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ABSTRACT

Multi-objective reinforcement learning (MORL) is crucial for real-world applica-
tions where multiple conflicting goals must be optimized, such as in healthcare or
autonomous systems. Offline MORL extends these benefits by using pre-collected
datasets, allowing for effective learning without continuous interaction with the
environment. However, existing offline MORL algorithms often struggle with
scaling across large preference spaces and handling unknown preferences dur-
ing evaluation. To address these challenges, we propose the Preference-Attended
Multi-Objective Decision Transformer (PA-MODT), a novel architecture that in-
tegrates a preference-attention block with a modular transformer structure. This
design enables effective generalization over different preferences and trajectories,
providing a more robust approach to generating optimal Pareto fronts. We tested
PA-MODT on five D4MORL datasets with millions of trajectories representing
various objectives and found that it consistently outperforms existing models,
achieving Pareto fronts that align closely with behavioral policy. This demon-
strates PA-MODT’s potential to effectively manage complex multi-objective rein-
forcement learning tasks.

1 INTRODUCTION

Offline reinforcement learning (OfflineRL) has seen a surge in popularity due to its capability to
effectively utilize pre-existing datasets to train optimal policies without the need for direct inter-
action with the environment. This approach offers a data-driven pathway to learning, allowing for
sample-efficient policy optimization Prudencio et al. (2023). After training, the policies can either
be fine-tuned through environmental interactions or deployed for immediate use, making OfflineRL
a versatile tool in applications where real-time interaction is expensive or risky, such as autonomous
driving, robotics manipulation, and dialog generation Levine et al. (2020). Various OfflineRL al-
gorithms have emerged, encompassing both model-based approaches from Kidambi et al. (2020);
Yu et al. (2020; 2021), and model-free strategies from Fujimoto & Gu (2021); Kumar et al. (2019);
Wu et al. (2019), typically leveraging temporal difference learning Sutton & Barto (2018) or value
function estimation. An alternative route has also been explored with Decision Transformer Chen
et al. (2021) and Reinforcement Learning via Supervised Learning (RvS) Emmons et al. (2021),
which rely on autoregressive generative modeling. This shift towards OfflineRL is transforming
the landscape of reinforcement learning by reducing the need for costly environmental interactions
while offering flexibility for real-world applications.

In RL, the primary goal is to derive a policy that maximizes the return for a specific objective func-
tion. However, many real-world applications demand the optimization of multiple objectives simul-
taneously. Consider wind turbine control Hayes et al. (2022), which must balance power output with
reducing component fatigue to extend turbine lifespan, or medical treatment, which involves opti-
mizing effectiveness while minimizing side effects. Multi-objective reinforcement learning (MORL)
addresses such scenarios by accommodating conflicting goals within a single framework. MORL
algorithms in online settings generally focus on predefined preferences, either targeting a single opti-
mal policy Van Moffaert et al. (2013); Roijers et al. (2013) or generating multiple policies Mossalam
et al. (2016); Roijers et al. (2014) to cover a range of desired outcomes. This versatility makes
MORL a robust approach for complex, real-world optimization problems where balancing multiple
conflicting objectives is essential.
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Figure 1: Overview of MORL process using D4MORL’s MO-Ant dataset.
The MORL process, as demonstrated by D4MORL’s MO-Ant dataset, involves assigning a 2-dimensional
reward for movement in each direction, where one dimension corresponds to the x-axis and the other to the
y-axis, i.e., [rx ∝ dx, ry ∝ dy]. The agent’s overall direction of motion is influenced by the preference
given to each direction. Experiences collected across various preferences form an offline MORL dataset (Data
Collection Phase). Subsequently, a model is trained using MORL algorithms to formulate an optimal policy
(Training Phase). This policy is evaluated by generating Pareto front corresponding to observed and unobserved
preferences in the dataset (Evaluation Phase). The Pareto front ultimately represents the ant’s movement for
various preferences, highlighting the trade-offs and optimal solutions achieved.

Offline MORL extends the advantages of OfflineRL by using previously collected datasets to op-
timize learning across multiple objectives, eliminating the need for real-time interaction with the
environment. An overview of the offline MORL process is shown in Figure 1. Similar to online
MORL, offline MORL algorithms Wu et al. (2021); Thomas et al. (2021) aims to create either a
single optimal policy or an ensemble of policies based on predefined target preferences. However,
offline MORL often struggles with scalability across a large preference space 1 and managing un-
known preferences a priori. To address these issues, the Pareto Efficient Decision Agent (PEDA)
framework Zhu et al. (2023) integrates preference information into conventional OfflineRL inputs
(i.e., states, actions, reward), creating preference-conditioned trajectories by concatenating prefer-
ences with other inputs. This approach allows policies to generalize across both trajectories and
preferences. The PEDA framework introduced large-scale datasets derived from the MuJoCo envi-
ronment Xu et al. (2020), containing millions of pre-recorded trajectories, demonstrating effective
methods for building multi-objective decision transformers and multi-objective RvS models to tackle
complex MORL tasks.

Preferences, which are fixed within a single trajectory example in a dataset, are time-independent
features. In contrast, states, actions, and returns are time-dependent features that vary with each
time step. MODT uses a transformer architecture Vaswani et al. (2017) to predict future actions by
training on a mix of these time-dependent and time-independent features. Prior studies indicate that
simply adding preferences as an extra token along with time-dependent features in the transformer
can create a weak correlation between preferences and predictions Zhu et al. (2023). However,
concatenating these two types of features has proven to be a more effective method for autoregressive
training, known as preference conditioning. On the other hand, the authors in Ghanem et al. (2023)
point out that the decision transformer in online settings Zheng et al. (2022) may not fully leverage
the transformer model’s potential for future action prediction, as distinct attention blocks tend to
learn uniform patterns. This challenge indicates that integrating preferences directly with trajectory-
based time-dependent features could result in inefficient model utilization and limit the flexibility
of preference prediction. By contrast, modifications to transformer architecture targeting specific

1Preference space refers to potential preferences or choices, where each point represents a unique combina-
tion of objectives or trade-offs. Preferences for individual objectives can vary between 0 and 1, indicating their
relative importance.
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problem statements have yielded improved outcomes Li et al. (2022); Cai & Rostami (2024); Kim
et al. (2021); Yu et al. (2023).

These insights prompted the development of a new transformer-based architecture: the Preference-
Attended Multi-Objective Decision Transformer (PA-MODT). This architecture is specifically de-
signed to handle MORL tasks by incorporating a unique preference-attention block within a modu-
lar transformer structure. PA-MODT is effective at generalizing across the preference space and has
been shown to outperform existing models, including MORvS. This paper also delves into the sen-
sitivity of evaluation metrics to the derived Pareto front, providing a comprehensive understanding
of the model’s performance in various MORL scenarios. Furthermore, we provide Pareto front visu-
alizations obtained using the PA-MODT model. Our findings underscore that even slight changes in
evaluation metrics values can lead to significant variations in the resulting Pareto fronts, ultimately
influencing model assessments and selections.

2 RELATED WORK

Offline RL The key challenge of OfflineRL is handling the out-of-distribution behavior, referred
to as distribution shift Levine et al. (2020); Prudencio et al. (2023). A class of algorithms applies
behavior policy regularization to avoid distribution shift so that the learned policy stays close to the
behavior policy. Batch Constraint Deep Q-learning (BCQ) Fujimoto et al. (2019) applied off-policy
learning, combining the Q-network with a state-conditioned variational auto-encoder to model the
behavior policy distribution. Bootstrapping Error Accumulation Reduction (BEAR) Kumar et al.
(2019) is an actor-critic algorithm that uses maximum mean discrepancy between samples from the
learned policy and pre-modeled behavior policy as a policy regularization method. Behavior regu-
larized actor-critic (BRAC) Wu et al. (2019) introduced a general policy regularization framework
by evaluating previous works extensively.

Some algorithms learn a conservative Q-function by learning a lower bound of the true value func-
tion to handle distribution shifts. Conservative Q-learning (CQL) Kumar et al. (2020) and Con-
servative Offline Model-Based Policy Optimization (COMBO) Yu et al. (2021) prevent the over-
estimation of value function due to out-of-distribution actions using the above method. A few algo-
rithms do not explicitly handle distribution shift by applying any restriction but still handle the issue
using the single step of policy evaluation and improvement Kostrikov et al. (2021); Brandfonbrener
et al. (2021), i.e., without off-policy evaluation.

MORL In online settings, a group of MORL strategies involves training a single policy corre-
sponding to a single preference vector by transforming the MORL problem into a single objective
RL problem through techniques such as scalarization Agarwal et al. (2022), combining objectives in
distributional space Abdolmaleki et al. (2020). A few single policy algorithms Abels et al. (2019);
Basaklar et al. (2022); Yang et al. (2019) aim to approximate the Pareto front with a single policy
that generalizes over preference space and resolves the scalability issues in previously stated meth-
ods. The other group of strategies involves obtaining an ensemble of multiple policies. A method of
obtaining multiple policies is to apply single policy algorithms for multiple preferences Mossalam
et al. (2016); Roijers et al. (2014). Xu et al. (2020) uses a prediction-guided evolutionary learn-
ing algorithm to obtain a set of disjoint policies corresponding to different segments in the Pareto
front space. Handa (2009) extends the Estimation of Distribution Algorithms approach to estimate
multiple policies in the MORL problem.

Offline MORL MORL in offline settings has gotten attention recently, and a limited number of
works exist in this domain. Pessimistic Dual Iteration (PEDI) Wu et al. (2021) employs dual gradient
descent with pessimism while formulating the constraint problem (non-interactions with the envi-
ronment) as a primal-dual problem to find an optimal policy for a fixed preference vector. Thomas
et al. (2021) extends the work of Laroche et al. (2019) in multi-objective settings by adapting the
Seldonian framework for safe policy improvement for predefined preferences. Zhu et al. (2023) uti-
lizes decision models to find a single policy for all preferences by providing the information as input
to the models they evaluated on the proposed dataset D4MORL. Lin et al. (2024) extends existing
offline policy regularization method for single objectives into multi-objective settings, which is then
evaluated on the D4MORL and proposed MOSB datasets.
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3 PRELIMINARIES

Setup and Notation A MORL environment is generally formulated as multiobjective markov
decision process, represented by the tuple < S,A, P,R, γ, F,Ω >. The MOMDP tuple consists of
states (s ∈ S), actions (a ∈ A), a transition distribution P (s

′ |s, a), a reward function (R), a discount
factor (γ), a preference-reward mapping function (F ), and preferences (p ∈ Ω). At any timestep
t, the next state of the agent is obtained using the transition function: st+t ∼ P (st+1|st, at).
The reward function generates the vector reward based on state and action as r = R(s, a) =
[R1(s, a), R2(s, a), ..., Rn(s, a)], where n is the total number of objectives and Ri(s, a) is the re-
ward obtained for ith objective. A trajectory contains the transitions taken by the agent, which
is represented as (s0, a0, r0, s1, a1, r1, ..., sT , aT , rT ) where T denotes the length of the trajectory.
The vector-valued return at any timestep t in a trajectory is the discounted sum of the reward ob-
tained till the current timestep, given by Γt =

∑t
i=0 γ

i · ri. On the other hand, the return-to-go
at any timestep t represents the future return of the trajectory from the current timestep, given by
gt =

∑T
i=t γ

i−t · ri. A preference-reward mapping function maps a vector-valued reward to a
scalar utility value. In this paper, we have used a linear preference-reward mapping function i.e.
F (r, p) = r · pT , where p is a preference vector such that p ∈ Ω.

Decision Transformer A family of OfflineRL algorithms tries to find an optimal policy that
maximizes the expected return on any given state in an MDP by applying supervised learning on
some prerecorded RL dataset D = {(s, a, s′

, r)}. Decision Transformer (DT) is an OfflineRL
algorithm that formulates the RL problem as a sequence modeling task. DT applies autoregressive
training and generation on the GPT model to predict future action tokens by feeding return-to-go,
states, and actions as input. One input token contains a combination of return-to-go, state, and action
embeddings given by (g, s, a). A total of K such input tokens are used where K is called the context
length, and therefore, the final input is denoted as τ = (g1, s1, a1, g2, s2, a2, ..., gK , sK , aK). For
the evaluation, the desired return, along with initial state is used to generate the required/optimal
trajectory.

Pareto Optimality The goal of MORL is to obtain a policy (π(a|s, p)) that maximizes the ex-
pected return of the induced trajectory for any given preference vector p. A policy is evaluated for
a set of preferences containing a finite number of preference vectors, E = [p1, p2...pm]. A solution
set of returns (∆) is constructed containing returns corresponding to each preference vector. A point
β in the feasible solution set is considered Pareto efficient if there exists no other point α in the
feasible solution set such that Rβ

i < Rα
i for at least one objective function i ∈ {1, 2, ..., n}, where

Rβ
i and Rα

i denote the values of objective function i at points β and α, respectively. Mathematically,
this can be expressed as: ∄α ∈ ∆, α ̸= β : Rβ

i < Rα
i ,∃i ∈ {1, 2, ..., n}. The curve traced by all

Pareto-efficient points is called the Pareto front, as shown in Figure 1. The goodness of the policy is
measured by evaluating the obtained Pareto front on Hypervolume and Sparsity matrices.

4 ARCHITECTURE

MORL poses significant challenges, as it requires balancing time-dependent features like states,
actions, and return-to-go with time-independent features such as preferences. To achieve robust
generalization and effective decision-making in complex environments, finding an optimal archi-
tecture that integrates these diverse features is crucial. We address this challenge by focusing on
transformer-based models for their capacity to handle complex data and explore various approaches
to effectively integrate preference-based information. We experiment with different architectural
configurations to determine the most effective strategy for multi-objective RL:

• PA-MODT (Preference-Attended Multi-Objective Decision Transformer): A transformer-
based configuration featuring a Preference-Attention (PA) block and dedicated preference-
based input encoding.

• Experiment D (Direct Input to the PA Block): Preferences are directly fed into the PA
block of the PA-MODT configuration without passing through a preference embedding
layer.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Experiment F (Feed-Forward Layer After the PA Block): A feed-forward layer follows the
PA block in the PA-MODT configuration, mirroring the structure of traditional transformer
models where attention layers are succeeded by a feed-forward layer.

Figure 2: Preference-Attended Multi-objective Decision Transformer Architecture

PA-MODT demonstrates superior performance in MORL tasks. Experiment D shows reduced per-
formance compared to PA-MODT, highlighting the significance of preference embeddings. Con-
versely, Experiment F performs comparably to PA-MODT, suggesting that the additional feed-
forward layer may not offer substantial benefits and could be considered redundant. These results
are presented in Section A.1. We identify the key features contributing to PA-MODT’s success in
MORL upon conclusion of these experiments:

1. Preference-Based Input Encoding: A separate preference encoding accompanies the
standard positional encoding, enabling the model to consider preferences akin to time-
based positional encoding. This addition enables the architecture to take into account a
broader range of preference-based information without affecting the core transformer struc-
ture.

2. Separate Preference-Attention Pathway: The PA block is a dedicated pathway for han-
dling preferences, allowing the model to focus on preferences independently from other
time-dependent features like states and actions. This structure offers a more dynamic ap-
proach to handling varying preferences in complex RL environments.

3. Modular Transformer Architecture: PA-MODT retains the fundamental components of
a traditional transformer model, providing a stable and familiar foundation while allowing
for flexible integration of preference-based attention through the PA block.

5
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As illustrated in Figure 2, preference embeddings are derived through two separate linear layers:
one set is directed to the PA block for preference-based attention, while the other set is used for
preference-based input encoding. Additional embeddings for positional or time-step, state, action,
and return-to-go are generated using dedicated linear layers. This structure ensures a clear separation
between preference-based data and other time-dependent data, promoting efficient processing and
decision-making in MORL tasks.

Preference-Attention Block The PA block in our PA-MODT architecture processes hidden states
derived from the time-dependent self-attention layer, followed by a feed-forward computational
layer. It also integrates preference embeddings to generate attention scores through either an additive
or a multiplicative attention mechanism. These scores determine the weights applied to the hidden
states, as specified in Equations 1 - 5. The adjusted hidden states are then passed through a layer
normalization step and combined with the original hidden states via a residual connection. This
process creates a robust pathway for handling preferences within the model.

H = linear(hidden states) (1)
ρ = linear(preference embeddings) (2)

scores = softmax(tanh(H + ρ+Bias)) (3)

hidden states = hidden states× scoresT (4)
hidden states = hidden states+ layernorm(hidden states) (5)

The PA-MODT architecture effectively integrates preference-based attention, contributing to im-
proved performance and generalization in MORL tasks. The model’s training process closely re-
sembles that of a Decision Transformer, ensuring a straightforward implementation. A minibatch
of transitions with context length K is sampled from the offline RL dataset. The model uses this
context to predict future actions, and the predictions are then compared against actual actions to
compute a loss using the mean-squared loss function. The detailed training steps are outlined in
Algorithm 1, which is provided in Appendix A.3.

5 EXPERIMENTS AND RESULTS

The outline of our experiments section is designed to answer the following questions: 1. How does
our PA-MODT model’s performance compare to that of existing models? 2. What is the effect of
each component on the performance of the overall PA-MODT model? 3. How does the Pareto front
shift with slight variations in each evaluation metric?

Additionally, we include a detailed Pareto front visualization in Section A.2, along with a compar-
ison study. This visual representation helps clarify how PA-MODT performs, adding depth to our
experimental results.

5.1 EVALUATIONS ON OFFLINE MORL BENCHMARKS

To evaluate the performance of the PA-MODT architecture, we focus on two key metrics for Pareto
front analysis: Hypervolume and Sparsity. These metrics offer a comprehensive understanding of
the Pareto fronts generated during the evaluation phase after model training. Hypervolume measures
the area encompassed by all points on the Pareto front, indicating the extent to which the curve
spreads outward from the origin. Sparsity, on the other hand, assesses the average distance between
consecutive points, providing an indication of the curve’s density. This graphical representation of
Hypervolume assumes an optimization goal of maximizing the reward for each objective.

We conduct a comparative analysis of the performance of the PA-MODT model against exist-
ing MODT and MORvS models, which are utilized for multi-objective optimization in offline
paradigms. The MODT and MORvS models utilize states, actions, and return-to-go concatenated
with preference information, as outlined in the PEDA paper Zhu et al. (2023). The authors of the
PEDA paper previously demonstrated that MODT and MORvS outperformed other multi-objective
optimization algorithms, such as MO-CQL, MO-IQL, and Behavior Cloning (BC), in both their
preference-conditioned and non-preference-conditioned variants. It is important to note that oper-
ational differences in our experiments may result in slight discrepancies in MODT and MORvS

6
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Table 1: Results on D4MORL Amateur and Expert datasets. B indicates the performance of behavior
policies from PEDA. PA-MODT is compared against preference-conditioned MODT and MORvS.

Dataset Metric B MODT MORvS PA-MODT
E

xp
er

t

Ant HV (106) 6.32 6.183± 0.125 6.376± 0.012 6.410 ± 0.018
SP (104) - 0.724 ± 0.121 0.973± 0.238 0.733 ± 0.061

HalfCheetah HV (106) 5.79 5.735± 0.009 5.757± 0.012 5.785 ± 0.002
SP (103) - 1.336± 0.137 1.396± 0.487 0.543 ± 0.067

Hopper HV (107) 2.09 2.004± 0.007 1.826± 0.041 2.060 ± 0.011
SP (105) - 0.763± 0.180 0.406 ± 0.188 0.473 ± 0.342

Swimmer HV (104) 3.25 3.216± 0.002 3.230± 0.000 3.244 ± 0.001
SP (1) - 4.486± 1.048 6.600± 0.775 3.363 ± 0.096

Walker2d HV (106) 5.21 5.009± 0.004 5.006± 0.063 5.152 ± 0.008
SP (104) - 0.892± 0.078 0.649± 0.148 0.286 ± 0.055

A
m

at
eu

r

Ant HV (106) 5.61 5.982± 0.029 6.053± 0.005 6.111 ± 0.006
SP (104) - 0.688 ± 0.190 0.794± 0.002 0.727 ± 0.087

HalfCheetah HV (106) 5.68 5.715± 0.002 5.766± 0.000 5.780 ± 0.001
SP (103) - 0.393 ± 0.038 0.615± 0.152 0.422± 0.052

Hopper HV (107) 1.97 1.819± 0.014 1.729± 0.038 1.901 ± 0.007
SP (105) - 0.192± 0.060 0.212± 0.210 0.169 ± 0.035

Swimmer HV (104) 2.11 1.273± 0.922 2.852± 0.018 2.937 ± 0.056
SP (1) - 6.720± 1.193 1.490 ± 0.227 4.657± 0.428

Walker2d HV (106) 4.99 4.045± 0.040 4.916 ± 0.024 4.921 ± 0.019
SP (104) - 0.919± 0.106 0.308 ± 0.20 0.292 ± 0.045

Note that: High Hypervolume and low sparsity are desirable.
Expert datasets are acquired by executing actions based on the optimal reference policy derived from
an ensemble of policies. Conversely, amateur dataset collection entails a similar procedure to expert
dataset acquisition, with actions being taken according to a predefined probability associated with
the policy.

results compared to those reported in the PEDA paper, whereas the behavior policy (B) results are
directly sourced from the same study. All experiments are conducted using three different seeds,
with the results presented as the average of these trials along with the standard error. Specific hyper-
parameters and total training steps are outlined in Appendix A.4.

As per Table 1, the PA-MODT model exhibits superior performance compared to MODT and
MORvS on the D4MORL expert datasets. Furthermore, in the majority of the D4MORL ama-
teur datasets, PA-MODT outperforms both MODT and MORvS. In a few cases, such as MO-Ant
(expert and amateur), MO-HalfCheetah (amateur), and MO-Swimmer (amateur), the policies de-
rived from PA-MODT even surpass the performance of the behavior policy. A few entries in Table 1
demonstrate modest numerical improvements. However, even small numerical differences can lead
to significant variations in the quality of the Pareto front, as demonstrated in Section A.2.

5.2 ABLATION STUDY

We conduct an ablation study on the PA-MODT model to assess the impact of its individual com-
ponents on the model’s performance. At first, we remove preference encoding from the input level
to understand its influence on the Pareto front. Following that, we eliminate the preference at-
tention module, essentially transforming the model into a basic GPT-2 architecture that incorporates
preference-scaled vectored return-to-go (g′ = [g1p1, g2p2, ..., gnpn]), states, and actions with a fixed
context length as inputs. All experiments are performed using the same three seeds as in the previous
section, with the results averaged along with the standard error.

7
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Table 2: Ablation Study results for PA-MODT on D4MORL Amateur and Expert datasets, where
each involved component was Iteratively removed to assess its impact on performance.

Dataset Metric PA-MODT PA-MODT (-) A PAMODT (-) A (-) B
E

xp
er

t

Ant HV (106) 6.410± 0.018 6.301± 0.09 5.825± 0.167
SP (104) 0.733± 0.061 0.767± 0.102 0.561± 0.078

HalfCheetah HV (106) 5.785± 0.002 5.778± 0.002 5.632± 0.090
SP (103) 0.543± 0.067 0.484± 0.108 3.980± 0.693

Hopper HV (107) 2.060± 0.011 2.039± 0.019 1.957± 0.055
SP (105) 0.473± 0.342 0.257± 0.048 0.363± 0.050

Swimmer HV (104) 3.244± 0.001 3.242± 0.005 2.801± 0.035
SP (1) 3.363± 0.096 2.576± 0.174 31.960± 15.636

Walker2d HV (106) 5.152± 0.008 4.928± 0.019 3.373± 0.208
SP (104) 0.286± 0.055 0.392± 0.214 0.554± 0.324

A
m

at
eu

r

Ant HV (106) 6.111± 0.006 5.957± 0.003 5.405± 0.205
SP (104) 0.727± 0.087 1.079± 0.213 0.614± 0.256

HalfCheetah HV (106) 5.780± 0.001 5.745± 0.007 5.624± 0.035
SP (103) 0.422± 0.052 0.701± 0.186 1.668± 0.159

Hopper HV (107) 1.901± 0.007 1.867± 0.037 1.809± 0.017
SP (105) 0.169± 0.035 0.241± 0.106 1.808± 1.118

Swimmer HV (104) 2.937± 0.056 1.231± 0.874 0.591± 0.035
SP (1) 4.657± 0.428 21.986± 21.905 0.563± 0.069

Walker2d HV (106) 4.921± 0.019 4.704± 0.202 4.287± 0.228
SP (104) 0.292± 0.045 1.799± 0.875 3.245± 1.911

A = Preference Encoding ; B = Preference Attention.

Table 2 demonstrates that preference attention significantly enhances the quality of the Pareto front
across all evaluation metrics. Additionally, preference encoding improves results in all five datasets,
though its impact is less pronounced compared to preference attention. Regarding the preference
attention mechanism, we experiment with both additive and multiplicative attention, observing that
their performance is nearly identical. The results presented in Tables 1 and 2 are derived from
experiments employing additive attention.

5.3 PARETO FRONT SENSITIVITY TO EVALUATION MATRICES

In this subsection, we present insightful observations regarding changes in Pareto front to hypervol-
ume and sparsity, which enhance understanding of the results presented in the previous subsections.

Figure 3 contains two Pareto front obtained for the HalfCheetah expert dataset for two different
scenarios. It is visible that the Pareto front presented in Figure 3a has a few missing points, and the
Pareto front in Figure 3b is dense. The difference in the hypervolume for the two figures is minimal,
but the change in Pareto front is significant, which indicates a high sensitivity. On the other hand,
these variations in the Pareto fronts are indicated by the considerable difference in the sparsity. For
a Pareto front, the point in the middle of the curves serves an essential role in the optimization as
the preference for all the objectives is nearly equal for these points, and therefore, missing a few
points in that area is not desirable. Similarly, Figure 4 demonstrates two Pareto fronts obtained for
the Walker2d-expert dataset for two different scenarios. The Pareto front in Figure 4b includes a
few more points, as shown in the upper-left portion of the graph, as compared to the Pareto front in
Figure 4a. Due to these few extra points, the sparsity of the Pareto front in Figure 4b is very high
with respect to the Pareto front in Figure 4a. Although the inclusion of these few extra points is
indicated by hypervolume, Pareto front’s high sensitivity towards sparsity is apparent.
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(a) Hypervolume = 5.778× 106 , Sparsity = 639 (b) Hypervolume = 5.781× 106 , Sparsity = 381

Figure 3: Pareto fronts for HalfCheetah-expert dataset.

(a) Hypervolume = 4.95×106 , Sparsity = 0.23×104 (b) Hypervolume = 5.10×106 , Sparsity = 1.48×104

Figure 4: Pareto fronts for Walker2d-expert dataset.

Finally, we conclude that the Pareto front is highly sensitive to the evaluation matrics, and a com-
parison between two Pareto fronts should be made considering both the evaluation matrics simulta-
neously. It’s noteworthy that even a slight change in evaluation metrics, such as those at the decimal
place, can lead to a significant alteration in the Pareto front.

6 DISCUSSION AND FUTURE WORK

We presented an empirical analysis of how utilizing the input preferences through structural ad-
vances in transformer architecture can improve the model’s performance on MORL tasks. A po-
tential drawback of our approach is the computational complexity, as multi-objective reinforcement
learning tasks are computationally intensive. Our proposed model, PAMODT, is also computation-
ally expensive, especially when dealing with large input sequences or high-dimensional preference
embeddings. This highlights the need for further research into more efficient architectures and
optimization techniques that can reduce the computational burden while maintaining or enhanc-
ing performance. Additionally, we have identified a pressing need to evaluate the effectiveness of
preference-attended architecture for online fine-tuning, particularly after deriving an initial policy
from offline Reinforcement Learning in multi-objective optimization contexts. Throughout this pa-
per, our focus has primarily been on predicting future actions, yet we acknowledge the potential
benefits of including preferences, states, and return-to-go in these predictions. This prompts impor-
tant questions regarding the applicability of preference attention beyond the offline MORL domain
and the potential improvement of prediction abilities by adding future state, return-to-go, and prefer-
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ence prediction. Addressing these inquiries not only enhances the reliability of preference attention
but also advances the broader landscape of MORL algorithms.

7 REPRODUCIBILITY STATEMENT

We have used the open-source dataset and code provided by Zhu et al. (2023) for the MORL task.
The algorithm used in our approach is outlined in Section A.3, the hyperparameter and experimental
details are provided in Section A.4, and the computational details are mentioned in Section A.5. The
modifications made to the code provided by previous authors are described in Section 4.

With the above details, our approach is easily reproducible. We would like to thank the authors Zhu
et al. (2023) for providing the dataset and code, which have been instrumental in the development
of our approach.
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A APPENDIX

A.1 COMPARISON WITH BASELINES

Figure 5: Comparion with baselines for D4MORL-expert datasets.

To evaluate the performance of the PA-MODT model, we conducted a comparative analysis against
baseline models from Experiment D 4 and Experiment F 4. Figure 5 provides a visual representation
through barplots, showcasing the hypervolumes achieved across various D4MORL-Expert datasets
for each experimental setup. Notably, all experiments were carried out with the same set of hyper-
parameters to ensure consistency in the comparison. Since the hyperparameter search is not applied
here, it is important to note that the results for PA-MODT are different from the ones presented
in Table 1. This difference could be attributed to the lack of optimization of hyperparameters for
PA-MODT in this specific experiment.
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The results presented in Figure 5 highlight a clear pattern. Adding a feedforward layer to the PA-
MODT model, as in Experiment F, tends to either yield similar performance or perform worse than
the original PA-MODT architecture. This outcome suggests that additional feedforward layers may
introduce unnecessary complexity, hindering the model’s efficiency and adaptability. Additionally,
feeding preferences directly into the transformer without dedicated embeddings, as in Experiment
D, resulted in the worst performance among the tested configurations. This finding underscores the
critical role that preference embeddings play in facilitating proper integration of preference-based
information within the transformer architecture.

Overall, these comparative results suggest that the original PA-MODT model—with its unique
Preference-Attention (PA) block and preference-based input encoding—strikes the optimal balance
for MORL tasks. The performance trends observed in these experiments indicate that attempts to
simplify or overly complicate the architecture can lead to diminished results, reinforcing the impor-
tance of carefully designing preference-based attention mechanisms in MORL systems.

A.2 PARETO FRONT VISUALIZATION

Figure 6 contains the Pareto fronts obtained using the PA-MODT and MODT models on the
D4MORL datasets. These visualizations are based on the best-performing seed among the three
seeds discussed in Table 1. The graphs provide three key insights: the Pareto front visualization for
the PA-MODT model, the comparison between the Pareto fronts of PA-MODT and MODT models,
and the observation that slight changes in the metrics discussed in Table 1 result in significant vari-
ations in the Pareto fronts. For more detailed observations, it is advisable to consider the evaluation
metrics values from Table 1 along with these visualizations.

Figure 6a illustrates the results for the MO-Ant dataset, where the Pareto front for PA-MODT is
more widely spread compared to the MODT, which is dense in a smaller region. This indicates
lower sparsity for MODT but a higher hypervolume for PA-MODT, making the PA-MODT front
more desirable. Figure 6b presents the MO-HalfCheetah dataset, showing that the Pareto front for
PA-MODT is denser and more spread out than for MODT. This observation is supported by the
higher hypervolume and lower sparsity metrics. Figure 6c shows the MO-Hopper dataset, where the
Pareto front for PA-MODT is significantly denser compared to MODT. This desirable characteristic
is again reflected by the higher hypervolume and lower sparsity metrics. For the MO-Swimmer
dataset, depicted in Figure 6d, the differences between the models are not visible with the current
axis scale choices. Finally, Figure 6e displays the MO-Walker2d dataset results. The Pareto front
for PA-MODT is broadly spread in the desired region, in contrast to the dense, smaller region of
the MODT front. Due to the high concentration of Pareto-efficient points in the Pareto front of
the MODT model, the sparsity is low. However, the Pareto front for PA-MODT is more diverse
and spread out, which is desirable and is observed using hypervolume, making hypervolume the
considered evaluation metric in this case.

(a) MO-Ant

Figure 6: Pareto fronts for D4MORL-expert datasets.
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(b) MO-HalfCheetah

(c) MO-Hopper

(d) MO-Swimmer

(e) MO-Walker2d

Figure 6: Pareto fronts for D4MORL-expert datasets.
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Overall, these Pareto fronts in Figure 6 demonstrate the PA-MODT model’s capacity to explore a
range of optimal solutions and manage trade-offs among various objectives effectively. The observed
robustness suggests that the model can handle complex RL scenarios where navigating multiple ob-
jectives is crucial. This visual representation underscores the model’s effectiveness and adaptability
in multi-objective RL tasks.

A.3 ALGORITHM

The algorithm involves PA-MODT model and comprehensive input data preparation, including the
retrieval of various embeddings. Detailed descriptions of the training and evaluation procedures, as
well as the data preparation steps, are provided in the following algorithm:

Algorithm 1 PAMODT Pseudocode

1: {# Generating predictions using PA-MODT}
2: def MODEL(transition):
3: {# Fetching various embeddings using dedicated linear layers}
4: positional embed = linear(transition.timestep)
5: pref encod embed = linear(transition.preference)
6: pref att embed = linear(transition.preference)
7: state embed = linear(transition.state) + positional embed+ pref encod embed
8: action embed = linear(transition.action) + positional embed+ pref encod embed
9: rtg embed = linear(transition.rtg) + postional embed+ pref encod embed

10: input embed = stack(state embed, act embed, rtg embed)
11: {# hidden states are obtained from PA-MODT using the generated embeddings}
12: hidden states = PAMODT (input embed = input embed, preference embed =

pref att embed)
13: out action embed = unstack(hidden states).actions
14: return linear(out action embed)
15: {# returning the actions translated from hidden states using a linear layer}
16:
17: {# model training function}
18: def train():
19: for transition in dataset :
20: action Prediction = MODEL(transition)
21: loss = lossFn(action prediction, transition.future action)
22: {# backpropagate the loss}
23:
24: {# model evaluation function}
25: def evaluate():
26: target return = 1, state = env.reset(), action = [], done = False
27: {# preferences is a user provided list of preferences for evaluation}
28: For p in preferences :
29: While not done :
30: action = MODEL((state, action, target return, p, done))
31: state, reward, done = env.step(action)
32: target return = target return− reward

A.4 HYPERPARAMETERS AND EXPERIMENTAL DETAILS

In this study, we have used a set of carefully designed hyperparameters that were selected through a
rigorous hyperparameter search using the Optuna framework Akiba et al. (2019). This search aimed
to find the optimal dataset-specific hyperparameters for each dataset.

Table 3 presents the common hyperparameters used for all experiments across all datasets. These
hyperparameters were chosen based on their effectiveness and consistency across different datasets.
Table 4 presents the dataset-specific hyperparameters used for each dataset in our study. While
some hyperparameters were kept constant across all datasets, others were adjusted to optimize per-
formance for each specific dataset.
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Table 3: Common Hyperparameters Used in the Experiments

Hyperparameter Value
Optimizer AdamW
Batch Size 64
n head 1
Warmup Steps 10K
Granularity (evaluation) 500
Context Length - K (evaluation) 5

Table 4: Dataset-Specific Hyperparameters Used in the Experiments

Hyperparameter MO-Ant MO-Walker2d MO-Swimmer MO-HalfCheetah MO-Hopper
Context Length - K (training) 22 24 20 24 22
Embedding Size 1024 256 512 512 512
Blocks 5 4 3 5 3
Dropout 0.25 0.15 0.15 0.2 0.25
Learning Rate 6.58e-5 3.78e-5 1.39e-5 6.21e-5 4.06e-5
Weight Decay 5.6e-4 1e-4 1.4e-4 5.6e-4 4.6e-4

The training process involves a set number of steps for each of the D4MORL datasets. Table 5
provides the total number of training steps for each dataset, along with the corresponding range.
For instance, the MO-Swimmer dataset is trained between 265K and 290K steps. To evaluate the
model’s performance, an evaluation is conducted every 5K steps within the specified training step
range for each dataset. This approach allows for monitoring the model’s progress over time and
helps identify the point of optimal performance.

Table 5: Total Training Steps for D4MORL Datasets

Dataset Total Training Steps (Range)
MO-Swimmer 265K - 290K
MO-Ant 50K - 75K
MO-Walker2d 425K - 450k
MO-HalfCheetah 75K - 100K
MO-Hopper 450K - 475K

A.5 COMPUTATIONAL DETAILS

All computations in this paper were conducted on a NVIDIA A100 server equipped with 8 GPUs,
each with 80GB of memory. Experiments on the D4MORL datasets, averaging 6 hours per single-
seed run, utilized 30 − 40% of GPU capacity, allowing two simultaneous runs per GPU core. This
indicates that, given the specified hyperparameters and dataset, our experiments could feasibly be
executed on servers with lower GPU configurations.
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