly enhancing computational ef-
ficiency. While spectral-based methods effectively capture global structural properties of graphs,
their reliance on spectral decomposition makes them inherently less scalable for large-scale graph
datasets compared to spatial-based approaches.

A.3 GRAPH TRANSFORMERS

Graph transformers extend the spatial-based message-passing framework by incorporating self-
attention mechanisms, allowing models to adaptively weigh information from nodes across vary-
ing distances within the graph. Inspired by transformer architectures initially developed for natural
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language processing, graph transformers apply attention mechanisms directly to graph structures to
capture both local and long-range dependencies.

Formally, given node embeddings hv and hu, the attention mechanism computes attention coeffi-
cients αvu between nodes v and u as follows:

αvu =
exp (Attn(hv,hu))∑
k∈V exp (Attn(hv,hk))

, (A.3)

where V represents the set of nodes. Unlike traditional message-passing approaches, graph trans-
formers can dynamically and selectively attend to neighbors at varying graph distances, making
them highly effective in modeling complex spatial interactions. To incorporate structural informa-
tion explicitly, graph transformers typically use positional encodings derived from the graph struc-
ture, thereby augmenting node feature representations. Despite their ability to capture richer rep-
resentations and dependencies, graph transformers typically require more computational resources,
especially for larger graphs, due to the quadratic complexity associated with computing pairwise
attention scores.

A.4 COMPARISON AND MOTIVATION

Empirical comparisons among spatial-based GNNs, spectral-based GNNs, and graph transformers
often indicate similar overall predictive performances (measured by metrics like accuracy) across
various datasets. The primary differences between these families generally manifest in their trade-
offs regarding computational efficiency and the scope of structural information captured. Specifi-
cally, spatial-based methods offer scalability and efficient local aggregation but may have difficulty
encoding global structures effectively without increased depth. Spectral-based methods explicitly
encode global structure but can be computationally prohibitive for large-scale graphs. Graph trans-
formers flexibly capture both local and global dependencies but at a higher computational cost.

The subtle performance differences and limited understanding of each family’s capability to capture
specific graph structures underscore the importance of systematically evaluating and understanding
GNN models. This necessity motivates our work in this paper—focusing on the development of
spatially-aware evaluation metrics capable of revealing nuanced differences in GNN performance,
particularly in spatial applications.

B PROOFS

In this appendix, we present a proof for Theorem 3.1.

Proof of Theorem 3.1. Recall from Definition 2 that an evaluation metric µ(·) is exchangeable if,
for any permutation π of node indices, the metric satisfies:

µ(ϵ) = µ(π(ϵ)).

Let P1 and P2 be two distinct error distributions for a given GNN applied to a graph G = (V, E),
where |V| = N . Suppose additionally:

EP1 [S(ϵ)] = EP2 [S(ϵ)] ,

where the sum-based metric is defined as:

S(ϵ) =
∑
v∈V

f(yv, ŷv).

Since µ(·) is exchangeable, its evaluation depends solely on the multiset of error values
{ϵ1, ϵ2, . . . , ϵN} rather than on their spatial arrangement or indexing.

Notice that the metric S(ϵ) itself is inherently exchangeable, as it is simply a sum over nodes,
invariant under permutations. Thus, the condition:

EP1 [S(ϵ)] = EP2 [S(ϵ)]

implies that the two distributions P1 and P2 yield identical expectations for every exchangeable
aggregation of errors, as these aggregations remain invariant under any permutation.
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Let Em denote the set of all possible multisets of error values. Since µ(·) is exchangeable, we can
express its expectation under a given distribution P as:

EP[µ(ϵ)] =
∑

E∈Em

µ(E)P(E),

where P(E) represents the probability of observing the error multiset E.

Given the earlier equality for the sum-based aggregation, we have:

EP1 [S(ϵ)] =
∑

E∈Em

S(E)P1(E) =
∑

E∈Em

S(E)P2(E) = EP2 [S(ϵ)] .

Because this equality holds for every exchangeable sum-based aggregation S(E), it follows directly
that for each multiset E, we must have:

P1(E) = P2(E), ∀E ∈ Em.

Therefore, since the evaluation metric µ(·) is solely dependent on these multisets (due to exchange-
ability), we obtain:

EP1 [µ(ϵ)] =
∑

E∈Em

µ(E)P1(E) =
∑

E∈Em

µ(E)P2(E) = EP2 [µ(ϵ)].

Hence, we have formally shown that if two error distributions yield identical expectations for ex-
changeable sum-based aggregations, any exchangeable evaluation metric will fail to differentiate
between these distributions. Thus, we establish the theorem statement:

EP1
[µ(ϵ)] = EP2

[µ(ϵ)],

as required. □

B.1 LIMITATIONS OF SHORTEST-PATH DISTANCE AND ADVANTAGES OF SCS

Accurately evaluating spatial prediction errors in graph neural networks (GNNs) demands metrics
that explicitly consider spatial relationships among nodes. Although an intuitive spatial measure
might employ the average shortest-path distance between incorrectly predicted nodes, this naive
metric faces significant practical and interpretative limitations. Consequently, we propose the Spatial
Cluster Statistic (SCS), a robust metric that effectively captures spatial clustering by measuring
spatial autocorrelation among prediction errors.

Failure of Shortest-Path Distance Metrics. A straightforward spatial evaluation approach in-
volves computing the average shortest-path distance between nodes where prediction errors occur.
At first glance, this method seems effective: smaller average distances might indicate spatially clus-
tered errors, whereas larger average distances could reflect more dispersed errors. However, this
approach exhibits several fundamental flaws:

• Computational Complexity: Shortest-path computations generally incur high compu-
tational costs, scaling poorly with network size. Typical algorithms such as Floyd-
Warshall or multiple runs of Dijkstra’s algorithm have time complexities of O(N3) and
O(N2 logN), respectively, making them impractical for large spatial networks or frequent
evaluations ?.

• Distortion by Graph Structure: In many real-world networks characterized by irregular
connectivity or hub-like structures (such as scale-free graphs), shortest-path metrics are
disproportionately influenced by high-degree nodes (hubs). Errors connected through hubs
may exhibit artificially small distances despite being geographically distant, obscuring gen-
uine spatial clustering patterns and limiting the interpretability of results Barabási (2013).

• Ambiguity in Spatial Interpretation: Shortest-path distances in graphs do not directly
correspond to true spatial or geographical distances. Consequently, interpreting spatial pat-
terns based solely on shortest-path measures can be misleading. Nodes that are physically
far apart might have short graph distances due to high connectivity, while physically adja-
cent nodes could have long shortest-path distances if connections are sparse or irregular.
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• Inability to Identify Genuine Clustering: Shortest-path metrics fail to distinguish be-
tween spatially meaningful clusters of errors and coincidental proximity caused by graph
topology. Such metrics focus exclusively on distance magnitude, overlooking the crucial
spatial autocorrelation (the correlation of errors between neighboring nodes), essential for
identifying systematic spatial patterns.

Due to these critical limitations, shortest-path-based metrics are fundamentally inadequate for rig-
orously capturing spatial clustering in GNN prediction errors.

Advantages and Interpretation of SCS. To address these limitations, we introduce the Spatial
Cluster Statistic (SCS), inspired by Moran’s I statistic from spatial statistics. SCS explicitly accounts
for spatial autocorrelation, quantifying how prediction errors at each node correlate with errors at
neighboring nodes. Formally, given the prediction errors ϵv = f(yv, ŷv) for each node v in a test set
Vtest, SCS is defined as:

SCS(ϵ,Vtest) =
k

W

∑
v,u∈Vtest

wvu(ϵv − ϵ̄)(ϵu − ϵ̄)∑
v∈Vtest

(ϵv − ϵ̄)2
, (B.1)

where:

• ϵ̄ = 1
k

∑
v∈Vtest

ϵv is the mean error across test nodes;

• wvu are spatial weights, typically adjacency-based (wvu = 1 if nodes v and u are neigh-
bors, otherwise 0);

• W =
∑

v,u∈Vtest
wvu represents the total weight sum;

• k = |Vtest| is the number of test nodes.

SCS possesses several important advantages and clear interpretative properties:

• Explicit Spatial Autocorrelation Measurement: Unlike shortest-path metrics, SCS di-
rectly quantifies the spatial correlation of errors among neighboring nodes. Positive SCS
values indicate pronounced spatial clustering of errors, revealing localized model inaccu-
racies. Conversely, negative values highlight dispersed error patterns, indicating that errors
occur in a spatially repulsive manner.

• Robustness to Graph Topology: Because SCS evaluates autocorrelation based explic-
itly on neighborhood structures rather than shortest paths, it is inherently more robust to
irregular graph structures and less distorted by highly connected nodes or hubs.

• Computational Efficiency: SCS computation is highly efficient and scalable (O(E) com-
plexity, where E is the number of edges in the test subgraph), making it practical for re-
peated evaluation, hyperparameter tuning, and real-time monitoring of model performance
on large-scale spatial networks.

• Interpretability and Practical Insights: SCS provides meaningful, actionable insights
into spatial error structures. High positive values clearly indicate specific regions or node
clusters needing model improvement or immediate attention, significantly enhancing inter-
pretability and practical decision-making capabilities.

In summary, while shortest-path-based measures fail due to computational, structural, and inter-
pretative issues, the proposed SCS provides a robust, interpretable, and efficient metric explicitly
designed to capture spatial clustering patterns in GNN prediction errors. By clearly identifying spa-
tially localized inaccuracies, SCS facilitates targeted interventions, model improvements, and robust
deployments of GNN models in spatial applications.

C ADDITIONAL DETAILS ON EXPERIMENTS

In this appendix, we provide comprehensive details regarding the experimental setup, including
datasets and tasks, baseline models, and training procedures, ensuring reproducibility and clarity.
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C.1 TESTBED

Our experiments were conducted on a Dell PowerEdge C4140, The key specifications of this server,
pertinent to our research, include:
CPU: Dual Intel Xeon Gold 6230 processors, each offering 20 cores and 40 threads.
GPU: Four NVIDIA Tesla V100 SXM2 units, each equipped with 32GB of memory, tailored for
NV Link.
Memory: An aggregate of 256GB RAM, distributed across eight 32GB RDIMM modules.
Storage: Dual 1.92TB SSDs with a 6Gbps SATA interface.
Networking: Features dual 1Gbps NICs and a Mellanox ConnectX-5 EX Dual Port 40/100GbE
QSFP28 Adapter with GPUDirect support.
Operating System: Ubuntu 18.04LTS.
We employed benchmark datasets that encompass node classification and node regression tasks to
comprehensively assess our method across diverse spatial contexts. Specifically:

Node Classification Datasets:

• Cora(Sen et al., 2008): A citation network with 2,708 nodes representing scientific papers
classified into 7 research categories. It has 5,429 citation links and sparse bag-of-words
node features (dimension: 1,433).

• Citeseer(Sen et al., 2008): Another widely adopted citation network with 3,327 nodes and
4,732 edges. Papers are classified into 6 research categories, with node features represented
by a 3,703-dimensional sparse bag-of-words.

Node Regression Datasets:

• California Housing Prices(Pace & Barry, 1997): A spatial regression dataset with 20,640
nodes representing geographic locations in California. The goal is to predict the median
house prices based on spatial coordinates and associated features such as average income,
population density, and proximity to various infrastructure.

• Air Temperature Dataset(Hooker et al., 2018): Contains temperature measurements from
1,305 meteorological stations globally, aiming to predict average air temperature based on
geographical coordinates and associated climate factors.

Synthetic Planar Datasets: We synthesized two types of planar graphs to systematically analyze
the impact of underlying graph structures on spatial error patterns:

• Planar-Regular: A uniformly connected planar graph generated with a regular node-
degree distribution, consisting of nodes arranged in a grid-like spatial structure.

• Planar-Power-Law: A planar graph with power-law degree distribution (scale-free prop-
erties). The synthetic generation procedure followed Barabási–Albert preferential attach-
ment (Barabási, 2013), modified to ensure planarity.

For all datasets, we either follow the default split (where provided) or followed standard data splits
with ratios of 60% for training, 20% for validation, and 20% for testing. Results were averaged
across five independent trials to ensure robustness and reproducibility.

C.2 BASELINES

We evaluated five representative baseline GNN architectures from three distinct methodological
categories to comprehensively benchmark our proposed methods:

Message-Passing GNNs:

• GCN(Kipf & Welling, 2017): Graph Convolutional Network employing normalized
adjacency-based feature aggregation.

• GraphSAGE(Hamilton et al., 2017): Aggregates features using neighborhood sampling
and mean-pooling.
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• GAT (Veličković et al., 2017): Graph Attention Network employing self-attention mecha-
nisms to weigh neighboring nodes.

Spectral-based GNN:

• ChebNet (Defferrard et al., 2016): Spectral convolution network approximating filters via
Chebyshev polynomial expansions of the graph Laplacian.

Transformer-based GNN:

• Graph Transformer (Dwivedi & Bresson, 2020): Leverages global self-attention mecha-
nisms to capture long-range node dependencies without explicit reliance on local message-
passing.

We utilized standard open-source implementations from widely adopted libraries (e.g., PyTorch
Geometric, DGL) (Dwivedi et al., 2023; Hu et al., 2020), adhering strictly to published protocols
and hyperparameter tuning recommendations for a fair comparison.

C.3 TRAINING PROCEDURE

All models were trained following a rigorous, standardized training protocol to ensure fair and com-
parable evaluations across different methods and datasets:

• Optimizer: Adam with initial learning rates tuned in the range [0.001, 0.01]. The default
best-performing value was typically 0.005 across datasets.

• Weight Initialization: Xavier initialization was uniformly applied to all models.

• Epochs and Early Stopping: Training was conducted for a maximum of 300 epochs, with
early stopping activated based on validation performance to prevent overfitting (patience =
30 epochs).

• Learning Rate Scheduler: ReduceLROnPlateau scheduler was employed with a reduction
factor of 0.5 and patience of 10 epochs.

• Regularization: Standard regularization techniques such as dropout (rates tuned from [0.1,
0.5]) and L2 weight decay (values tuned from [10−4, 10−3]) were employed across models.

For experiments involving our proposed SCA regularization, we trained each baseline model
twice—once without SCA (standard baseline) and once with SCA integrated into the loss function.
We tuned the regularization parameter λ from the range [0.01, 1.0], ultimately selecting λ = 0.1 as
the optimal value balancing structural error uniformity and predictive performance.

Hyperparameter optimization was performed using grid search on validation sets, and the final re-
ported results are averages over five independently repeated runs with different random seeds, en-
suring the statistical robustness of our conclusions.

D FURTHER DISCUSSION

In this section, we provide a quantitative example to illustrate the limitations of existing GNN eval-
uation metrics, and we discuss how our proposed framework can be extended to capture spatial-
temporal applications and other structural patterns.

D.1 QUANTITATIVE EXAMPLE (TRAFFIC MANAGEMENT)

Consider two GNN models, Model I and Model II, tasked with predicting traffic flow in a city,
measured in vehicles per hour (vph).

Model I:

• Errors occur at k nodes, with a prediction error of 10 vph per node.
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• The error distribution is uniformly spread across the network.

Model II:

• Errors occur at k nodes, with a prediction error of 6 vph per node.

• The error distribution is spatially clustered at critical regions or intersections.

While traditional metrics like Mean Squared Error (MSE) would favor Model II due to its lower
average error, our proposed Structural Cluster Statistic (SCS) metric, which quantifies the structural
clustering of errors, would flag Model II as performing worse due to the concentration of errors in
critical areas.

Practical Implication Consider a critical intersection with a maximum capacity of 50 vph, fed by
two adjacent roads, A and B, each expected to contribute 20 vph:

Model I (uniform errors):

• Makes a large error (+10 vph) only on Road A, while accurately predicting traffic flow on
Road B.

• Result: The total flow remains 50 vph (i.e., 20 + 30 = 50), avoiding congestion.

Model II (clustered errors):

• Makes smaller errors (+6 vph) simultaneously on both Roads A and B.

• Result: The total flow exceeds capacity (i.e., 26 + 26 = 52 vph), causing congestion,
despite the smaller individual errors.

This example illustrates how traditional metrics like MSE can favor models with lower average er-
rors while overlooking critical operational risks. In contrast, our structure-aware SCS metric reveals
the potential dangers of spatially clustered errors, offering a more nuanced evaluation.

D.2 FURTHER EXTENSION OF OUR FRAMEWORK

Our proposed evaluation framework, particularly the Spatial Cluster Statistic (SCS), is highly adapt-
able and can be extended to capture a wide range of spatial and structural error patterns beyond
basic spatial clustering. In this section, we discuss several potential extensions of our framework,
including how it can be adapted to detect errors related to spatial boundaries, directional biases, and
temporal dependencies.

Boundary Errors In many spatial tasks, errors near the boundaries of the graph may have a sig-
nificantly different impact compared to errors in the interior. For example, in urban planning or envi-
ronmental monitoring, boundary regions—such as city borders or edges of monitored areas—might
have higher error tolerance or greater sensitivity. To address this, we can modify the weight assign-
ments in our framework to give higher importance to errors occurring at boundary nodes, ensuring
that our metric appropriately reflects the unique challenges of these critical areas.

Directional Biases In certain applications, spatial directionality plays a key role in error distribu-
tion. For instance, in traffic flow predictions, errors may be more significant in certain directions
(e.g., towards city centers during rush hour) compared to others. Our framework can be extended by
assigning distinct weights based on the spatial direction of errors, allowing it to capture directional
biases in prediction errors. This adaptation is particularly useful in modeling scenarios where spatial
dependencies are not just local but also directional, such as weather patterns or traffic management.

Temporal Dependencies Many real-world applications, such as traffic forecasting or environ-
mental monitoring, involve dynamic systems where prediction errors evolve over time. To adapt our
framework to such spatial-temporal settings, we can modify the weight assignment in Equation (3.1)
to incorporate temporal dependencies. This adaptation would account for both spatial and temporal
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proximity of errors, giving higher correlation weights to errors that occur closer in time. By incor-
porating temporal dependencies, our framework can capture how prediction errors evolve over time,
providing more comprehensive evaluations in dynamic applications.

For example, in traffic prediction, errors at a given intersection may not only depend on the spatial
proximity to other intersections but also on how traffic conditions change over time. This temporal
extension makes our metric applicable to a wider range of applications involving dynamic systems.

Generalizing to Other Structural Error Patterns Beyond spatial and temporal dependencies,
our framework can be generalized to handle other structural error patterns by adjusting the weighting
scheme. For instance, we can extend the metric to handle errors occurring along specific boundaries
or errors that exhibit non-random patterns due to topological features of the graph, such as hub-
based or scale-free structures. These extensions allow our framework to be applied in a wide range
of contexts, including social networks, recommendation systems, and sensor networks, where the
underlying graph structure significantly influences the error distribution.

In summary, our framework is highly flexible and can be extended to capture a variety of error pat-
terns, including boundary effects, directional biases, and temporal dependencies. These extensions
enhance the applicability of our evaluation metric in more complex, real-world scenarios, providing
richer insights into model performance.
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