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Abstract— Multiparty learning (MPL) is an emerging frame-
work for privacy-preserving collaborative learning. It enables
individual devices to build a knowledge-shared model and
remaining sensitive data locally. However, with the continuous
increase of users, the heterogeneity gap between data and
equipment becomes wider, which leads to the problem of model
heterogeneous. In this article, we concentrate on two practical
issues: data heterogeneous problem and model heterogeneous
problem, and propose a novel personal MPL method named
device-performance-driven heterogeneous MPL (HMPL). First,
facing the data heterogeneous problem, we focus on the problem
of various devices holding arbitrary data sizes. We introduce
a heterogeneous feature-map integration method to adaptively
unify the various feature maps. Meanwhile, to handle the model
heterogeneous problem, as it is essential to customize models for
adapting to the various computing performances, we propose
a layer-wise model generation and aggregation strategy. The
method can generate customized models based on the device’s
performance. In the aggregation process, the shared model
parameters are updated through the rules that the network
layers with the same semantics are aggregated with each other.
Extensive experiments are conducted on four popular datasets,
and the result demonstrates that our proposed framework
outperforms the state of the art (SOTA).

Index Terms— Data and model heterogeneity, multiparty
learning (MPL), personalized model generation, pyramidal
aggregation strategy.

NOMENCLATURE

f (x)(F(x)) Set of objective function.
W, w Set of model parameters.
C, c Number (index) of clients.
t Communication round.
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Dc Local data of the client c.
Pc Data point index of client c.
K B Total number of basic layer (BS Layer).
K I Total number of isolated personal layer

(IP Layer).
η Learning rate.

I. INTRODUCTION

IN RECENT years, as more and more data are generated on
decentralized devices [1], the mobile phone has gradually

become the most popular data carriers [2]. However, big-
data processing methods always require centralized data,
and this situation leads to the data sharing problem [3].
Because of the data privacy and security policies, such as the
General Data Protection Regulation (GDPR) [4] and Health
Insurance Portability and Accountability Act (HIPAA) [5],
it is inconvenient to achieve complete data sharing. Under
this circumstance, there also exists another crucial issue: if
the interactive process is broadcasted or up-downloaded, the
communication cost will dramatically increase. Therefore,
it is essential to invent a fashion for handling such specific
circumstances.

A method provided by the major service providers called
multiparty learning (MPL) [6] has been deployed in recent
years. One of the most distinctive advantages is that,
it can smoothly engage privacy-sensitive problems [7] and
distributed edge-data problems. By establishing a multitrusted
central server, the devices can communicate and coordinate
with each other. The models of these clients are trained by their
local data, and all the updates are uploaded and aggregated on
server side for collaborative optimization. It is worth noting
that, the whole process does not require sensitive data to leave
the client, and this builds a privacy-preserving application.

MPL has been widely used in industry [8], but one
limitation is that, it always assumes one single central model
to efficiently handle all the devices [9]. It may be difficult
to access in reality, since different data owners may hold
various data distributions as is shown in Fig. 1 as an example.
To handle such kinds of problems, a novel technique called
personalized MPL has been proposed [10]. Three challenges
faced by personalized MPL systems are listed as follows [11].

1) Data Heterogeneity [12]: For example, people speaking
different languages will lead to various text data,
and pictures collected by different devices may be at
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Fig. 1. Various types of devices hold various sizes of data. The different
colors of the photo frames saved in the different clients (displayed on the
left) represent different photo sizes, such as 1:1, 4:3, and so on. In addition,
different devices will adopt models with different structures (displayed in
the middle), such as high-performance devices deploying models with more
complex structures. It is reasonable to assign more appropriate models to
systems of heterogeneous equipment.

different locations or with different sizes. Hence, the
data may be not identically distributed or unbalanced
(non-IID).

2) Model Heterogeneity [10]: Separate clients need specific
models customized for the personal environment.
Another common situation is that, old equipment may
have difficulties in dealing with new complex models.

3) Device Heterogeneity [11]: Various devices have
differences in terms of storage, computation, and
communication capabilities [13].

Considering these challenges, the problems are confronted
with new complexities and are worthy to study.

In daily life, mobile phone devices can be regarded as
potential application examples of MPL. A large number
of users generate large amounts of data. For instance, one
common situation in daily life is that, there always exists
arbitrary sizes of images. For example, the download images
are always with a 1:1 aspect ratio, while the photos taken by
the camera are 4:3, sometimes 16:9. This circumstance leads to
a technical issue of convolutional neural networks (CNNs): it
is unworkable to utilize the unitary model for training different
sizes of the data [14]. In fact, the convolutional layers can
use arbitrary data to generate feature maps of any size, but
the fully connected (FC) layers require the input of fixed size
according to their definition. Meanwhile, even if the model
can be trained on a single device, it will cause a great issue
when aggregating on the global server. Traditional methods
always fit the input size via cropping [15] or warping [16],
[17]. But, these methods may not contain the entire object or
may result in unwanted geometric distortion.

At the same time, the diversity of data and devices will
lead to the model heterogeneity problem. For example, when
analyzing arbitrary-size data and using the same form of the
model, an overcomplex model may lead to excessive pressure
on weak devices. This problem has practical significance but it

will become more complex at the same time. Chen et al. [18]
designed an asynchronous model update method to tackle
the weak device problem, but this method only considered
the situation of an isomorphic model. Meanwhile, focusing
on high-performance clients, we also want to maximize the
calculation power. Inspired by this, it is rational to propose
a more sensitive personalized MPL strategy for customized
model generation and aggregation.

In this work, we propose a novel MPL framework focusing
on the arbitrary image size problem and customized model
problem. For the subject of different sizes, we introduce
the concept of spatial pyramid pooling (SPP) [14] to
homogenize the contradictions caused by different dimension
sizes. To achieve the ambition of maximizing all the computing
utilization while taking care of the weak devices, we propose
a novel pyramidal strategy inspired by the feature pyramid
network (FPN) [19] for efficient generation and aggregation
of each customized model.

In summary, our contribution can be concluded as follows.
1) In the data heterogeneity scenarios, we introduce a

heterogeneous feature-map integration method. This
method can eliminate the calculation difficulties caused
by different sizes while facilitating model aggregation
on the server side.

2) To solve the model heterogeneity problem, we propose
a novel pyramidal MPL strategy. In this strategy, the
local models are generated personally and aggregated
by similar semantic characteristics.

3) We analyze our method with existing state-of-the-
art (SOTA) personalized MPL algorithms, and the
experimental results show the improvement of the
performances on the popular datasets.

The rest of this article is constructed as follows. Section II
introduces the relevant background. In Section III, the
main framework of the algorithm is proposed in detail.
The experimental results and the ablation discussion are
summarized in Section IV. Finally, the main conclusion is
described in Section V.

II. PRELIMINARIES

In this section, the correlation methods of MPL are briefly
expounded. Two popular techniques related to our framework,
including SPP networks and FPNs, are specifically discussed.

A. Multiparty Learning

MPL [8] is a general conception of distributed machine
learning. Different from both edge computing [20], which
allows the transfer of raw data, and federated learning [21],
which emphasizes privacy in the transmission process, MPL
places a greater emphasis on collaboration between users
to optimize a global model. It facilitates multiple devices
collaboratively training a sharable model while keeping the
sensitive data locally [6]. A central server is settled to
coordinate the learning process consisting of multiple rounds.
At the beginning of each communication round, the global
server will send the current global model to participating
devices. Each device trains the model of its private data and
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uploads to the global server. The processing of a general MPL
framework can be described mathematically as follows:

min
w

l(w) =

C∑
c=1

pc

p
Lc(w)

Lc(w) =
1
pc

∑
i∈Pc

li (w). (1)

In the equation, C represents the number of separate clients,
where Pc is the set of indexes of the data points from the
client c, with pc = |Pc|. l(w) denotes the global loss function,
and Lc(w) denotes the local objective function. In the t th
communication round, the model of the individual client is
represented as wt

c, and the processing formula of the parameter
updates can be defined as follows:

1wt+1
c = f (wt , Dc) − wt , c = 1, . . . , C (2)

where f (·) denotes stochastic gradient descent (SGD) [29]
and Dc denotes the local data of client c. After uploading, the
server collects the updates from each device and aggregates
the model through averaging. This process can be defined as
follows:

wt+1
= wt

+

C∑
i=c

Dc

D
1wt+1

c (3)

where wt denotes the global model of the t th round.
This popular distributed baseline [6] considered the

aggregation process as the averaging of the weights of each
client. By introducing the federated SGD algorithm [30],
it reduces the communication rounds by raising the local
training epoch. Furthermore, in this concept, Li et al. [22]
used convergence guarantees to tackle the non-IID problem
and a constraint strategy to allow different devices to perform
variable amounts of missions. Furthermore, in this study,
Hanzely and Richtárik [23] proposed a method to clarify the
role of local steps, which allow each device to learn from its
private data without any communication.

In recent years, personalization of the MPL framework
becomes essential to handle the heterogeneity challenges
[31], [32], [33], [34]. To deal with the model heterogeneity
problem, Li and Wang [24] used transfer learning and
knowledge distillation to generate a global framework.
In this thought, each individual device designs its own
unique model using both private data and a public dataset.
Mansour et al. [25] have taken into account user clustering,
data interpolation, and model interpolation to conduct a
systematic learning-theoretic study. To handle the data
heterogeneity problem that data distribution varies greatly
between devices, Arivazhagan et al. [26] proposed a method
by employing a base+personalization layer thought, where the
base layers are trained centrally and the personalized layers are
trained locally. Fallah et al. [27] employed meta-learning [35]
into MPL called PerAvg. This method aimed at finding a
shared model, which performs well after each user training
with its own loss function. To handle the heterogeneity of the
underlying data distribution, PerAvg studied the personalized
variant to easily let the current devices or the new devices
adapt to their own data. A recent method provided by

Dinh et al. [28] utilized Moreau envelopes [36] as the client-
regularized objective function, which can decouple the binary
MPL problem and substantially speed up the convex problems.

The related literature is summarized in Table I, including
whether it is a personalized framework, the distribution of
data, the ability to handle heterogeneous data issues, the ability
to handle heterogeneous model issues, and the underlying
methods.

B. SPP Networks

In the traditional deep neural networks (DNNs), the data
for CNNs training and testing often need a pretreatment
process: the fixed size of the input. This situation limits the
rate of aspect as well as the scale of images. A well-known
methodology called SPP [14] can eliminate this fixed-size
limitation. As spatial pooling can maintain spatial information
by pooling in local spatial bins, the algorithm add an SPP layer
between convolutional layers [37] and FC layers to unify the
size of the feature map. For example, the last feature map
of the CNN layer is 16 × 16 × d as the dimension matrix,
where d is the number of filters. The map will then be max-
pooled through three scales: 4 × 4 × d , 2 × 2 × d, and
1 × 1 × d, and the output of the SPP layer is concatenated
and flatten to 21-D vector as the fixed-length representation.
With this method, the data can be of arbitrary sizes, while the
input does not require additional process for data cropping [15]
or warping [17].

C. Feature Pyramid Networks

In the image processing field, pyramid structures are devised
for semantic segmentation [38]. The pyramid structures
provide the features with multiple scales [39]. In this article,
focusing on the model heterogeneity problem, providing
multiscale features under one infrastructure is the main
idea, and a popular DNN method called FPN [19] gives
us great inspiration. FPN enhances a standard convolutional
network with a top-down pathway and horizontal connections,
so the network can efficiently construct a rich, multiscale
feature pyramid from a single resolution input images. Each
layer of the pyramid can be used for detecting objects
at a different scale, and each feature map utilizes the
same model infrastructure, while marginal extra cost can
be set for different detecting levels. Some other algorithms
make more explorations. Zhao et al. [39] introduced a method
called pyramid scene parsing network (PSPNet) to produce
better quality results for pixel-level prediction. Liu et al. [40]
exploited an adaptive feature pooling to make useful
information of all feature levels.

III. METHODOLOGY

In this section, the proposed algorithm will be introduced in
detail. Before the description, we will make a statement of the
personalized MPL problem and the main definition considered
in this article. Our method is declared in four parts. First,
the overview framework of the heterogeneous MPL (HMPL)
is presented. Then, a pyramidal generation method for the
individual model will be discussed. Afterward, the integration
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TABLE I
RELATED LITERATURE

structure for heterogeneous feature map will be stated. Finally,
we will introduce a method for the layer-wise aggregation
module in the central server. The notations mainly used is
described in the Nomenclature.

A. Problem Statement

We target on one familiar but characteristic scenario from
the daily usage of mobile devices. With the development of
technology, mobile devices have greatly advanced on storage,
computing, and communication. During daily usage, mobile
devices produce massive data, and in this situation, major
service providers expect to design an advanced artificial
intelligence (AI) model for better user perception. In summary,
we define this authentic scene as follows.

1) Arbitrary Data Size: As devices frequently produce data
in personal fashion, it is common for different devices to
generate data at different sizes. But, the existing MPL
methods have difficulties in dealing with such sort of
data distribution.

2) Device Diversity: In the multiparty networks, the
storage, computation abilities, and communication
capabilities may be different due to the diversities
of hardware (CPU and memory), network connection
(4G, 5G, and WiFi), and power supply.

3) Individual-Wise Model: Facing these situations, applying
one single central model to tackle all the devices will
lower the effectiveness of the individual accuracy.

B. Overview of the HMPL Framework

As is shown in Figs. 2(a) and 3, the model generation part
of this framework is based on the idea of pyramid networks.
The global server evaluates the equipment performances
and set different models for different devices, which are
named, ordinary model (Ord Model), compromise model
(Com Model), and superior model (Sup Model), which
are declared in Table II. Subsequently, for better personal
representation and aggregation in the downstream process,
some characteristic personal layers are introduced, and this
module is described in Section III-C.

Meanwhile, on the client side, to unify the various
dimensions of the feature maps of customized models,
we introduce a heterogeneous feature-map integration, and

this special module is described in Section III-D, named SPP
layer. In this module, the framework can tackle the dimension
differences, which are caused either by the various data sizes
or the model differences. The module location is shown in
Fig. 4, and the module structure is shown in Fig. 5.

Fig. 2(b) shows the aggregation strategy on the server
side. For the personalized models with different structures,
we design a layer-wise model aggregation method. All the
layers, including BS Layers and personal layers, follow their
own aggregation rules. In particular, on the global server, the
network layers with the same semantics will aggregate with
each other. This method can efficiently provide aggregation
solutions for customized models, and this module is described
in detail in Section III-E.

C. Multiparty Pyramidal Generation

We propose a pyramidal strategy as the generation part of
the framework. The model initialization is shown in Fig. 3.
Taking the visual geometry group network (VGG-Net) [41] as
an example, which is shown in Fig. 4, the feature output of
each convolutional (ConV) layer after activation is denoted as
{L1, L2, L3}. The output of the final ConV layer is followed
by a three-layer FC structure. In the first communication
round after generating and training the initial model, the server
collects the model and the running time of each device. Then,
the server set two time thresholds, and according to this, the
clients will be divided into three parts. The ratio is set as 3:4:3,
where 30% of the clients are regarded as weak performance
and 30% are high performance ones. For the 40% clients
whose time consumption is between the two thresholds, the
model structure will remain exactly as the initial form. This
part of model is called (Ord Model) [Fig. 4(a)].

1) Com Model Generation Strategy [Fig. 4(b)]: Concen-
trating on the weak performance devices, the server issues
an instruction to shrink the model. Specifically, the client is
ordered to delete the last ConV layer (e.g., L3). This operation
will reduce the calculation consumption, but it will lead the
convolutional part to get a compromised semantic feature map.
Afterward, this feature map will be transferred to the FC layers
for classification. This form of the model is named (Com
Model).

But, during this process, there comes about one interesting
affair. The last channel scale of the feature map in the Com
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TABLE II
DEFINITIONS OF SPECIAL MODELS AND LAYERS

Fig. 2. Overall framework of our proposed approach. The client side shows the generation method based on the pyramid network, and this module will be
discussed in Section III-C. The different models are named the Ord Model, Com Model, and Sup Model. The server side shows the layer-wise aggregation
strategy, and this module will be discussed in Section III-E. All the customized models are made up of the BS Layer, CP Layer, and IP Layer. The network
layers with the same semantics will aggregate with each other. (a) Clients. (b) Server.

Fig. 3. Pyramid distribution strategy in the model generation process. The
model in green represents the Sup Model, the model in yellow represents the
Ord Model, and the model in red is Com Model.

Model may be different, since L3 and L2 may generate
different channel numbers. In this situation, a 1 × 1 ConV
layer is added to align the channel numbers. This personal
ConV layer belongs to an IP Layer.

2) Sup Model Generation Strategy [Fig. 4(c)]: Focusing
on the powerful devices whose circulated time is less than the
bound time threshold, the server issues a distinct instruction.
We introduce a top-down architecture with lateral connections
to build high-level semantic feature maps. During this strategy,
marginal extra costs are considered for stronger feature maps.
This set of devices will receive the instruction of upgrading
the original model into an FPN model.

First, the last pair of neighbor convolutional layers are
selected (e.g., L3 and L2), the outputs of which are unified
into the same channel dimension and then merged. In this
part, a 2 × 2 upsampling layer and a 1 × 1 ConV layer are
introduced for aligning. After merging, a 3 × 3 ConV layer
is added on the last to generate the final feature map. This
transform will be iterated a few communication rounds until all
the convolutional layers are considered. If the circulated time
exceeds the upper time threshold, it means the extra structure
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Fig. 4. Internal structure of (a) Ord Model, (b) Com Model, and (c) Sup
Model. The definition of each layer is shown in the legend module. The
network layer of the dashed line means that this part does not add additional
network parameters.

Fig. 5. Structure of the SPP layer. The blue dashed lines indicate max-pooling
layer, and the red lines denote the concatenate operation.

is too large, and the model complexity is beyond tolerance.
During this time, the model will stop expansion. This form of
model is named (Sup Model).

One very noteworthy point is that, in both Com Model
and Sup Model, there generates extra 1 × 1 ConV layers
for aligning. This part of layers are defined as IP Layer. For
Sup Model, the final extra 3 × 3 ConV layer is defined as
collaborative personal (CP Layer). Since all the customized
models are generated from the Ord Model, we define each
layer of the Ord Model as BS Layer.

The differences between two sets of personal layers are that,
all the CP Layers represent the same semantic information,
while each IP Layer represents completely different semantic
information from each other. The layer-wise aggregation
strategy will be described in Section III-D.

D. Heterogeneous Feature-Map Integration

Through the treatments of Section III-C, all the final
feature maps are aligned as the same channels. But, different
structures and data sizes will lead the feature maps to different

aspect ratios. During the model generation part, it can tell that
all the personal models are generated by an original model,
and the task-orientation layers are coincident. Such situation
may not be a problem during the individual-wise training, but
it will become a great issue when aggregation. Under this
situation, we start to consider the inconsistent size problem,
which is the feature maps need to become fixed length before
transmitting to FC layers.

To adopt this request, an SPP layer is employed. Fig. 5
shows the structure of the SPP layer. Suppose the feature map
of all the structures is aligned to n × n × 256, and it will
be max-pooled in three ways and then concatenated. First, the
feature map will be max-pooled into the size of 1 × 1 × 256.
In parallelization by adaptive max pooling, it will also be
pooled into the size of 2 × 2 × 256 and 4 × 4 × 256,
respectively. The results of these three pooling features will
concatenate together as a global feature map with the size of
21 × 256 as the output of the specific pooling.

In MPL scenario, the advantages of SPP are that, it can be
deployed on the client side without adding additional network
parameters. This will not incur any additional communication
costs. In addition, the SPP layer is capable of using the same
network architecture to handle data with any aspect ratio.
Moreover, it also effectively addresses the issue of inconsistent
feature map sizes caused by a variety of image sizes or
differences in model structures.

E. Layer-Wise Model Aggregation

Finally, we deal with the aggregation problem. Before
discussion, we first redeclare three forms of the layers. All the
layers of the Ord Model are named BS Layer. The other two
personal layers named CP Layer and IP Layer are described
in Section III-C and illustrated in Fig. 4. Thus, BS Layer, CP
Layer, and IP Layer make up all the device models, and each
model includes at least one part.

The set of BS Layer parameters in client c can be denoted
as WBS

c = (wBS
c,1, w

BS
c,2, . . . ,w

BS
c,K B

), where K B is the total
number of layers. Meanwhile, the set of IP Layer of client
c is denoted as WIP

c = (wIP
c,1, w

IP
c,2, . . . ,w

IP
c,K I

), where K I

is the total number of the IP Layer. Significantly, only the
Sup Model has one CP Layer, and the CP Layer of client c
is denoted as wCP

c . The set of CP Layer can be denoted as
WCP

= (wCP
1 , wCP

2 , . . . ,wCP
C ), where C is the total number of

the clients. If the client c does not have CP Layers, wCP
c will

be set as 0.
In the first few rounds of communication, the server

will continuously monitor the communication time and issue
instructions for the most suitable customized model. After
all the models are established, the server will collect a
certain number of heterogeneous models for interaction. The
aggregation method on the central server can be summarized as
the layer-wise aggregation strategy, which is shown in Fig. 2.
The general gradient descent of client c in communication
round t is defined as follows:

1(wc) = Ex∼Dc

[
1w

(
fc

(
x, y; WBS,t

c , wC P,t
c , WIP,t

c
))]

(4)
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where fc(wc, Dc) = l(xc, yc; wc). For a machine learning
problem, fc represents the loss of the prediction on example
(xc, yc) with model parameters wc.

Then, we focus on the aggregation process of each layer.
As WBS is the foundation of the modeling process, this part of
the layers is semantically identical. Thus, all the BS Layers in
every model are aggregated and upgraded as normal average
method, which can be denoted as follows:

1WBS,t+1
c = fc

(
WBS,t

c , Dc
)
− WBS,t (5)

WBS,t+1
= WBS,t

+ η

C∑
c=0

Di

D
1WBS,t+1

c . (6)

It is worth noting that in the Com Model, some ConV
layers have been removed for compromise purposes. These
part of deleted layers will not participate in the aggregation
calculation.

Focusing on the CP Layers, only the Sup Models have
one layer of this structure, so they will only aggregate and
average with each other, which can be defined mathematically
as follows:

1wC P,t+1
c = fc

(
wC P,t

c , Dc
)
− wC P,t (7)

wC P,t+1
= wC P,t

+ η

S∑
c=0

Di

D
1wC P,t+1

c (8)

where S is the total number of the Sup Model.
Finally, since all the IP Layers represent different semantics,

some defining as aligning output features and some defining
upsampling, aggregating would not be sensible. These
individual layers will be kept locally.

IV. EXPERIMENTS

First, the popular datasets used in this article are described.
Several personalized MPL algorithms as well as the classical
MPL methods are introduced. Afterward, the hyperparameters
and the architecture of each network will be described in
detail. The effectiveness and scalability will be then studied
toward comparison methods to validate the proposed approach.
Finally, some ablation studies are deliberated to analyze the
parameter validity.

A. Datasets and Comparison Algorithms

In this work, as one of the main destination is treating
the arbitrary picture sizes, we evaluate the model on
image classification tasks. We compare our method with
SOTA methods on four datasets: Modified National Institute
of Standards and Technology (MNIST), Fashion MNIST,
Cifar10, and Cifar100.

MNIST [42]: It is a popular dataset containing 70 000
handwritten digits. It is separated into ten classes represented
as number 0–9. It consists of 60 000 training and 10 000 testing
images. Each sample is made up as a 28 × 28 gray scale with
single channel because of the anti-aliasing techniques.

Fashion MNIST [43]: It is a new dataset for the
classification task. It is also associated with one label from
ten classes based on the clothing category, such as t-shirts,
sneakers, and bag. Similar to MNIST, it has the exact same
scale of 60 000 training images and 10 000 testing images.

Each sample is centered in a 28 × 28 gray scale with one
channel. We call this FAMNIST in the following for simplicity.

Cifar10 and Cifar100 [44]: They consist of 60 000 color
images, and each image has 32 × 32 pixels with three
channels. Cifar10 is a ten-way classification problem with
6000 images per class. There are 5000 samples for training and
1000 for testing. Cifar100 is a 100-way classification problem
containing 600 images in each class, where 500 are selected
for training and 100 for testing.

We compare our method with the classical approach
named FedAvg and seven popular approaches named FedProx,
federated learning via model distillation (FedMD), FedPer,
PerAvg, and pFedMe.

FedAvg [6]: It is one of the fundamental methods on MPL
task. It employs the gradient averaging method to simplify an
aggregation process. By employing FedSGD, FedAvg raises
the local training epoch while decreasing the communication
round to reduce the costs.

FedProx [22]: It tackles the system heterogeneity of
significant variability and the non-IID data across the network.
It utilizes convergence guarantees and a constraint strategy
to allow different devices to perform variable amounts of
mission.

Loopless local stochastic gradient descent (L2SGD) [23]:
It proposes a method to clarify the role of local steps, which
allow each device to learn from its private data without any
communication.

FedMD [24]: It uses transfer learning and knowledge distil-
lation to handle model heterogeneity problem. By transferring
MNIST–FAMNIST pair and Cifar10–Cifar100 pair, it enables
devices to own uniquely designed models.

HypCluster [25]: It has taken into account user clustering,
data interpolation, and model interpolation to conduct a
systematic learning-theoretic study.

FedPer [26]: It proposes a base + personalization layer
method. By sharing the BS Layer while keeping the personal
layer locally, it can combat the ill effects of statistical
heterogeneity.

PerAvg [27]: It introduces meta-learning into MPL to
solve the personalized problem. With studying a personalized
variant, the destination of this method is to find an initial
shared model for all the users to adapt their local dataset.

pFedMe [28]: It uses Moreau envelopes as the regularization
loss for each client, which can help decouple the optimization
process of personalized model from global server.

B. Parameter Settings
For all the algorithms, the label space and the feature

space of all the datasets are divided into 1000 per device.
In each round, ten devices are selected for communication.
In this work, since we do not consider the non-IID problem,
all the labels are allocated uniformly. To simulate the scene
of arbitrary data sizes, we randomly crop each image in all
the datasets within the set [(16:9), (4:3), (1:1), (3:4), (9:16)].
To simulate the differentials in equipment performances, the
devices are deployed in three experimental environments with
different configurations. As is shown in Table III, the devices
are divided by 3:4:3 with slight perturbation.
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TABLE III
EXPERIMENTAL ENVIRONMENTS

The proposed approach and the comparison algorithms
are using the same cases of the parameter settings, where
the subset of clients is fixed as S = 10, and the learning
rates adaptively change from 0.01 to 0.001 during the
communication rounds. For MNIST and FAMNIST datasets,
CNNs of our Ord Model and all the methods contain three
3 × 3 kernel filters with (64, 128, and 256) channels,
respectively. Each convolutional layer is connected by a
2 × 2 max-pooling layer, and two FC layers with 1024 neurons
and one ten-class softmax classification layer are followed
afterward. The batch size is set as 20, and the number of
communication rounds is set as 800 while introducing early
stopping. For Cifar10 and Cifar100 datasets, the structure of
CNNs can be described as (64, pooling; 128, pooling; and
384, 256, and 256, pooling), where the digits are represented
as the channel number of the 3 × 3 kernel filters and the
word “pooling” represents the 2 × 2 max-pooling layer. The
CNN structure is followed by a three-layer MLP classifier with
(4096, 1024, and 10) neurons. The batch size is set as 64, and
the number of communication rounds is set as 1600 while
introducing early stopping. The training and testing ratios are
divided by the datasets without modification.

Other hyperparameters are set by the best performance of
each comparison methods. For FedProx, we set the local
epoch E = 1 and the regularization parameter µ = 0.1. For
FedMD, the structure of each individual device is initialized in
full accordance with the supplied parameters, and the weight
parameter ck is set as 0.2. For FedPer, the level of statistical
heterogeneity k and the aggregation rounds for different layers
K P are set as the best performance according to the different
datasets, and all the models are generated as the fine-tune
form. For PerAvg, we use its personalized model, which can
be denoted as the local model that takes an SGD step from the
global server, and the second learning rate is set as β = 0.005.
For pFedMe, we set the computation steps K = 5, the average
moving parameter β = 1, and the strength parameter λ = 20,
which is proven the best. Experiments of each approach are
repeated five times and report the average.

C. Comparison With the State of the Art

For personalized approaches, as the backbones have the
ability to handle the arbitrary image sizes, the input data
are operated as the same form of our proposed method. The
experimental results are shown in Table IV. Moreover, for
FedAvg, FedProx, and L2SGD, since the algorithms have
difficulties on treating the arbitrary sizes, the data remain
undisposed. To compare with these methods, our algorithm
also applies the original data, and the results are shown
in Table V. In the table, the differences between HMPL

and HMPLS are that, HMPL is the complete framework,
and HMPLS only employs the heterogeneous feature-map
integration method in Section III-C while shielding other
modules.

First, we analyze the personalized comparisons in Table IV.
Our proposed method obtains almost the best results on all the
datasets. As FedMD uses transfer learning and knowledged
distillation, the advantage knowledge of MNIST and Cifar10
directly migrates to FAMNIST and Cifar100. This leads to
performance improvements on two more complex datasets
and achieves the best result on Cifar100. PerAvg, which
introduces the idea of meta-learning to MPL, acquires less
good performance. But, since the results have the minimum
variance, the method performs the most stable structure.
For pFedMe, the approach provides the minimum loss
whose convergence benefits from the Moreau envelope for
regularization. Our method improves the SOTA of all the
datasets. For Cifar10, on arbitrary data form, our method
achieves a 12.3% improvement.

Then, for the regular images, comparing with three classical
methods, our approach gains moderate lift. Due to the better
information integrality, the results of this group are generally
better than the previous one. For Cifar10 and Cifar100
datasets, our approach gains the improvements by 5.8%
and 4.9%. For HMPLS , the results have a certain degree
of improvement comparing with FedAvg. When contrasting
HMPLS to HMPL, the effect has been slightly improved. But,
the disadvantage is that, this part of promotion leads to extra
consumption on both time and memory.

D. Ablation Study

In this section, we will discuss the influences and the effects
of the three generation structures. For discussing the arbitrary
sizes of data, as FedAvg have difficulties on aggregation,
we add the SPP layer on the end of the ConV layer for
comparison. In addition, we also discuss the case of original
size for integrity.

Fig. 6 represents the test accuracy and training loss of
arbitrary image sizes. Since each image is randomly clipped,
some important information about features may be lost. In this
situation, the Sup Model and the Ord Model both gain better
performance against the FedAvg approach. The reason is that,
the superior feature has advantages to driving the model
aggregation and promoting the presentation of the global
framework. In other words, the additional superior structure
can also help the global structure alleviate the impact of
compromise strategies, and provide prior knowledge for the
Com Model. Focusing on the results of each separate device,
the shadow represents the variances of ten devices. In this case,
the Ord Model has a lower training loss due to the additional
structure of the Sup Model resulting in larger losses. As all
the accuracies are close to 100%, this part of outcomes has
not much difference.

Fig. 7 shows the results of the original sizes of data. In this
part, the extra traditional FedAvg is considered. The other
parts are as the same meaning as above. The figure illustrates
that our strategy also outperforms on normal sizes of data.
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TABLE IV
COMPARISON OF BASELINES ON ARBITRARY IMAGE SIZES

TABLE V
COMPARISON OF BASELINES ON REGULAR IMAGE SIZES

For the test accuracy on the server, the Sup Model gains the
best performance, while the FedAvg with SPP layer obtains
better performance than the Ord Model. This is because
the SPP layer can provide more location features as well
as semantic features, and this facilitates the FC layer for
classification. For the accuracies and losses on the client
scenario, such as the previous experiments, all the curves have
similar results. In this part, the Sup Model and the Ord Model
have slight increase. The result is that, on the normal image
scene, the superior strategy can also advance all the device
model through aggregation and communication.

E. Influence of Different Distribution Ratios

In this section, we are curious about which ratio of the
distribution is the best. Thus, we make a grid search [45]
from 10% to 50% of the Com Model and from 40% to
60% of the Ord Model. The remaining proportion represents
the Sup Model. Fig. 8 illustrates the testing results of each
model under different ratios. Before learning, we thought
more Sup Models would bring better performances, but the
experimental results show that, the balanced proportion of
each part produces the best performance instead. The reason
is that, if any structure has been distributed with a low ratio,

Fig. 6. Test accuracy and the training loss of arbitrary image sizes on
both server side and device side. The shadow represents the variance of the
performance from separate devices.

the personal aggregation will be inadequate. This part of the
model will take a restricted view of information into account
and produces negative impacts on the global model.
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Fig. 7. Test accuracy and the training loss of regular image sizes on
both server side and device side. The shadow represents the variance of the
performance from separate devices.

Fig. 8. Test accuracy for various distribution proportions of our algorithm.
The red part represents the ratio of the Com Model, the yellow part represents
the Ord Model, and the green part is the Sup Model.

Fig. 9 shows the grid-search results of three parts of the
models. It is important to note that, when each part is close to
the mid-value, the global model performs the best. When the
ratio of the Com, Ord, and Sup Models is 3:4:3, the accuracy
of the global model can achieve 85.44%. As the proportion
changes, the accuracy decreases. But, when the ratio becomes
2:6:2, the results have a certain recovery. The results of this
phenomenon will be discussed in our following work.

Fig. 9. Accuracy of the global server by using different distribution ratios.

Fig. 10. Results of five forms of the model by generation operation. The
black line represents the FedAvg algorithm, and the rest of the lines represent
the performances of each model.

F. Condition of Five Various Models

In this chapter, we will analyze what results will be obtained
if the personalized models are generated by five generators.
We separate the Com Model and the Sup Model into two parts,
respectively, named com_model1, com_model2, sup_model1,
and sup_model2. Based on com_model2, com_model1 further
simplifies the model, while sup_model2 adds an additional
structure to the FPN. Each part of the model is distributed at
20%. The results are shown in Fig. 10.

In the diagram, we can see that the performance of
the framework becomes highly unstable. On the 100th
communication round, the Com Models have not yet
converged, while the Ord and the Sup Models are starting
overfitting. The loss curves of these three structures continue
to raise until the end. Due to the model becoming too scattered
and the insufficiencies of communication, the performances of
each model are worse than FedAvg. In this situation, the Sup
Models fail to improve the global performance, while the Com
Models play a nonignorable misleading role in the overall
results. In some com_model2 structures, there may occur a
situation where the ConV structure may only exist one ConV
layer for blindly simplifying the model. This will lead the
global negatively optimized.

G. Visualization of Various Models

In this section, we will discuss the visualization results.
First, we discuss the evolution trend of server testing among
different approaches, and then, the device views training
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Fig. 11. Changing trend of visualization results on the global server; 10 000
nodes (all nodes) of the testing set are selected from the MNIST dataset. The
numerical representation is shown in the legend.

Fig. 12. Changing trend of visualization results on the local server;
1000 nodes of the training set are selected from the MNIST dataset. The
numerical representation is shown in the legend.

among different generate strategies. The sketch maps contain
10 000 nodes for the server and 1000 nodes for the devices.
We utilize the t-distributed stochastic neighbor embedding
(t-SNE) [46] as the visualization method and use the MNIST
dataset for training.

As is shown in Fig. 11, the contrasts are described among
the FedAvg model, the SPP model, and the HMPL model
at 10–50 rounds. After ten rounds of communication, FedAvg
and SPP still have trouble distinguishing numbers 4 and 9, and
number 5 also has incomplete clustering, while HMPL has a
preliminary clustering effect. At 30 rounds of communication,
SPP can gain a comparable effect toward HMPL, while the

clustering radius of FedAvg is still large. After 50 rounds of
communication, HMPL obtains sufficient dispersion clustering
centers and the smallest cluster radii.

In Fig. 12, the sketch maps show the visualization results
of HMPL of one device using different generating strategies.
From the initial states to the results after 100 rounds, the
Sup Model shows the best performance. At 30 rounds of
communication, the Ord Model has a preliminary classification
effect, while the Com Model is still not obvious, and the Sup
Model has already achieved a visible effect comparable with
the Com Model at 100 rounds. From the last line of the map,
we can see that after 100 rounds, the Sup Model can reach
an accuracy of more than 99%, and the clustering centers of
each class have best dispersion effect.

V. CONCLUSION

In this article, we tackle two issues of practical significance
through MPL. First, facing the problem of various devices
holding arbitrary sizes of data, we introduce a heterogeneous
feature-map integration method. This method provides a good
solution to the limitations on the client side. Second, facing
model heterogeneity and statistical heterogeneity, we propose
a layer-wise model generation and aggregation strategy. Such
a strategy can maximize the calculation power of advanced
equipment while taking care of weak devices through
the personal generation and similar semantic aggregation.
Extensive experiments are conducted on four popular datasets
with arbitrary size form and regular size form, and the result
demonstrates that our proposed model outperforms the SOTA.
In the future, we will explore more practical problems in
personal MPL and provide solutions.
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