

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HUMOF: HUMAN MOTION FORECASTING IN INTER- ACTIVE SCENES

Anonymous authors

Paper under double-blind review

ABSTRACT

Complex dynamic scenes present significant challenges for predicting human behavior due to the abundance of interaction information, such as human-human and human-environment interactions. These factors complicate the analysis and understanding of human behavior, thereby increasing the uncertainty in forecasting human motions. Existing motion prediction methods thus struggle in these complex scenarios. In this paper, we propose an effective method for human motion forecasting in dynamic scenes. To achieve a comprehensive representation of interactions, we design a hierarchical interaction feature representation so that high-level features capture the overall context of the interactions, while low-level features focus on fine-grained details. Besides, we propose a coarse-to-fine interaction reasoning module that leverages both spatial and frequency perspectives to efficiently utilize hierarchical features, thereby enhancing the accuracy of motion predictions. Our method achieves state-of-the-art performance across four public datasets. **We will release our code upon publication.**

1 INTRODUCTION

Human motion forecasting is essential across a wide range of applications, including surveillance, healthcare, autonomous driving, and human-robot interaction. The ability to accurately anticipate human behavior in dynamic environments is key to enhancing system safety, operational efficiency, and user experience. However, this task presents significant challenges, including the inherent complexity and variability of human motion, as well as the impact of diverse environmental factors.

In early times, many works predominantly addressed the task of human motion prediction by using simple representations of environmental states. For example, some methods (Zhang et al., 2023; Xu et al., 2023b; Ma et al., 2022; Xu et al., 2023a; Gao et al., 2023; Aksan et al., 2021; Wang et al., 2024; Su et al., 2021; Tang et al., 2023) rely solely on past human actions to predict their future motions, while others (Cao et al., 2020; Mao et al., 2022; Scifano et al., 2023; Zheng et al., 2022; Xing et al., 2025) integrate static scene features into the network all at once. However, these approaches struggle to adapt to real-world applications, where dynamic environmental constraints play a crucial role. Actually, to better predict how humans respond to dynamic environments, it is essential to consider the interaction influence. Some works (Wang et al., 2021; Guo et al., 2022b; Vendrow et al., 2022; Saadatnejad et al., 2024; Gao et al., 2024a;b; Xu et al., 2023c; Peng et al., 2023; Xiao et al., 2025) have started addressing motion prediction in challenging multi-person scenarios, using attention mechanisms to implicitly model the human-human interaction. However, these works overlook the dynamic relationship between humans and the nonhuman environment, which is equally critical for accurate motion forecasting in real scenes.

In fact, real-world environments are inherently complex and dynamic, where existing frequent human-human interactions, e.g., engaging in conversation, approaching others, or avoiding collisions, as well as human-scene interactions, e.g., sitting on stairs, lying on a bed, as shown in Figure 1. It is important to model all human-related interactions in one framework for more accurate human motion forecasting. Although (Mueller et al., 2024) made the first attempt to address the problem under this setting, it decouples feature extraction for interacting humans and scenes, fails to fully capture the interaction features, and relies on predefined semantic labels for the scene. As a result, its prediction performance is limited, and it is not practical for real-world applications. The main challenge for forecasting human motion in a realistic and dynamic environment is twofold. Given the vast array

of diverse, multi-level interactions between humans and their surroundings, as well as between individuals, *how can we design effective representations to capture these complex interactions?* Moreover, even with well-encoded interaction representations, *how can we leverage them effectively to enhance prediction accuracy?*

In this paper, we have addressed the above two challenges and propose a novel method, named **HUMOF**, for Human Motion Forecasting in complex dynamic scenes. It effectively models human kinematics and dynamics, spatial environment states, temporal information, and the most crucial interaction features, offering significant potential as a world model for human motion. In particular, we introduce a **Hierarchical Interaction Representation** to effectively capture complex and valuable interaction features. The hierarchical representation manifests in several dimensions: (1) It includes both human-human interaction modeling and human-scene interaction modeling; (2) It captures interactions through explicit representations, i.e., interactive distances, and implicitly learns interaction features through the network; (3) It integrates both high-level semantic interaction features and low-level geometric interaction features. Furthermore, to fully utilize the hierarchical representation for enhancing human motion prediction, we design a **Coarse-to-Fine Interaction Reasoning Module**. Specifically, to encourage the model to focus on global environmental understanding while minimizing interference from noisy low-level environmental information and high-frequency details in the earlier stages, and refine fine-grained details in the later stages, we implement the coarse-to-fine mechanism from two perspectives: (1) In spatial perspective, through our coarse-to-fine injection strategy, high-level features are injected into early Transformer layers for semantic understanding of human actions, while low-level features are introduced in later Transformer layers to perceive geometric details; (2) In frequency perspective, our DCT rescaling mechanism suppresses the updating of high-frequency components of human motion in earlier layers, and progressively encourages the model to focus on low-frequency details in later stages. Extensive experimental results demonstrate that our method achieves state-of-the-art performance on four public datasets, and ablation studies show the effectiveness of our detailed designs. Our contributions are summarized as follows:

- We present an effective method for human motion prediction in dynamic environments, involving both human-human and human-scene interactions, achieving state-of-the-art performance in various dynamic scenarios.
- We introduce hierarchical interaction feature representation to achieve a comprehensive understanding of human-human and human-scene interactions.
- We propose a coarse-to-fine interaction reasoning module to fully leverage hierarchical interactive features to enhance prediction accuracy.

2 RELATED WORK

Single-Person Human Motion Prediction Early works mainly consider the own kinematic and dynamic influence on future human motions and predict the motion for a single person (Zhang et al., 2023; Xu et al., 2023b; Ma et al., 2022; Xu et al., 2023a; Gao et al., 2023; Aksan et al., 2021; Wang et al., 2024; Su et al., 2021; Tang et al., 2023). Many approaches (Fragkiadaki et al., 2015; Jain et al., 2016; Martinez et al., 2017; Liu et al., 2022) relied on Recurrent Neural Networks (RNNs) to capture temporal dependencies, overlooking spatial relationships. More recent methods have shifted towards Graph Convolutional Networks Li et al. (2022); Chen et al. (2020); Dang et al. (2021), Temporal Convolutional Networks (Sofianos et al., 2021), and Transformers Mao et al. (2020); Cai et al. (2020); Aksan et al. (2021); Xu et al. (2023a), aiming to capture complex spatial-temporal relationships. However, these methods primarily concern personal situations to predict future motions, limiting the application in real-world scenarios.

Figure 1: Real dynamic scenes involve complex human-human and human-scene interactions. We propose to predict human motions under such challenging settings, where existing methods struggled.

108 **Scene-Aware Human Motion Prediction** Recent advancements (Cao et al., 2020; Mao et al., 2022;
 109 Scofano et al., 2023; Zheng et al., 2022; Xing et al., 2025) have started incorporating scene context
 110 into human motion prediction tasks. Some approaches (Cao et al., 2020) represented scenes as
 111 2D images, but struggled when handling occlusions and failed to maintain consistency between
 112 local and global motion. GIMO (Zheng et al., 2022) attempted to enhance prediction accuracy by
 113 incorporating eye gaze; ContactAware (Mao et al., 2022) leveraged a contact map to encode human-
 114 scene relationships; STAG (Scofano et al., 2023) proposed a three-stage approach that sequentially
 115 processes contact points, trajectories, and poses. MutualDistance (Xing et al., 2025) offered an explicit
 116 human-scene interaction model using mutual distance. Although these methods have effectively
 117 modeled human-scene interactions, they focus on static scenes, neglecting dynamic social interactions
 118 between humans.

119 **Social-Aware Human Motion Prediction** Recent studies (Adeli et al., 2020; 2021; Wang et al.,
 120 2021; Guo et al., 2022b; Vendrow et al., 2022; Tanke et al., 2023b; Saadatnejad et al., 2024; Gao et al.,
 121 2024a;b; Xu et al., 2023c; Peng et al., 2023; Jeong et al., 2024; Xiao et al., 2025) in multi-person
 122 human pose forecasting focus mainly on modeling human interactions in group scenarios. Most
 123 recently, Transformers (Wang et al., 2021; Guo et al., 2022b; Vendrow et al., 2022; Saadatnejad
 124 et al., 2024; Gao et al., 2024a;b; Xu et al., 2023c; Peng et al., 2023; Xiao et al., 2025) are popular
 125 for this task due to their strong learning capabilities: T2P (Jeong et al., 2024) sequentially predicts
 126 global trajectory and local pose; IAFormer (Xiao et al., 2025) proposed to learn amplitude-based
 127 interactions and prior knowledge. However, methods in this category overlook the importance of
 128 scene information. A recent work (Mueller et al., 2024) uses the diffusion model for long-term motion
 129 generation considering both static scene and motion of other individuals. However, it only implicitly
 130 encodes the scene and other individuals, without explicit modeling of human-to-scene and human-to-
 131 human interaction. Additionally, it treats the scene as a set of discrete objects with semantic tags,
 132 relying on ground-truth segmentation results, which limits its applicability in real-world scenarios
 involving raw sensor data.

3 METHODOLOGY

140 The key challenge in forecasting human motion within complex dynamic environments lies in effec-
 141 tively encoding and leveraging the involved human-human and human-scene interactions. Hence, we,
 142 on one hand, propose a hierarchical approach to comprehensively encode these representations (Fig-
 143 ure 3ab), and on the other hand, present a Coarse-to-Fine Interaction Reasoning Module (Figure 3c)
 144 to fully leverage the representations.

145 **Problem Definition.** The task is to predict a person’s
 146 future motion given their past motion, the point cloud
 147 of static scene elements, and the past motion of other
 148 individuals in the vicinity.

149 **The input of our model** includes three parts: **1).** A
 150 historical motion sequence of the target person $\mathbf{X}^{1:H}$
 151 where $\mathbf{x}_j = \{\mathbf{x}_j^1, \dots, \mathbf{x}_j^H\} \in \mathbb{R}^{H \times 3}$ represents the
 152 motion of j_{th} joint, with each \mathbf{x}_j^t corresponding to the
 153 3D coordinates of a joint at t_{th} frame; **2).** The scene’s
 154 3D point cloud $\mathcal{S} = \{s_1, \dots, s_N\}$ with N points;
 155 And **3).** the historical motion sequence $\mathcal{Y}^{(k)} =$
 156 $[\mathbf{y}_1^{(k)}, \dots, \mathbf{y}_J^{(k)}] \in \mathbb{R}^{J \times H \times 3}$ of the k_{th} ($k \in [1, K]$)
 157 interactive person in the scene, which also consists
 158 of J body joints, each with H consecutive poses.
 159 Similarly, $\mathbf{y}_j^{(k)} = \{\mathbf{y}_j^{(k)1}, \dots, \mathbf{y}_j^{(k)H}\} \in \mathbb{R}^{H \times 3}$ rep-
 160 presents the motion of j -th joint of the k_{th} interactive
 161 person, with each $\mathbf{y}_j^{(k)t}$ corresponding to the 3D coordinates of one of his joint at t_{th} frame. **Our**
 162 **goal** is to predict the motion $\mathbf{X}^{H+1:H+T}$ of the target person for the future T time steps.

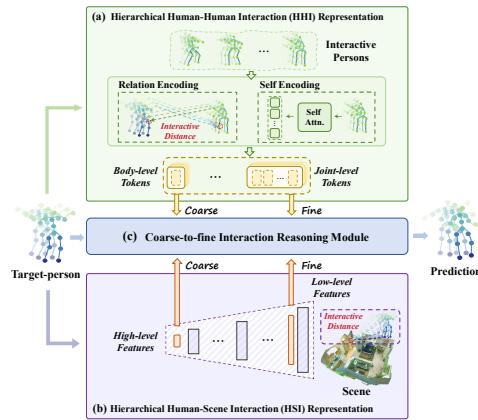


Figure 2: HUMOF Overview.

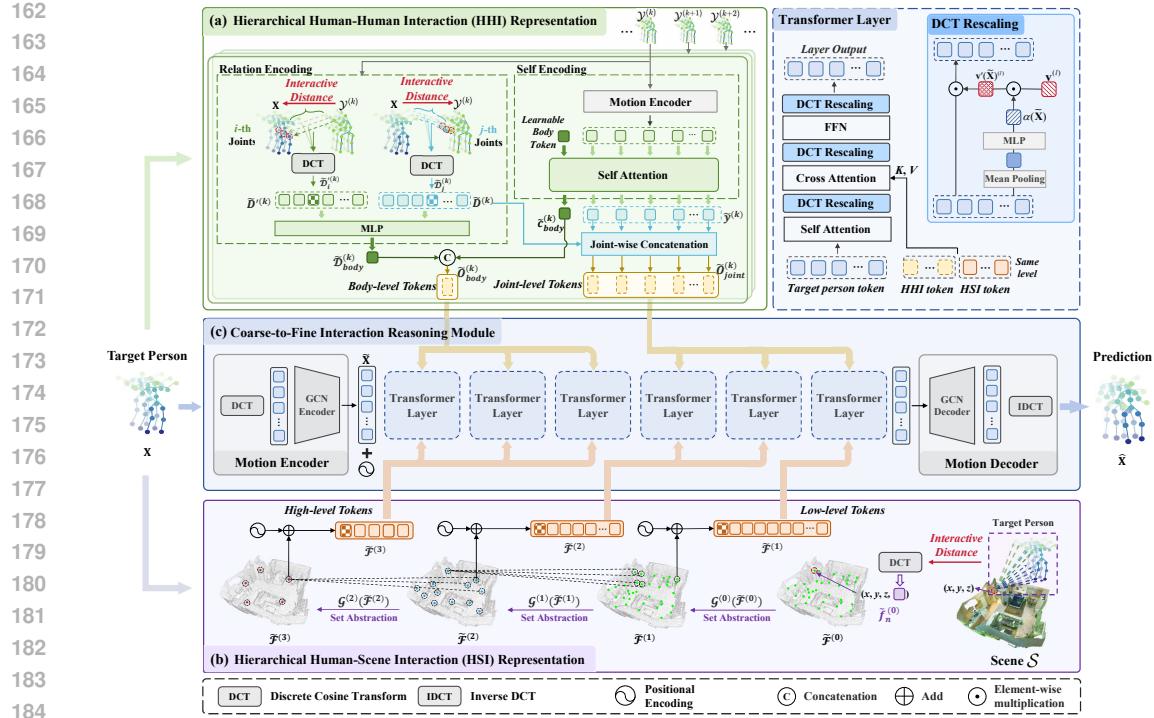


Figure 3: Detailed architecture of HUMOF. Our method takes inputs from three aspects: the past motions of the target person, a 3D point cloud for the scene, and motion sequences of interactive persons. The interactions are comprehensively encoded by (a) Hierarchical Human-Human Interaction Representation and (b) Hierarchical Human-Scene Interaction Representation, respectively. Thereafter, the hierarchical representations are leveraged by (c), a Coarse-to-Fine Interaction Reasoning Module, to predict future motions for the target person. Details of the Interaction-Perceptive Transformer layer in (c) are shown on the top right.

3.1 MOTION ENCODER

Follow prior works (Mao et al., 2022; Scofano et al., 2023; Xiao et al., 2025; Xing et al., 2025), we first pad the sequence $\mathbf{X}^{1:H}$ of length H by repeating the last historical pose \mathbf{X}^H for T additional frames, to make a padded sequence of length $H + T$. For simplicity, we still call the padded sequence \mathbf{X} . Providing that DCT is effective in handling temporal information in human motion prediction (Mao et al., 2022; Scofano et al., 2023; Xing et al., 2025; Xiao et al., 2025), and that GCN excels at uncovering spatial dependencies between human joints (Mao et al., 2019; Xing et al., 2025; Li et al., 2020; 2022), we combine a Discrete Cosine Transform layer (DCT) and a Graph Convolutional Network (GCN) (Mao et al., 2019) to extract both spatial and temporal representations in the motion encoder (Figure 3(c)left). To help the model identify different joints, a learnable position embedding $\mathcal{P} \in \mathbb{R}^{J \times C'}$ is added to each joint. Here $C' = C \times 3$, where $C = 20$ is the number of DCT coefficients and 3 corresponds to the three directions: x , y , and z . Finally, the encoding $\tilde{\mathbf{X}} \in \mathbb{R}^{J \times C'}$ for a person can be formulated as

$$\tilde{\mathbf{X}} = \text{GCN}(\text{DCT}(\mathbf{X})) + \mathcal{P}, \quad (1)$$

which encodes features in the frequency domain for each joint $\tilde{\mathbf{x}}_j$ over the entire motion sequence.

3.2 HIERARCHICAL INTERACTION REPRESENTATION

Complex dynamic scenes involve interactions between humans (Section. 3.2.1), as well as between humans and their environment (Section. 3.2.2). To achieve a comprehensive representation of both human-human and human-scene interactions, we incorporate hierarchical features so that high-level features capture the overall context of the interactions, while low-level features focus on fine-grained details. This multi-level approach ensures a thorough and nuanced understanding of the interactions.

216 3.2.1 HIERARCHICAL REPRESENTATION FOR HUMAN-HUMAN INTERACTION
217

218 Regarding human-level interactions (Figure 3a), when a person engages with others, they are involved
219 in two types of motion: independent motion, such as walking, and interactive motion, such as
220 approaching a person to converse or adjusting one’s path to avoid a collision. Therefore, we introduce
221 a self-encoding submodule (Figure 3a right) to describe their independent motions and a relation-
222 encoding submodule (Figure 3a left) to model their interdependencies.

223 **Self Encoding.** For each interactive person, we encode their motion sequence independently, capturing
224 semantic information specific to his motion, as shown in Figure 3(a) right. This self-encoding step
225 enables each person’s motion to contribute meaningful social cues. Specifically, the motion sequence
226 $\mathcal{Y}^{(k)}$ of k_{th} interactive person is first processed through a motion encoder as described in Section 3.1,
227 obtaining **joint-level features** in the frequency domain $\tilde{\mathcal{Y}}^{(k)} = \{\tilde{\mathbf{y}}_1^{(k)}, \dots, \tilde{\mathbf{y}}_J^{(k)}\} \in \mathbb{R}^{J \times C'}$. Then a
228 two-layer Transformer processes a learnable body-level feature $\tilde{c}_{body}^{(k)}$ together with the joint-level
229 feature $\tilde{\mathcal{Y}}^{(k)}$. Note that **body-level feature** $\tilde{c}_{body}^{(k)}$ contains the information from all joints after being
230 passed by the Transformer, serving as the body-level self encoding. While the updated joint tokens
231 $\tilde{\mathcal{Y}}^{(k)} = \{\tilde{\mathbf{y}}_1^{(k)}, \dots, \tilde{\mathbf{y}}_J^{(k)}\}$ constitute the joint-level self encoding.

233 **Relation Encoding.** We observe that despite of the various types of interactions, different interactions
234 always lead to distinct distance patterns. Therefore, it is effective and efficient to model interactions
235 with “distances”. Hence we model the interactions explicitly to capture their dependencies via
236 defining interactive distances as shown in Figure 3(a) left. First, for the j_{th} joint of the k_{th} interactive
237 person, we calculate the interactive distance between this joint and the closest joint of the target
238 person for each of the H frames as the **joint-level relation encoding**. Specifically, at t_{th} frame, the
239 joint-level interactive distance $\mathbf{D}_j^{(k)t}$ is computed as:

$$240 \quad \mathbf{D}_j^{(k)t} = \phi(\min_{i \in [1, J]} \left\| \mathbf{y}_j^{(k)t} - \mathbf{x}_i^t \right\|_2^2), \quad (2)$$

243 where $\phi(\cdot)$ is a mapping function such that closer joints have higher values than more distant
244 ones. Then, we convert the time series of interactive distances $\{\mathbf{D}_j^{(k)1}, \dots, \mathbf{D}_j^{(k)H}\}$ into frequency
245 domain via DCT to get the joint-level relationship encoding $\tilde{\mathbf{D}}_j^{(k)} \in \mathbb{R}^C$. Second, for the i_{th}
246 joint of the target person, we similarly calculate its joint-level relationship encoding with the k_{th}
247 interactive person, denoted as $\tilde{\mathbf{D}}_i^{(k)}$. Thereafter, we obtained **the body-level relation encoding**
248 $\tilde{\mathbf{D}}_{body}^{(k)} = \text{MLP}(\text{concat}(\tilde{\mathbf{D}}_1^{(k)}, \dots, \tilde{\mathbf{D}}_J^{(k)}, \tilde{\mathbf{D}}_1^{(k)}, \dots, \tilde{\mathbf{D}}_J^{(k)}))$.

250 **Human-Human Interaction Tokens.** Finally, we concatenate the Self Encoding and Relation
251 Encoding on their respective levels to obtain the Human-Human Interaction (HHI) token. To be clear,
252 the k_{th} interactive person’s body-level HHI token is $\tilde{\mathcal{O}}_{body}^{(k)} = \text{concat}(\tilde{c}_{body}^{(k)}, \tilde{\mathbf{D}}_{body}^{(k)})$, and joint-level
253 HHI token is $\tilde{\mathcal{O}}_{joint}^{(k)} = \{\tilde{o}_1^{(k)}, \dots, \tilde{o}_J^{(k)}\}$, where $\tilde{o}_j^{(k)} = \text{concat}(\tilde{\mathbf{y}}_j^{(k)}, \tilde{\mathbf{D}}_j^{(k)})$.

255 3.2.2 HIERARCHICAL REPRESENTATION FOR HUMAN-SCENE INTERACTION
256

257 Considering the vast number of points in the 3D point cloud of a scene, it is impractical and inefficient
258 to enumerate the target person’s interactions with every point. Recalling that a centre point is
259 frequently used to represent its neighbouring points as an approximation in geometric processing,
260 we hope to progressively approximate neighbouring points through central points, reducing the total
261 number of points while retaining essential scene information. In this way, we can construct different
262 levels of point approximations with a gradually decreasing number of points, ensuring to maintain
263 rich interaction features across different spatial scales. Meanwhile, noting that most raw 3D scene
264 point clouds lack object-level annotations, our method does not rely on predefined semantic labels as
265 required by SAST (Mueller et al., 2024).

266 As illustrated in Figure 3(b), to obtain hierarchical point approximations, we employ a series of set
267 abstraction layers from PointNet++ (Qi et al., 2017), denoted as $\{\mathcal{G}^{(0)}, \dots, \mathcal{G}^{(b)}\}$, $b \in [0, 3]$. At each
268 level of abstraction, we apply Farthest Point Sampling following PointNet++ to obtain point subsets.
269 Each set abstraction operation processes and refines the point set to create a new set with fewer points,
preserving efficiency and structure within the point cloud.

270 Notice that the set abstraction layer $\mathcal{G}^{(0)}$ takes an interactive feature matrix $\tilde{\mathcal{F}}^{(0)} = \{\tilde{f}_1^{(0)}, \dots, \tilde{f}_{N^{(0)}}^{(0)}\}$
 271 as input, where the interactive feature $\tilde{f}_n^{(0)}$ of a point s_n is computed as a collection of interactive
 272 distances in the frequency domain. Specifically, for a point s_n and a joint \mathbf{x}_j , we firstly calculate their
 273 interactive distance in each frame, constituting a time series m_j :

$$275 \quad m_j = \{\phi(\|s_n - \mathbf{x}_j^1\|_2^2), \dots, \phi(\|s_n - \mathbf{x}_j^H\|_2^2)\} \in \mathbb{R}^H, \quad (3)$$

276 where $\phi(\cdot)$ is a mapping function that closer scene points have higher values than more distant
 277 ones (Mao et al., 2022). Next, we convert m_j into frequency domain and obtain $\tilde{m}_j \in \mathbb{R}^{C'}$. Finally,
 278 we concatenate \tilde{m}_j from all joints, along with the coordinates of the scene point s_n , forming s_n 's
 279 interactive feature $\tilde{f}_n^{(0)} \in \mathbb{R}^{J \times C' + 3}$.

280 Such a feature matrix $\tilde{\mathcal{F}}^{(b)}$ is iteratively computed across subsequent set abstraction layers (Figure 3(b)), where $\tilde{\mathcal{F}}^{(b)} = \mathcal{G}^{(b-1)}(\tilde{\mathcal{F}}^{(b-1)})$. To further enhance the positional information, we add a
 281 position encoding derived from 3D spatial coordinates of each point to the corresponding feature at
 282 each abstraction level $b \in [1, 3]$. Finally, $\tilde{\mathcal{F}}^{(b)}$ serves as the Human-Scene Interaction (HSI) tokens.
 283

284 3.3 COARSE-TO-FINE INTERACTION REASONING MODULE

285 Accurate human motion prediction requires capturing kinetics and dynamics, involving inherent
 286 correlations among joints, across the temporal dimension, and with the surrounding environment.
 287 To simultaneously leverage these three types of correlations, we present a coarse-to-fine interaction
 288 reasoning module. We take the target person's representation $\tilde{\mathbf{X}}$ and all the interaction features in
 289 the frequency domain including human-to-human interactions (HHI) tokens (\tilde{O}_{body} and \tilde{O}_{joint}) and
 290 human-to-scene interactions (HSI) tokens $\tilde{\mathcal{F}}^{(b)}$ as input, the model reasons about the motion of the
 291 target person through all interaction-perceptive Transformer layers using a coarse-to-fine strategy.
 292

293 3.3.1 COARSE-TO-FINE INJECTION STRATEGY

294 With the obtained hierarchical representations for interactions—both between human and human
 295 (Section 3.2.1) and between humans and scenes (Section 3.2.2)—we establish a strategy to fully
 296 leverage this information.

297 Different from crudely injecting features from multiple levels of the hierarchical representation
 298 into each interaction layer of the model, we sequentially inject hierarchical interaction features in a
 299 coarse-to-fine manner. We assign high-level features to early layers and progressively incorporate
 300 low-level features at deeper layers, as shown in Figure 3(c). For example, at the first layer, high-level
 301 HSI tokens $\tilde{\mathcal{F}}^{(3)}$ and HHI tokens \tilde{O}_{body} are concatenated along token dimension and injected, totaling
 302 $N^{(3)} + K$ interaction tokens. At the last layer, we inject low-level HSI tokens $\tilde{\mathcal{F}}^{(1)}$ and HHI tokens
 303 \tilde{O}_{joint} , totaling $N^{(1)} + K \times J$ tokens. It allows the model to begin with a global understanding of
 304 high-level semantics and gradually narrow its focus to local geometry, improving prediction accuracy.
 305

306 3.3.2 INTERACTION-PERCEPTIVE TRANSFORMER LAYER

307 As depicted in the upper right of Figure 3, our Transformer layer begins with processing the target
 308 person's joint tokens $\tilde{\mathbf{x}}_j^{(l)}$ via a self-attention (SA) designed to capture long-range dependencies
 309 among joints. To incorporate interactions, we employ a cross-attention (CA) where joint tokens
 310 $\tilde{\mathbf{x}}_j^{(l)}$ serve as queries, while interaction tokens act as keys and values. A feed forward network
 311 (FFN) (Vaswani et al., 2017) follows CA to enhance joint tokens. More importantly, to better align
 312 with our coarse-to-fine strategy, an adaptive DCT rescaling mechanism is performed on $\tilde{\mathbf{x}}_j^{(l)}$ after
 313 each SA, CA and FFN.

314 **Adaptive DCT Rescaling Mechanism.** Recall that our coarse-to-fine injection strategy focuses on
 315 capturing coarse-level human motions in the early stages, it would be helpful if we could control
 316 the influence of finer details. Observing that each primary joint token is constructed from the
 317 DCT coefficients of joint motion, with each channel corresponding to a specific DCT coefficient,
 318 we introduce a learnable DCT rescaling mechanism from the frequency domain to suppress high-
 319 frequency details. This mechanism further supports our coarse-to-fine strategy by regulating the
 320

Dataset	Method	Path Error (mm)					Pose Error (mm)				
		0.5s	1.0s	1.5s	2.0s	mean	0.5s	1.0s	1.5s	2.0s	mean
HIK	ContAware (Mao et al., 2022)	138.3	251.3	352.4	430.8	239.3	87.8	117.1	136.1	147.8	106.8
	GIMO (Zheng et al., 2022)	143.0	259.7	384.2	487.3	258.6	85.5	121.6	142.0	153.0	109.3
	STAG (Scofano et al., 2023)	124.7	245.4	352.4	479.2	239.7	81.7	110.9	132.5	140.9	100.6
	MutualDistance (Xing et al., 2025)	128.7	253.2	372.5	479.2	246.0	82.9	117.2	138.5	148.2	105.9
	T2P (Jeong et al., 2024)	88.6	199.6	318.8	447.1	208.7	74.2	108.6	127.5	142.6	96.9
	IAFormer (Xiao et al., 2025)	83.9	195.0	311.1	434.9	200.1	71.5	106.5	125.9	137.7	95.0
HOI-M ³	SAST (Mueller et al., 2024)	86.7	187.4	284.9	398.1	189.0	72.3	101.4	118.0	128.6	93.2
	Ours	78.8	177.4	278.8	388.4	180.7	71.2	100.6	116.9	127.1	90.2
	ContAware (Mao et al., 2022)	125.6	239.9	285.4	432.9	236.9	106.2	152.8	174.3	197.1	137.5
	GIMO (Zheng et al., 2022)	131.4	247.7	300.9	454.4	255.2	107.9	155.9	182.6	207.1	141.0
	STAG (Scofano et al., 2023)	128.1	234.4	289.5	438.1	239.7	102.5	145.0	167.1	185.6	131.2
	MutualDistance (Xing et al., 2025)	83.6	169.7	278.8	402.8	189.9	94.4	137.1	158.2	181.3	125.3
HOI-M ³	T2P (Jeong et al., 2024)	74.2	168.8	296.9	429.2	194.1	88.0	135.8	160.9	183.2	124.6
	IAFormer (Xiao et al., 2025)	69.0	166.6	290.1	423.5	186.3	86.1	135.0	165.9	180.7	121.6
	SAST (Mueller et al., 2024)	75.0	166.2	280.4	403.9	184.8	89.2	133.8	167.0	182.9	122.3
	Ours	67.1	156.6	268.4	393.1	174.6	86.3	129.6	155.0	172.1	117.9

Table 1: Comparisons on datasets with dynamic scenes. We compare with scene-aware methods, ContactAware, GIMO, STAG, and MutualDistance, social-aware method, IAFormer and T2P, and social-scene-aware method SAST.

impact of high-frequency details and noise in the Transformer layer l through the rescaling vector $\mathbf{v}'(\tilde{\mathbf{X}})^{(l)} \in \mathbb{R}^{C'}$, which is applied on joint tokens $\tilde{\mathbf{x}}_j^{(l)}$ after each SA, CA, and FFN in an element-wise multiplication manner, formulated as $\tilde{\mathbf{x}}_j^{(l)} \leftarrow \tilde{\mathbf{x}}_j^{(l)} \odot \mathbf{v}'(\tilde{\mathbf{X}})^{(l)}$ where

$$\mathbf{v}'(\tilde{\mathbf{X}})^{(l)} = \mathbf{v}^{(l)} \odot \boldsymbol{\alpha}(\tilde{\mathbf{X}}), \quad \boldsymbol{\alpha}(\tilde{\mathbf{X}}) = \text{MLP}\left(\sum_{j=1}^J \tilde{\mathbf{x}}_j^{(l)}\right) \quad (4)$$

Here, \odot is element-wise multiplication, and $\mathbf{v}^{(l)}$ is a pre-defined rescaling vector shared across all joint tokens. We design $\mathbf{v}^{(l)}$ such that values are close to 1.0 for low-frequency components and progressively decrease for higher frequencies in early layers, effectively suppressing high-frequency components. The suppression is most prominent in the first layer ($l = 1$) and gradually weakens in deeper layers, with the rescaling vector eventually having all values equal to 1.0 in the last layer ($l = 6$). Moreover, for that different types of action may have varied optimal rescaling, a shared rescaling $\mathbf{v}^{(l)}$ applied uniformly across all input samples is inadequate. We thus further include a sample-adaptive vector $\boldsymbol{\alpha}(\tilde{\mathbf{X}})$ to capture such variations, which is computed by applying average pooling across all J joint tokens, followed by a MLP to acquire sample-specific information.

3.4 MOTION DECODER AND LOSS

As shown in Figure 3(c) right, the updated joint tokens $\tilde{\mathbf{X}}^{(6)}$ from the 6th Transformer layer is passed into a GCN decoder and Inverse Discrete Cosine Transform (IDCT) (Mao et al., 2019) to get predicted motion sequence $\hat{\mathbf{X}}$, which is formulated by $\hat{\mathbf{X}} = \text{IDCT}(\text{GCN}(\tilde{\mathbf{X}}^{(6)})) \in \mathbb{R}^{J \times (H+T) \times 3}$.

Loss is computed as the L2 distance between the predicted path and pose and the ground-truth. Details can be found in Appendix A.

4 EXPERIMENTS

4.1 SETUPS

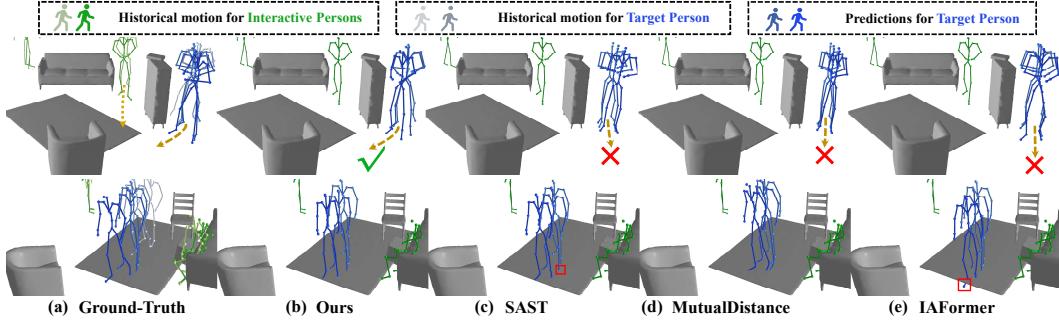
Implementation Details can be found in Appendix A.

Datasets. We conduct experiments on 2 datasets with human-human and human-scene interactions, **HIK** (Tanke et al., 2023a) and **HOI-M³** (Zhang et al., 2024), as well as on 2 datasets with human-scene interaction scenes, **GTA-IM** (Cao et al., 2020) and **HUMANISE** (Wang et al., 2022). Please refer to Appendix B for more dataset details.

Baselines. **3 Scene-Aware Methods**, ContactAware (Mao et al., 2022), GIMO (Zheng et al., 2022), STAG (Scofano et al., 2023), and MutualDistance (Xing et al., 2025). To evaluate them on dynamic datasets, we introduce the multi-person context by concatenating all persons' information to the original input of their motion decoder. **2 Social-Aware Methods**, T2P Jeong et al. (2024) and

HUMANISE Dataset Wang et al. (2022)												GTA-IM Dataset Cao et al. (2020)																										
Method	Seen Scenes						Unseen Scenes						Path Error (mm)				Pose Error (mm)																					
	Path Error (mm)			Pose Error (mm)			Path Error (mm)			Pose Error (mm)			0.5s		1.0s		2.0s		mean		0.5s		1.0s		1.5s		2.0s		mean									
	0.5s	1.0s	mean	0.5s	1.0s	mean	0.5s	1.0s	mean	0.5s	1.0s	mean	44.5	82.6	125.6	182.9	87.1	40.1	54.1	65.2	77.2	51.8	52.7	97.8	160.6	241.7	110.3	47.9	60.7	71.1	82.7	59.9						
ContAware *	52.8	121.1	57.8	97.6	141.4	92.9	53.1	124.0	58.7	94.0	139.1	90.3	43.2	79.8	119.9	176.4	83.4	35.4	48.7	59.8	73.5	47.0	55.2	124.6	60.7	141.4	150.3	140.2	41.0	77.4	123.1	181.8	85.2	28.2	41.0	53.6	66.8	41.5
GIMO *	70.1	129.2	72.0	141.4	150.3	140.2	77.7	144.0	80.2	146.3	159.4	146.5	34.4	65.9	104.0	155.6	72.0	31.0	46.8	58.9	70.7	44.6	39.5	130.9	80.0	100.2	116.6	80.8	46.7	100.2	50.1	84.3	131.8	80.6				
STAG *	55.2	124.6	60.7	88.3	131.4	83.0	57.0	131.5	63.2	89.9	137.7	85.6	39.5	87.4	102.0	64.1	62.9	27.0	40.3	50.7	61.5	38.7	56.2	122.4	62.1	86.0	111.6	80.7	57.2	129.1	63.7	90.6	124.7	86.7				
SAST	41.5	93.5	45.6	83.7	130.9	80.0	46.7	100.2	50.1	84.3	131.8	80.6	39.5	87.4	102.0	64.1	62.9	27.0	40.3	50.7	61.5	38.7	41.5	93.5	45.6	83.7	130.9	80.0	46.7	100.2	50.1	84.3	131.8	80.6				
Ours	36.9	87.4	41.7	69.0	102.0	64.1	39.5	88.1	43.4	69.8	109.3	66.2	29.4	55.9	91.7	139.2	62.9	27.0	40.3	50.7	61.5	38.7																

Table 2: Comparisons on datasets with static scenes. Results with * are from MutualDitance.

Figure 4: Visualization of motion prediction results on dynamic scenes in HOI-M³. More visual results are in the Supplementary Video and Appendix Section F.

IAFormer (Xiao et al., 2025), Since they are highly dedicated to pure multi-person input, we introduce the human-scene-interaction features generated by our HUMOF. And 1 Social-Scene-Aware Method, SAST (Mueller et al., 2024). As it requires instance segmentation of the scene as input, we provide it with the ground-truth segmentations, except on GTA-IM, where we use the segmentation predicted by (Shin et al., 2024) due to the absence of ground truth.

Metrics. Following prior works (Mao et al., 2022; Scofano et al., 2023; Xing et al., 2025), we evaluate all methods using path error and pose error, which are computed in the same way as ℓ_{path} and ℓ_{pose} defined in Eq. 5.

4.2 COMPARISONS

Evaluations on Human-human and Human-scene Interaction Scenes We first quantitatively evaluate our approach on two real-world datasets with dynamic social scenes, HIK (Tanke et al., 2023a) and HOI-M³ (Zhang et al., 2024). As demonstrated in Table 1, our approach achieves outstanding superior performance to all other methods in three categories, highlighting our strong capability in forecasting human motion in real scenarios with complex human-human and human-scene dynamics. Visual comparisons on dynamic scenes in HOI-M³ are shown in Figure 4. In the first example, the target person exhibits a tendency to turn toward the interactive person. Only our method captures this intent and correctly predicts the direction. In the second example, SAST and IAFormer mistakenly infer some poses to be underneath the floor (marked in red boxes). In contrast, our result shows the best physical plausibility and provides the most accurate path and pose prediction. *Evaluations on long-term predictions can be found in Appendix H.*

Evaluations on Human-Scene Interaction Scenes are shown in Table. 2. We demonstrate significantly superior performance over SOTA scene-aware methods (Mao et al., 2022; Scofano et al., 2023; Xing et al., 2025; Zheng et al., 2022) on both the HUMANISE (Wang et al., 2022) and GTA-IM (Cao et al., 2020) datasets. Meanwhile, our method also greatly outperforms the social-scene-aware method SAST (Mueller et al., 2024). Note that we do not rely on ground truth instance segmentation, which is required by SAST.

4.3 DISCUSSIONS

432 **Joint Multi-Person Inference** Our method is readily scalable to
 433 joint multi-person motion forecasting by treating each individual as
 434 a separate target in a data sample and then inferring the batch (batch
 435 size = $1 + K$). A visual result is shown in Figure 5.

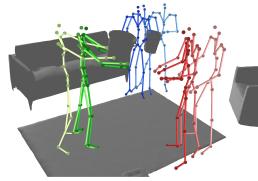


Figure 5: Joint forecasting.

436 **Handling of Dynamic Scene Elements** Currently, few datasets con-
 437 tain a significant number of dynamic scene elements. But note that
 438 our model architecture can natively handle dynamic scene elements
 439 without any structural changes. Our HSI module computes a time
 440 series of distances between the target person and scene points. If a scene point were dynamic, its
 441 coordinates would become time-dependent ($p_s \rightarrow p_s(t)$). The distance calculation naturally extends
 442 to this dynamic case, and no architectural modifications would be required. Therefore, given a dataset
 443 with significant dynamic objects, our framework could be trained to handle such scenarios directly.
 444 [We provide a preliminary validation on a subset of dynamic scenes in Appendix M, showing the](#)
 445 [potential ability to handle dynamic furniture objects despite limited data.](#)

446 **Scalability and Generality** Our framework is designed with flexibility and scalability. The core
 447 principle—encoding environmental information into a unified hierarchical representation and pro-
 448 cessing it with a coarse-to-fine mechanism—is not fundamentally tied to motion and point cloud
 449 data. To incorporate new modalities, such as video or audio streams, one could employ standard
 450 pre-trained encoders (e.g., ViT for images) to produce hierarchical feature tokens. These new tokens
 451 could then be seamlessly concatenated with our existing HSI and HHI tokens and processed by the
 452 interaction reasoning module. This adaptability allows the framework to be extended to a wider range
 453 of scenarios and input types without requiring a significant redesign, pointing a path toward more
 454 general and scalable models for motion forecasting.

455 **More Discussions on Design Choices** are included in Appendix E, covering interpretability of cross-
 456 attention weights, and choice of holistic point cloud rather than object-level scene representation.

457 **Runtime Analysis** Our model takes similar or shorter time to perform inference than other methods.
 458 Specifically, our model has 9.6M parameters and achieves an inference time of 43ms on HOI-M³.
 459 See Appendix Section C for more detailed comparisons with baselines.

461 4.4 ABLATION STUDIES ON THE HOI-M³ DATASET

463 All ablated variants share the same network depth, and the parameter counts of all variants are basically
 464 the same, ranging from 9M to 11M. More ablations on *variants of Coarse-to-Fine Interaction,*
 465 *different number of sampled points, different number of transformer layers, robustness to incomplete*
 466 *interaction information can be found in Appendix Section D.*

467 **Hierarchical Interaction Representation.** Table 3(a) shows the effectiveness of our human-to-scene
 468 and human-to-human (including self-encoding and relation-encoding) interaction representations.
 469 Results indicate a decline in our motion prediction performance when any of these modules are
 470 removed, underscoring their individual contributions.

471 **Coarse-to-Fine Interaction Feature Injection.** We assess the effectiveness of the coarse-to-fine
 472 interaction feature injection strategy in Table 3(b). The experiment shows that multi-level interaction
 473 feature injection outperforms single-level approaches (coarse-only and fine-only). But our coarse-to-
 474 fine strategy utilizes multi-level features in a more effective way and further boosts the performance.

476 **Adaptive DCT Rescaling.** Table 3(c) validates the effectiveness of the adaptive DCT rescaling
 477 mechanism. By suppressing high-frequency updates of joint motion in early stages to encourage the
 478 focus on coarse and low-frequency updates, the shared static rescaling vector $\mathbf{v}^{(l)}$ itself improves
 479 prediction accuracy. Besides, the performance is further enhanced after combining the sample-
 480 adaptive vector $\alpha(\tilde{\mathbf{X}})$, as it allows the frequency rescalings to adapt to different input samples.

481 5 CONCLUSIONS

483 In conclusion, we present an effective approach for human motion forecasting in interactive environ-
 484 ments. By representing hierarchical interactive features and employing the coarse-to-fine interaction
 485 reasoning module, our method achieves state-of-the-art performance across four public datasets,
 demonstrating the potential to construct a world model for human motion. This approach holds signif-

(a) Hierarchical Representations			(b) Injection Strategy			(c) Adaptive DCT Rescaling					
HSI	HHI	Self Relation	Path Error (mm)		Pose Error (mm)	DCT rescaling	$\mathbf{v}^{(l)}$	$\alpha(\tilde{\mathbf{X}})$	Path Error (mm)		Pose Error (mm)
			1.0s	2.0s	mean				1.0s	2.0s	mean
\times	\times	\times	167.0	426.8	187.6	134.7	181.8	123.2			
\times	\checkmark	\checkmark	164.1	415.7	183.7	133.2	175.5	120.9			
\checkmark	\times	\times	163.0	414.0	182.9	132.8	179.2	121.4			
\checkmark	\checkmark	\times	160.0	402.7	178.4	132.0	175.0	120.0			
\checkmark	\times	\checkmark	158.2	401.0	177.0	131.4	175.6	119.9			
\checkmark	\checkmark	\checkmark	156.6	393.1	174.6	129.6	172.1	117.9			

Table 3: Ablations studies.

ificant promise for real-world applications, such as enhancing closed-loop simulations for autonomous driving and improving the understanding and interaction capabilities of robots.

ETHICS STATEMENT

Our work presents no direct ethical concerns. The primary application of our method is for human motion prediction.

REPRODUCIBILITY STATEMENT

To ensure reproducibility: (1) While not included with this submission, our full project will be released on GitHub upon publication. (2) All experimental details are included in Appendix A, and (3) Usage of datasets is explained in Appendix B.

REFERENCES

Vida Adeli, Ehsan Adeli, Ian Reid, Juan Carlos Niebles, and Hamid Rezatofighi. Socially and contextually aware human motion and pose forecasting. *IEEE Robotics and Automation Letters*, 5(4):6033–6040, 2020.

Vida Adeli, Mahsa Ehsanpour, Ian Reid, Juan Carlos Niebles, Silvio Savarese, Ehsan Adeli, and Hamid Rezatofighi. Tripod: Human trajectory and pose dynamics forecasting in the wild. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 13390–13400, 2021.

Emre Aksan, Manuel Kaufmann, Peng Cao, and Otmar Hilliges. A spatio-temporal transformer for 3d human motion prediction. In *2021 International Conference on 3D Vision (3DV)*, pp. 565–574. IEEE, 2021.

Yujun Cai, Lin Huang, Yiwei Wang, Tat-Jen Cham, Jianfei Cai, Junsong Yuan, Jun Liu, Xu Yang, Yiheng Zhu, Xiaohui Shen, et al. Learning progressive joint propagation for human motion prediction. In *ECCV*, pp. 226–242. Springer, 2020.

Zhe Cao, Hang Gao, Karttikeya Mangalam, Qi-Zhi Cai, Minh Vo, and Jitendra Malik. Long-term human motion prediction with scene context. In *ECCV*, pp. 387–404. Springer, 2020.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph convolutional networks. In *International conference on machine learning*, pp. 1725–1735. PMLR, 2020.

Lingwei Dang, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li. Msr-gcn: Multi-scale residual graph convolution networks for human motion prediction. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11467–11476, 2021.

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent network models for human dynamics. In *ICCV*, pp. 4346–4354, 2015.

Xuehao Gao, Shaoyi Du, Yang Wu, and Yang Yang. Decompose more and aggregate better: Two closer looks at frequency representation learning for human motion prediction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6451–6460, 2023.

540 Xuehao Gao, Yang Yang, Yang Wu, Shaoyi Du, and Guo-Jun Qi. Multi-condition latent diffusion
 541 network for scene-aware neural human motion prediction. *IEEE Transactions on Image Processing*,
 542 2024a.

543 Yang Gao, Po-Chien Luan, and Alexandre Alahi. Multi-transmotion: Pre-trained model for human
 544 motion prediction. *arXiv preprint arXiv:2411.02673*, 2024b.

545 Anand Gopalakrishnan, Ankur Mali, Dan Kifer, Lee Giles, and Alexander G Ororbia. A neural
 546 temporal model for human motion prediction. In *CVPR*, pp. 12116–12125, 2019.

547 Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
 548 diverse and natural 3d human motions from text. In *Proceedings of the IEEE/CVF conference on*
 549 *computer vision and pattern recognition*, pp. 5152–5161, 2022a.

550 Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, and Francesc Moreno-Noguer. Multi-person extreme
 551 motion prediction. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 552 *recognition*, pp. 13053–13064, 2022b.

553 Ashesh Jain, Amir R Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn: Deep learning
 554 on spatio-temporal graphs. In *Proceedings of the ieee conference on computer vision and pattern*
 555 *recognition*, pp. 5308–5317, 2016.

556 Jaewoo Jeong, Daehee Park, and Kuk-Jin Yoon. Multi-agent long-term 3d human pose forecasting
 557 via interaction-aware trajectory conditioning. In *Proceedings of the IEEE/CVF Conference on*
 558 *Computer Vision and Pattern Recognition*, pp. 1617–1628, 2024.

559 Maosen Li, Siheng Chen, Yangheng Zhao, Ya Zhang, Yanfeng Wang, and Qi Tian. Dynamic
 560 multiscale graph neural networks for 3d skeleton based human motion prediction. In *Proceedings*
 561 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 214–223, 2020.

562 Maosen Li, Siheng Chen, Zijing Zhang, Lingxi Xie, Qi Tian, and Ya Zhang. Skeleton-parted graph
 563 scattering networks for 3d human motion prediction. In *European conference on computer vision*,
 564 pp. 18–36. Springer, 2022.

565 Zhenguang Liu, Shuang Wu, Shuyuan Jin, Shouling Ji, Qi Liu, Shijian Lu, and Li Cheng. Investigating
 566 pose representations and motion contexts modeling for 3d motion prediction. *IEEE transactions*
 567 *on pattern analysis and machine intelligence*, 45(1):681–697, 2022.

568 Tiezheng Ma, Yongwei Nie, Chengjiang Long, Qing Zhang, and Guiqing Li. Progressively generating
 569 better initial guesses towards next stages for high-quality human motion prediction. In *Proceedings*
 570 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6437–6446, 2022.

571 Wei Mao, MiaoMiao Liu, Mathieu Salzmann, and Hongdong Li. Learning trajectory dependencies
 572 for human motion prediction. In *ICCV*, pp. 9489–9497, 2019.

573 Wei Mao, MiaoMiao Liu, and Mathieu Salzmann. History repeats itself: Human motion prediction
 574 via motion attention. In *ECCV*, pp. 474–489. Springer, 2020.

575 Wei Mao, Richard I Hartley, Mathieu Salzmann, et al. Contact-aware human motion forecasting.
 576 *Advances in Neural Information Processing Systems*, 35:7356–7367, 2022.

577 Julieta Martinez, Michael J Black, and Javier Romero. On human motion prediction using recurrent
 578 neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 579 pp. 2891–2900, 2017.

580 Takeru Miyato, Bernhard Jaeger, Max Welling, and Andreas Geiger. Gta: A geometry-aware attention
 581 mechanism for multi-view transformers. In *International Conference on Learning Representations*
 582 (*ICLR*), 2024.

583 Felix B Mueller, Julian Tanke, and Juergen Gall. Massively multi-person 3d human motion forecasting
 584 with scene context. *arXiv preprint arXiv:2409.12189*, 2024.

585 Xiaogang Peng, Siyuan Mao, and Zizhao Wu. Trajectory-aware body interaction transformer for
 586 multi-person pose forecasting. In *Proceedings of the IEEE/CVF conference on computer vision*
 587 *and pattern recognition*, pp. 17121–17130, 2023.

594 Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
 595 learning on point sets in a metric space. *Advances in neural information processing systems*, 30,
 596 2017.

597 Saeed Saadatnejad, Yang Gao, Kaouther Messaoud, and Alexandre Alahi. Social-transmotion:
 598 Promptable human trajectory prediction. In *International Conference on Learning Representations*
 599 (*ICLR*), 2024.

600 Luca Scofano, Alessio Sampieri, Elisabeth Schiele, Edoardo De Matteis, Laura Leal-Taixé, and Fabio
 601 Galasso. Staged contact-aware global human motion forecasting. In *BMVC*, 2023.

602 Sangyun Shin, Kaichen Zhou, Madhu Vankadari, Andrew Markham, and Niki Trigoni. Spherical
 603 mask: Coarse-to-fine 3d point cloud instance segmentation with spherical representation. In
 604 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 605 4060–4069, 2024.

606 Theodoros Sofianos, Alessio Sampieri, Luca Franco, and Fabio Galasso. Space-time-separable
 607 graph convolutional network for pose forecasting. In *Proceedings of the IEEE/CVF International*
 608 *Conference on Computer Vision*, pp. 11209–11218, 2021.

609 Pengxiang Su, Zhenguang Liu, Shuang Wu, Lei Zhu, Yifang Yin, and Xuanjing Shen. Motion
 610 prediction via joint dependency modeling in phase space. In *Proceedings of the 29th ACM*
 611 *International Conference on Multimedia*, pp. 713–721, 2021.

612 Jianwei Tang, Jieming Wang, and Jian-Fang Hu. Predicting human poses via recurrent attention
 613 network. *Visual Intelligence*, 1(1):18, 2023.

614 Julian Tanke, Oh-Hun Kwon, Felix B Mueller, Andreas Doering, and Juergen Gall. Humans in
 615 kitchens: a dataset for multi-person human motion forecasting with scene context. *Advances in*
 616 *Neural Information Processing Systems*, 36:10184–10196, 2023a.

617 Julian Tanke, Linguang Zhang, Amy Zhao, Chengcheng Tang, Yujun Cai, Lezi Wang, Po-Chen Wu,
 618 Juergen Gall, and Cem Keskin. Social diffusion: Long-term multiple human motion anticipation.
 619 In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 9601–9611,
 620 2023b.

621 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 622 Kaiser, and Illia Polosukhin. Attention is all you need. In *NeurIPS*, pp. 5998–6008, 2017.

623 Edward Vendrow, Satyajit Kumar, Ehsan Adeli, and Hamid Rezatofighi. Somoformer: Multi-person
 624 pose forecasting with transformers. *arXiv preprint arXiv:2208.14023*, 2022.

625 Jiashun Wang, Huazhe Xu, Medhini Narasimhan, and Xiaolong Wang. Multi-person 3d motion
 626 prediction with multi-range transformers. *Advances in Neural Information Processing Systems*, 34:
 627 6036–6049, 2021.

628 Zan Wang, Yixin Chen, Tengyu Liu, Yixin Zhu, Wei Liang, and Siyuan Huang. Humanise: Language-
 629 conditioned human motion generation in 3d scenes. *Advances in Neural Information Processing*
 630 *Systems*, 35:14959–14971, 2022.

631 Zhihao Wang, Yulin Zhou, Ningyu Zhang, Xiaosong Yang, Jun Xiao, and Zhao Wang. Existence is
 632 chaos: Enhancing 3d human motion prediction with uncertainty consideration. In *Proceedings of*
 633 *the AAAI Conference on Artificial Intelligence*, volume 38, pp. 5841–5849, 2024.

634 Peng Xiao, Yi Xie, Xuemiao Xu, Weihong Chen, and Huaidong Zhang. Multi-person pose forecasting
 635 with individual interaction perceptron and prior learning. In *European Conference on Computer*
 636 *Vision*, pp. 402–419. Springer, 2025.

637 Chaoyue Xing, Wei Mao, and Miaomiao Liu. Scene-aware human motion forecasting via mutual
 638 distance prediction. In *ECCV*, 2025.

639 Chenxin Xu, Robby T Tan, Yuhong Tan, Siheng Chen, Xinchao Wang, and Yanfeng Wang. Auxiliary
 640 tasks benefit 3d skeleton-based human motion prediction. In *Proceedings of the IEEE/CVF*
 641 *International Conference on Computer Vision*, pp. 9509–9520, 2023a.

648 Chenxin Xu, Robby T Tan, Yuhong Tan, Siheng Chen, Yu Guang Wang, Xinchao Wang, and Yanfeng
 649 Wang. Eqmotion: Equivariant multi-agent motion prediction with invariant interaction reasoning.
 650 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 651 1410–1420, 2023b.

652 Liang Xu, Xintao Lv, Yichao Yan, Xin Jin, Shuwen Wu, Congsheng Xu, Yifan Liu, Yizhou Zhou,
 653 Fengyun Rao, Xingdong Sheng, et al. Inter-x: Towards versatile human-human interaction analysis.
 654 In *CVPR*, pp. 22260–22271, 2024.

655 Qingyao Xu, Weibo Mao, Jingze Gong, Chenxin Xu, Siheng Chen, Weidi Xie, Ya Zhang, and
 656 Yanfeng Wang. Joint-relation transformer for multi-person motion prediction. In *Proceedings of
 657 the IEEE/CVF International Conference on Computer Vision*, pp. 9816–9826, 2023c.

658 Juze Zhang, Jingyan Zhang, Zining Song, Zhanhe Shi, Chengfeng Zhao, Ye Shi, Jingyi Yu, Lan Xu,
 659 and Jingya Wang. Hoi-m³: Capture multiple humans and objects interaction within contextual
 660 environment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 661 Recognition*, pp. 516–526, 2024.

662 Wanying Zhang, Shen Zhao, Fanyang Meng, Songtao Wu, and Mengyuan Liu. Dynamic com-
 663 positional graph convolutional network for efficient composite human motion prediction. In
 664 *Proceedings of the 31st ACM International Conference on Multimedia*, pp. 2856–2864, 2023.

665 Yang Zheng, Yanchao Yang, Kaichun Mo, Jiaman Li, Tao Yu, Yebin Liu, C Karen Liu, and Leonidas J
 666 Guibas. Gimo: Gaze-informed human motion prediction in context. In *European Conference on
 667 Computer Vision*, pp. 676–694. Springer, 2022.

671 APPENDIX

672 We organize our appendix as follows.

- 673 • In Section A, we provide more implementation details.
- 674 • In Section B, we provide more dataset details.
- 675 • In Section C, we present the runtime analysis.
- 676 • In Section D, we present more ablation results.
- 677 • In Section E, we provide more discussions on our model design choices.
- 678 • In Section F, we present more visual comparisons on GTA-IM Cao et al. (2020) dataset and
 679 HOI-M³ Zhang et al. (2024) dataset.
- 680 • In Section G, we show performance under closer interactions.
- 681 • In Section H, we present extended evaluation with NPSS metric and long-term prediction.
- 682 • In Section I, we present extended evaluation with FID metric.
- 683 • In Section J, we report human-object and human-human penetration.
- 684 • In Section K, we discuss the limitations and future works.
- 685 • In Section L, we investigate SE(3) representations.
- 686 • In Section M, we present preliminary validation on scenes with dynamic objects.

693 A IMPLEMENTATION DETAILS

694 For each motion sequence, we crop the 3D scene to a region that is within 2.5 meters of the root joint
 695 of the last observed pose, and the root joint is used as the origin of the cropped scene, following prior
 696 works (Mao et al., 2022; Scofano et al., 2023). Then we obtain $\mathcal{S} \in \mathbb{R}^{N \times 3}$ by randomly sampling
 697 $N = 1000$ points in the cropped scene. The mapping function $\phi(\cdot)$ is defined as $\phi(\cdot) : d \rightarrow e^{-\frac{d^2}{2\sigma^2}}$
 698 where $\sigma = 0.2$.

699 **Network Architecture.** The model consists of 6 Transformer layers with hierarchical dimensions:
 700 early layers (1-3) use dimension 512, while late layers use dimension 256 (layers 4-5) or dimension

128 (layer 6). The feed-forward dimension is 4 times the hidden dimension. All Transformer
 703 layers use 4 self-attention heads and 4 cross-attention heads. The Graph Convolutional Network
 704 (GCN) encoder uses 5 residual stages. A learnable position encoding is applied to joint tokens with
 705 dimension $3 \times C = 60$. Object nodes are augmented with 8-dimensional position encoding: 3D
 706 center coordinates, exponential encoding of center ($e^{-\frac{\|c\|^2}{2\sigma^2}}$), distance to origin, and exponential
 707 encoding of distance. Object point clouds are normalized by subtracting their center.
 708

709 **Loss Function.** Loss is computed as $\ell = \ell_{\text{path}} + \ell_{\text{pose}}$. The path loss ℓ_{path} and local pose loss ℓ_{local} are
 710 defined as

$$\ell_{\text{path}} = \frac{1}{T} \sum_{t=H+1}^{H+T} \left\| \mathbf{X}_{\text{root}}^t - \hat{\mathbf{X}}_{\text{root}}^t \right\|_2^2 \quad (5)$$

$$\ell_{\text{local}} = \frac{1}{T(J-1)} \sum_{t=H+1}^{H+T} \sum_{j=1}^{J-1} \left\| \mathbf{X}_{\text{local},j}^t - \hat{\mathbf{X}}_{\text{local},j}^t \right\|_2^2.$$

719 Here, $\mathbf{X}_{\text{root}}^t \in \mathbb{R}^3$ and $\hat{\mathbf{X}}_{\text{root}}^t \in \mathbb{R}^3$ are ground-truth and the predicted global path of the root joint at
 720 time t . $\mathbf{X}_{\text{local},j}^t \in \mathbb{R}^3$ and $\hat{\mathbf{X}}_{\text{local},j}^t \in \mathbb{R}^3$ are ground-truth and predicted local pose of the j^{th} non-root
 721 joint at time t .

722 **More Training Details.** We build our network on PyTorch 1.12.0 and CUDA 12.4. We follow
 723 previous work Mao et al. (2022) to use the Adam optimizer with a linear learning rate schedule from
 724 0.0005 to 0. The initial learning rate is 0.0005. Models are trained over 80 epochs. **Weight decay**
 725 is set to 1×10^{-6} , and **Adam epsilon** is $\epsilon = 1 \times 10^{-6}$. We use a dropout of 0.1. For single-person
 726 datasets, the batch size is 16. For multi-person datasets, dynamic batch sampling is used with a
 727 maximum sum of other persons set to 256 (in one batch, the number of other persons for each sample
 728 should be the same. Thus we use a custom batch sampler such that in each batch sample, the number
 729 of other individuals is the same across each sample). Rotation augmentation is applied during training
 730 so that the model can learn the direction-agnostic representation of the inputs.

731 **More Dataset Details.** Following prior works Mao et al. (2022); Scofano et al. (2023); Xing
 732 et al. (2025); Mueller et al. (2024), the FPS of four datasets are: GTA-IM: 30 Mao et al. (2022);
 733 Scofano et al. (2023); Xing et al. (2025), HUMANISE: 30 Xing et al. (2025), HOI-M³: 30, and HIK:
 734 25 Mueller et al. (2024). We use $H = 30$ motion frames to predict $T = 60$ future steps for datasets
 735 HOI-M³ (Zhang et al., 2024) and GTA-IM (Cao et al., 2020), $H = 25$ and $T = 50$ for HIK (Tanke
 736 et al., 2023a), $H = 15$ and $T = 30$ for HUMANISE (Wang et al., 2022).

B DATASET

741 **A. Datasets with Human-human and Human-scene Interaction Scenes.** 1) **HIK** (Tanke et al.,
 742 2023a) is a multi-person interaction datasets in real kitchen environments. We follow the dataset
 743 split used in (Tanke et al., 2023a; Mueller et al., 2024), using the recordings A-C as training data
 744 and evaluating on the recording D. 2) **HOI-M³** (Zhang et al., 2024) captures a rich collection of
 745 interactions involving multiple humans and objects across 46 diverse scenes in the real world. We
 746 randomly allocate 1/5 of these scenes for the test set and utilize the remaining for training. For a
 747 datasets, we filter out sequences with few social interactions and human movements, and retain those
 748 with significant interactions and motion displacement.

749 **B. Datasets with Human-Scene Interaction Scenes.** 1) **GTA-IM** (Cao et al., 2020) is a synthetic
 750 human-scene interaction dataset, comprising 3D human motions for 50 distinct characters across 7
 751 diverse scenes. We adopt the same dataset setting as Mao et al. (2022); Scofano et al. (2023); Xing
 752 et al. (2025). 2) **HUMANISE** (Wang et al., 2022) is a synthetic human-scene interaction dataset.

754 All methods adopt the dataset setting used in MutualDistance (Xing et al., 2025) which ensures
 755 motions in the test set are entirely unseen during training. The test set scenes are further divided into
 seen and unseen scenes, with about 6,000 sub-sequences for testing.

756 C RUNTIME ANALYSIS
757

758 An analysis of inference time and model size is shown in Table 4. Overall, our model takes a
759 reasonable time to perform inference while achieving higher accuracy than baselines. It is worth
760 noting that though SAST is designed to solve the problem under a similar setting as us, it is not
761 practical for real-world applications as it adopts a diffusion mechanism, which makes it slow.
762

763 Table 4: Runtime analysis on HOI-M³ Dataset.
764

766 Method	767 # Param.	768 Inference Time
769 ContAware Mao et al. (2022)	770 15.9 M	771 41 ms
772 STAG Scofano et al. (2023)	773 16.4 M	774 38 ms
775 MutualDistance Xing et al. (2025)	776 8.6 M	777 114 ms
778 IAFormer Xiao et al. (2025)	779 9.2 M	780 69 ms
781 SAST Mueller et al. (2024)	782 15.4 M	783 2 s
784 Ours	785 9.6 M	786 43 ms

773
774 D MORE ABLATION RESULTS
775776 D.1 VARIANTS OF COARSE-TO-FINE INTERACTION
777

778 For the coarse-to-fine injection of interaction features at different levels, there are dozens of potential
779 variants. In our main paper, we adopt a relatively symmetric injection strategy, where high-level HSI
780 and HHI features are injected into the first three layers, while low-level or mid-level features are
781 injected into the later three layers. Here, we conduct an ablation study on different variants of the
782 injection strategy.

783 For simplicity, we fix the injection strategy of HHI features i.e., body-level tokens are injected into
784 the first three layers and joint-level tokens into the last three layers. We only apply variations to
785 the hierarchical HSI tokens $\tilde{\mathcal{F}}^{(1)}$, $\tilde{\mathcal{F}}^{(2)}$, and $\tilde{\mathcal{F}}^{(3)}$. Specifically, we evaluate four distinct injection
786 variants as depicted in Table 5.

787 As shown in Table 5, the four variants exhibit similar prediction performance, indicating that the model
788 is insensitive to the specific injection variant chosen. The prediction errors are consistently lower
789 than those of the non-coarse-to-fine methods presented in Table 5. This experiment demonstrates the
790 robustness and effectiveness of the coarse-to-fine interaction strategy.
791

794 Method	795 Variant	796	797	798 Mean Path	799 Mean Pose
	$\tilde{\mathcal{F}}^{(3)}$	$\tilde{\mathcal{F}}^{(2)}$	$\tilde{\mathcal{F}}^{(1)}$		
800 Multi-level	801 1~6	802 1~6	803 1~6	804 177.1	805 120.5
Coarse-to-Fine	806 1,2,3	807 4,5	808 6	809 174.6	810 117.9
	811 1,2,3	812 4	813 5,6	814 175.2	815 118.1
	816 1,2	817 3,4	818 5,6	819 174.8	820 117.9
	821 1,2	822 3	823 4,5,6	824 175.0	825 118.2

803 Table 5: Impact of different variants of coarse-to-fine injection. We report the metrics on the HOI-
804 M³ Zhang et al. (2024) dataset. The *Variant* column specifies which Transformer layers receive HSI
805 features at each level. For instance, the last row means that $\tilde{\mathcal{F}}^{(3)}$ is injected into Transformer layers 1
806 and 2, $\tilde{\mathcal{F}}^{(2)}$ into Transformer layer 3, and $\tilde{\mathcal{F}}^{(1)}$ into Transformer layers 4, 5, and 6. This experiment
807 indicates that we are **insensitive** to different variants of coarse-to-fine injection, demonstrating the
808 robustness and effectiveness of the coarse-to-fine injection.
809

810 D.2 ABLATION STUDY ON DIFFERENT NUMBER OF SAMPLED POINTS
811812 As shown in Table 6, the performance differences between 1000 and 4000 sampled points are
813 negligible. However, reducing the number of points to 250 leads to a degradation in both path and
814 pose accuracy. To balance computational efficiency with performance, we select 1000 points as the
815 default configuration in our experiments.

#points	Path Error (mm)					Pose Error (mm)				
	0.5s	1.0s	1.5s	2.0s	mean	0.5s	1.0s	1.5s	2.0s	mean
250	29.9	57.2	94.2	148.7	65.2	27.8	42.6	53.9	64.1	40.5
1000(default)	29.4	55.9	91.7	139.2	62.9	27.0	40.3	50.7	61.5	38.7
4000	29.2	55.9	91.8	139.7	63.1	27.0	40.1	50.3	60.8	38.4

823 Table 6: Ablation study on different number of sampled point of the static scene on GTA-IM dataset.
824825 D.3 ABLATION STUDY ON DIFFERENT NUMBER OF TRANSFORMER LAYERS
826827 We ablate on the number of Transformer layers of the Coarse-to-Fine Interaction Reasoning Module.
828 For feature injection, we adopt a symmetric strategy: high-level HSI (scene) and HHI (human-human)
829 features are injected into the first half of the layers, while low- and mid-level features are injected
830 into the latter half. Table 7 reveals that while deeper architectures (more layers) generally achieve
831 better accuracy, the rate of improvement decreases as we add more layers. To balance computational
832 efficiency with performance, we adopt 6 layers as our default configuration.
833

#Transformer layers	Path Error (mm)					Pose Error (mm)				
	0.5s	1.0s	1.5s	2.0s	mean	0.5s	1.0s	1.5s	2.0s	mean
4	30.3	58.1	93.3	140.4	64.0	28.2	42.2	52.8	63.7	40.2
6(default)	29.4	55.9	91.7	139.2	62.9	27.0	40.3	50.7	61.5	38.7
8	28.9	55.4	90.4	135.2	61.9	26.3	39.5	49.9	61.0	38.3

842 Table 7: Ablation study on different number of Transformer layers on GTA-IM dataset.
843844 D.4 ROBUSTNESS TO INCOMPLETE INTERACTION INFORMATION
845846 To evaluate the robustness of our model against incomplete information, we conduct experiments
847 where parts of the scene and some interacting individuals are randomly occluded. For the scene, we
848 simulate occlusion by randomly removing points within 6 cones originating from the target person.
849 For other individuals, we randomly remove 0-2 persons from the scene. As shown in Table 8, while
850 our method’s performance sees a slight degradation as expected, it still outperforms other methods,
851 demonstrating its robustness.
852853 Table 8: Evaluation with incomplete interaction information on the HOI-M3 dataset. We report mean
854 Path Error (mm) and Pose Error (mm). Lower is better.
855

Method	Path Error	Pose Error
MutualDistance	190.7	125.3
IAFormer	186.4	121.6
SAST	185.9	122.7
Ours	176.6	118.1
Ours (w/o occlusion)	174.6	117.9

We further analyze the impact of varying scene occlusion levels on model performance. By increasing the number of occlusion cones from 2 to 16, we simulate progressively severe scene incompleteness. As shown in Figure 6, while prediction error naturally increases with occlusion severity, our method maintains a consistent performance advantage over baselines.

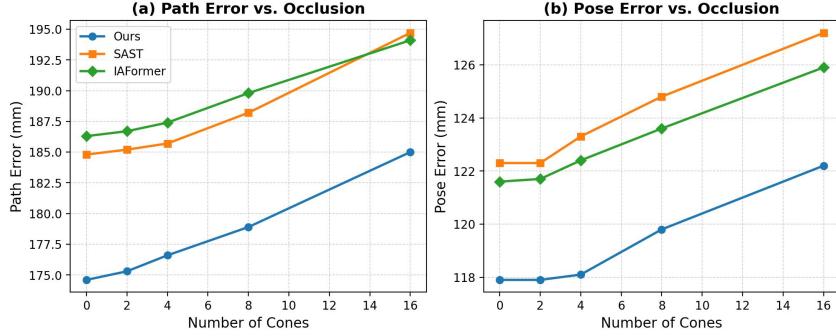


Figure 6: Performance under varying levels of scene occlusion. The x-axis represents the number of occlusion cones (indicating occlusion severity), and the y-axis represents the Mean Error.

D.5 ROBUSTNESS TO NOISY INPUTS

We conducted experiments using noisy inputs (injecting Gaussian noise into the joints of other individuals and the scene point cloud). As illustrated in Figure 7, while performance naturally degrades for all methods as noise levels increase, HUMOF consistently outperforms the baselines. This demonstrates that our approach remains effective and robust even with imperfect inputs.

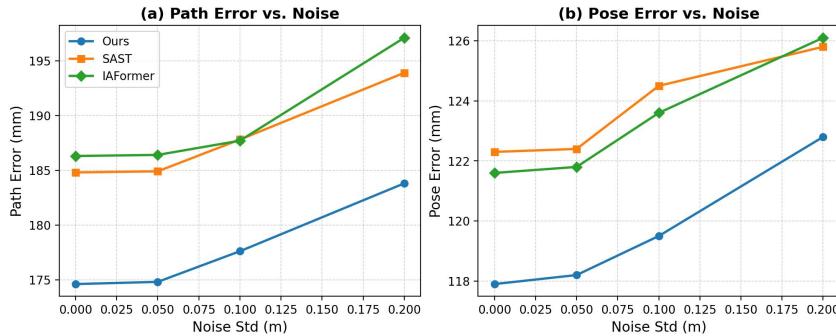


Figure 7: Robustness analysis under noisy inputs. The plot shows performance degradation with increasing Gaussian noise.

E FURTHER DISCUSSIONS ON MODEL DESIGN AND CAPABILITIES

E.1 RATIONALE FOR NOT PREDICTING A SPECIFIC INTERACTIVE TARGET

Our decision not to build in an inductive bias for predicting an explicit interaction partner is a deliberate design choice, motivated by the complex and fluid nature of real-world human interactions. In the real world, human motion is rarely governed by a singular environment element. Instead, it often results from a blend of multiple surrounding entities. For instance, a person might navigate around a table while simultaneously turning their head to speak to a friend. The final motion is a synthesis of these concurrent spatial and social cues. Therefore, forcing the model to explicitly predict a specific interaction target would be an ill-posed simplification, failing to capture the rich, blended nature of these influences.

918 Instead, we build interaction features for all nearby individuals and scene points and allow a cross-
 919 attention mechanism to dynamically weigh the influence of each. This approach is more flexible and
 920 better reflects the complex nature of social dynamics.
 921

922 E.1.1 INTERPRETABILITY OF CROSS-ATTENTION WEIGHTS

923 Our decision not to explicitly predict a specific interaction target does not mean that our model is a
 924 black box. The cross-attention mechanism in our framework offers a way to interpret the model’s
 925 focus. To demonstrate this, we provide a quantitative analysis of the attention weights. On the
 926 Humanise dataset, which provides ground-truth labels for the primary object a person interacts with,
 927 we find that the HSI tokens with the highest attention scores often correspond to that ground-truth
 928 object. Specifically, we identify the top-3 HSI tokens with the highest average attention scores for
 929 each sample and check if any of them correspond to the ground-truth interaction object. We formalize
 930 this as:

$$931 \text{Accuracy} = \frac{\sum_1^N \mathbb{I}(T_{\text{top-3}} \text{ corresponds to } O_{\text{GT}})}{N} = 83.85\%$$

$$933 \text{Baseline (Random Chance) Accuracy} = \frac{\sum_1^N \frac{3}{\text{num of obj}}}{N} = 10.56\%$$

936 As shown in Table 9, our attention-based identification achieves an accuracy of 83.85%, significantly
 937 outperforming a random-chance baseline. This result quantitatively validates that our model learns
 938 to focus on relevant objects and is not simply overfitting, providing interpretable insights into its
 939 decision-making process.

940 Table 9: Interpretability of the cross-attention mechanism. We report Top-3 accuracy for identifying
 941 the ground-truth interactive object on the Humanise dataset. Higher is better.
 942

943 Method	944 Top-3 Accuracy
945 Random Chance	946 10.56%
947 Via Attention Map of Our Model	948 83.85%

949 E.2 SCENE REPRESENTATION: HOLISTIC POINT CLOUD VS. OBJECT-LEVEL MODELING

950 In our framework, we model the scene as a holistic point cloud rather than segmenting it into
 951 individual objects. This design choice is motivated by two primary factors: efficiency and practical
 952 applicability. Modeling every object individually, especially in complex scenes with numerous
 953 objects, would introduce significant computational overhead. More importantly, it would create a
 954 dependency on accurate and readily available instance segmentation, which is often not the case in
 955 real-world scenarios that rely on raw sensor data. Our approach avoids this dependency. The strong
 956 performance of our method across multiple datasets validates the effectiveness of this modeling
 957 strategy.

959 F MORE VISUAL COMPARISONS

960 We provide additional visualization results on the GTA-IM Cao et al. (2020) dataset in Figure 8 and
 961 the HOI-M³ dataset in Figure 9. Our method demonstrates superior accuracy in predicting human
 962 motion, including both global trajectories and local poses.

965 G PERFORMANCE UNDER CLOSER INTERACTIONS

966 To evaluate the model’s capability in handling intense interactions, we conducted an evaluation on a
 967 specific subset of the HOI-M³ dataset focusing on **close interactions**, where the target person is in
 968 close proximity (< 15cm) to scene objects or other individuals.

969 As shown in Table 10, the DCT-based method does not limit interaction quality. The results on the
 970 subset are even slightly better compared to the average result on the full test set. This is likely because

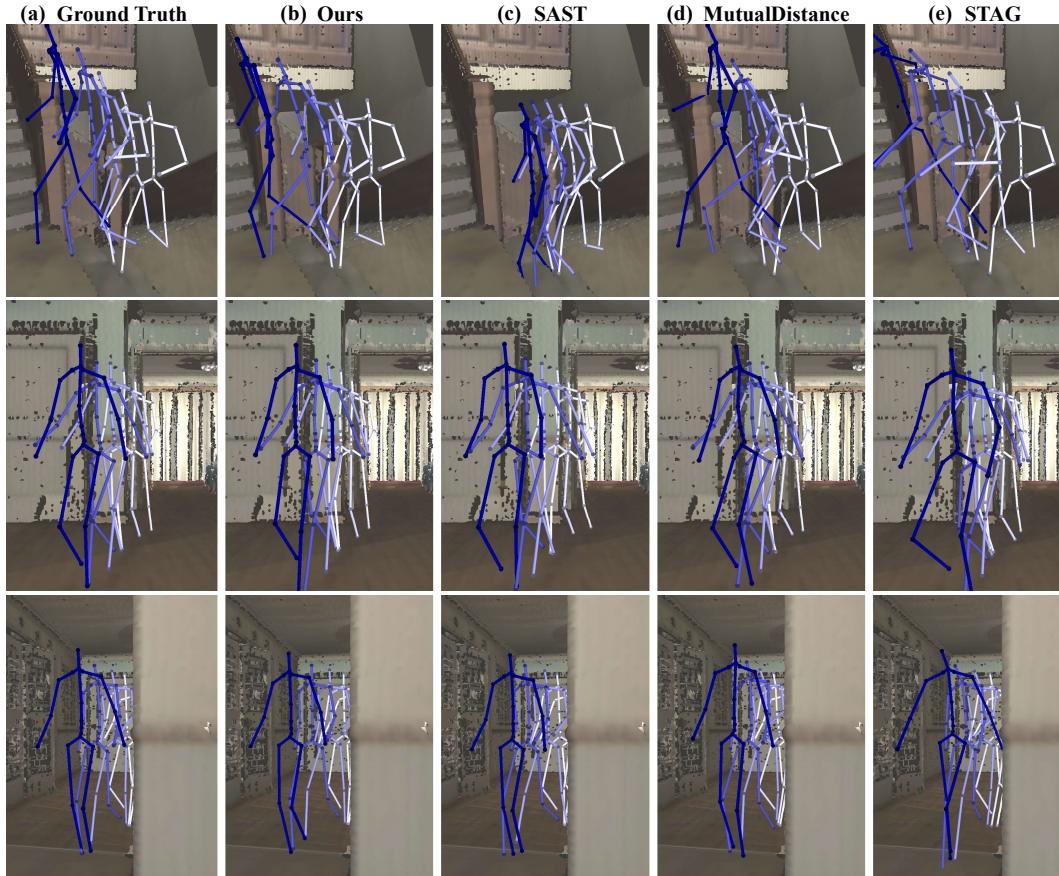


Figure 8: Visual comparisons on the GTA-IM Cao et al. (2020) dataset. Our method produces the best predictions. For instance, in the 1st row, SAST Mueller et al. (2024) predicts poses that intersect with the space beneath the stairs, likely due to its lack of explicit modeling of human–scene interactions. While MutualDistance Xing et al. (2025) and STAG Scofano et al. (2023) avoid this issue, they also produce inaccurate predictions. Our method generates predictions closest to the ground truth.

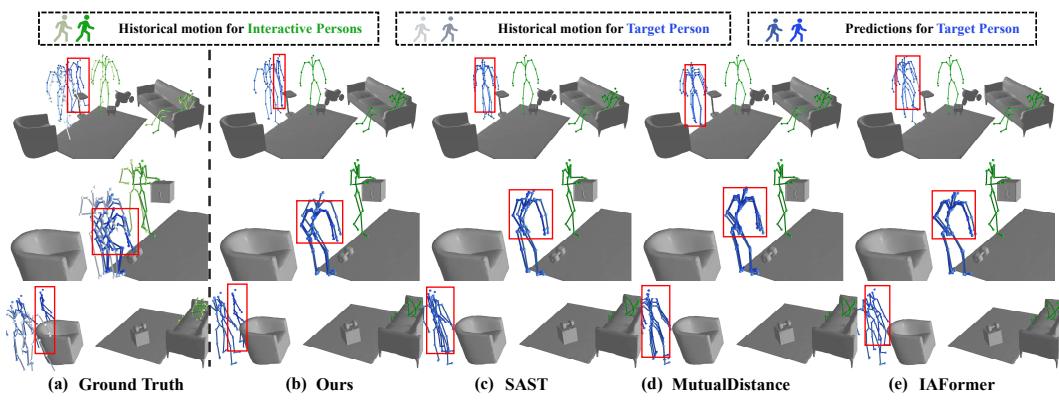


Figure 9: More visual comparisons on HOI-M³ dataset.

when there are closer scene objects or other individuals, they provide stronger geometric constraints on the target motion. Thus, it becomes easier for the model to give a better prediction compared to samples where there are no very close scene objects or other persons.

1026 Table 10: Comparison of performance between the full test set and the close-interaction subset on the
 1027 HOI-M³ dataset.

1029 Test Set	1030 Mean Path Error (mm) ↓	1031 Mean Pose Error (mm) ↓
1031 Ours (Full Test Set)	174.6	117.9
1032 Ours (Close Interaction Subset)	172.5	116.8

1033
 1034 We also provide visual examples of these close human-human (InterX dataset Xu et al. (2024)) and
 1035 human-scene (HUMANISE dataset) interactions in the Supplementary Video (1:23 to 1:59) to further
 1036 demonstrate the high interaction quality.

1038 H EXTENDED EVALUATION: NPSS METRIC AND LONG-TERM PREDICTION

1040 In the main paper, we follow prior works Mao et al. (2022); Scofano et al. (2023); Xing et al. (2025)
 1041 and report Path Error and Pose Error as metrics. However, as noted in Gopalakrishnan et al. (2019),
 1042 for prediction horizons longer than one second, the inherent stochasticity of human motion can make
 1043 traditional geometric error metrics less informative. To provide a more comprehensive evaluation, we
 1044 additionally add the normalized power spectrum similarity (NPSS) metric, which offers a statistical
 1045 evaluation of motion quality.

1046 The NPSS is calculated as the Euclidean distance between the power spectra of the prediction and the
 1047 ground truth. The formula is:

$$1049 \text{NPSS} = \frac{1}{D} \sum_{d=1}^D \sqrt{\sum_{k=1}^C (P_{d,k} - \hat{P}_{d,k})^2}$$

1052 where D is the number of dimensions (joints \times coordinates), C is the number of DCT coefficients,
 1053 P is the power spectrum of the ground-truth sequence, and \hat{P} corresponds to the predicted
 1054 sequence Gopalakrishnan et al. (2019).

1056 Table 11: Quantitative results with the NPSS metric for 2-second prediction on the HIK and HOI-M³
 1057 datasets. This table extends Table 1 from the main paper by including the NPSS metric.

1059 Dataset	1060 Method	1061 Mean Path Error (mm) ↓	1062 Mean Pose Error (mm) ↓	1063 NPSS ↓
1060 HIK	MutualDistance Xing et al. (2025)	246.0	105.9	0.00778
	IAFormer Xiao et al. (2025)	200.1	95.0	0.00718
	SAST Mueller et al. (2024)	189.0	93.2	0.00711
	Ours	180.7	90.2	0.00703
1064 HOI-M ³	MutualDistance Xing et al. (2025)	189.9	125.3	0.0195
	IAFormer Xiao et al. (2025)	186.3	121.6	0.0172
	SAST Mueller et al. (2024)	184.8	122.3	0.0179
	Ours	174.6	117.9	0.0169

1068 While our primary focus is on short-term prediction (up to 2 seconds), we also evaluated our method
 1069 on a challenging long-term prediction task (10 seconds) on the HOI-M³ dataset to provide a reference.
 1070 As shown in Table 12, the performance of all methods degrades significantly as the prediction
 1071 horizon increases, which is expected due to the compounding uncertainty in long-term forecasting.
 1072 Nevertheless, our method consistently outperforms the baselines across all metrics, demonstrating its
 1073 robustness for longer-term predictions.

1075 I MORE EVALUATION METRIC: FID

1077 To further evaluate the quality of the generated motions on a distribution level, we calculate the
 1078 Fréchet Inception Distance (FID). We utilized the pre-trained motion encoder from T2M Guo et al.
 1079 (2022a) as the feature extractor to map motion sequences into a 512-dimensional feature space and
 then calculate FID on the HOI-M³ dataset. The results are summarized in Table 13. Our method

1080
1081
1082 Table 12: Long-term (10s) prediction performance on the HOI-M³ dataset.
1083
1084
1085
1086

Method	Mean Path Error (mm) ↓	Mean Pose Error (mm) ↓	NPSS ↓
MutualDistance Xing et al. (2025)	824.5	191.9	0.308
IAFormer Xiao et al. (2025)	768.3	203.1	0.246
SAST Mueller et al. (2024)	814.7	191.3	0.320
Ours	747.8	188.7	0.227

1087
1088
1089 achieves the lowest FID score, demonstrating that our generated motions match the ground-truth
1090 distribution better than the baselines.
10911092
1093 Table 13: FID scores on HOI-M³ dataset.
1094
1095
1096
1097

Method	FID (↓)
SAST Mueller et al. (2024)	0.0278
MutualDistance Xing et al. (2025)	0.0233
IAFormer Xiao et al. (2025)	0.0170
Ours	0.0164

1098
1099
1100 **J HUMAN-OBJECT AND HUMAN-HUMAN PENETRATION**
11011102 To measure human-object and human-human penetration, we calculated the mean penetration rate
1103 and penetration depth on the HOI-M³ dataset, which provides the high-quality scene meshes and
1104 human body models (SMPL-X) necessary for this analysis. The metrics are defined as follows:
11051106 • **Penetration depth** at the t -th frame (in meters) is defined as the sum of absolute signed
1107 distance field (SDF) values for all joints of the target person that penetrate the scene or other
1108 persons:
1109

1110
$$\sum_{j=1}^J |(\Psi(\mathbf{X}_j^t))_-|$$

1111 where $\Psi(\cdot)$ denotes the signed distance field (SDF) of the scene or interactive persons, $(\cdot)_-$
1112 clips all positive distances to zero, and \mathbf{X}_j^t is the 3D position of the j -th joint at time t .
11131114 • **Penetration rate** at frame t is the ratio of joints with a negative SDF value to the total
1115 number of joints:
1116

1117
$$\frac{\text{Number of joints with } \Psi(\mathbf{X}_j^t) < 0}{J}$$

1118 We then take the average over the frame and sample dimensions to obtain the final mean metrics.
11191120
1121 Table 14: Penetration Results on the HOI-M³ dataset.
1122

Method	Human-to-Scene		Human-to-Human	
	Mean Pen. Rate	Mean Pen. Depth (mm)	Mean Pen. Rate	Mean Pen. Depth (mm)
Ground-Truth (GT)	1.84%	11.26	0.070%	0.61
SAST	1.54%	11.07	0.063%	0.45
IAFormer	1.62%	10.89	0.068%	0.59
MutualDistance	1.45%	10.68	0.057%	0.41
Ours	1.49%	10.77	0.052%	0.39

1123
1124 As shown in Table 14, MutualDistance achieves the best HSI penetration scores, likely due to
1125 its use of mesh-based modeling for both the target person and the scene, providing more explicit
1126 surface information to avoid penetration. However, we note that penetration metrics alone, without
1127 considering motion accuracy, should be interpreted with caution. Our case analysis reveals that
1128 higher penetration rates can sometimes result from accurately predicting dynamic motion, whereas
1129 lower penetration may occur when a method predicts static or incorrect motion (e.g., the person
1130

1134 remaining stationary). This is also supported by the fact that the Ground-Truth (GT) motion itself
 1135 registers the highest penetration, due to small misalignments between the motion capture data and
 1136 scanned scene geometry in the dataset, whereas the four prediction methods may inadvertently avoid
 1137 penetration by under-predicting movement (e.g. remaining static). Our method strikes a strong
 1138 balance, achieving high motion accuracy while maintaining penetration scores comparable to or
 1139 better than most baselines.

1140 To further reduce penetration while preserving accuracy, we could also adopt mesh-based modeling—
 1141 e.g., after computing joint-to-point/joint distance, we then adjust these by subtracting the point-to-
 1142 mesh surface distance to get mesh-to-mesh distances. In our current method we did not adopt this
 1143 design as this would introduce dependencies on scene meshes and SMPL-X parameters, increasing
 1144 complexity and reducing practical applicability.

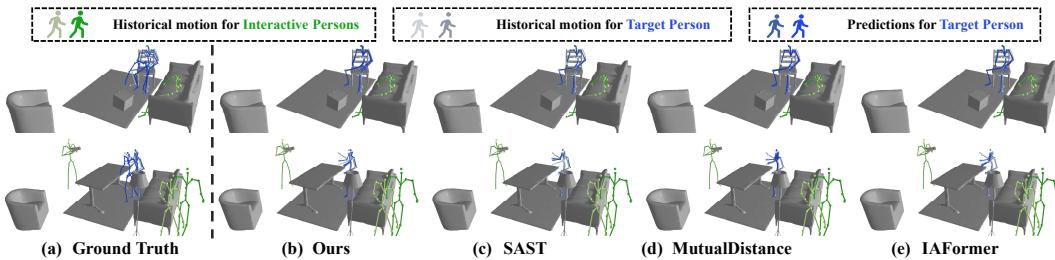
1145

1146 K LIMITATIONS AND FUTURE WORKS

1147

Failure cases Our method occasionally struggles with accurately predicting abrupt motion changes, as illustrated in Figure 10. In the upper example in Figure 10, our method fails to predict the bending-over action, as it is difficult to infer from the past motion. In the lower example, our method incorrectly predicts that the target person will continue standing by the desk, while the person unexpectedly starts walking away. Note that all methods fail in these challenging cases. These issues could potentially be mitigated by incorporating additional modalities, such as human gaze Zheng et al. (2022), to provide richer contextual information. [We show the failure cases in the HIK dataset in the supplementary video](#).

1148



1149

1150 Figure 10: Some failure cases. In the upper example, all methods fail to predict the bending-over
 1151 action with abrupt motion changes. In the lower example, all methods incorrectly predict that the
 1152 target person will continue standing by the desk, while the person unexpectedly starts walking away.
 1153

1154

1155

The Monotonous Interaction Modeling Paradigm In our work we mainly adopt a monotonous modeling paradigm i.e., the distance-based modeling, where we concatenate distance-based features with intrinsic scene and human features (such as self-encoding) to serve as interaction features. Euler distance is a natural way to model interaction, as different types of interactions follow distinct distance patterns, even in complex motions like dance. For example, in waltz or tango, the distance between dancers’ bodies exhibits repetitive patterns of approaching and retreating. Distance-based modeling captures these patterns, enabling action recognition and future motion prediction. While this modeling paradigm is effective and efficient, exploring alternative paradigms and integrating diverse approaches could lead to more robust and generalized performance.

1156

1157

Improvement of Joint Multi-person Predictions We have demonstrated our scalability in joint multi-person forecasting in the paper. However, in our current approach, the model is not explicitly aware of future interactions between individuals, as the input to the HHI module consists only of the historical motion sequence $\mathcal{Y}^{(k)}$. In the future, we could extend the method to an iterative approach where, in each iteration, the HHI module can take the historical motion sequence $\mathcal{Y}^{(k)}$ concatenated with the predicted motion from the previous iteration. This way, when inferring each individual, the model is aware of the predicted future motion of other individuals from the prior iteration via HHI. We leave this extension for future exploration.

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

L INVESTIGATION ON SE(3) REPRESENTATIONS

To investigate whether explicit geometric transformations could enhance our model, we implemented the SE(3) relative encoding similar to Miyato et al. (2024) and compared it with our original distance-based encoding. Specifically, we constructed a local coordinate system for each individual in every frame. We defined the root joint (pelvis) as the origin, the vector from the pelvis to the neck as the vertical axis, and the vector between the left and right hips to determine the lateral axis. The forward direction was then derived via the cross product to complete the orthonormal basis. Based on this local frame, we calculated the relative SE(3) transformation between the target and interactive persons. We encoded the rotation using a 6D continuous representation and concatenated it with the original relative XYZ translation coordinates to form the interaction feature. As shown in Table 15, the comparison reveals that the SE(3) encoding achieves performance on par with our original distance-based method. We hypothesize that the lack of improvement suggests that our model is already capable of implicitly learning the necessary geometric relationships and orientations from the temporal patterns of interactive distances. The sequence of distances over time contains rich information about relative motion and heading, which our hierarchical interaction reasoning module effectively captures.

Table 15: Comparison between SE(3) encoding and our distance-based encoding on the HOI-M³ dataset.

Variant	Mean Path Error (mm) ↓	Mean Pose Error (mm) ↓
Ours	174.6	117.9
Ours + SE(3)	174.6	118.1

M PRELIMINARY VALIDATION ON A SUBSET OF DYNAMIC SCENES

As stated in Line 435, current mainstream datasets lack significant and diverse dynamic scene elements, which limits large-scale benchmarking. However, to validate our architectural claim (that our HSI module can natively handle time-dependent scene coordinates), we conducted an additional experiment on a specific subset of the HOI dataset that contains dynamic objects (e.g., passing or moving an object). Since these samples are rare, we upsampled them during training.

Table 16: Quantitative results on a subset of dynamic objects from the HOI dataset.

Method	Mean Path Error (mm) ↓	Mean Pose Error (mm) ↓
MutualDistance	285.0	187.9
IAFormer	288.3	176.0
SAST	281.2	189.1
Ours	244.8	159.4

As shown in Table 16, while the quantitative errors are significantly higher compared to completely static scenes (mainly due to the scarcity of training samples) as expected, our method consistently outperforms baselines in this challenging setting. We demonstrate one successful example at the end of the supplementary video. This confirms our potential to handle dynamic scene elements and suggests that performance would likely improve significantly given a dataset with significant and diverse dynamic scene elements.

USE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, large language models (LLMs) were used exclusively as a writing-assistance tool. In particular, LLMs assisted in:

- **Language Polishing:** Improving grammar, sentence structure, and readability while preserving the technical accuracy of the content.
- **Terminology and Style Consistency:** Ensuring consistent usage of technical terms and notation across sections.

1242 LLMs were not involved in the conception of the research problem, the design of the HUMOF
1243 framework, or the analysis of results. All scientific contributions are solely the original work of the
1244 authors. The LLM was employed only to improve the clarity and presentation of the manuscript's
1245 text.

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295