
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING MULTI-OBJECTIVE OFFLINE RL WITH
ADAPTIVE PREFERENCE INTEGRATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-objective reinforcement learning (MORL) is crucial for real-world applica-
tions where multiple conflicting goals must be optimized, such as in healthcare or
autonomous systems. Offline MORL extends these benefits by using pre-collected
datasets, allowing for effective learning without continuous interaction with the
environment. However, existing offline MORL algorithms often struggle with
scaling across large preference spaces and handling unknown preferences dur-
ing evaluation. To address these challenges, we propose the Preference-Attended
Multi-Objective Decision Transformer (PA-MODT), a novel architecture that in-
tegrates a preference-attention block with a modular transformer structure. This
design enables effective generalization over different preferences and trajectories,
providing a more robust approach to generating optimal Pareto fronts. We tested
PA-MODT on five D4MORL datasets with millions of trajectories representing
various objectives and found that it consistently outperforms existing models,
achieving Pareto fronts that align closely with behavioral policy. This demon-
strates PA-MODT’s potential to effectively manage complex multi-objective rein-
forcement learning tasks.

1 INTRODUCTION

Offline reinforcement learning (OfflineRL) has seen a surge in popularity due to its capability to
effectively utilize pre-existing datasets to train optimal policies without the need for direct inter-
action with the environment. This approach offers a data-driven pathway to learning, allowing for
sample-efficient policy optimization Prudencio et al. (2023). After training, the policies can either
be fine-tuned through environmental interactions or deployed for immediate use, making OfflineRL
a versatile tool in applications where real-time interaction is expensive or risky, such as autonomous
driving, robotics manipulation, and dialog generation Levine et al. (2020). Various OfflineRL al-
gorithms have emerged, encompassing both model-based approaches from Kidambi et al. (2020);
Yu et al. (2020; 2021), and model-free strategies from Fujimoto & Gu (2021); Kumar et al. (2019);
Wu et al. (2019), typically leveraging temporal difference learning Sutton & Barto (2018) or value
function estimation. An alternative route has also been explored with Decision Transformer Chen
et al. (2021) and Reinforcement Learning via Supervised Learning (RvS) Emmons et al. (2021),
which rely on autoregressive generative modeling. This shift towards OfflineRL is transforming
the landscape of reinforcement learning by reducing the need for costly environmental interactions
while offering flexibility for real-world applications.

In RL, the primary goal is to derive a policy that maximizes the return for a specific objective func-
tion. However, many real-world applications demand the optimization of multiple objectives simul-
taneously. Consider wind turbine control Hayes et al. (2022), which must balance power output with
reducing component fatigue to extend turbine lifespan, or medical treatment, which involves opti-
mizing effectiveness while minimizing side effects. Multi-objective reinforcement learning (MORL)
addresses such scenarios by accommodating conflicting goals within a single framework. MORL
algorithms in online settings generally focus on predefined preferences, either targeting a single opti-
mal policy Van Moffaert et al. (2013); Roijers et al. (2013) or generating multiple policies Mossalam
et al. (2016); Roijers et al. (2014) to cover a range of desired outcomes. This versatility makes
MORL a robust approach for complex, real-world optimization problems where balancing multiple
conflicting objectives is essential.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of MORL process using D4MORL’s MO-Ant dataset.
The MORL process, as demonstrated by D4MORL’s MO-Ant dataset, involves assigning a 2-dimensional
reward for movement in each direction, where one dimension corresponds to the x-axis and the other to the
y-axis, i.e., [rx ∝ dx, ry ∝ dy]. The agent’s overall direction of motion is influenced by the preference
given to each direction. Experiences collected across various preferences form an offline MORL dataset (Data
Collection Phase). Subsequently, a model is trained using MORL algorithms to formulate an optimal policy
(Training Phase). This policy is evaluated by generating Pareto front corresponding to observed and unobserved
preferences in the dataset (Evaluation Phase). The Pareto front ultimately represents the ant’s movement for
various preferences, highlighting the trade-offs and optimal solutions achieved.

Offline MORL extends the advantages of OfflineRL by using previously collected datasets to op-
timize learning across multiple objectives, eliminating the need for real-time interaction with the
environment. An overview of the offline MORL process is shown in Figure 1. Similar to online
MORL, offline MORL algorithms Wu et al. (2021); Thomas et al. (2021) aims to create either a
single optimal policy or an ensemble of policies based on predefined target preferences. However,
offline MORL often struggles with scalability across a large preference space 1 and managing un-
known preferences a priori. To address these issues, the Pareto Efficient Decision Agent (PEDA)
framework Zhu et al. (2023) integrates preference information into conventional OfflineRL inputs
(i.e., states, actions, reward), creating preference-conditioned trajectories by concatenating prefer-
ences with other inputs. This approach allows policies to generalize across both trajectories and
preferences. The PEDA framework introduced large-scale datasets derived from the MuJoCo envi-
ronment Xu et al. (2020), containing millions of pre-recorded trajectories, demonstrating effective
methods for building multi-objective decision transformers and multi-objective RvS models to tackle
complex MORL tasks.

Preferences, which are fixed within a single trajectory example in a dataset, are time-independent
features. In contrast, states, actions, and returns are time-dependent features that vary with each
time step. MODT uses a transformer architecture Vaswani et al. (2017) to predict future actions by
training on a mix of these time-dependent and time-independent features. Prior studies indicate that
simply adding preferences as an extra token along with time-dependent features in the transformer
can create a weak correlation between preferences and predictions Zhu et al. (2023). However,
concatenating these two types of features has proven to be a more effective method for autoregressive
training, known as preference conditioning. On the other hand, the authors in Ghanem et al. (2023)
point out that the decision transformer in online settings Zheng et al. (2022) may not fully leverage
the transformer model’s potential for future action prediction, as distinct attention blocks tend to
learn uniform patterns. This challenge indicates that integrating preferences directly with trajectory-
based time-dependent features could result in inefficient model utilization and limit the flexibility
of preference prediction. By contrast, modifications to transformer architecture targeting specific

1Preference space refers to potential preferences or choices, where each point represents a unique combina-
tion of objectives or trade-offs. Preferences for individual objectives can vary between 0 and 1, indicating their
relative importance.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

problem statements have yielded improved outcomes Li et al. (2022); Cai & Rostami (2024); Kim
et al. (2021); Yu et al. (2023).

These insights prompted the development of a new transformer-based architecture: the Preference-
Attended Multi-Objective Decision Transformer (PA-MODT). This architecture is specifically de-
signed to handle MORL tasks by incorporating a unique preference-attention block within a modu-
lar transformer structure. PA-MODT is effective at generalizing across the preference space and has
been shown to outperform existing models, including MORvS. This paper also delves into the sen-
sitivity of evaluation metrics to the derived Pareto front, providing a comprehensive understanding
of the model’s performance in various MORL scenarios. Furthermore, we provide Pareto front visu-
alizations obtained using the PA-MODT model. Our findings underscore that even slight changes in
evaluation metrics values can lead to significant variations in the resulting Pareto fronts, ultimately
influencing model assessments and selections.

2 RELATED WORK

Offline RL The key challenge of OfflineRL is handling the out-of-distribution behavior, referred
to as distribution shift Levine et al. (2020); Prudencio et al. (2023). A class of algorithms applies
behavior policy regularization to avoid distribution shift so that the learned policy stays close to the
behavior policy. Batch Constraint Deep Q-learning (BCQ) Fujimoto et al. (2019) applied off-policy
learning, combining the Q-network with a state-conditioned variational auto-encoder to model the
behavior policy distribution. Bootstrapping Error Accumulation Reduction (BEAR) Kumar et al.
(2019) is an actor-critic algorithm that uses maximum mean discrepancy between samples from the
learned policy and pre-modeled behavior policy as a policy regularization method. Behavior regu-
larized actor-critic (BRAC) Wu et al. (2019) introduced a general policy regularization framework
by evaluating previous works extensively.

Some algorithms learn a conservative Q-function by learning a lower bound of the true value func-
tion to handle distribution shifts. Conservative Q-learning (CQL) Kumar et al. (2020) and Con-
servative Offline Model-Based Policy Optimization (COMBO) Yu et al. (2021) prevent the over-
estimation of value function due to out-of-distribution actions using the above method. A few algo-
rithms do not explicitly handle distribution shift by applying any restriction but still handle the issue
using the single step of policy evaluation and improvement Kostrikov et al. (2021); Brandfonbrener
et al. (2021), i.e., without off-policy evaluation.

MORL In online settings, a group of MORL strategies involves training a single policy corre-
sponding to a single preference vector by transforming the MORL problem into a single objective
RL problem through techniques such as scalarization Agarwal et al. (2022), combining objectives in
distributional space Abdolmaleki et al. (2020). A few single policy algorithms Abels et al. (2019);
Basaklar et al. (2022); Yang et al. (2019) aim to approximate the Pareto front with a single policy
that generalizes over preference space and resolves the scalability issues in previously stated meth-
ods. The other group of strategies involves obtaining an ensemble of multiple policies. A method of
obtaining multiple policies is to apply single policy algorithms for multiple preferences Mossalam
et al. (2016); Roijers et al. (2014). Xu et al. (2020) uses a prediction-guided evolutionary learn-
ing algorithm to obtain a set of disjoint policies corresponding to different segments in the Pareto
front space. Handa (2009) extends the Estimation of Distribution Algorithms approach to estimate
multiple policies in the MORL problem.

Offline MORL MORL in offline settings has gotten attention recently, and a limited number of
works exist in this domain. Pessimistic Dual Iteration (PEDI) Wu et al. (2021) employs dual gradient
descent with pessimism while formulating the constraint problem (non-interactions with the envi-
ronment) as a primal-dual problem to find an optimal policy for a fixed preference vector. Thomas
et al. (2021) extends the work of Laroche et al. (2019) in multi-objective settings by adapting the
Seldonian framework for safe policy improvement for predefined preferences. Zhu et al. (2023) uti-
lizes decision models to find a single policy for all preferences by providing the information as input
to the models they evaluated on the proposed dataset D4MORL. Lin et al. (2024) extends existing
offline policy regularization method for single objectives into multi-objective settings, which is then
evaluated on the D4MORL and proposed MOSB datasets.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 PRELIMINARIES

Setup and Notation A MORL environment is generally formulated as multiobjective markov
decision process, represented by the tuple < S,A, P,R, γ, F,Ω >. The MOMDP tuple consists of
states (s ∈ S), actions (a ∈ A), a transition distribution P (s

′ |s, a), a reward function (R), a discount
factor (γ), a preference-reward mapping function (F ), and preferences (p ∈ Ω). At any timestep
t, the next state of the agent is obtained using the transition function: st+t ∼ P (st+1|st, at).
The reward function generates the vector reward based on state and action as r = R(s, a) =
[R1(s, a), R2(s, a), ..., Rn(s, a)], where n is the total number of objectives and Ri(s, a) is the re-
ward obtained for ith objective. A trajectory contains the transitions taken by the agent, which
is represented as (s0, a0, r0, s1, a1, r1, ..., sT , aT , rT ) where T denotes the length of the trajectory.
The vector-valued return at any timestep t in a trajectory is the discounted sum of the reward ob-
tained till the current timestep, given by Γt =

∑t
i=0 γ

i · ri. On the other hand, the return-to-go
at any timestep t represents the future return of the trajectory from the current timestep, given by
gt =

∑T
i=t γ

i−t · ri. A preference-reward mapping function maps a vector-valued reward to a
scalar utility value. In this paper, we have used a linear preference-reward mapping function i.e.
F (r, p) = r · pT , where p is a preference vector such that p ∈ Ω.

Decision Transformer A family of OfflineRL algorithms tries to find an optimal policy that
maximizes the expected return on any given state in an MDP by applying supervised learning on
some prerecorded RL dataset D = {(s, a, s′

, r)}. Decision Transformer (DT) is an OfflineRL
algorithm that formulates the RL problem as a sequence modeling task. DT applies autoregressive
training and generation on the GPT model to predict future action tokens by feeding return-to-go,
states, and actions as input. One input token contains a combination of return-to-go, state, and action
embeddings given by (g, s, a). A total of K such input tokens are used where K is called the context
length, and therefore, the final input is denoted as τ = (g1, s1, a1, g2, s2, a2, ..., gK , sK , aK). For
the evaluation, the desired return, along with initial state is used to generate the required/optimal
trajectory.

Pareto Optimality The goal of MORL is to obtain a policy (π(a|s, p)) that maximizes the ex-
pected return of the induced trajectory for any given preference vector p. A policy is evaluated for
a set of preferences containing a finite number of preference vectors, E = [p1, p2...pm]. A solution
set of returns (∆) is constructed containing returns corresponding to each preference vector. A point
β in the feasible solution set is considered Pareto efficient if there exists no other point α in the
feasible solution set such that Rβ

i < Rα
i for at least one objective function i ∈ {1, 2, ..., n}, where

Rβ
i and Rα

i denote the values of objective function i at points β and α, respectively. Mathematically,
this can be expressed as: ∄α ∈ ∆, α ̸= β : Rβ

i < Rα
i ,∃i ∈ {1, 2, ..., n}. The curve traced by all

Pareto-efficient points is called the Pareto front, as shown in Figure 1. The goodness of the policy is
measured by evaluating the obtained Pareto front on Hypervolume and Sparsity matrices.

4 ARCHITECTURE

MORL poses significant challenges, as it requires balancing time-dependent features like states,
actions, and return-to-go with time-independent features such as preferences. To achieve robust
generalization and effective decision-making in complex environments, finding an optimal archi-
tecture that integrates these diverse features is crucial. We address this challenge by focusing on
transformer-based models for their capacity to handle complex data and explore various approaches
to effectively integrate preference-based information. We experiment with different architectural
configurations to determine the most effective strategy for multi-objective RL:

• PA-MODT (Preference-Attended Multi-Objective Decision Transformer): A transformer-
based configuration featuring a Preference-Attention (PA) block and dedicated preference-
based input encoding.

• Experiment D (Direct Input to the PA Block): Preferences are directly fed into the PA
block of the PA-MODT configuration without passing through a preference embedding
layer.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

• Experiment F (Feed-Forward Layer After the PA Block): A feed-forward layer follows the
PA block in the PA-MODT configuration, mirroring the structure of traditional transformer
models where attention layers are succeeded by a feed-forward layer.

Figure 2: Preference-Attended Multi-objective Decision Transformer Architecture

PA-MODT demonstrates superior performance in MORL tasks. Experiment D shows reduced per-
formance compared to PA-MODT, highlighting the significance of preference embeddings. Con-
versely, Experiment F performs comparably to PA-MODT, suggesting that the additional feed-
forward layer may not offer substantial benefits and could be considered redundant. These results
are presented in Section A.1. We identify the key features contributing to PA-MODT’s success in
MORL upon conclusion of these experiments:

1. Preference-Based Input Encoding: A separate preference encoding accompanies the
standard positional encoding, enabling the model to consider preferences akin to time-
based positional encoding. This addition enables the architecture to take into account a
broader range of preference-based information without affecting the core transformer struc-
ture.

2. Separate Preference-Attention Pathway: The PA block is a dedicated pathway for han-
dling preferences, allowing the model to focus on preferences independently from other
time-dependent features like states and actions. This structure offers a more dynamic ap-
proach to handling varying preferences in complex RL environments.

3. Modular Transformer Architecture: PA-MODT retains the fundamental components of
a traditional transformer model, providing a stable and familiar foundation while allowing
for flexible integration of preference-based attention through the PA block.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

As illustrated in Figure 2, preference embeddings are derived through two separate linear layers:
one set is directed to the PA block for preference-based attention, while the other set is used for
preference-based input encoding. Additional embeddings for positional or time-step, state, action,
and return-to-go are generated using dedicated linear layers. This structure ensures a clear separation
between preference-based data and other time-dependent data, promoting efficient processing and
decision-making in MORL tasks.

Preference-Attention Block The PA block in our PA-MODT architecture processes hidden states
derived from the time-dependent self-attention layer, followed by a feed-forward computational
layer. It also integrates preference embeddings to generate attention scores through either an additive
or a multiplicative attention mechanism. These scores determine the weights applied to the hidden
states, as specified in Equations 1 - 5. The adjusted hidden states are then passed through a layer
normalization step and combined with the original hidden states via a residual connection. This
process creates a robust pathway for handling preferences within the model.

H = linear(hidden states) (1)
ρ = linear(preference embeddings) (2)

scores = softmax(tanh(H + ρ+Bias)) (3)

hidden states = hidden states× scoresT (4)
hidden states = hidden states+ layernorm(hidden states) (5)

The PA-MODT architecture effectively integrates preference-based attention, contributing to im-
proved performance and generalization in MORL tasks. The model’s training process closely re-
sembles that of a Decision Transformer, ensuring a straightforward implementation. A minibatch
of transitions with context length K is sampled from the offline RL dataset. The model uses this
context to predict future actions, and the predictions are then compared against actual actions to
compute a loss using the mean-squared loss function. The detailed training steps are outlined in
Algorithm 1, which is provided in Appendix A.3.

5 EXPERIMENTS AND RESULTS

The outline of our experiments section is designed to answer the following questions: 1. How does
our PA-MODT model’s performance compare to that of existing models? 2. What is the effect of
each component on the performance of the overall PA-MODT model? 3. How does the Pareto front
shift with slight variations in each evaluation metric?

Additionally, we include a detailed Pareto front visualization in Section A.2, along with a compar-
ison study. This visual representation helps clarify how PA-MODT performs, adding depth to our
experimental results.

5.1 EVALUATIONS ON OFFLINE MORL BENCHMARKS

To evaluate the performance of the PA-MODT architecture, we focus on two key metrics for Pareto
front analysis: Hypervolume and Sparsity. These metrics offer a comprehensive understanding of
the Pareto fronts generated during the evaluation phase after model training. Hypervolume measures
the area encompassed by all points on the Pareto front, indicating the extent to which the curve
spreads outward from the origin. Sparsity, on the other hand, assesses the average distance between
consecutive points, providing an indication of the curve’s density. This graphical representation of
Hypervolume assumes an optimization goal of maximizing the reward for each objective.

We conduct a comparative analysis of the performance of the PA-MODT model against exist-
ing MODT and MORvS models, which are utilized for multi-objective optimization in offline
paradigms. The MODT and MORvS models utilize states, actions, and return-to-go concatenated
with preference information, as outlined in the PEDA paper Zhu et al. (2023). The authors of the
PEDA paper previously demonstrated that MODT and MORvS outperformed other multi-objective
optimization algorithms, such as MO-CQL, MO-IQL, and Behavior Cloning (BC), in both their
preference-conditioned and non-preference-conditioned variants. It is important to note that oper-
ational differences in our experiments may result in slight discrepancies in MODT and MORvS

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Results on D4MORL Amateur and Expert datasets. B indicates the performance of behavior
policies from PEDA. PA-MODT is compared against preference-conditioned MODT and MORvS.

Dataset Metric B MODT MORvS PA-MODT
E

xp
er

t

Ant HV (106) 6.32 6.183± 0.125 6.376± 0.012 6.410 ± 0.018
SP (104) - 0.724 ± 0.121 0.973± 0.238 0.733 ± 0.061

HalfCheetah HV (106) 5.79 5.735± 0.009 5.757± 0.012 5.785 ± 0.002
SP (103) - 1.336± 0.137 1.396± 0.487 0.543 ± 0.067

Hopper HV (107) 2.09 2.004± 0.007 1.826± 0.041 2.060 ± 0.011
SP (105) - 0.763± 0.180 0.406 ± 0.188 0.473 ± 0.342

Swimmer HV (104) 3.25 3.216± 0.002 3.230± 0.000 3.244 ± 0.001
SP (1) - 4.486± 1.048 6.600± 0.775 3.363 ± 0.096

Walker2d HV (106) 5.21 5.009± 0.004 5.006± 0.063 5.152 ± 0.008
SP (104) - 0.892± 0.078 0.649± 0.148 0.286 ± 0.055

A
m

at
eu

r

Ant HV (106) 5.61 5.982± 0.029 6.053± 0.005 6.111 ± 0.006
SP (104) - 0.688 ± 0.190 0.794± 0.002 0.727 ± 0.087

HalfCheetah HV (106) 5.68 5.715± 0.002 5.766± 0.000 5.780 ± 0.001
SP (103) - 0.393 ± 0.038 0.615± 0.152 0.422± 0.052

Hopper HV (107) 1.97 1.819± 0.014 1.729± 0.038 1.901 ± 0.007
SP (105) - 0.192± 0.060 0.212± 0.210 0.169 ± 0.035

Swimmer HV (104) 2.11 1.273± 0.922 2.852± 0.018 2.937 ± 0.056
SP (1) - 6.720± 1.193 1.490 ± 0.227 4.657± 0.428

Walker2d HV (106) 4.99 4.045± 0.040 4.916 ± 0.024 4.921 ± 0.019
SP (104) - 0.919± 0.106 0.308 ± 0.20 0.292 ± 0.045

Note that: High Hypervolume and low sparsity are desirable.
Expert datasets are acquired by executing actions based on the optimal reference policy derived from
an ensemble of policies. Conversely, amateur dataset collection entails a similar procedure to expert
dataset acquisition, with actions being taken according to a predefined probability associated with
the policy.

results compared to those reported in the PEDA paper, whereas the behavior policy (B) results are
directly sourced from the same study. All experiments are conducted using three different seeds,
with the results presented as the average of these trials along with the standard error. Specific hyper-
parameters and total training steps are outlined in Appendix A.4.

As per Table 1, the PA-MODT model exhibits superior performance compared to MODT and
MORvS on the D4MORL expert datasets. Furthermore, in the majority of the D4MORL ama-
teur datasets, PA-MODT outperforms both MODT and MORvS. In a few cases, such as MO-Ant
(expert and amateur), MO-HalfCheetah (amateur), and MO-Swimmer (amateur), the policies de-
rived from PA-MODT even surpass the performance of the behavior policy. A few entries in Table 1
demonstrate modest numerical improvements. However, even small numerical differences can lead
to significant variations in the quality of the Pareto front, as demonstrated in Section A.2.

5.2 ABLATION STUDY

We conduct an ablation study on the PA-MODT model to assess the impact of its individual com-
ponents on the model’s performance. At first, we remove preference encoding from the input level
to understand its influence on the Pareto front. Following that, we eliminate the preference at-
tention module, essentially transforming the model into a basic GPT-2 architecture that incorporates
preference-scaled vectored return-to-go (g′ = [g1p1, g2p2, ..., gnpn]), states, and actions with a fixed
context length as inputs. All experiments are performed using the same three seeds as in the previous
section, with the results averaged along with the standard error.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Ablation Study results for PA-MODT on D4MORL Amateur and Expert datasets, where
each involved component was Iteratively removed to assess its impact on performance.

Dataset Metric PA-MODT PA-MODT (-) A PAMODT (-) A (-) B
E

xp
er

t

Ant HV (106) 6.410± 0.018 6.301± 0.09 5.825± 0.167
SP (104) 0.733± 0.061 0.767± 0.102 0.561± 0.078

HalfCheetah HV (106) 5.785± 0.002 5.778± 0.002 5.632± 0.090
SP (103) 0.543± 0.067 0.484± 0.108 3.980± 0.693

Hopper HV (107) 2.060± 0.011 2.039± 0.019 1.957± 0.055
SP (105) 0.473± 0.342 0.257± 0.048 0.363± 0.050

Swimmer HV (104) 3.244± 0.001 3.242± 0.005 2.801± 0.035
SP (1) 3.363± 0.096 2.576± 0.174 31.960± 15.636

Walker2d HV (106) 5.152± 0.008 4.928± 0.019 3.373± 0.208
SP (104) 0.286± 0.055 0.392± 0.214 0.554± 0.324

A
m

at
eu

r

Ant HV (106) 6.111± 0.006 5.957± 0.003 5.405± 0.205
SP (104) 0.727± 0.087 1.079± 0.213 0.614± 0.256

HalfCheetah HV (106) 5.780± 0.001 5.745± 0.007 5.624± 0.035
SP (103) 0.422± 0.052 0.701± 0.186 1.668± 0.159

Hopper HV (107) 1.901± 0.007 1.867± 0.037 1.809± 0.017
SP (105) 0.169± 0.035 0.241± 0.106 1.808± 1.118

Swimmer HV (104) 2.937± 0.056 1.231± 0.874 0.591± 0.035
SP (1) 4.657± 0.428 21.986± 21.905 0.563± 0.069

Walker2d HV (106) 4.921± 0.019 4.704± 0.202 4.287± 0.228
SP (104) 0.292± 0.045 1.799± 0.875 3.245± 1.911

A = Preference Encoding ; B = Preference Attention.

Table 2 demonstrates that preference attention significantly enhances the quality of the Pareto front
across all evaluation metrics. Additionally, preference encoding improves results in all five datasets,
though its impact is less pronounced compared to preference attention. Regarding the preference
attention mechanism, we experiment with both additive and multiplicative attention, observing that
their performance is nearly identical. The results presented in Tables 1 and 2 are derived from
experiments employing additive attention.

5.3 PARETO FRONT SENSITIVITY TO EVALUATION MATRICES

In this subsection, we present insightful observations regarding changes in Pareto front to hypervol-
ume and sparsity, which enhance understanding of the results presented in the previous subsections.

Figure 3 contains two Pareto front obtained for the HalfCheetah expert dataset for two different
scenarios. It is visible that the Pareto front presented in Figure 3a has a few missing points, and the
Pareto front in Figure 3b is dense. The difference in the hypervolume for the two figures is minimal,
but the change in Pareto front is significant, which indicates a high sensitivity. On the other hand,
these variations in the Pareto fronts are indicated by the considerable difference in the sparsity. For
a Pareto front, the point in the middle of the curves serves an essential role in the optimization as
the preference for all the objectives is nearly equal for these points, and therefore, missing a few
points in that area is not desirable. Similarly, Figure 4 demonstrates two Pareto fronts obtained for
the Walker2d-expert dataset for two different scenarios. The Pareto front in Figure 4b includes a
few more points, as shown in the upper-left portion of the graph, as compared to the Pareto front in
Figure 4a. Due to these few extra points, the sparsity of the Pareto front in Figure 4b is very high
with respect to the Pareto front in Figure 4a. Although the inclusion of these few extra points is
indicated by hypervolume, Pareto front’s high sensitivity towards sparsity is apparent.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Hypervolume = 5.778× 106 , Sparsity = 639 (b) Hypervolume = 5.781× 106 , Sparsity = 381

Figure 3: Pareto fronts for HalfCheetah-expert dataset.

(a) Hypervolume = 4.95×106 , Sparsity = 0.23×104 (b) Hypervolume = 5.10×106 , Sparsity = 1.48×104

Figure 4: Pareto fronts for Walker2d-expert dataset.

Finally, we conclude that the Pareto front is highly sensitive to the evaluation matrics, and a com-
parison between two Pareto fronts should be made considering both the evaluation matrics simulta-
neously. It’s noteworthy that even a slight change in evaluation metrics, such as those at the decimal
place, can lead to a significant alteration in the Pareto front.

6 DISCUSSION AND FUTURE WORK

We presented an empirical analysis of how utilizing the input preferences through structural ad-
vances in transformer architecture can improve the model’s performance on MORL tasks. A po-
tential drawback of our approach is the computational complexity, as multi-objective reinforcement
learning tasks are computationally intensive. Our proposed model, PAMODT, is also computation-
ally expensive, especially when dealing with large input sequences or high-dimensional preference
embeddings. This highlights the need for further research into more efficient architectures and
optimization techniques that can reduce the computational burden while maintaining or enhanc-
ing performance. Additionally, we have identified a pressing need to evaluate the effectiveness of
preference-attended architecture for online fine-tuning, particularly after deriving an initial policy
from offline Reinforcement Learning in multi-objective optimization contexts. Throughout this pa-
per, our focus has primarily been on predicting future actions, yet we acknowledge the potential
benefits of including preferences, states, and return-to-go in these predictions. This prompts impor-
tant questions regarding the applicability of preference attention beyond the offline MORL domain
and the potential improvement of prediction abilities by adding future state, return-to-go, and prefer-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ence prediction. Addressing these inquiries not only enhances the reliability of preference attention
but also advances the broader landscape of MORL algorithms.

7 REPRODUCIBILITY STATEMENT

We have used the open-source dataset and code provided by Zhu et al. (2023) for the MORL task.
The algorithm used in our approach is outlined in Section A.3, the hyperparameter and experimental
details are provided in Section A.4, and the computational details are mentioned in Section A.5. The
modifications made to the code provided by previous authors are described in Section 4.

With the above details, our approach is easily reproducible. We would like to thank the authors Zhu
et al. (2023) for providing the dataset and code, which have been instrumental in the development
of our approach.

REFERENCES

Abbas Abdolmaleki, Sandy Huang, Leonard Hasenclever, Michael Neunert, Francis Song, Martina
Zambelli, Murilo Martins, Nicolas Heess, Raia Hadsell, and Martin Riedmiller. A distributional
view on multi-objective policy optimization. In International conference on machine learning,
pp. 11–22. PMLR, 2020.

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic
weights in multi-objective deep reinforcement learning. In International conference on machine
learning, pp. 11–20. PMLR, 2019.

Mridul Agarwal, Vaneet Aggarwal, and Tian Lan. Multi-objective reinforcement learning with non-
linear scalarization. In Proceedings of the 21st International Conference on Autonomous Agents
and Multiagent Systems, pp. 9–17, 2022.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Toygun Basaklar, Suat Gumussoy, and Umit Y Ogras. Pd-morl: Preference-driven multi-objective
reinforcement learning algorithm. arXiv preprint arXiv:2208.07914, 2022.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline rl without off-
policy evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Yuliang Cai and Mohammad Rostami. Dynamic transformer architecture for continual learning of
multimodal tasks. arXiv preprint arXiv:2401.15275, 2024.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Abdelghani Ghanem, Philippe Ciblat, and Mounir Ghogho. Multi-objective decision transformers
for offline reinforcement learning. arXiv preprint arXiv:2308.16379, 2023.

Hisashi Handa. Solving multi-objective reinforcement learning problems by eda-rl-acquisition of
various strategies. In 2009 ninth international conference on intelligent systems design and ap-
plications, pp. 426–431. IEEE, 2009.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz,
et al. A practical guide to multi-objective reinforcement learning and planning. Autonomous
Agents and Multi-Agent Systems, 36(1):26, 2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Seungwon Kim, Alex Shum, Nathan Susanj, and Jonathan Hilgart. Revisiting pretraining with
adapters. In Proceedings of the 6th Workshop on Representation Learning for NLP (RepL4NLP-
2021), pp. 90–99, 2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Romain Laroche, Paul Trichelair, and Remi Tachet Des Combes. Safe policy improvement with
baseline bootstrapping. In International conference on machine learning, pp. 3652–3661. PMLR,
2019.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Qingyang Li, Ruofei Zhong, Xin Du, and Yu Du. Transunetcd: A hybrid transformer network
for change detection in optical remote-sensing images. IEEE Transactions on Geoscience and
Remote Sensing, 60:1–19, 2022. doi: 10.1109/TGRS.2022.3169479.

Qian Lin, Chao Yu, Zongkai Liu, and Zifan Wu. Policy-regularized offline multi-objective rein-
forcement learning. arXiv preprint arXiv:2401.02244, 2024.

Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

Rafael Figueiredo Prudencio, Marcos R. O. A. Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, pp. 1–0, 2023. doi: 10.1109/TNNLS.2023.3250269.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Diederik M Roijers, Shimon Whiteson, and Frans A Oliehoek. Linear support for multi-objective co-
ordination graphs. In AAMAS’14: PROCEEDINGS OF THE 2014 INTERNATIONAL CONFER-
ENCE ON AUTONOMOUS AGENTS & MULTIAGENT SYSTEMS, volume 2, pp. 1297–1304.
IFAAMAS/ACM, 2014.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Philip S Thomas, Joelle Pineau, Romain Laroche, et al. Multi-objective spibb: Seldonian offline
policy improvement with safety constraints in finite mdps. Advances in Neural Information Pro-
cessing Systems, 34:2004–2017, 2021.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. Scalarized multi-objective reinforce-
ment learning: Novel design techniques. In 2013 IEEE symposium on adaptive dynamic pro-
gramming and reinforcement learning (ADPRL), pp. 191–199. IEEE, 2013.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Runzhe Wu, Yufeng Zhang, Zhuoran Yang, and Zhaoran Wang. Offline constrained multi-objective
reinforcement learning via pessimistic dual value iteration. Advances in Neural Information Pro-
cessing Systems, 34:25439–25451, 2021.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Wojciech Matusik.
Prediction-guided multi-objective reinforcement learning for continuous robot control. In In-
ternational conference on machine learning, pp. 10607–10616. PMLR, 2020.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in neural information processing systems,
32, 2019.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Zitong Yu, Rizhao Cai, Yawen Cui, Xin Liu, Yongjian Hu, and Alex Kot. Rethinking vi-
sion transformer and masked autoencoder in multimodal face anti-spoofing. arXiv preprint
arXiv:2302.05744, 2023.

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

Baiting Zhu, Meihua Dang, and Aditya Grover. Scaling pareto-efficient decision making via offline
multi-objective rl. arXiv preprint arXiv:2305.00567, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 COMPARISON WITH BASELINES

Figure 5: Comparion with baselines for D4MORL-expert datasets.

To evaluate the performance of the PA-MODT model, we conducted a comparative analysis against
baseline models from Experiment D 4 and Experiment F 4. Figure 5 provides a visual representation
through barplots, showcasing the hypervolumes achieved across various D4MORL-Expert datasets
for each experimental setup. Notably, all experiments were carried out with the same set of hyper-
parameters to ensure consistency in the comparison. Since the hyperparameter search is not applied
here, it is important to note that the results for PA-MODT are different from the ones presented
in Table 1. This difference could be attributed to the lack of optimization of hyperparameters for
PA-MODT in this specific experiment.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The results presented in Figure 5 highlight a clear pattern. Adding a feedforward layer to the PA-
MODT model, as in Experiment F, tends to either yield similar performance or perform worse than
the original PA-MODT architecture. This outcome suggests that additional feedforward layers may
introduce unnecessary complexity, hindering the model’s efficiency and adaptability. Additionally,
feeding preferences directly into the transformer without dedicated embeddings, as in Experiment
D, resulted in the worst performance among the tested configurations. This finding underscores the
critical role that preference embeddings play in facilitating proper integration of preference-based
information within the transformer architecture.

Overall, these comparative results suggest that the original PA-MODT model—with its unique
Preference-Attention (PA) block and preference-based input encoding—strikes the optimal balance
for MORL tasks. The performance trends observed in these experiments indicate that attempts to
simplify or overly complicate the architecture can lead to diminished results, reinforcing the impor-
tance of carefully designing preference-based attention mechanisms in MORL systems.

A.2 PARETO FRONT VISUALIZATION

Figure 6 contains the Pareto fronts obtained using the PA-MODT and MODT models on the
D4MORL datasets. These visualizations are based on the best-performing seed among the three
seeds discussed in Table 1. The graphs provide three key insights: the Pareto front visualization for
the PA-MODT model, the comparison between the Pareto fronts of PA-MODT and MODT models,
and the observation that slight changes in the metrics discussed in Table 1 result in significant vari-
ations in the Pareto fronts. For more detailed observations, it is advisable to consider the evaluation
metrics values from Table 1 along with these visualizations.

Figure 6a illustrates the results for the MO-Ant dataset, where the Pareto front for PA-MODT is
more widely spread compared to the MODT, which is dense in a smaller region. This indicates
lower sparsity for MODT but a higher hypervolume for PA-MODT, making the PA-MODT front
more desirable. Figure 6b presents the MO-HalfCheetah dataset, showing that the Pareto front for
PA-MODT is denser and more spread out than for MODT. This observation is supported by the
higher hypervolume and lower sparsity metrics. Figure 6c shows the MO-Hopper dataset, where the
Pareto front for PA-MODT is significantly denser compared to MODT. This desirable characteristic
is again reflected by the higher hypervolume and lower sparsity metrics. For the MO-Swimmer
dataset, depicted in Figure 6d, the differences between the models are not visible with the current
axis scale choices. Finally, Figure 6e displays the MO-Walker2d dataset results. The Pareto front
for PA-MODT is broadly spread in the desired region, in contrast to the dense, smaller region of
the MODT front. Due to the high concentration of Pareto-efficient points in the Pareto front of
the MODT model, the sparsity is low. However, the Pareto front for PA-MODT is more diverse
and spread out, which is desirable and is observed using hypervolume, making hypervolume the
considered evaluation metric in this case.

(a) MO-Ant

Figure 6: Pareto fronts for D4MORL-expert datasets.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(b) MO-HalfCheetah

(c) MO-Hopper

(d) MO-Swimmer

(e) MO-Walker2d

Figure 6: Pareto fronts for D4MORL-expert datasets.
15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Overall, these Pareto fronts in Figure 6 demonstrate the PA-MODT model’s capacity to explore a
range of optimal solutions and manage trade-offs among various objectives effectively. The observed
robustness suggests that the model can handle complex RL scenarios where navigating multiple ob-
jectives is crucial. This visual representation underscores the model’s effectiveness and adaptability
in multi-objective RL tasks.

A.3 ALGORITHM

The algorithm involves PA-MODT model and comprehensive input data preparation, including the
retrieval of various embeddings. Detailed descriptions of the training and evaluation procedures, as
well as the data preparation steps, are provided in the following algorithm:

Algorithm 1 PAMODT Pseudocode

1: {# Generating predictions using PA-MODT}
2: def MODEL(transition):
3: {# Fetching various embeddings using dedicated linear layers}
4: positional embed = linear(transition.timestep)
5: pref encod embed = linear(transition.preference)
6: pref att embed = linear(transition.preference)
7: state embed = linear(transition.state) + positional embed+ pref encod embed
8: action embed = linear(transition.action) + positional embed+ pref encod embed
9: rtg embed = linear(transition.rtg) + postional embed+ pref encod embed

10: input embed = stack(state embed, act embed, rtg embed)
11: {# hidden states are obtained from PA-MODT using the generated embeddings}
12: hidden states = PAMODT (input embed = input embed, preference embed =

pref att embed)
13: out action embed = unstack(hidden states).actions
14: return linear(out action embed)
15: {# returning the actions translated from hidden states using a linear layer}
16:
17: {# model training function}
18: def train():
19: for transition in dataset :
20: action Prediction = MODEL(transition)
21: loss = lossFn(action prediction, transition.future action)
22: {# backpropagate the loss}
23:
24: {# model evaluation function}
25: def evaluate():
26: target return = 1, state = env.reset(), action = [], done = False
27: {# preferences is a user provided list of preferences for evaluation}
28: For p in preferences :
29: While not done :
30: action = MODEL((state, action, target return, p, done))
31: state, reward, done = env.step(action)
32: target return = target return− reward

A.4 HYPERPARAMETERS AND EXPERIMENTAL DETAILS

In this study, we have used a set of carefully designed hyperparameters that were selected through a
rigorous hyperparameter search using the Optuna framework Akiba et al. (2019). This search aimed
to find the optimal dataset-specific hyperparameters for each dataset.

Table 3 presents the common hyperparameters used for all experiments across all datasets. These
hyperparameters were chosen based on their effectiveness and consistency across different datasets.
Table 4 presents the dataset-specific hyperparameters used for each dataset in our study. While
some hyperparameters were kept constant across all datasets, others were adjusted to optimize per-
formance for each specific dataset.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Common Hyperparameters Used in the Experiments

Hyperparameter Value
Optimizer AdamW
Batch Size 64
n head 1
Warmup Steps 10K
Granularity (evaluation) 500
Context Length - K (evaluation) 5

Table 4: Dataset-Specific Hyperparameters Used in the Experiments

Hyperparameter MO-Ant MO-Walker2d MO-Swimmer MO-HalfCheetah MO-Hopper
Context Length - K (training) 22 24 20 24 22
Embedding Size 1024 256 512 512 512
Blocks 5 4 3 5 3
Dropout 0.25 0.15 0.15 0.2 0.25
Learning Rate 6.58e-5 3.78e-5 1.39e-5 6.21e-5 4.06e-5
Weight Decay 5.6e-4 1e-4 1.4e-4 5.6e-4 4.6e-4

The training process involves a set number of steps for each of the D4MORL datasets. Table 5
provides the total number of training steps for each dataset, along with the corresponding range.
For instance, the MO-Swimmer dataset is trained between 265K and 290K steps. To evaluate the
model’s performance, an evaluation is conducted every 5K steps within the specified training step
range for each dataset. This approach allows for monitoring the model’s progress over time and
helps identify the point of optimal performance.

Table 5: Total Training Steps for D4MORL Datasets

Dataset Total Training Steps (Range)
MO-Swimmer 265K - 290K
MO-Ant 50K - 75K
MO-Walker2d 425K - 450k
MO-HalfCheetah 75K - 100K
MO-Hopper 450K - 475K

A.5 COMPUTATIONAL DETAILS

All computations in this paper were conducted on a NVIDIA A100 server equipped with 8 GPUs,
each with 80GB of memory. Experiments on the D4MORL datasets, averaging 6 hours per single-
seed run, utilized 30 − 40% of GPU capacity, allowing two simultaneous runs per GPU core. This
indicates that, given the specified hyperparameters and dataset, our experiments could feasibly be
executed on servers with lower GPU configurations.

17


	Introduction
	Related Work
	Preliminaries
	Architecture
	Experiments and Results
	Evaluations on Offline MORL Benchmarks
	Ablation Study
	Pareto Front Sensitivity to Evaluation Matrices

	Discussion and Future Work
	Reproducibility Statement
	Appendix
	Comparison with Baselines
	Pareto Front Visualization
	Algorithm
	Hyperparameters and Experimental Details
	Computational Details


