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ABSTRACT

Complex dynamic scenes present significant challenges for predicting human be-
havior due to the abundance of interaction information, such as human-human
and human-environment interactions. These factors complicate the analysis and
understanding of human behavior, thereby increasing the uncertainty in forecasting
human motions. Existing motion prediction methods thus struggle in these complex
scenarios. In this paper, we propose an effective method for human motion forecast-
ing in dynamic scenes. To achieve a comprehensive representation of interactions,
we design a hierarchical interaction feature representation so that high-level fea-
tures capture the overall context of the interactions, while low-level features focus
on fine-grained details. Besides, we propose a coarse-to-fine interaction reasoning
module that leverages both spatial and frequency perspectives to efficiently utilize
hierarchical features, thereby enhancing the accuracy of motion predictions. Our
method achieves state-of-the-art performance across four public datasets. We will
release our code upon publication.

1 INTRODUCTION

Human motion forecasting is essential across a wide range of applications, including surveillance,
healthcare, autonomous driving, and human-robot interaction. The ability to accurately anticipate
human behavior in dynamic environments is key to enhancing system safety, operational efficiency,
and user experience. However, this task presents significant challenges, including the inherent
complexity and variability of human motion, as well as the impact of diverse environmental factors.

In early times, many works predominantly addressed the task of human motion prediction by using
simple representations of environmental states. For example, some methods (Zhang et al.| 2023}, |Xu
et al.| [2023b; Ma et al.||2022; Xu et al.,2023a} |Gao et al.,|2023;|Aksan et al., 2021; |Wang et al.,|2024;
Su et al., 2021} |Tang et al.l 2023)) rely solely on past human actions to predict their future motions,
while others (Cao et al.,[2020; Mao et al.| 2022 Scofano et al., [2023} [Zheng et al., 2022; Xing et al.,
20235)) integrate static scene features into the network all at once. However, these approaches struggle
to adapt to real-world applications, where dynamic environmental constraints play a crucial role.
Actually, to better predict how humans respond to dynamic environments, it is essential to consider
the interaction influence. Some works (Wang et al.; 2021} |Guo et al., 2022b; |Vendrow et al., [2022;
Saadatnejad et al.| 2024;|Gao et al., [2024ajb; Xu et al.,[2023c} [Peng et al.| 2023} Xiao et al., [2025))
have started addressing motion prediction in challenging multi-person scenarios, using attention
mechanisms to implicitly model the human-human interaction. However, these works overlook the
dynamic relationship between humans and the nonhuman environment, which is equally critical for
accurate motion forecasting in real scenes.

In fact, real-world environments are inherently complex and dynamic, where existing frequent human-
human interactions, e.g., engaging in conversation, approaching others, or avoiding collisions, as
well as human-scene interactions, e.g., sitting on stairs, lying on a bed, as shown in Figure|l] It is
important to model all human-related interactions in one framework for more accurate human motion
forecasting. Although (Mueller et al.l 2024) made the first attempt to address the problem under this
setting, it decouples feature extraction for interacting humans and scenes, fails to fully capture the
interaction features, and relies on predefined semantic labels for the scene. As a result, its prediction
performance is limited, and it is not practical for real-world applications. The main challenge for
forecasting human motion in a realistic and dynamic environment is twofold. Given the vast array
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of diverse, multi-level interactions between humans and their surroundings, as well as between
individuals, how can we design effective representations to capture these complex interactions?
Moreover, even with well-encoded interaction representations, how can we leverage them effectively
to enhance prediction accuracy?

In this paper, we have addressed the above two chal-
lenges and propose a novel method, named HUMOF,
for HUman MOtion Forecasting in complex dynamic
scenes. It effectively models human kinematics and
dynamics, spatial environment states, temporal in-
formation, and the most crucial interaction features,
offering significant potential as a world model for
human motion. In particular, we introduce a Hier-
archical Interaction Representation to effectively
capture complex and valuable interaction features.
The hierarchical representation manifests in several
dimensions: (1) It includes both human-human inter-
action modeling and human-scene interaction mod-
eling; (2) It captures interactions through explicit
representations, i.e., interactive distances, and implic-
itly learns interaction features through the network;
(3) It integrates both high-level semantic interaction
features and low-level geometric interaction features.
Furthermore, to fully utilize the hierarchical represen-
tation for enhancing human motion prediction, we design a Coarse-to-Fine Interaction Reasoning
Module. Specifically, to encourage the model to focus on global environmental understanding while
minimizing interference from noisy low-level environmental information and high-frequency details
in the earlier stages, and refine fine-grained details in the later stages, we implement the coarse-to-fine
mechanism from two perspectives: (1) In spatial perspective, through our coarse-to-fine injection
strategy, high-level features are injected into early Transformer layers for semantic understanding of
human actions, while low-level features are introduced in later Transformer layers to perceive geo-
metric details; (2) In frequency perspective, our DCT rescaling mechanism suppresses the updating
of high-frequency components of human motion in earlier layers, and progressively encourages the
model to focus on low-frequency details in later stages. Extensive experimental results demonstrate
that our method achieves state-of-the-art performance on four public datasets, and ablation studies
show the effectiveness of our detailed designs. Our contributions are summarized as follows:

Figure 1: Real dynamic scenes involve com-
plex human-human and human-scene interac-
tions. We propose to predict human motions
under such challenging settings, where exist-
ing methods struggled.

* We present an effective method for human motion prediction in dynamic environments,
involving both human-human and human-scene interactions, achieving state-of-the-art
performance in various dynamic scenarios.

* We introduce hierarchical interaction feature representation to achieve a comprehensive
understanding of human-human and human-scene interactions.

* We propose a coarse-to-fine interaction reasoning module to fully leverage hierarchical
interactive features to enhance prediction accuracy.

2 RELATED WORK

Single-Person Human Motion Prediction Early works mainly consider the own kinematic and
dynamic influence on future human motions and predict the motion for a single person (Zhang et al,
2023 2023b; Ma et all 2022} [Xu et al., [2023a; [Gao et al., 2023} [Aksan et al.l 2021; [Wang

et al., 2024; Su et al., [2021; Tang et al., 2023). Many approaches (Fragkiadaki et al., 2015} Jain et al.,
2016; [Martinez et al.,[2017; [Liu et al., [2022)) relied on Recurrent Neural Networks (RNNs) to capture

temporal dependencies, overlooking spatial relationships. More recent methods have shifted towards
Graph Convolutional Networks [Li et al (2022)); [Chen et al] (2020); (202T), Temporal
Convolutional Networks (Sofianos et al.l[2021)), and TransformersMao et al.| (2020); |Cai et al.|(2020);

Aksan et al] (2021)); [Xu et al.| (2023a)), aiming to capture complex spatial-temporal relationships.
However, these methods primarily concern personal situations to predict future motions, limiting the

application in real-world scenarios.
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Scene-Aware Human Motion Prediction Recent advancements (Cao et al., 2020; Mao et al.|, 2022
Scofano et al., 2023} Zheng et al., [2022; |Xing et al.| 2025)) have started incorporating scene context
into human motion prediction tasks. Some approaches (Cao et al., 2020) represented scenes as
2D images, but struggled when handling occlusions and failed to maintain consistency between
local and global motion. GIMO (Zheng et al.| 2022)) attempted to enhance prediction accuracy by
incorporating eye gaze; ContactAware (Mao et al.| [2022) leveraged a contact map to encode human-
scene relationships; STAG (Scofano et al.,2023)) proposed a three-stage approach that sequentially
processes contact points, trajectories, and poses. MutualDistance (Xing et al., 2025)) offered an explicit
human-scene interaction model using mutual distance. Although these methods have effectively
modeled human-scene interactions, they focus on static scenes, neglecting dynamic social interactions
between humans.

Social-Aware Human Motion Prediction Recent studies (Adeli et al} |[2020; 2021; [Wang et al.,
2021;|Guo et al.} 2022b; [Vendrow et al.l 2022} Tanke et al.,|2023b}; Saadatnejad et al.| |2024;|Gao et al.}
2024a3b; Xu et al., [2023c; [Peng et al., 2023 Jeong et al., [2024; Xiao et al.,[2025) in multi-person
human pose forecasting focus mainly on modeling human interactions in group scenarios. Most
recently, Transformers (Wang et al.l |2021} |Guo et al., |2022bj [Vendrow et al., 2022; [Saadatnejad
et al., 2024} |Gao et al., [2024ajb;  Xu et al., [2023c; [Peng et al., 2023} |Xiao et al.| [2025)) are popular
for this task due to their strong learning capabilities: T2P (Jeong et al., 2024) sequentially predicts
global trajectory and local pose; IAFormer (Xiao et al., 2025) proposed to learn amplitude-based
interactions and prior knowledge. However, methods in this category overlook the importance of
scene information. A recent work (Mueller et al.|2024) uses the diffusion model for long-term motion
generation considering both static scene and motion of other individuals. However, it only implicitly
encodes the scene and other individuals, without explicit modeling of human-to-scene and human-to-
human interaction. Additionally, it treats the scene as a set of discrete objects with semantic tags,
relying on ground-truth segmentation results, which limits its applicability in real-world scenarios
involving raw sensor data.

3 METHODOLOGY

The key challenge in forecasting human motion within complex dynamic environments lies in effec-
tively encoding and leveraging the involved human-human and human-scene interactions. Hence, we,
on one hand, propose a hierarchical approach to comprehensively encode these representations (Fig-
ure [3pb), and on the other hand, present a Coarse-to-Fine Interaction Reasoning Module (Figure 3f)
to fully leverage the representations.

Pr()blem Deﬁl‘lition. The task iS tO prediCt a person’s (a) Hierarchical Human-Human Interaction (HHI) Representation
future motion given their past motion, the point cloud B @ T e
of static scene elements, and the past motion of other Relation Encoding © Satbncoding

individuals in the vicinity. :
The input of our model includes three parts: 1). A L

historical motion sequence of the target person X1/ ot :
where x; = {x],--- ,x} € R"*3 represents the e
motion of j;, joint, with each x% corresponding to the & { 9 Conrs-t-fne Interacton Reasonlng Module } P
3D coordinates of a joint at ¢y, frame; 2). The scene’s | - T course 1L Fine Pmdi;ﬁi“
3D point cloud S = {s,---, sy} with N points; |
And 3). the historical motion sequence Yy = » DD U HH
k k e W07
i,y W) € RIS of the kyy, (k € [1, K]) S,
interactive person in the scene, which also consists Scene
Of J body joints’ each With H Consecutive pOSeS' (b) Hierarchical Human-Scene Interaction (HSI) Representation
o k k)1 k)H
Similarly, yj(. ) = {y§ o ,y§ ) } € RE*3 rep-

resents the motion of j-th joint of the k;j, interactive Figure 2: HUMOF Overview.

person, with each ygk)

goal is to predict the motion X +1H+T of the target person for the future 7" time steps.

k corresponding to the 3D coordinates of one of his joint at ¢,;, frame. Our
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Figure 3: Detailed architecture of HUMOEF. Our method takes inputs from three aspects: the past mo-
tions of the target person, a 3D point cloud for the scene, and motion sequences of interactive persons.
The interactions are comprehensively encoded by (a) Hierarchical Human-Human Interaction Repre-
sentation and (b) Hierarchical Human-Scene Interaction Representation, respectively. Thereafter, the
hierarchical representations are leveraged by (c), a Coarse-to-Fine Interaction Reasoning Module, to
predict future motions for the target person. Details of the Interaction-Perceptive Transformer layer
in (c) are shown on the top right.

3.1 MOTION ENCODER

Follow prior works (Mao et al., 2022} [Scofano et al.,|2023} | Xiao et al.| 2025} [Xing et al., |2025)), we
first pad the sequence X' of length H by repeating the last historical pose X for 1" additional
frames, to make a padded sequence of length H + 7. For simplicity, we still call the padded
sequence X. Providing that DCT is effective in handling temporal information in human motion
prediction (Mao et al., |2022; |Scofano et al., [2023}; [Xing et al., 2025} Xiao et al., [2025)), and that
GCN excels at uncovering spatial dependencies between human joints (Mao et al.||2019; Xing et al.,
2025} L1 et al., 20205 [2022)), we combine a Discrete Cosine Transform layer (DCT) and a Graph
Convolutional Network (GCN) (Mao et al., 2019)) to extract both spatial and temporal representations
in the motion encoder (Figure [3[(c)left). To help the model identify different joints, a learnable
position embedding P € R7*¢" is added to each joint. Here C’ = C x 3, where C' = 20 is the
number of DCT coefficients and 3 corresponds to the three directions: z, y, and z. Finally, the

encoding X € R7* fora person can be formulated as
X = GCN(DCT(X)) + P, (1)

which encodes features in the frequency domain for each joint X; over the entire motion sequence.

3.2 HIERARCHICAL INTERACTION REPRESENTATION

Complex dynamic scenes involve interactions between humans (Section. [3:2.1), as well as between
humans and their environment (Section. [3.2.2)). To achieve a comprehensive representation of both
human-human and human-scene interactions, we incorporate hierarchical features so that high-level
features capture the overall context of the interactions, while low-level features focus on fine-grained
details. This multi-level approach ensures a thorough and nuanced understanding of the interactions.
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3.2.1 HIERARCHICAL REPRESENTATION FOR HUMAN-HUMAN INTERACTION

Regarding human-level interactions (Figure[3p), when a person engages with others, they are involved
in two types of motion: independent motion, such as walking, and interactive motion, such as
approaching a person to converse or adjusting one’s path to avoid a collision. Therefore, we introduce
a self-encoding submodule (Figure [3p right) to describe their independent motions and a relation-
encoding submodule (Figure [3p left) to model their interdependencies.

Self Encoding. For each interactive person, we encode their motion sequence independently, captur-
ing semantic information specific to his motion, as shown in Figure[3[a) right. This self-encoding step
enables each person’s motion to contribute meaningful social cues. Specifically, the motion sequence
YV*) of ky, interactive person is first processed through a motion encoder as described in Section

obtaining joint-level features in the frequency domain Yy = {Sf (k) ... ,Sff,k)} € R7*C Thena

two-layer Transformer processes a learnable body-level feature 01(7021 together with the joint-level

feature J(¥). Note that body-level feature c( ) contains the information from all joints after being
passed by the Transformer serving as the body level self encoding. While the updated joint tokens
Y& = {ygk), Yy )} constitute the joint-level self encoding.

Relation Encoding. We observe that despite of the various types of interactions, different interactions
always lead to distinct distance patterns. Therefore, it is effective and efficient to model interactions
with "distances". Hence we model the interactions explicitly to capture their dependencies via
defining interactive distances as shown in Figure a) left. First, for the j;, joint of the k,j, interactive
person, we calculate the interactive distance between this joint and the closest joint of the target
person for each of the H frames as the joint-level relation encoding. Specifically, at ¢, frame, the

(k)¢

Joint-level interactive distance D ;""" is computed as:

2

) (@)

2

min Hy] —x!

Dt —
J 16[1 J] ‘

where ¢(-) is a mapping function such that closer joints have higher values than more distant

ones. Then, we convert the time series of interactive distances {ng)l, -, D jk)H} into frequency

domain via DCT to get the joint-level relationship encoding ng € RY. Second, for the iy,
joint of the target person, we similarly calculate its joint-level relationship encoding with the &y,

k
*) . Thereafter, we obtained the body-level relation encoding

B by,

interactive person, denoted as D’;

ﬁff,ﬁy = MLP(concat(]ﬂgk)7 ._.7]:”)( ) D!

Human-Human Interaction Tokens. Finally, we concatenate the Self Encoding and Relation
Encoding on their respective levels to obtain the Human- Human Interaction (HHI) token. To be clear,

the Ky, mteractlve person’s body-level HHI token is Obo dy = concat(clglz)dy, Dl(f)zly) and joint-level

HHI token is O'* {ogk)7 e ,6(Jk)}, where o;-k) = concat(y(»k), Dg»k)).

]oznt 7

3.2.2 HIERARCHICAL REPRESENTATION FOR HUMAN-SCENE INTERACTION

Considering the vast number of points in the 3D point cloud of a scene, it is impractical and inefficient
to enumerate the target person’s interactions with every point. Recalling that a centre point is
frequently used to represent its neighbouring points as an approximation in geometric processing,
we hope to progressively approximate neighbouring points through central points, reducing the total
number of points while retaining essential scene information. In this way, we can construct different
levels of point approximations with a gradually decreasing number of points, ensuring to maintain
rich interaction features across different spatial scales. Meanwhile, noting that most raw 3D scene
point clouds lack object-level annotations, our method does not rely on predefined semantic labels as
required by SAST (Mueller et al.| 2024)).

As illustrated in Figure 3[b), to obtain hierarchical point approximations, we employ a series of set
abstraction layers from PointNet++ (Qi et al.,[2017), denoted as {G(*), ..., G®}, b € [0, 3]. Ateach
level of abstraction, we apply Farthest Point Sampling following PointNet++ to obtain point subsets.
Each set abstraction operation processes and refines the point set to create a new set with fewer points,
preserving efficiency and structure within the point cloud.
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Notice that the set abstraction layer G(*) takes an interactive feature matrix () = { fl(o), cee ~](\(,)()0)}

as input, where the interactive feature f}(LO) of a point s,, is computed as a collection of interactive
distances in the frequency domain. Specifically, for a point s,, and a joint x;, we firstly calculate their
interactive distance in each frame, constituting a time series m; :

my = {&([sn = x[15). -+ 6(]|sn = x]T|[,)} € R, &)
where ¢(-) is a mapping function that closer scene points have higher values than more distant
ones (Mao et al.,|2022). Next, we convert m; into frequency domain and obtain m; € RC'. Finally,
we concatenate 1 ; from all joints, along with the coordinates of the scene point s,,, forming s,,’s
interactive feature f,(LO) € RI/XC'+3,

Such a feature matrix F () is iteratively computed across subsequent set abstraction layers (Fig-
ure b)), where F(®) = g(0=1)(F(=1)) To further enhance the positional information, we add a
position encoding derived from 3D spatial coordinates of each point to the corresponding feature at
each abstraction level b € [1, 3]. Finally, F® serves as the Human-Scene Interaction (HSI) tokens.

3.3 COARSE-TO-FINE INTERACTION REASONING MODULE

Accurate human motion prediction requires capturing kinetics and dynamics, involving inherent
correlations among joints, across the temporal dimension, and with the surrounding environment.
To simultaneously leverage these three types of correlations, we present a coarse-to-fine interaction
reasoning module. We take the target person’s representation X and all the interaction features in
the frequency domain including human-to-human interactions (HHI) tokens (Obody and Ojomt) and
human-to-scene interactions (HSI) tokens F®) ag input, the model reasons about the motion of the
target person through all interaction-perceptive Transformer layers using a coarse-to-fine strategy.

3.3.1 COARSE-TO-FINE INJECTION STRATEGY

With the obtained hierarchical representations for interactions—both between human and human
(Section [3.2.T)) and between humans and scenes (Section [3.2.2)—we establish a strategy to fully
leverage this information.

Different from crudely injecting features from multiple levels of the hierarchical representation
into each interaction layer of the model, we sequentially inject hierarchical interaction features in a
coarse-to-fine manner. We assign high-level features to early layers and progressively incorporate
low-level features at deeper layers, as shown in Figure [3[c). For example, at the first layer, high-level
HSI tokens F(3) and HHI tokens Obody are concatenated along token dimension are injected, totaling
N®) 4 K interaction tokens. At the last layer, we inject low-level HSI tokens (1) and HHI tokens

Ojomt, totaling N) + K x .J tokens. It allows the model to begin with a global understanding of
high-level semantics and gradually narrow its focus to local geometry, improving prediction accuracy.

3.3.2 INTERACTION-PERCEPTIVE TRANSFORMER LAYER

As depicted in the upper right of Figure[3] our Transformer layer begins with processing the target

person’s joint tokens ig-l) via a self-attention (SA) designed to capture long-range dependencies
among joints. To incorporate interactions, we employ a cross-attention (CA) where joint tokens

igl) serve as queries, while interaction tokens act as keys and values. A feed forward network
(FFN) (Vaswani et al.| 2017) follows CA to enhance joint tokens. More importantly, to better align

with our coarse-to-fine strategy, an adaptive DCT rescaling mechanism is performed on )

¢ after
each SA, CA and FFEN.

Adaptive DCT Rescaling Mechanism. Recall that our coarse-to-fine injection strategy focuses on
capturing coarse-level human motions in the early stages, it would be helpful if we could control
the influence of finer details. Observing that each primary joint token is constructed from the
DCT coefficients of joint motion, with each channel corresponding to a specific DCT coefficient,
we introduce a learnable DCT rescaling mechanism from the frequency domain to suppress high-
frequency details. This mechanism further supports our coarse-to-fine strategy by regulating the
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Dataset

Method

Path Error (mm)

Pose Error (mm)

| | 055 1.0s 1.5s 2.0s mean 0.5s 1.0s 1.5 2.0s mean
ContAware (Mao et al.||2022) 1383 251.3 3524 430.8 239.3 87.8 117.1 136.1 147.8 106.8

GIMO (Zheng et al.[[2022] 143.0 259.7 384.2 487.3 258.6 855 121.6 142.0 153.0 109.3

HIK STAG (Scotano et al.[2023} 124.7 245.4 352.4 479.2 239.7 81.7 110.9 132.5 140.9 100.6
MutualDistance (Xing et al.|[2025) 128.7 253.2 372.5 479.2 246.0 829 117.2 138.5 148.2 105.9

T2P (Jeong et al.[[2024] 88.6 199.6 318.8 447.1 208.7 742 108.6 127.5 142.6 96.9

IAFormer (X1ao et al.|[2025) 83.9 195.0 311.1 4349 200.1 71.5 106.5 125.9 137.7 95.0

SAST (Mueller et al.|[2024] 86.7 187.4 284.9 398.1 189.0 723 101.4 118.0 128.6 93.2

Ours 78.8 177.4 278.8 388.4 180.7 71.2 100.6 116.9 127.1 90.2

ContAware (Mao et al.||2022) 125.6 239.9 285.4 4329 236.9 106.2 152.8 174.3 197.1 137.5

GIMO (Zheng et al.[[2022] 131.4 247.7 300.9 454.4 2552 107.9 155.9 182.6 207.1 141.0

HOLM? STAG (Scotano et al.[[2023) 128.1 234.4 289.5 438.1 239.7 102.5 145.0 167.1 185.6 131.2
MutualDistance (Xing et al.}[2025) 83.6 169.7 278.8 402.8 189.9 944 137.1 158.2 181.3 125.3

T2P (Jeong et al.[[2024] 74.2 168.8 296.9 429.2 194.1 88.0 135.8 160.9 183.2 124.6

TAFormer (Xiao et al.|[2025) 69.0 166.6 290.1 4235 186.3 86.1 135.0 165.9 180.7 121.6

SAST (Mueller et al.|[2024] 75.0 166.2 280.4 403.9 184.8 89.2 133.8 167.0 182.9 1223

Ours 67.1 156.6 268.4 393.1 174.6 86.3 129.6 155.0 172.1 117.9

Table 1: Comparisons on datasets with dynamic scenes. We compare with scene-aware methods,
ContactAware, GIMO, STAG, and MutualDistance, social-aware method, IAFormer and T2P, and
social-scene-aware method SAST.

impact of high-frequency details and noise in the Transformer layer [ through the rescaling vector
v/ (X)(l) € RY', which is applied on joint tokens igl) after each SA, CA, and FFN in an element-wise

multiplication manner, formulated as igl) — i;l) ® v (X)® where

1y (1) o(l) < < Z.;‘le ig‘l)
VX)) =vY o a(X), a(X)= MLP(f)

Here, © is element-wise multiplication, and v(¥) is a pre-defined rescaling vector shared across all
joint tokens. We design v(") such that values are close to 1.0 for low-frequency components and
progressively decrease for higher frequencies in early layers, effectively suppressing high-frequency
components. The suppression is most prominent in the first layer (! = 1) and gradually weakens
in deeper layers, with the rescaling vector eventually having all values equal to 1.0 in the last layer
(I = 6). Moreover, for that different types of action may have varied optimal rescaling, a shared
rescaling v(Y) applied uniformly across all input samples is inadequate. We thus further include a
sample-adaptive vector a(X) to capture such variations, which is computed by applying average
pooling across all J joint tokens, followed by a MLP to acquire sample-specific information.

“

3.4 MOTION DECODER AND LOSS

As shown in Figure c) right, the updated joint tokens X(©) from the 6,5, Transformer layer is
passed into a GCN decoder and Inverse Discrete Cosine Transform (IDCT) (Mao et al.,2019) to get

predicted motion sequence X, which is formulated by X = IDCT(GCN(X(®))) € R/ *(H+T)x3,

Loss is computed as the L2 distance between the predicted path and pose and the ground-truth.
Details can be found in Appendix [A]

4 EXPERIMENTS

4.1 SETUPS

Implementation Details cab be found in Appendix [A]

Datasets. We conduct experiments on 2 datasets with human-human and human-scene interactions,
HIK (Tanke et al.,|2023a) and HOI-M? (Zhang et al., 2024)), as well as on 2 datasets with human-
scene interaction scenes, GTA-IM (Cao et al.,2020) and HUMANISE (Wang et al,[2022). Please
refer to Appendix [B] for more dataset details.

Baselines. 3 Scene-Aware Methods, ContactAware (Mao et al., [2022)), GIMO (Zheng et al.,
2022), STAG (Scofano et al.,[2023), and MutualDistance (Xing et al., 2025). To evaluate them on
dynamic datasets, we introduce the multi-person context by concatenating all persons’ information to
the original input of their motion decoder. 2 Social-Aware Methods, T2P |Jeong et al.|(2024)) and
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HUMANISE Dataset Wang et al.|(2022) GTA-IM Dataset|Cao et al.| (2020)
| Seen Scenes | Unseen Scenes Path Error (mm) Pose Error (mm)
Method ‘ Path Error (mm) Pose Error (mm) ‘ Path Error (mm) Pose Error (mm)

‘O,Ss 1.0s mean 055 1.0s mean‘ 0.5s 1.0s mean 0.5s 1.0s mean [05s 10s 155 2.0s mean | 055 10s 155 2.0s

mean

ContAware * 528 121.1 57.8  97.6 1414 929 | 53.1 1240 587 940 139.1 903 |445 826 1256 1829 87.1 |40.1 541 652 772
GIMO * 70.1 1292 720 1414 1503 140.2| 77.7 1440 802 1463 1594 146.5 |52.7 97.8 160.6 241.7 1103 | 479 60.7 71.1 82.7

STAG * 552 1246 60.7 883 1314 83.0| 57.0 131.5 632 899 1377 856 |432 798 1199 1764 834 |354 487 59.8 735
SAST 56.2 1224 62.1 86.0 111.6 80.8 | 57.2 129.1 63.7 90.6 1247 86.7 |41.0 77.4 123.1 181.8 852 |282 41.0 536 66.8
MutualDistance * |41.5 93.5 45.6  83.7 1309 80.0 | 46.7 100.2 50.1 84.3 131.8 80.6 |344 659 1040 1556 72.0 |31.0 468 589 70.7
Ours 369 874 417  69.0 1020 64.1 | 39.5 881 434 69.8 1093 662 |294 559 917 1392 629 |27.0 403 50.7 61.5

51.8
59.9
47.0
41.5
44.6
38.7

Table 2: Comparisons on datasets with static scenes. Results with * are from MutualDitance.

T - T N T N T N
(a) Ground-Truth (b) Ours (c) SAST (d) MutualDistance (e) IAFormer

Figure 4: Visualization of motion prediction results on dynamic scenes in HOI-M3. More visual
results are in the Supplementary Video and Appendix Section@

IAFormer 2025)), Since they are highly dedicated to pure multi-person input, we introduce
the human-scene-interaction features generated by our HUMOF. And 1 Social-Scene-Aware Method,
SAST (Mueller et al}[2024). As it requires instance segmentation of the scene as input, we provide it
with the ground-truth segmentations, except on GTA-IM, where we use the segmentation predicted

by [2024) due to the absence of ground truth.

Metrics. Following prior works (Mao et all, 2022} [Scofano et all, 2023}, Xing et al.} 2023), we
evaluate all methods using path error and pose error, which are computed in the same way as £y
and (poq. defined in Eq.[5]

4.2 COMPARISONS

Evaluations on Human-human and Human-scene Interaction Scenes  We first quantitatively
evaluate our approach on two real-world datasets with dynamic social scenes, HIK
and HOI-M? (Zhang et al) 2024). As demonstrated in Table [1, our approach achieves
outstanding superior performance to all other methods in three categories, highlighting our strong
capability in forecasting human motion in real scenarios with complex human-human and human-
scene dynamics. Visual comparisons on dynamic scenes in HOI-M? are shown in Figurelé-_ll In the
first example, the target person exhibits a tendency to turn toward the interactive person. Only our
method captures this intent and correctly predicts the direction. In the second example, SAST and
IAFormer mistakenly infer some poses to be underneath the floor (marked in red boxes). In contrast,
our result shows the best physical plausibility and provides the most accurate path and pose prediction.
Evaluations on long-term predictions can be found in Appendix|H]

Evaluations on Human-Scene Interaction Scenes are shown in Table.[2] We demonstrate signifi-
cantly superior performance over SOTA scene-aware methods (Mao et all, 2022} [Scofano et al}
Xing et all 2025} Zheng et all2022) on both the HUMANISE (Wang et al., and GTA-IM
et al.,2020) datasets. Meanwhile, our method also greatly outperforms the social-scene-aware method
SAST (Mueller et al.,[2024). Note that we do not rely on ground truth instance segmentation, which
is required by SAST.

4.3 DISCUSSIONS
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Joint Multi-Person Inference Our method is readily scalable to
joint multi-person motion forecasting by treating each individual as
a separate target in a data sample and then inferring the batch (batch
size = 1 4+ K). A visual result is shown in Figure 5]

Handling of Dynamic Scene Elements Currently, few datasets con-
tain a significant number of dynamic scene elements. But note that
our model architecture can natively handle dynamic scene elements ~ Figure 5: Joint forecasting.
without any structural changes. Our HSI module computes a time

series of distances between the target person and scene points. If a scene point were dynamic, its
coordinates would become time-dependent (ps — ps(¢)). The distance calculation naturally extends
to this dynamic case, and no architectural modifications would be required. Therefore, given a dataset
with significant dynamic objects, our framework could be trained to handle such scenarios directly.
We provide a preliminary validation on a subset of dynamic scenes in Appendix [M} showing the
potential ability to handle dynamic furniture objects despite limited data.

Scalability and Generality Our framework is designed with flexibility and scalability. The core
principle—encoding environmental information into a unified hierarchical representation and pro-
cessing it with a coarse-to-fine mechanism—is not fundamentally tied to motion and point cloud
data. To incorporate new modalities, such as video or audio streams, one could employ standard
pre-trained encoders (e.g., ViT for images) to produce hierarchical feature tokens. These new tokens
could then be seamlessly concatenated with our existing HSI and HHI tokens and processed by the
interaction reasoning module. This adaptability allows the framework to be extended to a wider range
of scenarios and input types without requiring a significant redesign, pointing a path toward more
general and scalable models for motion forecasting.

More Discussions on Design Choices are included in Appendix [E} covering interpretability of cross-
attention weights, and choice of holistic point cloud rather than object-level scene representation.

Runtime Analysis Our model takes similar or shorter time to perform inference than other methods.
Specifically, our model has 9.6M parameters and achieves an inference time of 43ms on HOI-M3.
See Appendix Section [C|for more detailed comparisons with baselines.

4.4 ABLATION STUDIES ON THE HOI-M?® DATASET

All ablated variants share the same network depth, and the parameter counts of all variants are basically
the same, ranging from 9M to 11M. More ablations on variants of Coarse-to-Fine Interaction,
different number of sampled points, different number of transformer layers, robustness to incomplete
interaction information can be found in Appendix Section|D}

Hierarchical Interaction Representation. Table [3{(a) shows the effectiveness of our human-to-scene
and human-to-human (including self-encoding and relation-encoding) interaction representations.
Results indicate a decline in our motion prediction performance when any of these modules are
removed, underscoring their individual contributions.

Coarse-to-Fine Interaction Feature Injection. We assess the effectiveness of the coarse-to-fine
interaction feature injection strategy in Table[3(b). The experiment shows that multi-level interaction
feature injection outperforms single-level approaches (coarse-only and fine-only). But our coarse-to-
fine strategy utilizes multi-level features in a more effective way and further boosts the performance.

Adaptive DCT Rescaling. Table [3{(c) validates the effectiveness of the adaptive DCT rescaling
mechanism. By suppressing high-frequency updates of joint motion in early stages to encourage the
focus on coarse and low-frequency updates, the shared static rescaling vector v() itself improves
prediction accuracy. Besides, the performance is further enhanced after combining the sample-

adaptive vector (X)), as it allows the frequency rescalings to adapt to different input samples.

5 CONCLUSIONS

In conclusion, we present an effective approach for human motion forecasting in interactive environ-
ments. By representing hierarchical interactive features and employing the coarse-to-fine interaction
reasoning module, our method achieves state-of-the-art performance across four public datasets,
demonstrating the potential to construct a world model for human motion. This approach holds signif-
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(a) Hierarchical Representations (b) Injection Strategy (c) Adaptive DCT Rescaling
HSI HHI | Path Error (mm)  Pose Error (mm) . ‘ Path Error (mm) ‘ Pose Error (mm) DCTrcscaling‘ Path Error (mm) ‘ Pose Error (mm)
Self Relation| 1.0s 205 mean 105 205 mean icctionsiraicay -

- - : . | 10s 205 mean| 10s 205 mean v (X) | 1.0s 20s mean| 1.0s 20s mean

X X X |167.0 4268 187.6 1347 181.8 1232
X Vv |1641 4157 1837 1332 1755 1209  Coarse-only 164.6 411.0 182.7]133.8 1753 1212 X X |159.6 4043 178.9|132.0 173.9 120.2
; )/‘ ; }238 3[1);3 }353 B%S };2(2) i%g Fine-only 163.5 409.5 182.4|133.3 178.9 1212 v X 157.2 398.4 176.3|130.6 174.4 119.2
VX 7 1582 4010 1770 1314 1756 1199  Multi-level 158.8 398.9 177.1|133.5 1747 1205 X v [158.0 401.0 1772|1317 1746 119.7
v v 156.6 393.1 174.6 129.6 172.1 117.9  Coarse-to-Fine (Ours) |156.6 393.1 174.6 129.6 172.1 117.9 v v 156.6 393.1 174.6 129.6 172.1 117.9

Table 3: Ablations studies.

icant promise for real-world applications, such as enhancing closed-loop simulations for autonomous
driving and improving the understanding and interaction capabilities of robots.

ETHICS STATEMENT
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motion prediction.

REPRODUCIBILITY STATEMENT
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APPENDIX

We organize our appendix as follows.

* In Section[A] we provide more implementation details.

* In Section[B] we provide more dataset details.

* In Section[C] we present the runtime analysis.

* In Section D] we present more ablation results.

* In Section[E] we provide more discussions on our model design choices.

* In Section[Fl we present more visual comparisons on GTA-IM (2020) dataset and
HOI-M? [Zhang et al.| (2024) dataset.

* In Section[G] we show performance under closer interactions.

* In Section[H] we present extended evaluation with NPSS metric and long-term prediction.
* In Section[l] we present extended evaluation with FID metric.

* In Section[l} we report human-object and human-human penetration.

¢ In Section[K] we discuss the limitations and future works.

e In Section@. we investigate SE(3) representations.

* In Section[M] we present preliminary validation on scenes with dynamic objects.

A IMPLEMENTATION DETAILS

For each motion sequence, we crop the 3D scene to a region that is within 2.5 meters of the root joint

of the last observed pose, and the root joint is used as the origin of the cropped scene, following prior

works (Mao et al.,[2022} Scofano et al., 2023). Then we obtain S € R *3 by randomly sampling
2

N = 1000 points in the cropped scene. The mapping function ¢(-) is defined as ¢(-) : d — e 307
where o = 0.2.

Network Architecture. The model consists of 6 Transformer layers with hierarchical dimensions:
early layers (1-3) use dimension 512, while late layers use dimension 256 (layers 4-5) or dimension
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128 (layer 6). The feed-forward dimension is 4 times the hidden dimension. All Transformer
layers use 4 self-attention heads and 4 cross-attention heads. The Graph Convolutional Network
(GCN) encoder uses 5 residual stages. A learnable position encoding is applied to joint tokens with
dimension 3 x C' = 60. Object nodes are augmented with 8-dimensional position encoding: 3D

lle

center coordinates, exponential encoding of center (e~ 2-% ), distance to origin, and exponential
encoding of distance. Object point clouds are normalized by subtracting their center.

Loss Function. Loss is computed as £ = {yan + £pose- The path loss £, and local pose 1oss £cq are
defined as

H+T

1 . 2
gpath = T Z fooot - Xﬁoot 9
t=H+1
1 HAT J-1 ) ®)
_ ¢ -
liocal = TT—1) t:;—l ; HXlocal,j - Xlocal,j”2 .

Here, X? . € R? are ground-truth and the predicted global path of the root joint at

time . X{ ., ; € R? and Xfoeal’ ; € R? are ground-truth and predicted local pose of the j*" non-root
joint at time ¢.

More Training Details. We build our network on PyTorch 1.12.0 and CUDA 12.4. We follow
previous work Mao et al/| to use the Adam optimizer with a linear learning rate schedule from
0.0005 to 0. The initial learning rate is 0.0005. Models are trained over 80 epochs. Weight decay
issetto 1 x 1075, and Adam epsilon is € = 1 x 10~%. We use a dropout of 0.1. For single-person
datasets, the batch size is 16. For multi-person datasets, dynamic batch sampling is used with a
maximum sum of other persons set to 256 (in one batch, the number of other persons for each sample
should be the same. Thus we use a custom batch sampler such that in each batch sample, the number
of other individuals is the same across each sample). Rotation augmentation is applied during training
so that the model can learn the direction-agnostic representation of the inputs.

More Dataset Details. Following prior works [Mao et al.| (2022)); [Scofano et al.| (2023); Xing
et al.| (2025); Mueller et al| (2024), the FPS of four datasets are: GTA-IM: 30 [Mao et al.| (2022));
Scofano et al.| (2023); Xing et al/(2025), HUMANISE: 30 Xing et al.| (2025), HOI-M?: 30, and HIK:
25 Mueller et al. (2024). We use H = 30 motion frames to predict T = 60 future steps for datasets
HOI-M® (Zhang et al.| 2024) and GTA-IM (Cao et al.|[2020), H = 25 and T' = 50 for HIK

2023a), H = 15 and T' = 30 for HUMANISE (Wang et al.| 2022).

. € R3and X/,

TOO!

B DATASET

A. Datasets with Human-human and Human-scene Interaction Scenes. 1) HIK
is a multi-person interaction datasets in real kitchen environments. We follow the dataset
split used in (Tanke et al.,[2023a; [Mueller et al.| [2024), using the recordings A-C as training data
and evaluating on the recording D. 2) HOI-M? (]Zhang et a1.|, 2024[) captures a rich collection of
interactions involving multiple humans and objects across 46 diverse scenes in the real world. We
randomly allocate 1/5 of these scenes for the test set and utilize the remaining for training. For a
datasets, we filter out sequences with few social interactions and human movements, and retain those
with significant interactions and motion displacement.

B. Datasets with Human-Scene Interaction Scenes. 1) GTA-IM (Cao et al.2020) is a synthetic
human-scene interaction dataset, comprising 3D human motions for 50 distinct characters across 7

diverse scenes. We adopt the same dataset setting as [Mao et al.| (2022); [Scofano et al| (2023); Xing
(2025)). 2) HUMANISE (Wang et al.l[2022) is a synthetic human-scene interaction dataset.

All methods adopt the dataset setting used in MutualDistance (Xing et al., [2025)) which ensures
motions in the test set are entirely unseen during training. The test set scenes are further divided into
seen and unseen scenes, with about 6,000 sub-sequences for testing.
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C RUNTIME ANALYSIS

An analysis of inference time and model size is shown in Table E} Overall, our model takes a
reasonable time to perform inference while achieving higher accuracy than baselines. It is worth
noting that though SAST is designed to solve the problem under a similar setting as us, it is not
practical for real-world applications as it adopts a diffusion mechanism, which makes it slow.

Table 4: Runtime analysis on HOI-M? Dataset.

Method \ # Param. Inference Time
ContAware Mao et al.[(2022) 159M 41 ms
STAG Scofano et al.| (2023) 164 M 38 ms
MutualDistance [Xing et al.| (2025) 8.6 M 114 ms
TAFormer |[Xiao et al.|(2025]) 92 M 69 ms
SAST Mueller et al.[(2024]) 154 M 2s

Ours 9.6 M 43 ms

D MORE ABLATION RESULTS

D.1 VARIANTS OF COARSE-TO-FINE INTERACTION

For the coarse-to-fine injection of interaction features at different levels, there are dozens of potential
variants. In our main paper, we adopt a relatively symmetric injection strategy, where high-level HSI
and HHI features are injected into the first three layers, while low-level or mid-level features are
injected into the later three layers. Here, we conduct an ablation study on different variants of the
injection strategy.

For simplicity, we fix the injection strategy of HHI features i.e., body-level tokens are injected into
the first three layers and joint-level tokens into the last three layers. We only apply variations to
the hierarchical HSI tokens F(1), F(2) and F®). Specifically, we evaluate four distinct injection
variants as depicted in Table 3]

As shown in Table[3] the four variants exhibit similar prediction performance, indicating that the model
is insensitive to the specific injection variant chosen. The prediction errors are consistently lower
than those of the non-coarse-to-fine methods presented in Table[5] This experiment demonstrates the
robustness and effectiveness of the coarse-to-fine interaction strategy.

Method Variant Mean Path  Mean Pose
FG  F@  FQ@) | Error (mm) Error (mm)
Multi-level | 1~6  1~6  1~6 | 177.1 120.5
1,23 45 6 174.6 117.9
CoarsetoFine | 123 4 56 | 1752 118.1
QAISCLO-HINe 115 34 5.6 174.8 117.9
1,2 3 4,5,6 175.0 118.2

Table 5: Impact of different variants of coarse-to-fine injection. We report the metrics on the HOI-
M? Zhang et al. (2024) dataset. The Variant column specifies which Transformer layers receive HSI

features at each level. For instance, the last row means that 7®) is injected into Transformer layers 1

and 2, F @) into Transformer layer 3, and F@) into Transformer layers 4, 5, and 6. This experiment
indicates that we are insensitive to different variants of coarse-to-fine injection, demonstrating the
robustness and effectiveness of the coarse-to-fine injection.
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D.2 ABLATION STUDY ON DIFFERENT NUMBER OF SAMPLED POINTS

As shown in Table [6] the performance differences between 1000 and 4000 sampled points are
negligible. However, reducing the number of points to 250 leads to a degradation in both path and
pose accuracy. To balance computational efficiency with performance, we select 1000 points as the
default configuration in our experiments.

) ‘ Path Error (mm) ‘ Pose Error (mm)
#points
| 0.5 1.0s 15s 20s mean | 0.5s 1.0s 1.5s 20s mean
250 299 572 942 14877 652 | 27.8 426 539 64.1 405
1000(default) | 29.4 559 917 1392 629 | 270 403 50.7 615 387
4000 292 559 918 1397 63.1 | 270 40.1 503 60.8 384

Table 6: Ablation study on different number of sampled point of the static scene on GTA-IM dataset.

D.3 ABLATION STUDY ON DIFFERENT NUMBER OF TRANSFORMER LAYERS

We ablate on the number of Transformer layers of the Coarse-to-Fine Interaction Reasoning Module.
For feature injection, we adopt a symmetric strategy: high-level HSI (scene) and HHI (human-human)
features are injected into the first half of the layers, while low- and mid-level features are injected
into the latter half. Table[/|reveals that while deeper architectures (more layers) generally achieve
better accuracy, the rate of improvement decreases as we add more layers. To balance computational
efficiency with performance, we adopt 6 layers as our default configuration.

\ Path Error (mm) \ Pose Error (mm)
#Transformer layers

| 05 1.0s 1.5s 2.0s mean | 0.5s 1.0s 155 2.0s mean
4 30.3 58.1 933 1404 640 | 282 422 528 637 402
6(default) 294 559 917 1392 629 | 270 403 507 615 387
8 289 554 904 1352 619 | 263 395 499 61.0 383

Table 7: Ablation study on different number of Transformer layers on GTA-IM dataset.

D.4 ROBUSTNESS TO INCOMPLETE INTERACTION INFORMATION

To evaluate the robustness of our model against incomplete information, we conduct experiments
where parts of the scene and some interacting individuals are randomly occluded. For the scene, we
simulate occlusion by randomly removing points within 6 cones originating from the target person.
For other individuals, we randomly remove 0-2 persons from the scene. As shown in Table[8] while
our method’s performance sees a slight degradation as expected, it still outperforms other methods,
demonstrating its robustness.

Table 8: Evaluation with incomplete interaction information on the HOI-M3 dataset. We report mean
Path Error (mm) and Pose Error (mm). Lower is better.

Method | Path Error Pose Error
MutualDistance 190.7 125.3
IAFormer 186.4 121.6
SAST 185.9 122.7
Ours 176.6 118.1
Ours (w/o occlusion) | 174.6 117.9
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We further analyze the impact of varying scene occlusion levels on model performance. By increasing
the number of occlusion cones from 2 to 16, we simulate progressively severe scene incompleteness.
As shown in Figure [f] while prediction error naturally increases with occlusion severity, our method
maintains a consistent performance advantage over baselines.

(a) Path Error vs. Occlusion (b) Pose Error vs. Occlusion
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Figure 6: Performance under varying levels of scene occlusion. The x-axis represents the number of
occlusion cones (indicating occlusion severity), and the y-axis represents the Mean Error.

D.5 ROBUSTNESS TO NOISY INPUTS

We conducted experiments using noisy inputs (injecting Gaussian noise into the joints of other
individuals and the scene point cloud). As illustrated in Figure [} while performance naturally
degrades for all methods as noise levels increase, HUMOF consistently outperforms the baselines.
This demonstrates that our approach remains effective and robust even with imperfect inputs.

(a) Path Error vs. Noise (b) Pose Error vs. Noise
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Figure 7: Robustness analysis under noisy inputs. The plot shows performance degradation with
increasing Gaussian noise.

E FURTHER DISCUSSIONS ON MODEL DESIGN AND CAPABILITIES

E.1 RATIONALE FOR NOT PREDICTING A SPECIFIC INTERACTIVE TARGET

Our decision not to build in an inductive bias for predicting an explicit interaction partner is a
deliberate design choice, motivated by the complex and fluid nature of real-world human interactions.
In the real world, human motion is rarely governed by a singular environment element. Instead, it
often results from a blend of multiple surrounding entities. For instance, a person might navigate
around a table while simultaneously turning their head to speak to a friend. The final motion is
a synthesis of these concurrent spatial and social cues. Therefore, forcing the model to explicitly
predict a specific interaction target would be an ill-posed simplification, failing to capture the rich,
blended nature of these influences.
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Instead, we build interaction features for all nearby individuals and scene points and allow a cross-
attention mechanism to dynamically weigh the influence of each. This approach is more flexible and
better reflects the complex nature of social dynamics.

E.1.1 INTERPRETABILITY OF CROSS-ATTENTION WEIGHTS

Our decision not to explicitly predict a specific interaction target does not mean that our model is a
black box. The cross-attention mechanism in our framework offers a way to interpret the model’s
focus. To demonstrate this, we provide a quantitative analysis of the attention weights. On the
Humanise dataset, which provides ground-truth labels for the primary object a person interacts with,
we find that the HSI tokens with the highest attention scores often correspond to that ground-truth
object. Specifically, we identify the top-3 HSI tokens with the highest average attention scores for
each sample and check if any of them correspond to the ground-truth interaction object. We formalize
this as:

Ziv I (Tiop-3 corresponds to Ogr)

N = 83.85%

31 et
1 num of obj
———— =10.56%

N
As shown in Table [0} our attention-based identification achieves an accuracy of 83.85%, significantly
outperforming a random-chance baseline. This result quantitatively validates that our model learns
to focus on relevant objects and is not simply overfitting, providing interpretable insights into its
decision-making process.

Accuracy =

Baseline (Random Chance) Accuracy =

Table 9: Interpretability of the cross-attention mechanism. We report Top-3 accuracy for identifying
the ground-truth interactive object on the Humanise dataset. Higher is better.

Method | Top-3 Accuracy
Random Chance 10.56%
Via Attention Map of Our Model 83.85%

E.2 SCENE REPRESENTATION: HOLISTIC POINT CLOUD VS. OBJECT-LEVEL MODELING

In our framework, we model the scene as a holistic point cloud rather than segmenting it into
individual objects. This design choice is motivated by two primary factors: efficiency and practical
applicability. Modeling every object individually, especially in complex scenes with numerous
objects, would introduce significant computational overhead. More importantly, it would create a
dependency on accurate and readily available instance segmentation, which is often not the case in
real-world scenarios that rely on raw sensor data. Our approach avoids this dependency. The strong
performance of our method across multiple datasets validates the effectiveness of this modeling
strategy.

F MORE VISUAL COMPARISONS

We provide additional visualization results on the GTA-IM |Cao et al.|(2020) dataset in Figure |§| and
the HOI-M? dataset in Figure @ Our method demonstrates superior accuracy in predicting human
motion, including both global trajectories and local poses.

G PERFORMANCE UNDER CLOSER INTERACTIONS

To evaluate the model’s capability in handling intense interactions, we conducted an evaluation on a
specific subset of the HOI-M? dataset focusing on close interactions, where the target person is in
close proximity (< 15cm) to scene objects or other individuals.

As shown in Table[T0] the DCT-based method does not limit interaction quality. The results on the
subset are even slightly better compared to the average result on the full test set. This is likely because
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(a) Ground Truth (d) MutualDistance

Figure 8: Visual comparisons on the GTA-IM (2020) dataset. Our method produces the best
predictions. For instance, in the 1st row, SAST Mueller et al.| (2024) predicts poses that intersect with
the space beneath the stairs, likely due to its lack of explicit modeling of human-scene interactions.

While MutualDistance [Xing et al| (2025) and STAG [Scofano et al.| (2023) avoid this issue, they also

produce inaccurate predictions. Our method generates predictions closest to the ground truth.

Predictions for Target Person i

- ,%u ;W» ™
sldedaiaa’a

3
i k Historical motion for Interactive Persons , : Historical motion for Target Person E

(a) Ground Truth (b) Ours (c) SAST (d) MutualDistance (e) TAFormer

Figure 9: More visual comparisons on HOI-M? dataset.

when there are closer scene objects or other individuals, they provide stronger geometric constraints
on the target motion. Thus, it becomes easier for the model to give a better prediction compared to
samples where there are no very close scene objects or other persons.
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Table 10: Comparison of performance between the full test set and the close-interaction subset on the
HOI-M? dataset.

Test Set \ Mean Path Error (mm) | Mean Pose Error (mm) |
Ours (Full Test Set) 174.6 117.9
Ours (Close Interaction Subset) 172.5 116.8

We also provide visual examples of these close human-human (InterX dataset (2024)) and
human-scene (HUMANISE dataset) interactions in the Supplementary Video (1:23 to 1:59) to further
demonstrate the high interaction quality.

H EXTENDED EVALUATION: NPSS METRIC AND LONG-TERM PREDICTION

In the main paper, we follow prior works Mao et al.|(2022); Scofano et al.| (2023)); Xing et al.| (2025)

and report Path Error and Pose Error as metrics. However, as noted in (Gopalakrishnan et al.| (2019),
for prediction horizons longer than one second, the inherent stochasticity of human motion can make
traditional geometric error metrics less informative. To provide a more comprehensive evaluation, we
additionally add the normalized power spectrum similarity (NPSS) metric, which offers a statistical
evaluation of motion quality.

The NPSS is calculated as the Euclidean distance between the power spectra of the prediction and the
ground truth. The formula is:

D C

NPSS = %Z > (Pak = Pax)?

d=1 k=1

where D is the number of dimensions (joints X coordinates), C' is the number of DCT coeffi-

cients, P is the power spectrum of the ground-truth sequence, and P corresponds to the predicted
sequence [Gopalakrishnan et al.| (2019).

Table 11: Quantitative results with the NPSS metric for 2-second prediction on the HIK and HOI-M3
datasets. This table extends TableElfrom the main paper by including the NPSS metric.

Dataset \ Method \ Mean Path Error (mm) | Mean Pose Error (mm) | NPSS |
MutualDistance [Xing et al. 12025} 246.0 105.9 0.00778

HIK IAFormer|Xiao et al. (2025) 200.1 95.0 0.00718
SAST Mueller et al. 2024’ 189.0 93.2 0.00711

Ours 180.7 90.2 0.00703
MutualDistance |Xing et al. 12025} 189.9 125.3 0.0195

HOLM? IAFormer [Xiao et al.[(2025) 186.3 121.6 0.0172
i SAST Mueller et al.[(2024) 184.8 122.3 0.0179
Ours 174.6 117.9 0.0169

While our primary focus is on short-term prediction (up to 2 seconds), we also evaluated our method
on a challenging long-term prediction task (10 seconds) on the HOI-M? dataset to provide a reference.
As shown in Table [I2] the performance of all methods degrades significantly as the prediction
horizon increases, which is expected due to the compounding uncertainty in long-term forecasting.
Nevertheless, our method consistently outperforms the baselines across all metrics, demonstrating its
robustness for longer-term predictions.

I MORE EVALUATION METRIC: FID

To further evaluate the quality of the generated motions on a distribution level, we calculate the
Fréchet Inception Distance (FID). We utilized the pre-trained motion encoder from T2M
as the feature extractor to map motion sequences into a 512-dimensional feature space and
then calculate FID on the HOI-M? dataset. The results are summarized in Table[13] Our method
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Table 12: Long-term (10s) prediction performance on the HOI-M? dataset.

Method \ Mean Path Error (mm) | Mean Pose Error (mm) | NPSS |
MutualDistance | Xing et al. 12025} 824.5 191.9 0.308
TAFormer [Xiao et al.|(2025 768.3 203.1 0.246
SAST |Mueller et al.( 814.7 191.3 0.320
Ours ‘ 747.8 188.7 0.227

achieves the lowest FID score, demonstrating that our generated motions match the ground-truth
distribution better than the baselines.

Table 13: FID scores on HOI-M? dataset.

Method ‘ FID (})
SAST Mueller et al. (2024 0.0278
MutualDistance |Xing et al.|(2025 0.0233
IAFormer Xiao et al.[(2025] 0.0170
Ours 0.0164

J HUMAN-OBJECT AND HUMAN-HUMAN PENETRATION

To measure human-object and human-human penetration, we calculated the mean penetration rate
and penetration depth on the HOI-M? dataset, which provides the high-quality scene meshes and
human body models (SMPL-X) necessary for this analysis. The metrics are defined as follows:

* Penetration depth at the ¢-th frame (in meters) is defined as the sum of absolute signed
distance field (SDF) values for all joints of the target person that penetrate the scene or other
persons:

J
t
S| x)|
Jj=1
where U(-) denotes the signed distance field (SDF) of the scene or interactive persons, (-)_—
clips all positive distances to zero, and X; is the 3D position of the j-th joint at time .

* Penetration rate at frame ¢ is the ratio of joints with a negative SDF value to the total
number of joints:
Number of joints with ¥ (X%) < 0

J

We then take the average over the frame and sample dimensions to obtain the final mean metrics.

Table 14: Penetration Results on the HOI-M? dataset.

Method Human-to-Scene Human-to-Human

Mean Pen. Rate Mean Pen. Depth (mm) | Mean Pen. Rate Mean Pen. Depth (mm)
Ground-Truth (GT) 1.84% 11.26 0.070% 0.61
SAST 1.54% 11.07 0.063% 0.45
IAFormer 1.62% 10.89 0.068% 0.59
MutualDistance 1.45% 10.68 0.057% 0.41
Ours 1.49% 10.77 0.052% 0.39

As shown in Table [T4] MutualDistance achieves the best HSI penetration scores, likely due to
its use of mesh-based modeling for both the target person and the scene, providing more explicit
surface information to avoid penetration. However, we note that penetration metrics alone, without
considering motion accuracy, should be interpreted with caution. Our case analysis reveals that
higher penetration rates can sometimes result from accurately predicting dynamic motion, whereas
lower penetration may occur when a method predicts static or incorrect motion (e.g., the person
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remaining stationary). This is also supported by the fact that the Ground-Truth (GT) motion itself
registers the highest penetration, due to small misalignments between the motion capture data and
scanned scene geometry in the dataset, whereas the four prediction methods may inadvertently avoid
penetration by under-predicting movement (e.g. remaining static). Our method strikes a strong
balance, achieving high motion accuracy while maintaining penetration scores comparable to or
better than most baselines.

To further reduce penetration while preserving accuracy, we could also adopt mesh-based modeling—
e.g., after computing joint-to-point/joint distance, we then adjust these by subtracting the point-to-
mesh surface distance to get mesh-to-mesh distances. In our current method we did not adopt this
design as this would introduce dependencies on scene meshes and SMPL-X parameters, increasing
complexity and reducing practical applicability.

K LIMITATIONS AND FUTURE WORKS

Failure cases Our method occasionally struggles with accurately predicting abrupt motion changes,
as illustrated in Figure In the upper example in Figure [T0] our method fails to predict the
bending-over action, as it is difficult to infer from the past motion. In the lower example, our
method incorrectly predicts that the target person will continue standing by the desk, while the person
unexpectedly starts walking away. Note that all methods fail in these challenging cases. These issues
could potentially be mitigated by incorporating additional modalities, such as human gaze |Zheng
(2022), to provide richer contextual information. We show the failure cases in the HIK dataset
in the supplementary video.

h 3 i i
i Historical motion for Interactive Persons | Historical motion for Target Person | Predictions for Target Person |
H | & i
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¢ "Ijl ii' ij' IJI
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(a) Ground Truth (b) Ours (¢c) SAST (d) MutualDistance (¢) TAFormer

Figure 10: Some failure cases. In the upper example, all methods fail to predict the bending-over
action with abrupt motion changes. In the lower example, all methods incorrectly predict that the
target person will continue standing by the desk, while the person unexpectedly starts walking away.

The Monotonous Interaction Modeling Paradigm In our work we mainly adopt a monotonous
modeling paradigm i.e., the distance-based modeling, where we concatenate distance-based features
with intrinsic scene and human features (such as self-encoding) to serve as interaction features.
Euler distance is a natural way to model interaction, as different types of interactions follow distinct
distance patterns, even in complex motions like dance. For example, in waltz or tango, the distance
between dancers’ bodies exhibits repetitive patterns of approaching and retreating. Distance-based
modeling captures these patterns, enabling action recognition and future motion prediction. While
this modeling paradigm is effective and efficient, exploring alternative paradigms and integrating
diverse approaches could lead to more robust and generalized performance.

Improvement of Joint Multi-person Predictions We have demonstrated our scalability in joint
multi-person forecasting in the paper. However, in our current approach, the model is not explicitly
aware of future interactions between individuals, as the input to the HHI module consists only of the
historical motion sequence ))¥). In the future, we could extend the method to an iterative approach
where, in each iteration, the HHI module can take the historical motion sequence &) concatenated
with the predicted motion from the previous iteration. This way, when inferring each individual, the
model is aware of the predicted future motion of other individuals from the prior iteration via HHI.
We leave this extension for future exploration.

L INVESTIGATION ON SE(3) REPRESENTATIONS
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To investigate whether explicit geometric transformations could enhance our model, we implemented
the SE(3) relative encoding similar to[Miyato et al](2024) and compared it with our original distance-
based encoding. Specifically, we constructed a local coordinate system for each individual in every
frame. We defined the root joint (pelvis) as the origin, the vector from the pelvis to the neck as
the vertical axis, and the vector between the left and right hips to determine the lateral axis. The
forward direction was then derived via the cross product to complete the orthonormal basis. Based on
this local frame, we calculated the relative SE(3) transformation between the target and interactive
persons. We encoded the rotation using a 6D continuous representation and concatenated it with the
original relative XYZ translation coordinates to form the interaction feature. As shown in Table T3]
the comparison reveals that the SE(3) encoding achieves performance on par with our original
distance-based method. We hypothesize that the lack of improvement suggests that our model is
already capable of implicitly learning the necessary geometric relationships and orientations from
the temporal patterns of interactive distances. The sequence of distances over time contains rich
information about relative motion and heading, which our hierarchical interaction reasoning module
effectively captures.

Table 15: Comparison between SE(3) encoding and our distance-based encoding on the HOI-M?
dataset.

Variant ‘ Mean Path Error (mm) | Mean Pose Error (mm) |
Ours 174.6 117.9
Ours + SE(3) 174.6 118.1

M PRELIMINARY VALIDATION ON A SUBSET OF DYNAMIC SCENES

As stated in Line 435, current mainstream datasets lack significant and diverse dynamic scene
elements, which limits large-scale benchmarking. However, to validate our architectural claim (that
our HSI module can natively handle time-dependent scene coordinates), we conducted an additional
experiment on a specific subset of the HOI dataset that contains dynamic objects (e.g., passing or
moving an object). Since these samples are rare, we upsampled them during training.

Table 16: Quantitative results on a subset of dynamic objects from the HOI dataset.

Method \ Mean Path Error (mm) | Mean Pose Error (mm) |
MutualDistance 285.0 187.9
IAFormer 288.3 176.0
SAST 281.2 189.1
Ours 244.8 159.4

As shown in Table[I6] while the quantitative errors are significantly higher compared to completely
static scenes (mainly due to the scarcity of training samples) as expected, our method consistently
outperforms baselines in this challenging setting. We demonstrate one successful example at the
end of the supplementary video. This confirms our potential to handle dynamic scene elements and
suggests that performance would likely improve significantly given a dataset with significant and
diverse dynamic scene elements.

USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were used exclusively as a
writing-assistance tool. In particular, LLMs assisted in:

* Language Polishing: Improving grammar, sentence structure, and readability while pre-
serving the technical accuracy of the content.

* Terminology and Style Consistency: Ensuring consistent usage of technical terms and
notation across sections.
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LLMs were not involved in the conception of the research problem, the design of the HUMOF
framework, or the analysis of results. All scientific contributions are solely the original work of the
authors. The LLM was employed only to improve the clarity and presentation of the manuscript’s
text.
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