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Abstract
In recommender systems, observed data always
suffer from Missing-Not-At-Random (MNAR) is-
sue: users rate only a non-random subset of items,
leading to a biased recommendation if the model
is trained on such biased data directly. One type
of popular debiasing method is to learn an accu-
rate propensity score (the probability a rating is
observed) and then reweight the observed sample
to achieve unbiased rating prediction. While cal-
ibration metric and balancing metric are widely
adopted as constraints to learn a high-quality
propensity model, existing methods optimize these
objectives in an isolated manner, neglecting their
inherent connections. To bridge this gap, we first
decompose the balancing constraint, making the
balancing loss and the calibration loss have a sim-
ilar form. Then we propose a unified Calibration
and Balancing Propensity Learning (CBPL) frame-
work that minimizes calibration loss and balancing
loss simultaneously. In addition, we provide a theo-
retical analysis showing that our method has a vari-
ance reduction property. Experimental results on
three real-world recommendation datasets demon-
strate that our method can outperform the state-of-
the-art baselines.

1 Introduction
In real-world applications, recommender systems use user
feedback (such as ratings) to infer user preferences. How-
ever, since users tend to rate items they are interested in, the
observed data is often affected by selection bias, exhibiting a
Missing-Not-at-Random (MNAR) pattern [Chen et al., 2020;
Li et al., 2023f; Yang et al., 2018], learning to sub-optimal
rating prediction. Thus, addressing selection bias has become
a central challenge for training a high-quality rating predic-
tion model [Steck, 2010; Li et al., 2023d].

To address the MNAR problem, many propensity-based
methods are proposed. Specifically, inverse propensity score
(IPS) based methods use propensity (the probability a rating
is observed) to reweight the observed samples [Swaminathan
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and Joachims, 2015a; Swaminathan and Joachims, 2015a].
Furthermore, doubly robust (DR) based estimators use both
the imputation model (impute missing rating) and the propen-
sity model together to further debias [Wang et al., 2019;
Li et al., 2023d]. Despite significant progress in existing
propensity-based methods, several challenges in propensity
estimation remain. (1) Existing models will always overesti-
mate or underestimate propensity scores, resulting in propen-
sity scores that are unrealistically low or high; (2) Many ap-
proaches overlook the propensity balancing property, i.e., the
covariate balance between treated and untreated groups.

• Overconfident estimates, where predicted propensity
scores are overly close to 0 or 1, are a common is-
sue in existing propensity models [Guo et al., 2017;
Bai et al., 2021; Kweon et al., 2021]. Such over-
confidence leads to unreliable probability estimates and
motivates the need for proper calibration, which evalu-
ates how well predicted probabilities align with actual
outcomes [Kull et al., 2017; Deshpande and Kuleshov,
2023]. Formally, for a propensity model h(·) and an ob-
servation indicator o ∈ {0, 1}, calibration is satisfied if

E(o | h(x) = p̂) = p̂.

For example, if there are 100 samples with estimated
propensity 0.2, then we expect exactly 20 observations.

• Even when propensity predictions are accurate on aver-
age, poor covariate balance can lead to biased or high-
variance estimates the doubly robust methods [Wang
et al., 2019; Guo et al., 2021; Chen et al., 2021;
Dai et al., 2022]. Formally, for any measurable and in-
tegrable function ϕ : X → Rm, propensity balance is
satisfied if

E
[

o

h(x)
· ϕ(x)

]
= E

[
1− o

1− h(x)
· ϕ(x)

]
= E [ϕ(x)] .

In practice, based on Expected Calibration Error (ECE),
prior works [Kweon et al., 2024; Hu et al., 2025] have been
proposed to learn a well-calibrated propensity. In addition, to
promote balance, [Li et al., 2023d] propose to use the Balanc-
ing Mean Squared Error (BMSE) metric as a regularizer to
penalize misaligned propensities during training. However,
calibration and balancing are always difficult to satisfy si-
multaneously in practice. As shown in Table 1, we present



Toy Example 1 Toy Example 2
Estimated propensity Observed Indicator Estimated propensity Observed Indicator

0.77 1 0.85 1
0.76 1 0.75 0
0.75 1 0.75 1
0.74 1 0.65 0
0.71 0 0.55 1
0.57 1 0.45 0
0.50 1 0.35 0
0.26 0 0.25 1
0.25 0 0.25 1
0.17 1 0.15 0

ECE ≈ 0.1520 ECE ≈ 0.2700
BMSE ≈ 0.7749 BMSE ≈ 0.0088

Table 1: Toy examples demonstrating inconsistency between bal-
ance (BMSE) and calibration (ECE) metrics. The detailed calcula-
tion and definition are shown in Section 2.3.

two illustrative examples on a toy dataset: in Example 1, the
propensity estimates exhibit good calibration but poor covari-
ate balance (low ECE but a high BMSE). In contrast, Exam-
ple 2 achieves better balance but suffers from poor calibra-
tion. This inconsistency highlights a fundamental challenge:
how to ensure both calibration and balancing?

In this paper, we bridge the gap between calibration and
balancing in propensity estimation by proposing a Calibration
Balancing Propensity Learning (CBPL) framework. Specif-
ically, we first decompose the balancing constraint, making
the balancing loss and the calibration loss have a similar form,
then we adopt them as constraints in the proposed unified
framework. Our contributions are summarized as follows:

• We adjust miscalibration metric and decompose the bal-
ancing constraint to better align the balancing loss and
the calibration loss, revealing their inherent connection
and enabling a unified optimization strategy.

• We develop the CBPL framework that simultaneously
minimizes both calibration and balancing losses, ensur-
ing that the propensity scores satisfy these essential con-
ditions jointly rather than separately.

• We provide a theoretical analysis demonstrating the vari-
ance reduction property of our unified approach

• We conduct extensive empirical evaluations on three
real-world recommendation datasets, showing the pro-
posed method can outperform the baselines.

2 Preliminary
2.1 Problem Setup
We adopt the potential outcome framework to formulate the
selection bias problem in recommender systems formally. Let
U = {u1, . . . , un} and I = {i1, . . . , im} denote the sets of
users and items, respectively. The complete user-item interac-
tion space is represented by D = U ×I, covering all possible
interactions between user-item pairs. For each user-item pair
(u, i) ∈ D, let xu,i ∈ Rd represent observed covariates, such
as user demographics or item attributes. Define the treatment
indicator ou,i ∈ {0, 1}, which equals 1 if user u rates item
i, and 0 otherwise. Let ru,i(o) be the potential outcome for
treatment o ∈ {0, 1}, where the observed rating is ru,i(1)
when ou,i = 1, and the unobserved rating (counterfactual rat-
ing if rated) is ru,i(0).

Our objective is to estimate ratings for all user-item
pairs. Ideally, with full observability, the prediction model
f(xu,i; θ) can be trained by minimizing the ideal loss:

Lideal(θ) =
1

|D|
∑

(u,i)∈D

eu,i, (1)

where eu,i = ℓCE(f(xu,i; θ), ru,i(1)) represents the predic-
tion error, typically mean squared error (MSE) or cross en-
tropy loss.

In practice, ratings are partially observed with non-random
missingness. Let O = {(u, i) ∈ D | ou,i = 1} denotes
the observed samples, minimizing the loss only within the
observed data to train the prediction model will result in sub-
optimal prediciton, due to this loss is not a unbisased estima-
tion of the ideal loss. To address this bias, we introduce the
propensity score, defined as the probability of rating given
covariates:

pu,i = P(ou,i = 1 | xu,i), (2)

and is estimated by a propensity model, hψ(x).

2.2 Propensity-Based Estimators
To obtain unbiased estimates of evaluation metrics from bi-
ased observations, we rely on propensity-weighting methods.
Two widely used estimators are the Inverse Propensity Score
(IPS) and the Doubly Robust (DR) approaches.

Inverse Propensity Scoring (IPS) directly reweights ob-
served ratings:

LIPS(θ) =
1

|D|
∑

(u,i)∈D

ou,ieu,i
p̂u,i

, (3)

which is an unbiased estimation of ideal loss when p̂u,i =
pu,i for all user-item pairs. The Doubly Robust (DR) estima-
tor integrates imputation and propensity weighting:

LDR(θ) =
1

|D|
∑

(u,i)∈D

[
êu,i +

ou,i(eu,i − êu,i)

p̂u,i

]
, (4)

where êu,i = gϕ(xu,i) is the imputation of the prediction
error. DR-based estimators are unbiased when p̂u,i = pu,i
or êu,i = eu,i for all user-item pairs. These approaches ad-
dress selection bias but rely heavily on accurate estimation of
propensity scores and will suffer from high bias and variance
when learned propensity scores are inaccurate, motivating us
to learn robust, high-quality propensity scores.

2.3 Evaluation Metrics of Calibration & Balancing
In addition to unbiasedness, we are interested in the cal-
ibration of predicted propensities and the balancing of
propensity-weighted distributions. We consider two metrics
to quantify these properties: the Expected Calibration Error
(ECE) and the Balanced Mean Squared Error (BMSE).

The Expected Calibration Error (ECE) measures how
well the predicted probabilities p̂u,i align with actual outcome
frequencies ou,i. We partition the prediction range [0, 1] into
M bins B1, B2, . . . , BM (e.g. equal-width or by quantiles of
p̂). In Table 1, we partition three bins based on the equal-
width criterion: [0, 1/3], [1/3, 2/3], and [2/3, 1]. Let |D| be



the total number of evaluated instances. ECE is defined as
the weighted average absolute difference between observed
incidence rate and predicted probability in each bin:

ECEM (hψ) =

M∑
m=1

|Bm|
|D|

∣∣∣∣∣
∑

(u,i)∈Bm
ou,i

|Bm|
−
∑

(u,i)∈Bm
p̂u,i

|Bm|

∣∣∣∣∣ .
(5)

A perfectly calibrated model would have ECE = 0, meaning
in every score bin the fraction of observed samples equals the
predicted probability.

The Balanced Mean Squared Error (BMSE) assesses the
propensity balancing property of the model’s scores. It eval-
uates whether the distribution of features (or samples) is bal-
anced when weighting by inverse propensity, which is crucial
for debiasing. Formally, for a given vector-valued balancing
function ϕ(xu,i), BMSE is defined as:

BMSE(ϕ, p̂) =

∥∥∥∥∥∥ 1

|D|
∑

(u,i)∈D

[ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

]
ϕ(xu,i)

∥∥∥∥∥∥
2

F

.

(6)

In Table 1, for illustration purposes, we choose ϕ(x) = 1,
which is a constant function.

3 Methodology
3.1 Motivation
Calibration and balancing of propensity scores are both nec-
essary conditions for a reliable propensity score model and
correct estimation, with reflection on different aspects of
model quality. However, as shown in Table 1 (left), it has
excellent calibration but deficient balancing. In addition, as
shown in Table 1 (right), the balancing performance is excel-
lent but with poor calibration. Previous methods either op-
timized the model calibration or the balancing, but not both.
Thus, a straightforward question is whether there is a way to
achieve calibration and balancing simultaneously?

We find that calibration and balancing are closely related
to each other. Specifically, BMSE can be expressed as:

BMSE(ϕ, p) =

∥∥∥∥∥∥
∑
u,i

ou,i − pu,i
pu,i(1− pu,i)

ϕ(xu,i)

∥∥∥∥∥∥
2

(7)

highlighting its interpretation as a weighted global calibration
measure (if treat ϕ(x)/pu,i(1 − pu,i) as weights). Thus, we
first propose to decompose the BMSE to ensure the adapta-
tion with bin partition, then we regard the ECE loss and de-
composed BMSE loss as constraints to ensure balancing and
calibration.

3.2 Bin-Based Evaluation Metrics for Calibration
and Balancing

In this section, we introduce bin-based metrics that jointly
evaluate these aspects. In particular, we define the squared
expected calibration error (SECE) (with its finite-sample ap-
proximation SECEM ) to quantify calibration, which is de-
fined below:

SECE∞ = E
[
(h(X)− E[O | h(X)])

2
]
. (8)

Intuitively, SECE∞ = 0 if and only if h(X) = E[O | h(X)]
almost surely, i.e. the calibration condition. In practice, we
use the differentiable version with M bins as shown below.

SECEM =

M∑
m=1

|Bm|
|D|

(
¯̂pm − ōm

)2
. (9)

The choice of binning affects the accuracy of SECEM as
an estimator of true calibration error. We assume a proper
binning scheme that satisfies the following conditions as the
sample size N grows:

• Sufficient samples per bin: Each bin contains a large
number of samples, such that no bin remains sparsely
populated in the limit.

• Refinement/consistency: The bin partition becomes
finer (more granular) as N increases, so that the range
of predicted probabilities within any single bin shrinks.
Ideally, within each bin the model’s prediction is nearly
constant.

• Coverage of support: The bins together cover the range
of predicted probabilities where the model places mass.
This ensures any systematic calibration error at a given
predicted value will eventually be detected by some bin.

Lemma 3.1 (Consistency of SECEM ). Under proper bin-
ning, the finite-sample bin-based SECEM → SECE∞,
i.e. converges to the true calibration error in probability, as
N,M → ∞.
Lemma 3.2 (Calibration Property). If the propensity esti-
mator is well specified, that is, p̂(x) = p(x), ∀x, then for
any fixed binning strategy, SECEM → 0 almost surely as
N,M → ∞.

The corresponding proofs are shown in the Appendix.
In SECE, we calibrate the propensity model in a bin-based

manner, dividing the predicted propensity scores into bins to
assess local calibration. To achieve a unified framework, we
also aim to ensure propensity balance under the same bin-
based architecture. However, the standard BMSE formula-
tion does not naturally support bin-wise computation, which
makes it difficult to assess or enforce balance at a more gran-
ular level.

Therefore, we first design a within-bin BMSE error, ensur-
ing that within each bin, the propensity scores are not only
well-calibrated but also balanced. Furthermore, because true
balance should hold globally across the entire distribution,
it is necessary to ensure that propensity balance is achieved
both within each bin and between different bins. We con-
structed a between-bin BMSE error, reflecting systematic dis-
crepancies across bins. This dual-level balance guarantees
that the model achieves not only local (per-bin) fairness, but
also global (distribution-wide) balance.

We choose a vector-valued feature map ϕ(xu,i), (like a
vector of user and item embeddings or other sufficient statis-
tics) and define the imbalance vector for bin Bm as the av-
erage weighted difference between exposed and non-exposed



feature sums in that bin:

∆m =
1

|Bm|
∑

(u,i)∈Bm

(
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

)
ϕ(xu,i) ∈ Rd,

(10)

where ϕ(xu,i) ∈ Rd. Let || · ||F denotes the Frobenius
norm. By construction, ||∆m||2F is the within-bin covariate
discrepancy between the exposed and non-exposed subsam-
ples. We now decompose this error in terms of within-bin and
between-bin contributions:

• Within-bin BMSE is defined as

BMSEwithin =

M∑
m=1

|Bm|2

|D|2
∥∆m∥2F , (11)

which sums the squared norm of the imbalance vec-
tor in each bin. It is large if, within any propensity
bin, the model fails to balance the covariate distribution
between exposed and unexposed samples. Minimizing
BMSEwithin directly promotes feature balance in each
stratum of p̂.

• While BMSEwithin considers each bin in isolation, there
could remain an overall imbalance aggregated between
bins (e.g. if all ∆m point in a similar direction). We de-
fine Between-bin BMSE to include the interaction (co-
variance) of imbalance vectors between bins:

BMSEbetween =
∑
m̸=m′

|Bm| |Bm′ |
|D|2

⟨∆m,∆m′⟩ , (12)

which captures cross-bin discrepancies.

To summarize, we have the following lemmas to show the
BMSE decomposition results and the convergence property
(proofs are in the Appendix).

Lemma 3.3 (BMSE Decomposition). The total balancing er-
ror can be decomposed into within-bin and between-bin com-
ponents,

BMSEoverall =

∥∥∥∥∥∥ 1

|D|
∑

(u,i)∈D

(
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

)
ϕ(xu,i)

∥∥∥∥∥∥
2

F

=

M∑
m=1

|Bm|2

|D|2
∥∆m∥2F +

∑
m ̸=m′

|Bm| |Bm′ |
|D|2

⟨∆m,∆m′⟩ ,

Lemma 3.4 (Balancing Property [Li et al., 2023d]). If
propensity model is correctly specified, i.e p̂u,i = pu,i for
all instances, then for any integrable vector-valued functions
ϕ(x), BMSEoverall(ϕ, p̂) → 0 almost surely.

3.3 Unified Loss of Calibration and Balancing
Having defined metrics for calibration and balance, we now
integrate them into a single learning objective. Our goal is

Algorithm 1 Joint Training Algorithm

1: Input:
2: Set of user-item features X;
3: Observation indicator matrix O;
4: All user-item pairs matrix D;
5: Observed outcomes for observed samples Ro;
6: Hyperparameters λ1, λ2;
7: while not converge do
8: for number of training iterations do
9: Sample (u, i) pairs {(uk, ik)}Kk=1 from D;

10: update the hψ based on LCBPL;
11: end for
12: end while
13: while not converge do
14: for number of training iterations do
15: Sample (u, i) pairs {(uj , ij)}Jj=1 from D;
16: Update fθ using DR loss (Equation 4);
17: Sample (u, i) pairs {(um, im)}Bb=1 from O;
18: Update gϕ using imputation loss (Equation 18);
19: end for
20: end while

to learn a propensity model that not only fits the observed
exposure data (via a standard likelihood loss) but also pro-
duces predictions that are well-calibrated and balanced with
respect to the true propensities. We achieve this by combining
the conventional cross-entropy loss with regularization terms
based on the SECEM and BMSE metrics above.

Specifically, let LCE(ψ) be the binary cross-entropy (log-
loss) for predicting the exposure ou,i:

LCE = − 1

|D|
∑

(u,i)∈D

[ou,i log p̂u,i + (1− ou,i) log(1− p̂u,i)] .

(13)
Overall, the proposed unified loss of Calibration and Balanc-
ing Propensity Learning framework (CBPL) combines three
components: (i) standard cross-entropy fit of the propensity
model, (ii) a miscalibration penalty, and (iii) an imbalancing
penalty measured. The resulting Calibration and Balancing
Propensity Learning (CBPL) loss is formulated as:

LCBPL = LCE + λ1SECEM

+ λ2(BMSEwithin +BMSEbetween),
(14)

where λ1, λ2 > 0 are non negative hyperparameters con-
trolling the trade-off between prediction fit, calibration, and
balance regularizers.

We now provide theoretical guarantees for the proposed
CBPL approach. In particular, we show that optimizing
LCBPL leads to an unbiased propensity estimator in the limit of
infinite data, and that it achieves variance reduction in down-
stream estimates compared to a standard propensity model.
These properties formalize the intuitive benefits of jointly ad-
dressing calibration and balance. All proofs are deferred to
the appendix.
Theorem 3.5 (Unbiasedness of CBPL Loss). When learned
propensities are accurate, the unified loss constructed by
CBPL is unbiased and LCBPL → 0 almost surely.



Table 2: Performance on AUC, NDCG@T , and F1@T on Coat, Yahoo! R3 and KuaiRec. The best and the second best results are bolded
and underlined.

Coat Yahoo! R3 KuaiRec
Method AUC NDCG@5 F1@5 AUC NDCG@5 F1@5 AUC NDCG@20 F1@20

Naive 0.703±0.006 0.605±0.012 0.467±0.007 0.673±0.001 0.635±0.002 0.306±0.002 0.753±0.001 0.449±0.002 0.124±0.002

IPS 0.717±0.007 0.617±0.009 0.473±0.008 0.678±0.001 0.638±0.002 0.318±0.002 0.755±0.004 0.452±0.010 0.131±0.004

SNIPS 0.714±0.012 0.614±0.012 0.474±0.009 0.683±0.002 0.639±0.002 0.316±0.002 0.754±0.003 0.453±0.004 0.126±0.003

ASIPS 0.719±0.009 0.618±0.012 0.476±0.009 0.679±0.003 0.640±0.003 0.319±0.003 0.757±0.005 0.474±0.007 0.130±0.005

IPS-V2 0.726±0.005 0.627±0.009 0.479±0.008 0.685±0.002 0.646±0.003 0.320±0.002 0.764±0.001 0.476±0.003 0.135±0.003

KBIPS 0.714±0.003 0.618±0.010 0.474±0.007 0.676±0.002 0.642±0.003 0.318±0.002 0.763±0.001 0.463±0.007 0.134±0.002

AKBIPS 0.732±0.004 0.636±0.006 0.483±0.006 0.689±0.001 0.658±0.002 0.324±0.002 0.766±0.003 0.478±0.009 0.138±0.003

DR 0.718±0.008 0.623±0.009 0.474±0.007 0.684±0.002 0.658±0.003 0.326±0.002 0.755±0.008 0.462±0.010 0.135±0.005

DR-JL 0.723±0.005 0.629±0.007 0.479±0.005 0.685±0.002 0.653±0.002 0.324±0.002 0.766±0.002 0.467±0.005 0.136±0.003

MRDR-JL 0.727±0.005 0.627±0.008 0.480±0.008 0.684±0.002 0.652±0.003 0.325±0.002 0.768±0.005 0.473±0.007 0.139±0.004

DR-BIAS 0.726±0.004 0.629±0.009 0.482±0.007 0.685±0.002 0.653±0.002 0.325±0.003 0.768±0.003 0.477±0.006 0.137±0.004

DR-MSE 0.727±0.007 0.631±0.008 0.484±0.007 0.687±0.002 0.657±0.003 0.327±0.003 0.770±0.003 0.480±0.006 0.140±0.003

MR 0.724±0.004 0.636±0.006 0.481±0.006 0.691±0.002 0.647±0.002 0.316±0.003 0.776±0.005 0.483±0.006 0.142±0.003

TDR 0.714±0.006 0.634±0.011 0.483±0.008 0.688±0.003 0.662±0.002 0.329±0.002 0.772±0.003 0.486±0.005 0.140±0.003

TDR-JL 0.731±0.005 0.639±0.007 0.484±0.007 0.689±0.002 0.656±0.004 0.327±0.003 0.772±0.003 0.489±0.005 0.142±0.003

StableDR 0.735±0.005 0.640±0.007 0.484±0.006 0.688±0.002 0.661±0.003 0.329±0.002 0.773±0.001 0.491±0.003 0.143±0.003

DR-V2 0.734±0.007 0.639±0.009 0.487±0.006 0.690±0.002 0.660±0.005 0.328±0.002 0.773±0.003 0.488±0.006 0.142±0.004

KBDR 0.730±0.003 0.631±0.005 0.482±0.006 0.682±0.002 0.648±0.003 0.323±0.002 0.765±0.004 0.460±0.006 0.138±0.003

AKBDR 0.745±0.004 0.645±0.008 0.493±0.007 0.692±0.002 0.661±0.002 0.328±0.002 0.782±0.003 0.498±0.008 0.147±0.003

DCE-DR 0.736±0.006 0.648±0.007 0.489±0.005 0.698±0.002 0.670±0.002 0.333±0.003 0.795±0.004 0.512±0.005 0.153±0.002

DCE-TDR 0.740±0.004 0.651±0.006 0.489±0.007 0.701±0.002 0.672±0.002 0.331±0.002 0.798±0.005 0.514±0.006 0.155±0.002

Cali-MR 0.741±0.002 0.658±0.004 0.495±0.004 0.703±0.002 0.678±0.002 0.338±0.004 0.798±0.003 0.521±0.005 0.158±0.002

CBPL-DR 0.747±0.003 0.672±0.007 0.500±0.006 0.705±0.002 0.682±0.003 0.338±0.003 0.804±0.004 0.529±0.004 0.160±0.003

Intuitively, due to both SECEM and BMSE are zero when
there is no difference between predicted and actual propensi-
ties, adding calibration and balance penalties does not intro-
duce additional bias. In addition, it will reduce the variance,
as shown in the following theorem.
Theorem 3.6 (Variance Reduction of CBPL Loss). Given
learned propensities, the variance of V(LCBPL | o) is mini-
mized at the optimal point,

λ∗1 =
C · E −B ·D
A ·B − C2

(15)

λ∗2 =
C ·D −A · E
A ·B − C2

, (16)

where A = V[BMSE], B = V[SECE], C =
Cov(BMSE,SECE), D = Cov(CE,BMSE), E =
Cov(CE,SECE). And o = {ou,i | (u, i) ∈ D}. The smallest
variance is

V(LCB PL | o) |λ1=λ∗
1 ,λ2=λ∗

1

= V[CE]− BD2 − 2CDE +AE2

AB − C2
≤ V[CE],

(17)

which is also smaller than considering calibration or balanc-
ing only.

In summary, the unified loss LCBPL produces propensity
models that are both calibrated to the data and balanced in
distribution, leading to unbiased and low-variance estimators
for downstream usage.

3.4 Joint Training Algorithm
In order to incorporate propensity calibration and balanc-
ing capabilities into the model training process, we adopt a

joint training algorithm [Wang et al., 2019]. Specifically, the
propensity model p̂u,i = hψ(xu,i) is trained using LCBPL, the
prediction model r̂u,i = fθ(xu,i) is trained by the DR loss
(Equation 4), and the imputation model êu,i = gϕ(xu,i) is
trained using the following loss function:

Le =
∑

(u,i)∈D

ou,i (êu,i − eu,i)
2

p̂u,i
, (18)

The whole training process is shown in Algorithm 1.

4 Experiments
4.1 Experimental Settings
Datasets
We evaluate debiasing performance on three standard bench-
marks: Coat, Yahoo! R3, and KuaiRec, including both
MNAR and unbiased (Missing-At-Random) ratings.

Baselines
We compare our method against the following baselines:
Naive [Koren et al., 2009], IPS [Schnabel et al., 2016],
SNIPS [Swaminathan and Joachims, 2015b], ASIPS [Saito,
2020a], DR [Saito, 2020b], DR-JL [Wang et al., 2019],
MRDR [Guo et al., 2021], DR-BIAS, DR-MSE [Dai et al.,
2022], MR [Li et al., 2023a], TDR, TDR-JL [Li et al.,
2023b], StableDR [Li et al., 2023e], IPS-V2, DR-V2 [Li et
al., 2023d], KBIPS, KBDR, AKBIPS, AKBDR [Li et al.,
2024b], DCE-DR, DCE-TDR [Kweon and Yu, 2024], and
Cali-MR [Gong and Ma, 2025].



Table 3: Ablation study of CBPL on Coat, Yahoo! R3 and KuaiRec datasets.

Coat Yahoo! R3 KuaiRec
Method AUC NDCG@5 F1@5 AUC NDCG@5 F1@5 AUC NDCG@20 F1@20

CBPL-DR w/o LDCE 0.737 0.668 0.487 0.701 0.672 0.333 0.797 0.520 0.153
CBPL-DR w/o LBMSE 0.739 0.670 0.490 0.701 0.677 0.331 0.796 0.522 0.153
CBPL-DR w/o BMSEbetween 0.743 0.671 0.493 0.704 0.682 0.337 0.800 0.525 0.158
CBPL-DR w/o BMSEwithin 0.744 0.673 0.497 0.704 0.682 0.337 0.801 0.527 0.156
CBPL-DR 0.747 0.673 0.500 0.705 0.682 0.338 0.804 0.529 0.160
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Figure 1: Parameter sensitivity analysis on the λ1 and λ2.

Evaluation Metrics
We evaluate prediction performance using three standard
metrics: AUC, NDCG@T , and F1@T , where T is set to 5
on Coat and Yahoo! R3, and 20 on KuaiRec. More detailed
descriptions of the experimental settings can be found in Ap-
pendix A.2.

4.2 Performance Analysis
Table 2 presents the comparative performance of various
methods. As observed, all debiasing approaches, including
both IPS-based and DR-based models, consistently surpass
the Naive baseline, underscoring the necessity of address-
ing selection bias. TDR method leverages a targeted learning
paradigm to improve imputation by incorporating propensity
scores, effectively reducing both estimation bias and vari-
ance. Building on this, DCE-TDR introduces a calibration
mechanism for the propensity model, which refines the tar-
geted learning process and leads to further performance im-
provements. Meanwhile, AKBDR enhances propensity esti-
mation by employing balancing kernels and selectively op-
timizing the most influential ones based on error feedback,

constructing a robust propensity model that effectively miti-
gates bias and improves overall prediction quality.

Among the baselines, CBPL-DR achieves the best perfor-
mance across all three datasets. This method simultaneously
optimizes calibration and balancing objectives by reformu-
lating their connection and introducing a unified loss. The
calibrated and balanced propensity scores provide more accu-
rate weighting for the observed samples and improve robust-
ness across varying data distributions. As a result, CBPL-DR
not only reduces estimation bias but also improves prediction
variance, leading to substantial gains in multiple evaluation
metrics, demonstrating the effectiveness of jointly optimizing
calibration and balance for robust debiasing in MNAR.

4.3 Ablation Study
We conduct an ablation study of the proposed CBPL-DR
method on three benchmark datasets, and the results are pre-
sented in Table 3. From the table, we observe that remov-
ing either the calibration loss (LDCE) or the balancing loss
(LBMSE) leads to consistent performance degradation across
all metrics and datasets, which confirms the necessity of



jointly optimizing both calibration and balancing objectives
in CBPL-DR.

Specifically, when removing LDCE, the performance drop
is more noticeable on F1 scores, particularly on Coat and
KuaiRec, indicating that miscalibrated propensities lead to
reduced ranking precision. Similarly, removing the balanc-
ing term LBMSE also results in worse performance, which
demonstrates the importance of ensuring covariate balance
for robust estimation.

Furthermore, we decompose the LBMSE into within-bin
and between-bin components to study their respective con-
tributions. Removing either BMSEbetween or BMSEwithin

causes noticeable performance declines. This suggests that
both global and local balance are essential for effective debi-
asing. These results demonstrate the advantage of our unified
CBPL-DR framework.

4.4 Parameter Sensitivity Analysis
We investigate the sensitivity of the CBPL framework to
its two key regularization hyperparameters: the calibration
weight λ1 and the balancing weight λ2. Figures 1 re-
port the NDCG and F1 scores on Coat, Yahoo! R3, and
KuaiRec datasets, under varying values of λ1 and λ2 in
{0.1, 0.5, 1, 5, 10}.

As shown in the top row of Figure 1, the model achieves
stable and strong performance across datasets when λ1 falls
within a moderate range. Excessively small values lead to a
slight drop in performance, indicating under-regularization of
miscalibration, while overly large values may over-penalize
calibration error and hurt final predictions.

The bottom row of Figure 1 shows the impact of the bal-
ancing regularizer λ2. Unlike calibration, performance con-
sistently improves as λ2 increases. This suggests that stronger
balancing regularization is beneficial for aligning the ob-
served and unobserved distributions, thereby reducing bias
and variance in the learning process.

In summary, the CBPL-DR framework exhibits robustness
to a range of regularization strengths, with best performance
typically attained when λ1 and λ2 are both set to intermediate
values. This reinforces the importance of calibration and bal-
ancing objectives for reliable propensity estimation and im-
proved recommendation outcomes.

5 Conclusion
This paper addresses selection bias in recommender systems
by unifying two key criteria, calibration and balancing, in
propensity score learning. We propose the CBPL framework,
which reformulates the balancing constraint to align struc-
turally with the calibration objective, enabling joint optimiza-
tion. Theoretical analysis demonstrates that CBPL consis-
tently improves both bias and variance, and empirical results
on three real-world datasets show that CBPL outperforms
SOTA baselines in overall performance.
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A Appendix
A.1 Proof
Lemma 3.1 establishes that under appropriate binning (each
bin having a nonzero probability mass as N → ∞), the em-
pirical squared expected calibration error SECEM converges
to the true calibration error. In summary, as the sample size
grows, each bin’s empirical frequency and average outcomes
approach their expectations, making SECEM a consistent es-
timator of the population calibration error.

Proof. Let the m-th bin be Bm (for m = 1, . . . ,M ) and nm
be the number of samples falling into Bm. Define the empir-
ical bin frequency fm = nm

N , the average predicted probabil-
ity in the bin p̄m = 1

nm

∑
(u,i)∈Bm

p̂(Xu,i), and the average
actual outcome in the bin ōm = 1

nm

∑
(u,i)∈Bm

ou,i. Then
the finite-sample squared calibration error is:

SECEM =

M∑
m=1

fm (ōm − p̄m)2 .

Under the stated binning assumptions, each bin Bm with
Pr(p̂(X) ∈ Bm) > 0 will contain nm → ∞ samples as
N → ∞. By the Law of Large Numbers (LLN), for each
such bin we have:

fm =
nm
N

a.s.−−→ Pr(p̂(X) ∈ Bm),

p̄m
a.s.−−→ E[p̂(X) | p̂(X) ∈ Bm], ōm

a.s.−−→ E[O | p̂(X) ∈ Bm] ,

asN → ∞. (If Pr(p̂(X) ∈ Bm) = 0 for some bin, that bin is
eventually empty for large N and its contribution to SECEM
remains zero.) Therefore, almost surely as N → ∞, each
term fm(ōm − p̄m)2 converges to:

Pr(p̂(X) ∈ Bm)
(
E[O | p̂(X) ∈ Bm]

− E[p̂(X) | p̂(X) ∈ Bm]
)2

which is the corresponding population-level calibration error
contribution for bin m. Summing over m = 1, . . . ,M , we
conclude that SECEM

a.s.−−→
∑M
m=1 Pr(p̂(X) ∈ Bm)

(
E[O |

p̂ ∈ Bm]−E[p̂ | p̂ ∈ Bm]
)2

. In particular, this limit is the true
(population) squared calibration error for the given proper
binning scheme. Thus, SECEM is a consistent (almost surely
convergent) estimator of the population-level squared calibra-
tion error under the specified binning conditions.

Under the proper binning conditions, as N grows, each
bin’s statistics converge to their population values and the
binned sum approaches the corresponding integral.

• Sufficient Samples per Bin: Each bin contains a large
number of samples such that |Bm| → ∞ for all bins
(no bin remains sparsely populated in the limit). For
example, one may use equal-frequency (quantile) bins
or adaptive binning to ensure no bin is “too small.”
This condition lets us invoke the Law of Large Numbers
within each bin.

• Refinement/Consistency: If the bin partition becomes
finer (more granular) as N increases, so that the range
of predicted probabilities within any single bin shrinks.
In the limit of infinite data, bins can be taken to have
infinitesimal width or even to group identical predic-
tion values. Equivalently, for large N , p̄m (average the
predicted propensity score within one bin) represents a
narrow band of predictions all close to some value p̂ in
[0, 1]. This guarantees that within each bin the model’s
prediction is nearly constant, and any calibration error
inside the bin isn’t being averaged out by wide dispari-
ties in h(X).

• Coverage of Support: The bins together cover the range
of predicted probabilities where the model places mass.
No region of h(X)’s support is permanently ignored or
combined in a pathological way. (Typically, one en-
sures the bins partition [0, 1] or the range of h(X).) This
ensures any systematic calibration error at a given pre-
dicted value will eventually be detected by some bin.

Lemma 3.2 states the calibration property that if the pre-
dicted probability equals the true probability (p̂(X) = p(X)
for all X), then the squared calibration error vanishes asymp-
totically. Intuitively, perfect calibration implies that within
any bin, the empirical average outcome will coincide with the
average predicted probability in the limit, so SECEM con-
verges to 0.

Proof. Assume p̂(X) = p(X) for every sample (almost
surely). Then for each bin Bm, conditioned on the event
{(u, i) : p̂(Xu,i) ∈ Bm}, the outcome Ou,i has expecta-
tion E[Ou,i | p̂(Xu,i) ∈ Bm] = E[p(Xu,i) | p̂(Xu,i) ∈
Bm] = E[p̂(Xi) | p̂(Xu,i) ∈ Bm]. In other words, within
each bin the true conditional probability of O = 1 equals the
model’s predicted probability. This implies that the differ-
ence Ou,i − p̂(Xu,i) has expectation 0 for all (u, i). By the
Law of Large Numbers, in each bin Bm with infinitely many
samples we have:

Ōm − p̄m =
1

nm

∑
(u,i):p̂(Xu,i)∈Bm

(Ou,i − p̂(Xi))
a.s.−−→ 0,

since the summands are i.i.d. with mean 0. Therefore,
(Ōm − p̄m)2 → 0 for each bin as nm → ∞. More-
over, the bin frequency fm = nm/N approaches a finite
limit (the bin’s population probability) as shown in the pre-
vious proof. Thus the contribution fm(Ōm − p̄m)2

a.s.−−→ 0
for each bin m. By summing over all bins, it follows that
SECEM =

∑
m fm(Ōm− p̄m)2

a.s.−−→ 0 as N → ∞. In con-
clusion, when p̂ = p the empirical squared calibration error
converges to 0 (almost surely) for any fixed binning scheme,
confirming the calibration property.

For Lemma 3.3 gives a decomposition of the total BMSE
(balanced MSE) into within-bin and between-bin compo-
nents. We rewrite the total balanced MSE (BMSE) as the
squared Frobenius norm of the average imbalance vector
across all instances, then algebraically expand this expression



by grouping terms per calibration bin. This yields separate
contributions from variability within each bin and interac-
tions between different bins, corresponding to the within-bin
and between-bin components of BMSE.

Proof. For each instance (u, i), define the per-instance im-
balance vector as:

∆u,i =

(
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

)
ϕ(xu,i) ∈ Rd,

where ou,i ∈ 0, 1 is the observed outcome and p̂u, i ∈ [0, 1]
is the model’s predicted propensity for that outcome. This
vector ∆u, i represents the contribution of instance (u, i) to
imbalance in the feature space ϕ(xu,i).

Now, let each calibration bin Bm collect a subset of in-
stances. We define the bin-level imbalance vector for bin Bm
as the sum of all instance vectors in that bin:

∆m =
1

|Bm|
∑

(u,i)∈Bm

(
ou,i
p̂u,i

− 1− ou,i
1− p̂u,i

)
ϕ(xu,i),

This ∆m aggregates (and takes averages of) the imbalance
contributions of bin Bm. By construction, the sum of all bin-
level vectors recovers the total imbalance over the dataset D,
i.e.
∑M
m=1 |Bm|∆m =

∑
(u,i)∈D∆u,i.

The total BMSE (overall balanced mean squared error) is
defined as the squared Frobenius norm of the average imbal-
ance vector over all instances. Using the above definitions,
we can express this as:

BMSEoverall =

∥∥∥∥∥∥ 1

|D|
∑

(u,i)∈D

∆u,i

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥ 1

|D|

M∑
m=1

|Bm|∆m

∥∥∥∥∥
2

F

where |D| is the total number of instances and M is
the number of bins. In other words, 1

|D|
∑
m∆m is the

overall average imbalance vector (aggregating all bins), and
BMSEoverall is the squared magnitude of this vector.

We now expand the squared norm and rearrange terms to
separate within-bin and between-bin contributions. Starting
from the definition above:

BMSEoverall =

∥∥∥∥∥ 1

|D|

M∑
m=1

|Bm|∆m

∥∥∥∥∥
2

F

=
1

|D|2
;

〈
M∑
m=1

|Bm|∆m, ;

M∑
m′=1

|Bm′ |∆m′

〉

=
1

|D|2
M∑
m=1

M∑
m′=1

|Bm||Bm′ |⟨∆m, ; ∆m′⟩

=
1

|D|2

(
M∑
m=1

|Bm|2⟨∆m,∆m⟩+

M∑
m ̸=m′

|Bm||Bm′ |⟨∆m,∆m′⟩

)
, .

where ⟨·⟩ by definition is the norm squared. In the last
line, we separated the double sum into two parts: the diag-
onal terms where m = m′ and the off-diagonal terms where
m ̸= m′. We interpret these two parts as the within-bin and
between-bin components, respectively.

Proof. For Lemma 3.4, according to the Proposition 3.1 pro-
posed by Li et al. [Li et al., 2023d], p̂ = p is one of
the necessary condition for BMSE(ϕ, p̂) → 0. In addi-
tion, given Lemma statement is naturally followed by Lemma
3.3, when p̂(x) = p(x), ∀x, then the balancing prop-
erty is valid across covariate distribution, and BMSEwithin +
BMSEbetween → 0 as well.

Theorem 3.5. Recall the definition of the unified CBPL loss
from Eq. (14):
LCBPL = LCE+λ1SECEM+λ2(BMSEwithin+BMSEbetween).

We will analyze each term individually under the condi-
tion that the propensity model is correctly specified, meaning
p̂u,i = pu,i almost surely.

When the predicted propensity equals the true propensity
pu,i, the cross-entropy loss is known to be minimized. Specif-
ically, it is well-known from properties of the binary cross-
entropy that, at the true probabilities, its expected value is
minimal and equals the negative entropy of the true distribu-
tion (cf. standard results in statistical learning theory [Mur-
phy, 2012]). Empirically, for a correctly specified model as
sample size grows, the cross-entropy loss satisfies:

LCE = − 1

|D|
∑

(u,i)∈D

[ou,i log(pu,i) + (1− ou,i) log(1− pu,i)]

a.s.−−→ E[LCE(pu,i, ou,i)],

and by definition, this expectation is minimized at the true
probabilities. Thus, no additional deviation term remains, and
at the true propensity, the empirical cross-entropy loss accu-
rately reflects its theoretical minimal value.

Following from the Lemma 3.2 and 3.4, if the model is
correctly specified, i.e. p̂ = p, ∀x, then we have that
SECEM → 0, E[BMSEwithin + BMSEbetween] → 0
almost surely as N → ∞.

Theorem 3.6. The variance of the combined loss can be ex-
panded to include all variance and covariance components:
Var(LCB PL) = Var(LCE) + λ21Var(BMSE)

+ λ22Var(SECE) + 2λ1 Cov(CE,BMSE)

+ 2λ2 Cov(CE,SECE)

To find the weight values that minimize Var(LCB PL), we
take partial derivatives with respect to:{

∂ Var(LCB PL)
∂λ1

= 0
∂ Var(LCB PL)

∂λ2
= 0

and get the optimal regularization weights as:

λ∗1 =
C · E −B ·D
A ·B − C2

,

λ∗2 =
C ·D −A · E
A ·B − C2

.



By substituting λ∗1, λ
∗
2 back to Var(LCB PL), we can derive

the minimal variance:

V(LCB PL)min

= V[LCE ]−
BD2 − 2CDE +AE2

AB − C2
≤ V[LCE ].

where A = V[BMSE], B = V[SECE], C =
Cov(BMSE,SECE), D = Cov(CE,BMSE), and E =
Cov(CE,SECE).

Now let us compared to the previous with similar setting
but only include BMSE as one of the regularization. Even
though BMSE is used to penalize overall loss of DR esti-
mator in previous paper, here we use to directly penalize
propensity model training just for comparison, i.e. L′

total =
CE + λ1BMSE. The the minimal variance at the optimal
hyperparameter is:

Var(L′
onlybmse)min = Var(LCE)−

[Cov(CE,BMSE)]2

Var(BMSE)

= Var(LCE)−
D2

A
.

If the covariance matrix of BMSE and SECE is positive-
definite, then AB − C2 > 0. If we times A(AB − C2) > 0

to both D2

A , BD
2−2CDE+AE2

AB−C2 , then we have:

A2E2 − 2ACDE + C2D2 = (AE − CD)2 ≥ 0,

leading to the conclusion that:

Var(L′
onlybmse)min ≥ V(LCB PL)min.

Generally, using both BMSE and SECE regularizers will
weakly outperform using only BMSE.

A.2 Experimental Details
Datasets
To evaluate the debiasing performance, we conduct experi-
ments on three benchmark datasets Coat1 and Yahoo! R32,
and KuaiRec3, which are widely used in debiased RS with
both missing not at random (MNAR) and missing at random
(MAR) data. Coat dataset consists of 6,960 MNAR train-
ing samples and 4,640 MAR test samples derived from 290
users rating on 300 items. The Yahoo! R3 dataset includes
311,704 MNAR training samples and 54,000 MAR test sam-
ples derived from 15,400 users rating on 1,000 items. Both
datasets are five-scale, and following previous works [Chen
et al., 2021; Li et al., 2024a; Li et al., 2023c], we binarize the
ratings greater than three to 1, and others to 0. The KuaiRec
dataset is collected from a video-sharing platform and con-
tains 4,676,570 video watching ratios derived from 1,411
users evaluating 3,327 videos. We binarize the continuous
ratios greater than two to 1, otherwise to 0.

1https://www.cs.cornell.edu/˜schnabts/mnar/
2https://webscope.sandbox.yahoo.com
3https://github.com/chongminggao/KuaiRec

Evaluation Metrics
We evaluate the prediction performance using three widely
adopted evaluation metrics: AUC (Area Under the ROC
Curve), NDCG@T (Normalized Discounted Cumulative
Gain), and F1@T .

• AUC [Bradley, 1997] is a performance metric for classi-
fiers that measures the probability of a randomly chosen
positive example being ranked higher than a randomly
chosen negative one. A higher AUC score reflects better
ranking performance in differentiating positive instances
from negative ones.

• NDCG@T [Järvelin and Kekäläinen, 2002] evaluates
ranking performance by comparing the Discounted Cu-
mulative Gain (DCG) of the top-T results to the Ideal
DCG (IDCG), producing a normalized score between 0
and 1. A higher NDCG@T implies that more relevant
items are ranked towards the top.

Let ri be the relevance of the item at rank i. We first com-
pute the DCG at rank T as well as the IDCG@T by placing
the most relevant items in the optimal (ideal) order:

DCG@T =

T∑
i=1

2ri − 1

log2(i+ 1)
, IDCG@T =

T∑
i=1

2r
∗
i − 1

log2(i+ 1)
.

where ri is the relevance of the i-th item at rank i, and r∗i
denotes the relevance of the i-th item in the ideal ranking.
NDCG@T is then defined as:

NDCG@T =
DCG@T

IDCG@T
.

• F1@T [Lipton et al., 2014] is the harmonic mean of pre-
cision and recall computed over the top-T predictions
returned by a model. A higher F1@T indicates a bet-
ter trade-off between precision and recall in the top-T
results.

We set T = 5 on Coat and Yahoo! R3, and T = 20 on
KuaiRec.

Experimental Protocols
We tune calibration weight λ1 in {0.1, 0.5, 1, 5, 10}, bal-
ancing weight λ2 in {0.1, 0.5, 1, 5, 10}, learning rate in
{0.01, 0.05}, and weight decay in {1e − 6, 5e − 6, 1e −
5, . . . , 1e − 3, 5e − 3} . We use the same hyperparameter
search space and follow the results in [Li et al., 2024b].
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