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Abstract

Deep generative modeling has the potential to cause significant harm to society.1

Recognizing this threat, a magnitude of research into detecting so-called “Deep-2

Fakes” has emerged. This research most often focuses on the image domain,3

while studies exploring generated audio signals have—so-far—been neglected. In4

this paper we make three key contributions to narrow this gap. First, we provide5

researchers with an introduction to common signal processing techniques used6

for analyzing audio signals. Second, we present a novel data set, for which we7

collected audio samples from five different network architectures, across two lan-8

guages. Finally, we supply practitioners with two baseline models, adopted from9

the signal processing community, to facilitate further research in this area.10

1 Introduction11

$243,000 were lost, when criminals used a generated voice recording to impersonate the CEO of a UK12

company [76]. This is just one of several reports where current state-of-the-art generative modeling13

was used in harmful ways. Other examples include: impersonation attempts [20], influencing14

opposition movements [36], being used to justify military actions [24, 46], or online harassment [9].15

While there is a multitude of beneficial use cases, for example, enhancing data sets for medical16

diagnostics [18, 22], medical image segmentation [87], or designing DNA to optimize protein17

bindings [29], finding effective ways to detect fraudulent usage is of utmost importance to society.18

Detection in the image domain has received tremendous attention [41, 45, 91, 78, 83, 43, 47, 42, 17,19

21]. However, the audio domain is severely lacking. While there does exist prior work exploring20

image and sound together (i.e., videos) [13], an analysis of audio in isolation is missing. This is a21

critical gap. When examining the domains jointly, we can utilize synergies, for example, analyzing22

how well spoken audio matches video on screen.23

To encourage more researchers to also explore the audio domain, we make three key contributions24

in this paper: First, we provide an overview of common signal processing techniques used for25

analyzing audio signals. We give an introduction to spectrograms, which are commonly used as an26

intermediate representation for generative models [35, 60, 88, 89], Additionally, we review common27

feature representations used for automatic speech recognition [56] or speaker verification [67], and28

provide a survey of current state-of-the-art generative models.29

Second, our main contribution is a novel data set. We collected eight sample sets from five different30

network architectures across two languages. In this paper, we focus on analyzing samples which31

resemble (i.e., recreate) the training distributions. This allows for one-to-one comparisons of audio32

clips between the different architectures, in which we find subtle differences between the generators.33
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Additionally, we expect good performing classifiers to transfer well to other contexts, since recreating34

the training distribution should yield the most quality samples.35

Finally, we implement two classifiers, which we adopted from best practices in the signal processing36

community [67], to give future researchers a baseline to compare against 2. Furthermore, we37

implemented BlurIG [86] a popular attribution methods, so practitioners can inspect their predictions38

when building on our results.39

We summarize our main contributions as follows:40

• An introduction into common signal processing techniques and a survey of the current41

landscape of audio generative modeling.42

• A novel data set consisting of samples from several state-of-the-art generative network43

architectures.44

• An implementation of two baseline models for future researchers to compare against.45

2 Background46

In this section we provide an introduction into common techniques used for analyzing speech audio47

signals. The list is far from exhaustive, but it provides a starting point for researchers to explore48

the field. The interested reader is refereed to the excellent books by Rabiner et al. [63] or Quatieri49

[62]. Additionally, we provide a survey on current state-of-the-art generative models and summarize50

related work.51

2.1 Analyzing speech signals52

We start by giving an introduction to commonly used techniques and representations used to analyze53

audio signals.54

(Mel) spectrograms: A spectrogram is a visual representation of the frequency information of55

a signal over time (cf. Section 3, Figure 2 for an example). To calculate a spectrogram for an56

audio signal, we proceed as follows: First we divide the waveform into frames (e.g., 20 ms) with57

an overlap (e.g., 10 ms) between two adjacent frames. We then apply a window function w(n) to58

avoid spectral leakage 3. These functions (e.g., Hamming, Hann, Blackman window) are a trade-off59

between frequency resolution and spectral leakage and their choice depends on the task and the signal60

properties, cf. Prabhu [57] for a detailed overview. We multiply each individual frame from our audio61

signal with the windowing function:62

xw(t, n) = x(t, n) · w(n) ∀n = 0, . . . , N − 1, (1)
where N is the frame length and t = 1, . . . , T the frame index of the signal sample x(t, n). The63

frames are then transformed individually using the Discrete Fourier Transform (DFT) to obtain a64

representation in the frequency domain:65

X(t, k) =

N−1∑
n=0

xw(t, n)e−i2π
kn
N ∀ k = 0, . . . ,K − 1, (2)

with K DFT coefficients. This procedure of dividing the input signal, applying the window func-66

tion and computing the DFT is refereed to as the Short-Time Fourier Transform (STFT). Finally,67

we calculate the squared magnitude |X(t, k)|2 of the complex-valued signal to obtain our final68

representation—the spectrogram.69

A commonly used variant is the so-called Mel spectrogram. It is motivated by studies which have70

shown that humans do not perceive frequencies on a linear scale. In particular, they can detect71

differences in lower frequencies on a more fine grade scale when compared to higher frequencies [97].72

The Mel scale is an empirically determined non-linear transformation which approximates this73

relationship:74

fmel = 2595 · log10

(
1 +

f

700

)
, (3)

2Our code can be found at github.com/RUB-SysSec/WaveFake
3Energies from one frequency leak into other frequency bins.
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Figure 1: A typical TTS pipeline. One model takes a textual prompt with the desired audio
transcription (we call it the “mapping” model) and outputs an intermediate representation, for
example Mel spectrograms. This intermediate representation is then fed to a second model (in the
literature often refereed to as “vocoder”) to obtain the final raw audio.

where f is the frequency in Hz and fmel the Mel-scaled frequency. To obtain Mel spectrogram, we75

apply an ensemble of S triangular filters Hmel (we provide a visual representation in the supplemen-76

tary material). These filters have a linear distance between the triangle mid frequencies in the Mel77

scale, which results in a logarithmic increasing distance of the frequencies in the frequency domain78

Xmel(t, s) =

K−1∑
k=0

|X(t, k)|Hmel(s, k) ∀ s = 1, . . . , S. (4)

Which gives us the final Mel spectrogram. Based on it, we can compute a common feature represen-79

tation for audio analysis:80

Mel Frequency Cepstral Coefficients: Mel Frequency Cepstral Coefficients (MFCC) are derived81

from a Mel-scaled spectrogram by applying a Discrete Cosine Transform (DCT) to the logarithm of82

the Mel-filtered signal83

c(t, r) =

S−1∑
s=0

log
[
Xmel(t, s)

]
· cos

[
π · r · (s+ 0.5)

S

]
∀ r = 0, . . . , R− 1, (5)

where R is the number of DCT coefficients.84

Linear Frequency Cepstral Coefficients: We can also calculate Linear Frequency Cepstral Coef-85

ficients (LFCC). As the name suggest these coefficients are derived by applying a linear filterbank86

(instead of a Mel filterbank) to the spectrogram of the signal. This results in retaining more high87

frequency information. Except for the replacement of the filter bank, all other step remain the same88

as for MFCC features.89

(Double) delta: MFCCs and LFCCs are often augmented by their first and second derivatives to90

represent temporal structure of the input. These are refereed to as delta and double delta features,91

respectively. In practice these are often calculated by central difference approximation via92

d(t) =

∑N
n=1 n ·

[
c (t+ n)− c (t− n)

]
2 ·∑N

n=1 n
2

∀ t = 0, . . . , T − 1, (6)

where d(t) is the delta at time t and N is a user-defined window length for computing the delta, and c93

is either the MFCCs/LFCCs or the delta features (when calculating the double delta features).94

2.2 Text-to-speech (TTS)95

In this Section we want to give a broad overview over different research direction for Text-To-96

Speech (TTS) models. Due to the rapid developments of the field, this is a non-exhaustive list.97

However, it serves as a starting point for interested researchers.98

While there has been some research into end-to-end models [16, 77], typical TTS models consist of a99

two-stage approach, represented in Figure 1. First, we enter the text sequence which we want to gen-100

erate. This sequence gets mapped by some model (or feature extraction method) to a low-dimensional101

intermediate representation, often linguistic features [7] or Mel spectrograms [49]. Second, we use102

an additional model (often refereed to as vocoder), to map this intermediate representation to raw103

audio. We focus on the literature on vocoders, since it directly connects to our work.104
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Today, vocoders are typically implemented by Deep Neural Networks (DNNs). The first DNN [93, 19]105

approaches adopted the parametric vocoders of earlier HMM-based models [94, 80, 90]. Here the106

DNN was used to predict the statistics of a given time frame, which are then used in traditional107

speech parameter generation algorithms [80]. Later variants replaced each component in traditional108

pipelines with neural equivalents [7, 6, 64, 65, 84, 4]. The first architectures who started using109

DNNs exclusively as the vocoder were auto-regressive generative models, such as WaveNet [49],110

WaveRNN [27], SampleRNN [44], Char2Wav [75] or Tactron 2 [72].111

Due to their auto-regressive nature, these models do not leverage the parallel structure of modern112

hardware. There have been several attempts to circumvent this problem: One direction is to distill113

trained auto-regressive decoders into flow-based [32] convolutional student networks, as done by114

Parallel WaveNet [49] and Clarinet [54]. Another method is to utilize direct maximum likelihood115

training as done by several flow-based models, for example, WaveGlow [60], FloWaveNet [30] or116

WaveFlow [55]. Other probabilistic approaches include those based on variational auto-encoders [50,117

53] or diffusion probabilistic models [34, 12]. Another family of methods is based on Generative118

Adversarial Networks (GANs) [23], examples include, MelGAN [35], GAN-TTS [8], WaveGAN [15],119

Parallel WaveGAN [88] or Multi-Band MelGAN [89].120

2.3 Related Work121

There have been several previous proposals which collected DeepFake data: The FaceForensics++122

dataset [66] curated 1.8 million manipulated images and provides a benchmark for automated facial123

manipulation detection. Celeb-DF [40] contains high-quality face-swapping DeepFake videos of124

celebrities with more than 5,000 fake videos. Dolhansky et al. [14] released the DeepFake detection125

challenge that contains more than 100,000 videos, generated with different methods.126

There exists a multitude of research into identifying GAN-generated images: Several approaches use127

CNNs in the image domain [41, 45, 91, 78, 83], others use statistics in the image domain [43, 47].128

Another group of systems employs handcrafted features from the frequency domain: steganalysis-129

based features [42], spectral centroids [82] or frequency analysis [96, 17, 21, 61]. Li and Lyu130

[39] proposed a CNN-based DeepFake video detection framework which utilizes artefacts that are131

consequences of the generation process. Another strain of research combines image analysis with132

audio analysis. Chintha et al. [13] combined a DeepFake detection with an audio spoofing detection133

to identify fake videos. At the time of writing and to the best of our knowledge no work has analyzed134

DeepFake audio in isolation.135

A related line of research is undertaken by the signal processing community. The biyearly ASVspoof136

challenges [85, 79, 48] promotes countermeasure against spoofing attacks that aim to fool speaker137

verification systems via different kinds of attacks. Their benchmarking data sets include replay138

attacks, voice conversion and synthesized audio files. Note that the 2021 edition of the challenge139

features an audio DeepFake track, but does not provide specific training data for it. We imagine our140

data set to be used complementary with the training data of the challenge. At the time of writing the141

2021 edition is still on-going, but evaluating the best performing models in conjunction with our data142

set is an interesting direction for future work. In the mean time, we adopt one of the baseline models143

of the ASVspoof challenge to enable a direct comparison. These efforts have lead to several proposed144

models for detecting spoofing attacks, for example, CNN-based methods [81, 38, 37], ensemble145

methods on different feature representations [52, 28, 69] or methods which detect unusual pauses146

in human speech [95, 3]. Additionally, another data set is proposed by Kinnunen et al. [33]. They147

released a re-recorded version of the RedDots database for replay attack detection text-dependent148

speaker verification.149

3 The data set150

In this Section we provide an overview of our data set. It consists of 88,600 generated audio clips151

(16-bit PCM wav) and can be found on zenodo 4. We mostly base our work on the LJSPEECH [26]152

data set. While TTS models often get trained on private data sets, LJSPEECH is the most common153

public data set among the publication listed in Section 2.2. Additionally, we consider the JSUT [74]154

data set, a Japanese speech corpus.155

4 zenodo.org/record/4904579 - DOI: 10.5281/zenodo.4904579
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Reference data: We examine multiple networks trained on two reference data sets. First, the156

LJSPEECH [26] data set consisting of 13,100 short audio clips (on average 6 seconds each; roughly157

24 hours total) read by a female speaker. It features passages from 7 non-fiction books and the audio158

was recorded on a MacBook Pro microphone. Second, we include samples based on the JSUT [74]159

data set, specifically, basic5000 corpus. This corpus consists of 5,000 sentences covering all basic160

kanji of the Japanese language (4.8 seconds on average; roughly 6.7 hours total). The recordings161

were performed by a female native Japanese speaker in an anechoic room. Thus, our data set consists162

of approximately 157 hours of generated audio files in total. Note that we do not redistribute the163

reference data. They are freely available online [26, 74].164

Architectures: We included a range of architectures in our data set:165

• MelGAN: We include MelGAN [35], which is one of the first GAN-based generative models166

for audio data. It uses fully convolutional feed-forward network as generator and operates on167

Mel spectrograms. Their discriminator is a combination of three different discriminators that168

operates on the original, and two downsampled versions of the raw audio input. Additionally,169

they use an auxiliary loss over the feature space of the three discriminators.170

• Parallel WaveGAN (PWG): WaveNet [49] is one of the earliest and most common archi-171

tectures, We include samples from one of its variants, Parallel WaveGAN [88]. It uses172

GAN training paradigm, with a non-autoregressive version of WaveNet as its generator. In a173

similar vein to MelGAN, it uses an auxiliary loss, but in contrast, matches the STFT of the174

original training sample and the generated waveform over mutliple resolutions.175

• Multi-band MelGAN (MB-MelGAN): Incorporating more fine-grained frequency analysis,176

might lead to more convincing samples. We include MB-MelGAN, which computes its177

auxiliary (frequency-based; inspired by PWG) loss in different sub-bands. Its generator is178

based on a bigger version of the MelGAN generator, but instead of predicting the entire179

audio directly, the generator produces multiple sub-bands, which are then summed up to the180

complete audio signal.181

• Full-band MelGAN (FB-MelGAN): We include a variant of MB-MelGAN which gener-182

ates the complete audio directly and computes its auxiliary loss (the same as PWG) over the183

full audio instead of its sub-bands.184

• WaveGlow: The training procedure might also influence the detectability of fake samples.185

Therefore, we include samples from WaveGlow to investigate maximum-likelihood-based186

methods. It is a flow-based generative model based on Glow [31], whose architecture is187

heavily inspired by WaveNet.188

Additionally, we examine MelGAN both in a version similar to the original publication, which we189

denote as MelGAN, and in a larger version with a bigger receptive field, MelGAN (L)arge. This190

version is similar to the one used by FB-MelGAN, allowing for a one-to-one comparison. In total, we191

sample eight different data sets, six based on LJSPEECH (MelGAN, MelGAN (L), FB-MelGAN,192

WaveGlow, PWG) and two based on JSUT (MB-MelGAN, PWG).193

Sampling procedure: For WaveGlow we utilize the official implementation [59] (commit 8afb643)194

in conjunction with the official pre-trained network on PyTorch Hub [58]. We use a popular imple-195

mentation available on GitHub [25] (commit 12c677e) for the remaining networks. The repository196

also offers pre-trained models. When sampling the data set, we first extract Mel spectrograms from197

the original audio files, using the pre-processing scripts of the corresponding repositories. We then198

feed these Mel spectrograms to the respective models to obtain the data set. Intuitively, the networks199

are asked to ”recreate“ the original data sets.200

Differences between the architectures: We analyze differences between the architectures by201

plotting the spectrograms of an audio file in Figure 2 (LJSPEECH 008-0217). Larger plots can be202

found in the supplementary material. Generally, all architectures produce spectrograms different to203

the original. The networks seem to generally struggle with the absent of information (solid circles in204

Figure 2a). They also seem to consistently produce differing results in the higher frequency, especially205

for vocals (dashed circle). Additionally, MelGAN and WaveGlow seem to cause a repeating horizontal206

pattern. The remaining networks (all using an auxiliary loss in the frequency domain) do not seem to207
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(b) MelGAN
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(c) FB-MelGAN
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(d) MB-MelGAN
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(e) WaveGlow
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(f) PWG

Figure 2: Spectrograms for the same sample, for different generating models. They show the
frequencies of a signal, plotted over the time of a signal. Lower frequencies at the bottom, higher at
the top. Best viewed in color.

exhibit this behaviour. However, they still produce clear differences. Note that these differences are208

visible when plotting the audio but generally inaudible when listening to the samples.209

A note on licensing: During the collection of our data set, we ran into an interesting questions210

which we could not find a satisfying answer to. We generated samples which are intrinsically designed211

to be as close as possible to the original data set. So, when distributing these samples (or the models212

that generated them), it is not clear whether the original license does still apply. The data is obviously213

not the original data. Yet, it sounds remarkably like it. To the best of our knowledge this question has214

not been addressed by the machine learning or legal community.215

For our sake, the LJSPEECHdata set is in the public domain. The JSUTcorpus is licensed by CC-BY-216

SA 4.0, with a note that redistribution is only permitted in certain cases. We contacted the author,217

who saw no conflict in distributing our fake samples, as long as its for research purposes.218

To comply with JSUT we license our data set under the CC-BY-SA 4.0 license.219

Ethical considerations: Our data set consists of phrases from non-fiction books (LJSPEECH) and220

every-day conversational Japanese (JSUT), which are already available online. The same is true for221

all models used to generate this data set.222

One might wonder if releasing research into detecting DeepFakes might contribute negatively towards223

the detection ”arms race“. This is a long standing debate in the security community and the overall224

consensus it that ”security through obscurity“ does not work. Intuitively, withholding information225

from the research community is in-fact more harmful, since attackers will eventually adapt to any226

defense one deploys. We have provided a more thorough discussion of this topic in the supplementary227

material and we hope that this examination contributes to the overall dialogue on security analysis of228

machine learning systems.229
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4 Providing a baseline230

To provide a point of reference for future researchers, we adopt the baseline model of the ASVspoof231

challenge [79]. A bi-yearly challenge on detecting spoofed audio samples.232

4.1 Experimental setup233

We start by training six different classifiers, one for each vocoder in our data set (MelGAN, MelGAN234

(L), FB-MelGAN, MB-MelGAN, PWG and WaveGlow). For training our classifiers, we exclusively235

use the data sets based on LJSPEECH. Additionally, we use the JSUT data as a hold-out set for236

accessing the classifiers ability to generalize to an unknown setting (different speaker, language, and237

recording setup). While we do not explicitly asses completely novel phrases, the JSUT experiments238

give us a good approximation. We follow Sahidullah et al. [67] and train two Gaussian Mixture239

Models (GMMs), one fitting the real distribution (the original LJSPEECH data set) and one fitting the240

generated audio samples (the respective vocoder-samples from our data set). In addition to the LFCC241

features used by Sahidullah et al. [67], we evaluate MFCC features, since they are a commonly used242

feature representation for audio tasks. We calculate the likelihood Λ(X) of a test sample via243

Λ(X) = log p(X|θn)− log p(X|θs), (7)

where X are the input features (namely MFCC or LFCC) and θn and θs are the GMM model244

parameter of the real and the generated audio distributions, respectively.245

For each classifier we evaluate the performance on all vocoders over a hold-out set of 20% of the246

data. We use the Equal Error Rate (EER) as our evaluation metric. This metric is also been used by247

the ASVspoof challenge. It is defined as the point on the ROC curve, where false acceptance rate and248

false rejection rate are equal and is commonly used to assess the performance of binary classifications249

tasks like biometric security systems [68]. The best possible value is 0.0 (no wrong predictions),250

worst 1.0 (everything wrong), guessing is 0.5. The lower the EER the better the system performs.251

Additionally, we compute average EER over all test sets.252

Finally, we train six additional models in a leave-one-out setting to access if the models picked up on253

vocoder-specific characteristics when trained on data produced by only one model. These models are254

exclusively trained on LFCC features.255

Training details: We train the GMMs using the Expectation Maximization (EM) algorithm on256

1,000 samples for a maximum of 100 iterations (the models generally converge after approximately257

60 iterations), we use 128 mixture components and learn the diagonal covariance matrix of each258

distribution. To ensure we do not get stuck in a local minima, we randomly reinitialized the EM259

algorithm 10 times, picking the model with the highest log likelihood on the training data. We also260

trained GMMs using gradient descent on a larger training corpora (∼ 10,000 audio samples), to261

control for the size of our training set. The EM version obtained strictly better results. Training EM-262

based models for the leave-on-out experiments proved difficult due to numerical instability. Thus, we263

exclusively rely on gradient descent based models. We doubled the amount of mixture components264

(256) and epochs (20) to compensate for the more difficult task of fitting a more diverse training set.265

We resample all audio files to 16kHz and remove silence parts which are longer than two sec-266

onds. When converting the audio files to MFCC/LFCC features, we use the parameters proposed267

by Sahidullah et al. [67]. We extract 20 LFCC/MFCC features and compute delta-/double-delta-268

features, cf.Section 2.1.269

We trained all our models on a machine running Ubuntu 18.04.5 LTS, with a AMD Ryzen 7 3700X270

8-Core Processor and 64GB of RAM. The implementation of our models was performed in PyTorch271

1.8.1, using the torchaudio extension in version 0.8.1 [51]. The EM version of the GMM models can272

be trained exclusively on the CPU, taking roughly two and a half hours to train a single model (100273

iterations; 10 reruns). When training the gradient descent version, we used a GeForce RTX 2080Ti.274

Training a model for 10 epochs on 10,000 audio samples, takes roughly half an hour.275

4.2 Results276

In a first experiment, we evaluate the performance on MFCC features. The results are presented in277

Table 1. The rows show the respective training sets and the columns the different test set. Gray values278
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Table 1: Equal Error Rate (EER) of the baseline classifier on different subset (MFCC). We train
a new GMM model for each training set and use the log-likelihood ratio to score every sample. For
each data set we compute the EER, best possible result is 0.0, worst is 1.0, the lower the better.
Additionally, we compute the average EER (aEER) over all sets.

LJSPEECH JSUT

Training Set MelGAN MelGAN (L) FB-MelGAN MB-MelGAN WaveGlow PWG MB-MelGAN PWG aEER

MelGAN 0.254 0.218 0.389 0.378 0.362 0.480 0.686 0.717 0.436
MelGAN (L) 0.286 0.126 0.402 0.347 0.345 0.478 0.456 0.492 0.364
FB-MelGAN 0.413 0.379 0.177 0.196 0.225 0.286 0.430 0.450 0.320
MB-MelGAN 0.460 0.430 0.321 0.007 0.110 0.060 0.251 0.315 0.244

WaveGlow 0.405 0.379 0.294 0.074 0.026 0.083 0.237 0.259 0.220
PWG 0.499 0.493 0.395 0.055 0.147 0.006 0.190 0.229 0.252

We highlight in-distribution results in gray and the best out-distribution results per column in bold. (L) denotes Large.

Table 2: Equal Error Rate (EER) of the baseline classifier on different subset (LFCC). Again,
we train a new GMM model for each data set and compute the EER as well as the aEER.

LJSPEECH JSUT

Training Set MelGAN MelGAN (L) FB-MelGAN MB-MelGAN WaveGlow PWG MB-MelGAN PWG aEER

MelGAN 0.087 0.056 0.120 0.112 0.095 0.177 0.112 0.262 0.128
MelGAN (L) 0.082 0.024 0.089 0.092 0.079 0.162 0.142 0.370 0.130
FB-MelGAN 0.178 0.103 0.007 0.015 0.013 0.024 0.053 0.153 0.068
MB-MelGAN 0.332 0.278 0.099 0.000 0.011 0.003 0.011 0.043 0.097

WaveGlow 0.257 0.204 0.047 0.011 0.001 0.006 0.023 0.064 0.077
PWG 0.379 0.349 0.005 0.148 0.018 0.000 0.005 0.026 0.116

We highlight in-distribution results in gray and the best out-distribution results per column in bold. (L) denotes Large.

indicate that the same generative model is used for the training of the GMM classifier as for the test279

set.280

MFCC: When comparing the overall performance, i.e., the lowest average EER (aEER), we can281

observe that PWG (0.252), MB-MelGAN (0.244), and, WaveGlow (0.220) serve as the best priors for282

the entire data set. However, they all perform significantly worse on the MelGAN, the MelGAN (L)283

and (to a lesser extend) the FB-MelGAN data sets. This trend is reversed for MelGAN and MelGAN284

(L), where they achieve the best results on each other (0.218 and 0.286, respectively) and dropping285

performance on other data sets (∼ 0.400; up to 0.717 on JSUT). FB-MelGAN does not perform286

particularly well on any data set.287

The similarities between PWG and WaveGlow are intuitive. The WaveGlow architecture is heavily288

inspired by WaveNet (the generator network of PWG). Yet, the best results for both PWG (0.060)289

and WaveGlow (0.110) are obtained by the model trained on MB-MelGAN. We hypothesize that the290

auxiliary loss computed over sub-bands forces MB-MelGAN to generate samples more in line with291

WaveGlow and PWG. Surprisingly FB-MelGAN, generalizes neither to the MelGAN (L) data sets292

nor to MB-MelGAN. FB-MelGAN uses the same architecture as MelGAN (L) and a similar auxiliary293

loss to MB-MelGAN, albeit not computing it over sub-bands.294

When examining completely novel data (JSUT), all classifier drop in performance. However, PWG,295

WaveGlow, and, MB-MelGAN still serve as a good prior, implying that the generating architectures296

exhibit common patterns across different training data sets. A similar pattern was also observed in297

the image domain [83].298

LFCC: For comparison we train an additional batch of models on LFCC features. The results can299

be found in Table 2. LFCC features seem to be a strictly better feature representation, improving300

performance significantly across the board. Additionally, they allow the classifier trained on FB-301

MelGAN to become the best performing classifier (0.068). It strikes a balance between generalizing302

to PWG, WaveGlow, MB-MelGAN, while also retraining a fairly good performance on MelGAN303

and MelGAN (L). LFCC features contain a significantly higher amount of high-frequency features.304

Thus, we hypothesize that this fact allows FB-MelGAN to recognize its architecture similarities with305

MelGAN and the changes caused by the auxiliary loss. Again, similar patterns were also observed in306

the image domain [21], implying that methods might transfer between the two.307
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Table 3: Equal Error Rate (EER) for the baseline classifier in an out-of-distribution setting. We
train a new GMM model for each but one distribution on LFCC features.

LJSPEECH JSUT

Left-out Set MelGAN MelGAN (L) FB-MelGAN MB-MelGAN WaveGlow PWG MB-MelGAN PWG aEER

MelGAN 0.237 0.164 0.045 0.003 0.004 0.004 0.003 0.014 0.059
MelGAN (L) 0.233 0.166 0.037 0.002 0.004 0.002 0.002 0.014 0.058
FB-MelGAN 0.194 0.122 0.056 0.004 0.005 0.004 0.003 0.007 0.049
MB-MelGAN 0.177 0.106 0.040 0.015 0.006 0.006 0.003 0.012 0.046

WaveGlow 0.182 0.110 0.040 0.003 0.012 0.006 0.005 0.027 0.048
PWG 0.176 0.106 0.033 0.004 0.005 0.017 0.003 0.015 0.045

We highlight the distribution not present in the training set in bold. For JSUT, we highlight the entry when the generating network
architecture was not part of the training set. (L) denotes Large.
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(b) FB-MelGAN
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(c) MB-MelGAN
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(d) PWG

Figure 3: Attribution of the different models on a real audio sample. We show the LFCC, delta,
and, double delta features. Since we use a linear filter bank, the plot can be read similarly to the
spectrogram plots, i.e., features computed over lower frequencies are at the bottom of their respective
plots, features over higher frequencies are at the top. Best viewed in color.

Leave-one-out: Finally, Table 3 present the results of the leave-one-out experiment. We highlight308

the distribution which was not present in the training data in bold. While we never train on JSUT, we309

only highlight the distribution if the generating network architecture was not part of the training set.310

Overall the results improve on the aEER (0.068→ 0.045). Also, the generalization results to a novel311

setting (JSUT) increase significantly. However, WaveGlow seems to be a key ingredient for good312

performance on the JSUT-PWG data and the MelGAN and MelGAN (L) data sets still prove to be a313

challenge, even when included in the training set.314

While these first results are encouraging, there is still much room for improvement. Even the best315

performing classifier trained on multiple network architectures has a false acceptance/false rejection316

rate of roughly 4.5%.317

4.3 Attribution318

Finally, we want to investigate which parts of the audio signal influence the prediction. To this319

end, we implemented BlurIG [86], a popular attribution method. We inspect the attribution of four320

classifier (MelGAN (L), FB-MelGAN, MB-MelGAN and PWG) for the audio clip used in Section 3.321

The results are displayed in Figure 3, full-sized version are available in the supplementary material.322

We show the attribution over the LFCC, delta, and, double delta features.323

Overall, we can see a shift from very broad attention, spread somewhat evenly across all three324

feature representations (MelGAN (L)), to a more narrow focused attention across very specific filters325

(PWG). MelGAN (L) and FB-MelGAN classifiers operate (mostly) on the higher frequencies, while326

MB-MelGAN and PWG also rely on low frequencies for the detection. These observation confirm327

our suspicion about the MFCC features. They mask higher frequencies, needed for classifying328
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MelGAN (L) and FB-MelGAN, while over representing lower frequencies, which still leads to a329

good performance on the MB-MelGAN and PWG data sets. This also explains the significantly330

better performance of FB-MelGAN on LFCC features, which strikes a balance between all necessary331

features. The spread out attribution might also explain the poor in-distribution performance of the332

classifiers trained on the MelGAN variants, since the classifier needs to focus on a broader range of333

features.334

All in all we can conclude that high frequencies do provide an overall advantage, but lower frequencies335

cannot be neglected. Thus, we advice that future classifier operate on the entire spectrum.336

5 Discussion337

In this paper we took the first step towards research into audio DeepFakes. While we hope our data338

set proves useful for future practitioners, there are several limitations to our work:339

Evaluating on realistic data: The difficulties of obtaining realistic data set has been a long standing340

problem in the security community [73]. Often benign data is readily available, but data actually341

used in malicious contexts is hard to come by. This leaves us with estimating real-world performance342

on proxy data. We argue that in our case, we might have good odds that results transfer. As of right343

know, images generated by off-the-shelf neural networks are used in malicious attempts [9]. We344

expect the amount of audio DeepFakes to increase as well.345

We also abstain from evaluating a complete TTS pipeline. Completely novel audio is not only346

influenced by the vocoder but also by the model generating the intermediate representation. While347

this is an interesting direction for future work, a full evaluation would probably be on the scale of an348

entire new data set.349

An additional line of research is automatic speaker verification, which has been studied in the signal350

processing community [48, 79, 67]. Due to the similarity of the two domain, we expect that results351

might transfer between the two. Thus, evaluating models on data sets from both domains, might be352

beneficial.353

Adversarial examples and perturbations: DeepFake-image detectors have already been shown354

to be vulnerable against adversarial examples [10]. There also exists a myriad of adversarial attacks355

against automatic speech recognition [11, 70, 92, 70, 5, 71, 2] (Abdullah et al. [1] provide a survey).356

Thus, classifiers should report their robustness against these attacks and common perturbations (noise,357

room responses, over-the-air settings, etc.) as part of their evaluation. In this work we focused on358

providing first steps towards audio DeepFake detection. We leave this questions as an interesting359

direction for future work.360

Variety of the data set: Our data set presents a first step towards automatic detection of audio361

DeepFakes. We specifically choose to focus on the LJSPEECH corpus, since it is commonly used for362

training generative audio models. This allows a one-to-one comparison. However, it only contains363

recordings by one speaker. While we can make some observation about generalization by comparing364

against the JSUT data set, a broader analysis focusing on different scenarios would be ideal. We365

image our corpus being used to study multiple potential classifier designs, evaluating them in a366

contained environment, before exploring more elaborate settings.367

6 Conclusion368

This paper presents a starting point for researchers who want to investigate generated audio signals.369

We started by presenting a broad overview of signal processing techniques and common feature370

representations. Then, we introduced a novel data set, with samples from five different state-of-the-art371

architectures across two languages. In a first analysis, we already discovered subtle differences372

between the different models, especially among the higher frequencies. To provide a baseline for373

future practitioners, we trained several baseline models and evaluated their performance across the374

different data sets. Finally, we inspected the different classifiers by using an attribution method and375

found that, while high frequency information proved indispensable, lower frequencies cannot be376

neglected.377
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