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Abstract

Visual encoders have become fundamental components in modern computer vision
pipelines. However, ensuring robustness against adversarial perturbations remains
a critical challenge. Recent efforts have explored both supervised and unsuper-
vised adversarial fine-tuning strategies. We identify two key limitations in these
approaches: (i) they often suffer from instability, especially during the early stages
of fine-tuning, resulting in suboptimal convergence and degraded performance on
clean data, and (ii) they exhibit a suboptimal trade-off between robustness and clean
data accuracy, hindering the simultaneous optimization of both objectives. To over-
come these challenges, we propose Lagrangian-Optimized Robust Embeddings
(LORE), a novel unsupervised adversarial fine-tuning framework. LORE utilizes
constrained optimization, which offers a principled approach to balancing compet-
ing goals, such as improving robustness while preserving nominal performance.
By enforcing embedding-space proximity constraints, LORE effectively maintains
clean data performance throughout adversarial fine-tuning. Extensive experiments
show that LORE stabilizes training and significantly improves zero-shot adver-
sarial robustness with minimal degradation in clean data accuracy. Furthermore,
we demonstrate the effectiveness of the adversarially fine-tuned image encoder
in out-of-distribution generalization and enhancing the interpretability of image
embeddings. The code is available on GitHub.

1 Introduction

In recent years, embeddings from foundation Vision-Language Models (VLMs), such as CLIP
[Radford et al., 2021], have transformed downstream tasks, including classification [Conde and
Turgutlu, 2021], object detection [Zhong et al., 2021], segmentation [Xu et al., 2022], and image
generation [Saharia et al., 2022]. These models, trained on large-scale web data, semantically
align inputs from different modalities into a joint embedding space. enabling remarkable zero-
shot generalization capabilities like zero-shot image classification, where virtually any class can be
encoded via its textual description.[Radford et al., 2021, Qian and Hu, 2024].

However, visual encoders, such as CLIP models, exhibit significant vulnerabilities. Adversarial
attacks [Goodfellow et al., 2015] and backdoor vulnerabilities [Bai et al., 2024, Liang et al., 2024]
can lead to erroneous and misleading embeddings. These challenges highlight the need for robust
alignment methods in large, pre-trained visual encoders. To address this, adversarial fine-tuning
plays a crucial role in enhancing the robustness of deep neural networks against adversarial examples
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[Pang et al., 2020, Kurakin et al., 2017, Madry et al., 2019]. Moreover, maintaining accuracy and
correct embeddings is vital for downstream applications, as it ensures the model’s versatility and
reliability without compromising clean data performance, i.e., its nominal performance [Tsipras et al.,
2019, Dobriban et al., 2022]. While recent works have proposed effective methods to enhance the
robustness of visual encoders [Schlarmann et al., 2024, Mao et al., 2023], they often struggle to
manage the trade-off between robustness and nominal performance effectively. Therefore, principled
approaches are required to explicitly balance this trade-off [Zhang et al., 2019a].

In this work, we focus on the vision encoder and introduce Lagrangian-Optimized Robust Embeddings
(LORE), a novel unsupervised adversarial fine-tuning framework that effectively balances robustness
and nominal performance through a novel constrained optimization framework. While we primarily
target CLIP’s image encoder, due to its widespread adoption and strong zero-shot capabilities, we also
demonstrate the applicability of LORE to other foundation models such as DINOv2 [Oquab et al.,
2024]. LORE enforces proximity to a reference model in the embedding space by leveraging the
Lagrangian dual method [Bertsekas, 1997], enabling robustness improvements without compromising
semantic fidelity on clean data.

Our main contributions are as follows: 1) We propose LORE, a novel unsupervised adversarial
fine-tuning framework that achieves a superior empirical balance on the trade-off between robustness
and nominal performance, with a hyperparameter (ρ) enabling principled control over this trade-
off. 2) We demonstrate the effectiveness of LORE in image classification, significantly improving
zero-shot adversarial robustness over CLIP while maintaining minimal degradation in clean accuracy.
3) We analyze the behavior of the adversarially fine-tuned LORE-CLIP encoder in terms of out-
of-distribution generalization and show that it improves the interpretability of image embeddings,
highlighting its advantages over other unsupervised adversarial fine-tuning baselines.

2 Related Work

Adversarial Robustness: Attacks and Defenses. Adversarial attacks exploit neural network
vulnerabilities by crafting imperceptible perturbations, leading to misclassifications [Goodfellow
et al., 2015, Szegedy et al., 2014]. Defenses like adversarial training improve robustness but struggle
with generalization [Madry et al., 2019]. Balancing robustness and nominal performance remains
challenging [Tsipras et al., 2019, Zhang et al., 2019b], necessitating more versatile defenses, especially
in multimodal settings. A principled approach to managing the trade-off is Constrained Optimization:
[Robey et al., 2021] pioneered using a Lagrangian duality framework to enforce explicit constraints,
avoiding heuristic loss weighting.

Robustness in Foundation Encoders. Recent studies have highlighted the vulnerability of foundation
visual encoders, e.g. CLIP and DINOv2, to adversarial attacks, demonstrating that embeddings can be
disrupted [Zhang et al., 2024]. To address this, supervised defenses like TeCoA [Mao et al., 2023] and
MMCoA [Zhou et al., 2024] improve robustness by aligning adversarial and clean embeddings, often
relying on auxiliary information like text, using simplistic text descriptions, or attention maps,[Yu
et al., 2024], assuming normalized embeddings. PMG-AFT [Wang et al., 2024] extends this approach
by minimizing the distance between adversarial features and those of the pre-trained model. In the
label-free setting, Unsupervised Adversarial Fine-Tuning seeks to achieve robustness by modifying
contrastive losses, leading to methods like Robust Contrastive Learning (RoCL) [Kim et al., 2020]
and the decoupled approach of DeACL [Zhang et al., 2022]. Among unsupervised fine-tuning
strategies for the CLIP vision encoder, FARE [Schlarmann et al., 2024] stands out as a direct baseline.
However, FARE and similar methods often lack explicit mechanisms to balance robustness and task
performance, resulting in a suboptimal trade-off. Due to its unsupervised nature, we consider FARE
a baseline for evaluating our proposed approach.

3 Background

Adversarial Attacks. Adversarial attacks aim to deceive machine learning models by adding
imperceptible perturbations to inputs. A prominent example is the Projected Gradient Descent
(PGD) attack, which iteratively maximizes a loss function J (e.g., cross-entropy) to craft adversarial
examples. Starting from an input x, PGD updates:

x′t+1 = ProjB(x,ε)

(
x′t + η · sign(∇x′

t
J(x′t, y))

)
, (1)
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Figure 1: (a) clean data accuracy during adversarial fine-tuning with different training perturbation
strengths ε, using the loss from Eq. (2). Larger ε values result in substantial drops in clean data
accuracy and early training instability. LORE (with ρ = 0.1) mitigates this effect, even on (ε = 10),
maintaining stable and higher clean data accuracy. (b) Pareto frontier comparison between naive
regularization of Eq. (2) (blue, varying λ) and LORE (orange, varying ρ). LORE yields a strictly
better empirical Pareto front, demonstrating superior trade-offs.

where y is the true label, η is the step size, and ε bounds the ℓ∞-norm of the perturbation. The
projection ProjB(x,ε) ensures x′ stays within the allowed perturbation set. This procedure reveals the
susceptibility of models like CLIP to adversarial manipulations.

Unsupervised Adversarial Fine-Tuning. FARE [Schlarmann et al., 2024] proposed an unsupervised
method for fine-tuning CLIP vision encoder ϕ. FARE’s goal is to minimize the Euclidean distance
between clean and perturbed embeddings under worst-case perturbation conditions:

LFARE(ϕθ, x) = max
δ:∥δ∥∞≤ε

∥ϕθ(x+ δ)− ϕθ0(x)∥
2
2 , (2)

where ϕθ0 refers to the original (frozen) CLIP encoder, and δ represents the adversarial perturbation.
Unlike methods like TeCOA and MMCoA, FARE does not require text inputs or labels, relying solely
on the image encoder. This loss function aims to (i) enhance the robustness of image embeddings
generated by ϕθ, and (ii) ensure that the image encoder ϕθ remains close to the original encoder ϕθ0
to maintain performance on clean data, preserving nominal performance.

4 Preliminary Experiments

To motivate our approach, we conduct a series of preliminary experiments that reveal critical limita-
tions in adversarial fine-tuning with the loss defined in Eq. (2). In particular, we examine two key
challenges: (i) instability during early fine-tuning, and (ii) poor robustness-accuracy trade-offs under
naive regularization.

(i) Fig. 1a depicts the clean data accuracy of a CLIP image encoder during adversarial fine-tuning
using the loss function defined in (2). The results indicate substantial declines in clean data accuracy,
particularly at elevated perturbation strengths (e.g., ε = 8, 10)2 . Additionally, there is notable
instability during the early stages of training. This instability hampers optimal convergence and
diminishes performance on clean data. Consequently, the model may converge to local minima,
losing significant pretrained knowledge, despite achieving robustness.

(ii) As a straightforward approach to mitigate the degradation of clean data accuracy, one may
introduce a naive regularization term to the loss (2), aiming to minimize the following objective:

LFARE(ϕ, x) + λ∥ϕθ(x)− ϕorg(x)∥22, (3)

where λ serves as a hyperparameter to regulate the strength of the regularization. We assessed
the trade-off between clean and robust accuracy by plotting the Pareto frontier across various
regularization strengths, as illustrated in Fig. 1b. The blue curve represents naive regularization (with

2Throughout the paper, all values of ε refer to normalized ℓ∞ perturbation bounds, i.e., ε/255. For example,
ε = 2 corresponds to a perturbation magnitude of 2/255.
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Algorithm 1 Lagrangian-Optimized Robust Em-
beddings (LORE)
for each epoch do

for batch x ∼ D do
δ ← ATTACKALG

(
d(ϕθt(x+δ), ϕθ0(x))

)
for i = 1 to K do
Lrobust ← d(ϕθt(x+ δ), ϕθ0(x))
Lclean ← d(ϕθt(x), ϕθ0(x))− ρm(x)
Ltotal ← Lrobust + λω(x) · Lclean
θ ← θ − ηθ · ∇θLtotal

end for
ω ← ω + ηω · Lclean · ∇ωλω(x)

end for
end for
return θ, ω

θt

θ0
θt
≈ θ

0

ϕθ0
(x)

ϕθt (x)
ρm(x)

ϕθt (x+ δ)

d

Figure 2: (Left) Detailed steps of LORE. (Right) A conceptual overview of LORE. Given a clean
input, the pre-trained model ϕθ0(x) serves as an anchor. LORE optimizes the encoder ϕθt(x) to
maintain proximity to ϕθ0(x) for clean inputs, while also improving robustness against adversarial
perturbations ϕθt(x + δ), which are pushed away from the anchor. The green region denotes the
constraint margin, preserving semantic alignment and mitigating degradation in nominal performance.

varying λ), revealing a steep trade-off, with robustness gains costing a considerable expense to clean
data accuracy. Conversely, the proposed method, LORE (depicted by orange stars, with varying ρ),
demonstrates a superior Pareto front, consistently attaining higher robust accuracy at comparable
or enhanced levels of clean data accuracy. Moreover, LORE maintains stable clean data accuracy
throughout training (Fig. 1a), even with large perturbation strengths.

5 LORE: Lagrangian-Optimized Robust Embeddings

Our findings in Section 4 highlight the need for a principled method that both stabilizes adversarial
fine-tuning and offers a favorable robustness-accuracy trade-off. Constrained learning offers a
structured approach to balancing competing objectives like robustness and nominal accuracy. The
constrained optimization problem for adversarial robustness in classification, as explored in Robey
et al. [2021], can be formulated as:

min
θ∈Θ

E(x,y)∼D

[
max
δ∈∆

ℓ(fθ(x+ δ), y)

]
,

s.t. ℓ(fθ(x), y) ≤ ρ, for almost every (x, y) ∈ D,
(4)

where ℓ is the loss function, ρ ≥ 0 controls the nominal performance level, fθ is the classifier
parameterized by θ, and ∆ denotes the set of possible perturbations. The presence of infinitely many
constraints indexed by the input space makes this a semi-infinite learning problem, which allows the
application of tools from semi-infinite optimization theory.

Extending the optimization framework of (4) to an unsupervised setting, we propose enforcing
proximity to a reference model ϕθ0 (e.g., a pre-trained model) in the embedding space Rk, where k
denotes the embedding dimension, thereby eliminating the dependence on y. Our formulation is:

min
θ∈Θ

Ex∼D

[
max
δ∈∆

d(ϕθ(x+ δ), ϕθ0(x))

]
,

s.t. d(ϕθ(x), ϕθ0(x)) ≤ ρm(x), for almost every x ∈ D.
(5)

Here, d : Rk × Rk → R+ is a divergence metric, and m : X → R+ is a sample-specific tolerance
margin, independent of θ, used to modulate the constraint across inputs, defining a per-sample margin
within which deviations are considered acceptable. For example, when using Euclidean distance,
setting m(x) = ∥ϕθ0(x)∥2 ensures the constraint becomes scale-invariant with respect to the original
embedding magnitude.

Solving the Constrained Problem. Constrained optimization in deep learning presents significant
challenges due to the high-dimensional and non-convex nature of neural networks. Therefore,
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following [Robey et al., 2021, Chamon et al., 2020, Chamon and Ribeiro, 2021], we leverage
Lagrangian duality to obtain approximate solutions for (5) that generalize effectively with respect to
both adversarial and nominal performance. Specifically, we solve the dual optimization problem:

max
ω∈Ω

min
θ∈Θ

Ex∼D

[
max
δ∈∆

d (ϕθ(x+ δ), ϕθ0(x)) + λω(x)
(
d (ϕθ(x), ϕθ0(x))− ρm(x)

)]
, (6)

where λω : X → R+ is the dual network parameterized by ω, with outputs made non-negative via
Softplus activation, which ensures valid Lagrange multipliers and avoids the sparse gradients of
ReLU. This network simplifies the original optimization over all functions λ : X → R+. By jointly
optimizing θ and ω, our method achieves two key objectives: (i) enhancing the robustness of the
model’s embeddings against adversarial examples through the worst-case perturbation δ; and (ii)
maintaining proximity to the reference model’s embeddings on clean data, i.e., ϕθ0(x), to preserve
nominal performance. Note that this adaptive framework fundamentally differs from regularization,
and is automatically enforced if embeddings diverge, The theoretical gaps and limitations introduced
by our formulation and parameterization are detailed in Appendix B.

Practical Implementation. For computational efficiency, we implement the dual network as
λω(x) = Fω(ϕθ0(x)), where Fω is a lightweight two-layer MLP that takes the reference model’s
embeddings as input. This leverages readily available semantic information from ϕθ0(x) for input-
dependent constraint weighting with no extra embedding computation. In Appendix G, we provide a
detailed analysis of the λω architecture and its impact on performance. Specifically, we empirically
demonstrate that modeling the dual variable as an input-dependent network, i.e., λω(x), significantly
outperforms the input-independent variant λω . We instantiate the divergence metric as the squared ℓ2
distance, d(z1, z2) = ∥z1 − z2∥22, and set m(x) = ∥ϕθ0(x)∥22 to enforce scale-invariant constraints.
Substituting these choices into our general framework yields the following optimization problem:

max
ω∈Ω

min
θ∈Θ

Ex∼D

[
max
δ∈∆

∥ϕθ(x+ δ)− ϕθ0(x)∥
2
2 + λω(x)

(
∥ϕθ(x)− ϕθ0(x)∥

2
2 − ρ∥ϕθ0(x)∥

2
2

) ]
. (7)

The adversarial perturbation δ is approximated using projected gradient descent (PGD) within an
ℓ∞-bounded set. Problem (7) employs a primal-dual framework to balance robustness and accuracy
dynamically. The primal step optimize ϕθ for robustness while maintaining proximity to ϕθ0 on clean
data. The dual step updates parameters ω to strengthen constraints where d(ϕθ(x), ϕθ0(x)) exceeds
ρm(x), preventing overly conservative solutions. This approach is crucial for vision-language models,
ensuring semantic alignment via embedding proximity, and eliminates heuristic loss weighting by
treating robustness and accuracy as competing objectives within a Lagrangian duality framework.

Intuitively, our scale-invariant constraint ∥ϕθ(x) − ϕθ0(x)∥22 ≤ ρ∥ϕθ0(x)∥22 preserves angular re-
lationships. As detailed in Appendix F, this bounds the deviation in cosine similarity SC(u, v) =
uT v/(∥u∥∥v∥), ensuring |SC(ϕθ0(x), v)− SC(ϕθ(x), v)| ≤ 2

√
ρ for any vector v ∈ Rn. This

preserves image-text alignment in vision-language models during adversarial fine-tuning.

Optimization. We optimize the LORE objective using an alternating training procedure. For each
batch x sampled from the dataset D, we first generate adversarial examples δ. Then, we perform K
steps of gradient descent to update the encoder parameters θ. After the K primal updates, we take a
single gradient step to update the dual network parameters ω, using the clean loss Lclean (as defined
in Algorithm 1) to guide the adjustment of λω(x). This alternating update strategy enables the model
to dynamically balance robustness and clean performance, with K acting as a hyperparameter that
controls the frequency of primal updates. The full procedure is summarized in Algorithm 1. Although
non-convex convergence guarantees are challenging, this alternating optimization is empirically
stable and effective in our experiments. Ablation studies on the choice of K and constraint threshold
ρ are provided in Appendix I.

6 Main Results

Although LORE and FARE optimize the identical adversarial loss, LORE’s proximity constraints
serve as a non-trivial, sample-based regularizer that steers training away from poor local minima,
yielding consistently stronger robustness without sacrificing clean accuracy. We now present a suite
of experiments to substantiate this claim.

We begin by demonstrating how LORE enables controlled trade-offs between robustness and nominal
performance. Next, we evaluate zero-shot image classification under both clean and adversarial
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Figure 3: Influence of constraint threshold ρ on model behavior. As ρ increases, robustness improves
at the cost of clean data accuracy, cosine alignment, and embedding fidelity, highlighting the effec-
tiveness of controlling the trade-off between robustness and fidelity by tuning ρ in LORE.

settings. We then analyze LORE’s benefits for embedding interpretability and out-of-distribution
robustness. Further results and ablations are provided in Appendix J.

Experimental Setup. To empirically validate our approach, we conduct the majority of our
experiments using the ViT-B/32 CLIP model. In the second part of our evaluation (Section 6.3), we
further assess the effectiveness of LORE on alternative architectures such as ConvNeXt-B CLIP
and DINOv2. We use both ImageNet and ImageNet-100, a curated subset of ImageNet, as training
datasets throughout our experiments. Additional details for each experiment, including figures and
tables, are provided in Appendix C. Throughout the results, superscripts denote the ℓ∞ perturbation
bound ε used during adversarial fine-tuning; for instance, LORE2 refers to a model trained with
ε = 2/255. We consistently compare our method with FARE, which serves as the unconstrained
counterpart to LORE and also utilizes unsupervised adversarial fine-tuning. All models were trained
for 2 epochs on ImageNet or 5 epochs on ImageNet-100. Experiments were conducted using 8
NVIDIA HGX H100 80GB GPUs.

6.1 Controlling the Robustness-Accuracy Trade-off

The parameter ρ directly governs the allowed clean embedding deviation, offering a more precise
control knob for the robustness-accuracy trade-off than heuristic weightings. While such trade-offs
have been extensively studied in supervised adversarial robustness [Zhang et al., 2019a, Xiao et al.,
2024, Javanmard et al., 2020], they remain underexplored in unsupervised adversarial fine-tuning.

We apply our constrained optimization framework to probe robustness-accuracy trade-offs. Using
a proximity constraint, we restrict the hypothesis space from the full family of encoders H to the
fidelity-constrained subsetHρ =

{
ϕ ∈ H | d(ϕ(x), ϕθ0(x)) ≤ ρm(x) for a.e. x ∈ X

}
. Intuitively,

Hρ is a neighborhood of the clean encoder ϕθ0 : for small ρ, it’s a tight ball around ϕθ0 , and as ρ
grows it expands until it recovers the full classH.

We then define the pointwise adversarial loss as ℓadv(ϕ, x;ϕθ0) ≜ maxδ∈∆ d
(
ϕ(x + δ), ϕθ0(x)

)
,

which induces the optimization

ϕ∗
ρ = argmin

ϕ∈Hρ

Ex∼D
[
ℓadv(ϕ, x;ϕθ0)

]
≜ argmin

ϕ∈Hρ

ℓadv(ϕ;ϕθ0). (8)

Constraining the search space stabilizes training by avoiding extreme encoder shifts. However, it does
so at the cost of theoretical optimality—since restricting H may exclude the global minimizer. In
practice, the constrained formulation can nonetheless outperform the unconstrained one by steering
clear of poor local minima.
Assumption 6.1. Assume d(·, ·) is a nonnegative metric on the embedding space. Moreover, for
any fixed reference embedding c, the map u 7→ d(u, c) is Ld-Lipschitz in its first argument, i.e.,∣∣d(u1, c)− d(u2, c)∣∣ ≤ Ld ∥u1 − u2∥ for some norm ∥ · ∥.
Theorem 6.2 (Robustness Suboptimality Bounds). Let:

R = min
ϕ∈H

ℓadv(ϕ;ϕθ0), Rρ = min
ϕ∈Hρ

ℓadv(ϕ;ϕθ0).

SinceHρ ⊂ H, we have Rρ ≥ R. Moreover, the suboptimality gap satisfies:

0 ≤ Rρ −R ≤
√
k
(
L∗
ρ + L′) ε + ∥ϕ∗ρ − ϕ∗∥.
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Figure 4: (a) Robustness to common corruptions on ImageNet-C as an OOD evaluation. (b)
Embedding interpretability assessment based on average cosine similarity between clean image
embeddings and 150 corresponding GPT4-generated text templates.

Here ϕ∗ and ϕ∗ρ are the minimizers inH andHρ, respectively; L∗
ρ andL′ are their associated Lipschitz

constants; and adversarial perturbations are ℓ∞-bounded by ε in Rk. (Proof in Appendix A.)

The bound shows that the excess loss Rρ −R grows with both the attack radius ε and the encoder
shift ∥ϕ∗ρ − ϕ∗∥. While we employ squared ℓ2 geometry for its optimization convenience, this choice
only affects the numerical constants—absorbed into the embedding norms and local Lipschitz terms.

Intuitively, increasing ρ relaxes the proximity constraint, granting the model more flexibility (and thus
greater robustness) at the expense of nominal accuracy, whereas smaller ρ keeps the model tightly
aligned with the pre-trained encoder, favoring clean performance.

We empirically evaluate LORE’s control over the robustness–accuracy frontier by training ten models
with varying ρ. Figure 1b shows the resulting Pareto frontier compared to additive-regularization
baselines (Eq. 2), and Figure 3 reports clean-data accuracy and adversarial success rate on the test
set. These experiments confirm both the practical tightness of our theoretical bound and the superior
trade-off achieved by our constrained-optimization framework.

6.2 Out-of-Distribution Robustness and Embedding Interpretability

To assess how unsupervised adversarial fine-tuning affects out-of-distribution (OOD) robustness,
we evaluate a ViT-B/32 CLIP model fine-tuned with LORE on ImageNet, using the ImageNet-
C [Hendrycks and Dietterich, 2019], which applies common corruptions to simulate distribution shifts.
Since adversarial fine-tuning often reduces clean accuracy, it can lead to degraded OOD performance.
As shown in Fig. 4a, FARE2 suffers a substantial drop under corruptions, whereas LORE2 maintains
much stronger generalization. In fact, for certain perturbations (e.g., jpeg compression), LORE2 even
outperforms the original pretrained CLIP model, underscoring its robustness to distribution shift.

Adversarial training is also known to enhance embedding interpretability and cross-modal alignment
[Croce et al., 2025]. To measure this effect in the CLIP vision–language space, we generate 150
natural-language templates using GPT-4 (e.g., “This is a photo of {}”) to capture class semantics, then
compute the average cosine similarity between each clean image embedding and its corresponding
text embedding. Figure 4b shows that both FARE2 and LORE2 improve over the pretrained baseline,
but LORE2 consistently achieves higher alignment across all training and evaluation ε settings,
demonstrating superior semantic representation.

6.3 Image Classification

Zero-shot Image Classification. We evaluate adversarial robustness of the ViT-B/32 CLIP vision
encoder on 13 zero-shot benchmarks from CLIP-benchmark3, all originally trained on ImageNet.
For each dataset, we compare LORE against FARE under both clean and adversarial conditions.

3https://github.com/LAION-AI/CLIP_benchmark
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Table 1: Clean and adversarial accuracy for
in-domain image classification on ImageNet-
100 across different CLIP vision encoders,
evaluated using the APGD attack.
Method Backbone Clean ε = 1 ε = 2 ε = 4 ε = 8

FARE2 ViT-B/16 70.40 53.0 34.9 8.8 0.06
LORE2 ViT-B/16 74.7 62.3 47.7 20.8 0.74
FARE4 ViT-B/16 58.1 47.7 37.1 19.0 2.22
LORE4 ViT-B/16 71.5 62.3 53.3 34.7 9.06

FARE2 ViT-B/32 LAION 65.4 41.0 19.0 2.02 0.02
LORE2 ViT-B/32 LAION 70.2 51.8 31.4 7.26 0.04
FARE4 ViT-B/32 LAION 52.7 36.7 23.4 6.72 0.20
LORE4 ViT-B/32 LAION 68.4 44.7 29.6 10.7 0.62

FARE2 ConvNeXt-B 74.2 61.6 46.1 16.7 0.22
LORE2 ConvNeXt-B 75.6 64.9 52.4 25.6 1.04
FARE4 ConvNeXt-B 70.6 61.6 52.3 32.7 6.48
LORE4 ConvNeXt-B 73.5 66.0 58.1 40.3 10.4

Table 2: Clean and adversarial accuracy for in-domain
image classification on ImageNet across different DI-
NOv2 variants. Adversarial robustness is evaluated
using APGD attack.

Method Backbone Clean ε = 1 ε = 2 ε = 4 ε = 8

FARE4 ViT-S/14 69.2 60.7 51.2 30.7 2.91
LORE4 ViT-S/14 77.3 60.8 50.0 30.3 5.8
FARE8 ViT-S/14 55.1 48.9 42.7 30.0 8.13
LORE8 ViT-S/14 75.1 55.9 48.8 36.8 13.7

FARE4 ViT-B/14 78.3 71.9 64.1 44.0 6.51
LORE4 ViT-B/14 80.2 73.5 67.1 49.6 11.2
FARE8 ViT-B/14 69.4 63.8 57.8 44.1 16.0
LORE8 ViT-B/14 80.5 65.0 59.7 48.5 21.8
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Figure 5: Comparison of LORE and FARE across different training and evaluation perturbations
(ε). LORE consistently outperforms FARE, particularly at higher ε values, achieving higher robust
accuracy while maintaining better clean performance, especially at higher perturbation intensities.

Robustness is measured using the first two AutoAttack methods [Croce and Hein, 2020]: APGD
with cross-entropy loss and APGD with targeted DLR loss, each run for 100 iterations under an ℓ∞
constraint. As shown in Table 11, the base CLIP model has negligible adversarial robustness, whereas
LORE consistently outperforms FARE across all settings, improving adversarial accuracy without
sacrificing clean performance.

In-domain Image Classification. We further assess LORE on in-domain tasks across various vision
architectures. Table 1 reports clean and adversarial accuracy on ImageNet-100 for several CLIP-style
backbones using APGD. We also fine-tune the DINOv2 visual encoder with a fixed classification
head on the full ImageNet dataset. Results in Table 2 show that LORE enhances robustness not only
for CLIP-style models but also for other foundation models such as DINOv2 [Oquab et al., 2024],
demonstrating its broad applicability across visual encoder architectures4.

Robustness at High Adversarial Intensity. A key challenge in improving robustness against
large adversarial perturbations is the instability introduced by high training perturbation budgets
(ε). Training with large ε values often causes a sharp drop in nominal performance and a loss of
alignment with the original model’s semantics, making naive adversarial fine-tuning impractical in
high-ε regimes. As illustrated in Fig. 1a and further supported by higher evaluation ε in Fig. 5, this
degradation is particularly evident in the early stages of training. Appendix D provides further insight,
showing that adversarial fine-tuning using the loss in Eq. (2) rapidly disrupts the proximity between
clean inputs and their reference embeddings. This degradation intensifies with increasing ε, resulting
in a more pronounced collapse in clean data accuracy. In contrast, Fig. 6 compares LORE and FARE,
showing that LORE explicitly enforces constraint satisfaction over time, thereby preserving proximity
between clean embeddings and their pre-trained references, while FARE exhibits a progressive
increase in deviation during training. This constraint-guided optimization plays a critical role in
mitigating early instability and enables LORE to achieve robust and stable learning even under high
adversarial intensity.

4For each model, bold font highlights the best result, and underlined text denotes the second-best result.
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Figure 6: The plot shows the ℓ2 distance between the fine-tuned clean embedding, ϕθ(x), and the frozen
reference embedding, ϕθ0(x), over training steps. (Left) LORE4 effectively regulates this deviation through its
constraint-aware mechanism, gradually realigning the clean embeddings within the ρ threshold. (Right) FARE4,
which lacks such a constraint, exhibits a significant upward drift in the ℓ2 distance, indicating a collapse in
nominal performance and embedding fidelity.

Table 3: A comprehensive evaluation of clean and adversarial performance is conducted across
various image classification datasets using the ViT-B/32 CLIP model. All models are trained on
ImageNet and evaluated in a zero-shot setting across diverse benchmarks. Our method consistently
achieves a performance increase (↑) relative to the corresponding FARE models.
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CLIP 59.8 84.1 59.6 89.7 63.3 44.4 46.1 19.6 66.3 69.3 42.3 62.3 87.5 97.2 64.0
FARE1 56.6 84.0 56.3 86.4 61.1 40.5 27.2 18.1 62.0 66.4 40.5 55.5 86.1 95.8 60.0
LORE1 57.4 84.4 55.9 88.5 64.5 40.1 29.9 16.7 61.3 67.2 41.5 53.8 86.9 96.3 60.5 ↑0.5

FARE2 52.9 82.2 49.7 76.3 51.1 36.4 18.4 15.7 53.3 60.4 35.9 48.2 82.7 93.0 54.1
LORE2 55.7 83.0 51.0 83.4 59.7 37.2 23.0 15.9 54.5 63.4 39.3 51.2 84.3 94.5 57.0 ↑2.9

FARE4 42.6 78.1 36.5 55.9 35.8 28.8 15.7 10.6 36.1 49.3 27.1 50.0 71.8 85.6 44.7
LORE4 50.1 80.3 40.1 72.4 49.6 32.4 17.7 11.4 39.7 55.1 33.6 50.0 79.3 90.4 50.2 ↑5.5

ε
=

1
.0

CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
FARE1 27.8 68.6 16.1 61.0 35.6 22.5 6.1 2.9 30.6 34.4 22.5 24.7 55.8 82.2 35.6
LORE1 32.9 71.0 18.7 67.1 40.0 23.7 9.4 4.2 33.5 37.6 24.8 28.3 60.5 84.1 38.7 ↑3.1

FARE2 34.3 75.2 22.6 60.1 35.4 24.7 12.6 5.3 33.9 39.7 24.1 30.4 64.8 83.3 39.4
LORE2 39.3 76.3 23.3 67.0 43.2 26.4 12.3 6.5 35.8 42.4 26.4 39.0 68.5 85.6 42.5 ↑3.1

FARE4 33.2 74.8 21.4 44.9 28.0 22.4 14.0 5.8 27.3 37.1 21.3 50.2 59.3 77.7 37.2
LORE4 41.8 77.2 24.1 61.2 39.9 24.5 14.3 7.8 30.2 41.6 25.5 50.2 68.8 83.2 42.2 ↑5.0

ε
=

2
.0

CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
FARE1 8.0 43.5 1.9 31.0 14.7 12.9 0.6 0.2 6.8 13.4 11.7 14.1 15.9 54.9 17.0
LORE1 13.1 49.0 3.3 37.9 19.0 14.2 2.5 0.5 10.1 17.6 13.1 19.1 23.1 61.2 20.8 ↑3.8

FARE2 19.3 59.9 7.7 41.2 22.8 17.8 9.6 1.5 16.4 24.2 15.9 23.4 38.6 68.6 26.7
LORE2 24.0 63.3 8.6 47.2 27.2 18.2 10.6 1.7 18.5 26.0 18.4 28.0 44.4 73.1 29.6 ↑2.9

FARE4 24.1 65.5 10.4 36.0 21.6 18.8 12.3 2.7 17.9 27.7 15.8 50.0 44.4 68.8 30.1
LORE4 32.6 69.5 12.4 50.8 29.6 20.9 13.0 3.3 21.6 32.3 20.0 50.1 55.9 76.1 35.0 ↑4.9

ε
=

4
.0

CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
FARE1 0.3 6.3 0.0 1.7 2.0 2.3 0.0 0.0 0.1 2.6 2.4 0.9 0.0 5.3 1.8
LORE1 0.7 9.7 0.0 3.5 3.1 4.0 0.0 0.0 0.2 3.8 2.8 2.7 0.0 9.4 3.0 ↑1.2

FARE2 3.2 27.5 0.5 12.3 7.0 7.7 4.3 0.0 2.4 6.8 5.1 15.8 3.0 30.1 9.4
LORE2 5.7 31.1 0.7 13.0 8.2 9.7 0.8 0.0 3.1 8.3 6.5 18.2 7.2 33.5 10.8 ↑1.4

FARE4 10.7 46.3 1.5 19.7 11.8 11.9 10.2 0.6 6.4 11.4 8.7 45.2 16.2 46.1 18.2
LORE4 17.8 54.2 2.8 27.4 16.8 14.4 10.0 0.6 8.0 16.4 11.7 48.4 25.5 56.1 22.5 ↑4.3

6.4 Analysis: Additional Discussions and Ablation Studies

For further analysis, we present additional discussions and ablations through the following Q&As.
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Q: Why use a sample-specific tolerance margin m(x) instead of a fixed one?

A: The core of the LORE framework relies on a sample-
specific tolerance margin, m(x) = ρ∥ϕθ0(x)∥2, which
dynamically adjusts the allowable perturbation based on
the feature magnitude of each input sample.
Table 4 compares LORE with the adaptive margin
(LOREm(x), ρ = 0.1) against LORE with several fixed
margins (ρ = 0.6, 0.8, and 1.5) as well as the FARE base-
line. Experiments were conducted using ViT-B/32 CLIP
models fine-tuned for 5 epochs on ImageNet-100.
The results show that fixed margins are either overly restric-
tive, with ρ = 0.6 severely degrading ε = 4 robustness, or
overly loose, with ρ = 1.5 leading to performance similar
to FARE. In contrast, the adaptive margin LOREm(x) con-
sistently achieves the best robust accuracy, validating our
design choice.
Further discussion and results are in Appendix J.6.

Table 4: Ablation on Adaptive Margin
m(x). Adversarial Accuracy is evalu-
ated at the same ε as training.

Method ρ Clean Robust

LORE2
m(x) 0.1 68.81 33.71

LORE2 0.6 70.12 18.65
LORE2 0.8 69.65 29.45
LORE2 1.5 63.45 25.47
FARE2 — 62.23 23.15

LORE4
m(x) 0.1 66.91 17.58

LORE4 0.6 67.21 1.23
LORE4 0.8 64.32 14.68
LORE4 1.5 55.24 11.74
FARE4 — 53.68 12.87

Q: Can LORE’s proximity principle be extended to supervised adversarial fine-tuning?

A: We found that LORE’s core principle of using proximity
constraints to maintain clean performance during adversar-
ial fine-tuning, is transferable and highly effective in the
supervised setting. This demonstrates the method’s broader
applicability beyond its original unsupervised design.
We applied LORE’s embedding-space proximity regular-
ization (ℓ2) to TeCoA [Mao et al., 2023], creating the com-
bined method TeCoA + ℓ2. We also explored a variant
constraining the KL divergence of the model’s output dis-
tribution (TeCoA + KL).
Table 5 presents the results, showing that TeCoA + ℓ2
consistently achieves the highest clean accuracy, with mas-
sive gains at high adversarial training budgets. Experi-
ments were performed using ViT-B/32 CLIP models fine-
tuned for 5 epochs on ImageNet-100. This validates that
proximity-based constraints, implemented via LORE’s La-
grangian framework, are a generally effective mechanism
for stabilizing and improving both clean and robust perfor-
mance in diverse adversarial fine-tuning scenarios.
Further discussion and results are in Appendix J.7.

Table 5: Extension to Supervised Fine-
Tuning. Adversarial Accuracy is eval-
uated at the same ε as training.

Method Clean Robust

TeCoA2 60.04 35.94
TeCoA2 + ℓ2 75.97 39.12
TeCoA2 + KL 66.50 39.53

TeCoA4 49.55 19.8
TeCoA4 + ℓ2 73.12 49.12
TeCoA4 + KL 56.01 22.18

TeCoA8 30.22 2.35
TeCoA8 + ℓ2 67.23 4.23
TeCoA8 + KL 38.06 2.82

7 Conclusion, Limitations and Future work

Summary. We proposed LORE, an unsupervised adversarial fine-tuning framework that enhances the
robustness of visual encoders while preserving nominal performance without relying on heuristic
loss weighting. Extensive experiments show that LORE consistently outperforms FARE, particularly
under stronger attacks, achieving superior robustness with better clean data accuracy. LORE’s robust
visual encoders improve reliability in critical applications, fostering trust in AI. Maintaining high,
clean data accuracy ensures effective performance in standard operational environments.

Limitations and future work. While LORE is effective, it has several limitations that suggest directions
for future work. (1) A deeper theoretical analysis of the trade-offs in unsupervised adversarial fine-
tuning is needed; our constrained framework provides a useful starting point. (2) The effectiveness
and performance ceiling of LORE, which relies on the pretrained model as a fixed anchor (ϕθ0 ), are
inherently limited by the quality and fidelity of that frozen reference model. (3) Our use of a neural
network to model Lagrange multipliers is heuristic; better parameterizations could improve efficiency
and reduce duality gaps. (4) While we adopt Lagrangian duality with manageable gaps, alternative
constrained optimization techniques may offer stronger guarantees. Future work could also explore
supervised LORE variants.
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A Proof of Theorem 6.2

We define the following quantities:

R = min
ϕ∈H

ℓadv(ϕ;ϕ0), Rρ = min
ϕ∈Hρ

ℓadv(ϕ;ϕ0).

And
ϕ∗ρ = argmin

ϕ∈Hρ

Ex∼D [ℓadv(ϕ, x;ϕθ0)] = argmin
ϕ∈Hρ

ℓadv(ϕ;ϕθ0),

where ℓadv(ϕ, x;ϕθ0) ≜ max
δ∈∆

d(ϕ(x+ δ), ϕθ0(x)).
(9)

SinceHρ ⊂ H, we have Rρ ≥ R. The sub-optimality gap is bounded by:

0 ≤ Rρ −R ≤
√
k · Lipschitz(ϕ∗ρ − ϕ∗)ε+ ∥ϕ∗ρ − ϕ∗∥ ≤

√
k(L∗

ρ + L′)ε+ ∥ϕ∗ρ − ϕ∗∥.

Proof. Let δ∗1 = argmaxδ∈∆ d(ϕ1(x + δ), ϕ0(x)) denote the perturbation that maximizes the
adversarial loss for model ϕ1 relative to the reference model ϕ0. For any two models ϕ1, ϕ2, we aim
to bound the difference in their adversarial losses, considering assumption 6.1:

|ℓadv(ϕ1, x;ϕ0)− ℓadv(ϕ2, x;ϕ0)| (10)

=

∣∣∣∣max
δ∈∆

d(ϕ1(x+ δ), ϕ0(x))−max
δ∈∆

d(ϕ2(x+ δ), ϕ0(x))

∣∣∣∣ (11)

≤ |d(ϕ1(x+ δ∗1), ϕ0(x))− d(ϕ2(x+ δ∗1), ϕ0(x))| (12)
≤ ∥ϕ1(x+ δ∗1)− ϕ2(x+ δ∗1)∥. (13)

Alternatively, we set the Lipschitz constant to 1 for brevity; however, it is worth noting that in general,
this constant appears explicitly in the bound and should be carried through the analysis. Note that
without loss of generality, we have assumed that maxδ∈∆ d(ϕ1(x+ δ), ϕ0(x))−maxδ∈∆ d(ϕ2(x+
δ), ϕ0(x)) ≥ 0. If that is not the case, then we have to replace δ∗1 with δ∗2 = argmaxδ∈∆ d(ϕ2(x+
δ), ϕ0(x)) throughout the proof. We now decompose this difference using the triangle inequality:

∥ϕ1(x+ δ∗1)− ϕ2(x+ δ∗1)∥ (14)
= ∥(ϕ1(x+ δ∗1)− ϕ1(x))− (ϕ2(x+ δ∗1)− ϕ2(x)) + (ϕ1(x)− ϕ2(x))∥ (15)
≤ ∥(ϕ1(x+ δ∗1)− ϕ2(x+ δ∗1))− (ϕ1(x)− ϕ2(x))∥+ ∥ϕ1(x)− ϕ2(x)∥. (16)

Assuming that the function ϕ1 − ϕ2 is Lipschitz continuous with constant L, we obtain:

∥(ϕ1(x+ δ∗1)− ϕ2(x+ δ∗1))− (ϕ1(x)− ϕ2(x))∥ ≤ L∥δ∗1∥. (17)

Assuming δ∗1 ∈ Rk with ∥δ∗1∥2 ≤ ε
√
k—which corresponds to assuming that d is Lipschitz with

respect to the Euclidean norm, and that ε is bounded in the ℓ∞ norm—we have:

|ℓadv(ϕ1, x;ϕ0)− ℓadv(ϕ2, x;ϕ0)| ≤ L
√
kε+ ∥ϕ1(x)− ϕ2(x)∥. (18)

We now extend this pointwise bound to the expected adversarial loss:

|ℓadv(ϕ1;ϕ0)− ℓadv(ϕ2;ϕ0)| = |Ex[ℓadv(ϕ1, x;ϕ0)− ℓadv(ϕ2, x;ϕ0)]| (19)
≤ Ex [|ℓadv(ϕ1, x;ϕ0)− ℓadv(ϕ2, x;ϕ0)|] (20)

≤ Ex
[
L
√
kε+ ∥ϕ1(x)− ϕ2(x)∥

]
(21)

= L
√
kε+ ∥ϕ1 − ϕ2∥, (22)

where ∥ϕ1 − ϕ2∥ denotes the expected difference in their outputs over the input distribution.

Similarly, setting ε = 0, the adversarial loss reduces to the clean loss, yielding a corresponding
bound:

|ℓclean(ϕ1, ϕ0)− ℓclean(ϕ2, ϕ0)| ≤ ∥ϕ1 − ϕ2∥.
Finally, applying this to the case ϕ1 = ϕ∗ρ and ϕ2 = ϕ∗, we obtain the desired bound on the deviation
in adversarial loss due to constraining the hypothesis space.
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B The Parametrization Gap

In this paper, we solved our constrained optimization problem, by optiming its dual problem, and
using neural networks for the lagrangian multipliers. particularly solving:

d∗ = max
ψ∈Ψ

min
θ∈Θ

E[max
δ∈∆

d(ϕθ(x+ δ), ϕ0(x)) + λψ(x)(d(ϕθ(x), ϕ0(x))− ρm(x))]

Instead of the original constrained optimization problem. in this section we are interested in deriving
some bounds on the duality gap, following the proof from Robey et al. [2021].

Proof.

Assumption B.1. For all g ∈ conv(H), there exists θ̃ ∈ Θ such that

∥ϕθ̃ − g
∗∥ ≤ η,

where η > 0 is a sufficiently small constant.

First, ignoring the parametrization of λ, and assuming λ can be any function from Λ = {λ : X →
R+}, we consider the Lagrangian:

L(ϕ, λ) = E
[
max
δ∈∆

d(ϕ(x+ δ), ϕ0(x)) + λ(x)(d(ϕ(x), ϕ0(x))− ρm(x))

]
d∗ = sup

λ∈Λ
inf
θ∈Θ

L(ϕθ, λ)

Now consider the original problem:

p∗ = inf
θ∈Θ

Ex∼D

[
max
δ∈∆

d(ϕθ(x+ δ), ϕ0(x))

]
,

s.t. d(ϕθ(x), ϕθ0(x)) ≤ ρm(x), for almost every x ∈ X

If the function classH parametrized by θ were convex, this would be a convex program. Since by
definition, ϕ0 ∈ H = {ϕθ : θ ∈ Θ}, there exists θ ∈ Θ such that d(ϕθ(x), ϕ0(x)) = 0 < ρm(x) for
all x ∈ X . Thus, Slater’s condition is satisfied.

Therefore, ifH were convex, we would have strong duality, i.e., p∗ = d∗. However, for most typical
neural networks, H is non-convex. By weak duality, we always have: d∗ ≤ p∗. To derive a lower
bound, consider the following problem for some positive constant η > 0:

p̃∗ = inf
g∈conv(H)

Ex∼D

[
max
δ∈∆

d(g(x+ δ), ϕ0(x))

]
,

s.t. d(g(x), ϕθ0(x)) ≤ ρm(x)− η, for almost every x ∈ X

This is now a convex program. Since ϕ0 itself satisfies d(ϕ0(x), ϕ0(x)) = 0 < ρm(x)− η, Slater’s
condition is again satisfied. Hence, strong duality holds, and the Lagrangian becomes:

L̃(g, λ) = E
[
max
δ∈∆

d(g(x+ δ), ϕ0(x)) + λ(x)(d(g(x), ϕ0(x))− ρm(x) + η)

]
= L(g, λ)+ηE[λ(x)]

Thus,
p̃∗ = sup

λ∈Λ
inf

g∈conv(H)
L̃(g, λ)

Assuming the infimum and supremum are attained at g∗ and λ̃∗, we have:

d∗ − sup
λ∈Λ

inf
θ∈Θ

L(ϕθ, λ) ≥ inf
θ∈Θ

L(ϕθ, λ̃
∗) = inf

ϕ∈H
L(ϕ, λ̃∗) ≥ inf

g∈conv(H)
L(g, λ̃∗)

Using the relation between L̃ and L, we obtain:

d∗ ≥ inf
g∈conv(H)

L(g, λ̃∗) = inf
g

[
L̃(g, λ̃∗)− ηE[λ̃(x)]

]
= L̃(g∗, λ̃∗)− ηE[λ̃(x)] = p̃∗ − ηE[λ̃(x)]
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Since g∗ is strictly feasible for the relaxed constraint, the complementary slackness condition implies
λ̃∗(x) = 0 for almost every x. Therefore:

d∗ ≥ p̃∗ = E
[
max
δ∈∆

d(g∗(x+ δ), ϕ0(x))

]
= ℓadv(g

∗, ϕ0)

Using the suboptimality bound from Lemma A, we have:

|ℓadv(g
∗, ϕ0)− ℓadv(ϕθ̃, ϕ0)| ≤ L

√
kε+ ∥g∗ − ϕθ̃∥, |ℓclean(g

∗, ϕ0)− ℓclean(ϕθ̃, ϕ0)| ≤ ∥g
∗ − ϕθ̃∥

Since g∗ is feasible in the relaxed problem with the stricter constraint d(g∗(x), ϕ0(x)) ≤ ρm(x)− η,
for some θ̃∗ ∈ Θ approximating g∗ such that ∥g∗ − ϕθ̃∗∥ < η, the function ϕθ̃∗ is feasible in the
original problem, because for almost every x ∈ X
ℓclean(ϕθ̃∗(x), ϕ0(x)) ≤ ℓclean(g

∗(x), ϕ0(x)) + ∥g∗ − ϕ∗θ̃∗∥ ≤ ρm(x)− η + ∥g∗ − ϕθ̃∗∥ < ρm(x).

Since p∗ is the minimum over all feasible θ ∈ Θ, it follows that p∗ ≤ ℓadv(ϕθ̃∗ , ϕ0).
d∗ ≥ ℓadv(g

∗, ϕ0) ≥ ℓadv(ϕθ̃∗ , ϕ0)− L
√
kε− ∥g∗ − ϕθ̃∗∥ ≥ ℓadv(ϕθ̃∗ , ϕ0)− L

√
kε− η

Therefore, since θ∗ is the optimal solution to the original problem:

d∗ ≥ p∗ − L
√
kε− η

Finally, we note that although we have treated the dual space as the full infinite-dimensional set Λ =
{λ : X → [0,∞)}, in this work we have restricted λ to a finite-dimensional family {λω}ω∈Ω ⊂ Λ
that uniformly approximates its elements. Concretely, if for every λ ∈ Λ there exists ω ∈ Ω with
∥λ− λω∥L1(D) ≤ ξ, then replacing

sup
λ∈Λ

inf
ϕ∈H

L(ϕ, λ) by sup
ω∈Ω

inf
ϕ∈H

L(ϕ, λω)

only incurs an arbitrarily small error O(ξ). All weak-duality arguments carry over immediately, and
under Slater’s condition the resulting strong-duality statement remains valid up to this negligible
approximation.

One viewpoint is that limiting the expressivity of λω through parametrization effectively relaxes the
constraints, as the network cannot fully ensure the constraints are met. As an extreme case, consider
when λω(x) = ω for all x ∈ X . In this case:

λω(x) ≡ ω, ω ≥ 0.

Then the (relaxed) Lagrangian becomes

L(ϕ, ω) = E
[
max
δ∈∆

d(ϕ(x+ δ), ϕ0(x))
]
+ ω E

[
d(ϕ(x), ϕ0(x))− ρm(x)

]
.

Optimizing first over ϕ (so that E[maxδ d] is fixed) and then taking the supremum over ω ≥ 0 forces

E
[
d(ϕ(x), ϕ0(x))

]
− ρE[m(x)] ≤ 0,

otherwise L(ϕ, ω)→ +∞ as ω → +∞. In other words, the constant-λ relaxation exactly enforces

E
[
d(ϕ(x), ϕ0(x))

]
≤ ρE[m(x)].

Thus, by limiting the expressivity of λ, we move from the original per-sample constraint

d(ϕ(x), ϕ0(x)) ≤ ρm(x) ∀x,

to the weaker but still meaningful average constraint

E
[
d(ϕ(x), ϕ0(x))

]
≤ ρE

[
m(x)

]
.
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C Additional Experimental Details

In this appendix, we provide further experimental details beyond those given in the main text.
Experiments were conducted using 8 NVIDIA HGX H100 80GB GPUs.

Training hyperparameters. We report below the training settings used across all experiments.
Unless otherwise noted, all models were trained using AdamW with a weight decay of 1 × 10−4,
a cosine learning rate scheduler, and adversarial training with PGD (10 iterations, step size ε/4)
under an ℓ∞ constraint. Each λ network used the 2-layer linear_mlp architecture, with a hidden
dimension of 512, and was optimized via K = 5 inner primal updates with learning rate 5× 10−4.
More experimental details are provided in Table 6. Additional information about all figures and tables
in the paper is summarized in Table 7.

Table 6: Training hyperparameters for all models trained with LORE. All models trained with FARE
use the same number of epochs and learning rate as the corresponding LORE setting.

Model Training Epochs Batch size LR ρ K-iter λ LRDataset (per device)

LORE1

CLIP ViT-B/32 ImageNet 2 448 1e-5 0.1 5 5e-4
CLIP ViT-B/32 ImageNet-100 5 448 1e-5 0.1 5 5e-4
CLIP ViT-B/32 CIFAR10 5 448 1e-5 0.01 5 5e-4

LORE2

CLIP ViT-B/16 ImageNet-100 5 128 1e-5 0.1 5 5e-4
CLIP ViT-B/32-LAION ImageNet-100 5 448 1e-5 0.15 5 5e-4
CLIP ConvNeXt-B ImageNet-100 5 64 1e-5 0.15 5 5e-4
CLIP ViT-B/32 ImageNet 2 448 1e-5 0.1 5 5e-4
CLIP ViT-B/32 ImageNet-100 5 448 1e-5 0.1 5 5e-4
CLIP ViT-B/32 CIFAR10 5 448 1e-5 0.01 5 5e-4

LORE4

CLIP ViT-B/16 ImageNet-100 5 128 1e-5 0.2 5 5e-4
CLIP ViT-B/32-LAION ImageNet-100 5 448 1e-5 0.15 5 5e-4
CLIP ConvNeXt-B ImageNet-100 5 64 1e-5 0.15 5 5e-4
DINOv2 ViT-S/14 ImageNet 2 128 1e-5 0.05 5 5e-4
DINOv2 ViT-B/14 ImageNet 1 64 1e-5 0.1 5 5e-4
CLIP ViT-B/32 ImageNet 3 448 1e-5 0.1 5 5e-4
CLIP ViT-B/32 ImageNet-100 5 448 1e-5 0.1 5 5e-4
CLIP ViT-B/32 CIFAR10 5 448 1e-5 0.01 5 5e-4

LORE6

CLIP ViT-B/32 ImageNet 3 448 1e-5 0.2 5 5e-4
CLIP ViT-B/32 ImageNet-100 5 448 1e-5 0.1 5 5e-4

LORE8

CLIP ViT-B/16 ImageNet-100 5 128 1e-5 0.2 5 5e-4
CLIP ViT-B/32-LAION ImageNet-100 5 448 1e-5 0.15 5 5e-4
CLIP ConvNeXt-B ImageNet-100 5 64 1e-5 0.15 5 5e-4
DINOv2 ViT-S/14 ImageNet 2 128 1e-5 0.05 5 5e-4
DINOv2 ViT-B/14 ImageNet 1 64 1e-5 0.1 5 5e-4
CLIP ViT-B/32 ImageNet 3 448 1e-5 0.2 5 5e-4
CLIP ViT-B/32 ImageNet-100 5 448 1e-5 0.1 5 5e-4

LORE10

CLIP ViT-B/32 ImageNet 3 448 1e-5 0.2 5 5e-4
CLIP ViT-B/32 ImageNet-100 5 448 1e-5 0.1 5 5e-4

LORE16

DINOv2 ViT-S/14 ImageNet 2 128 1e-5 0.05 5 5e-4
DINOv2 ViT-B/14 ImageNet 1 64 1e-5 0.1 5 5e-4
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Table 7: Details of each Figure and Table used in the paper.

Figure/Table Model Training Dataset Additional Notes

Figure 1-a FARE2,4,6,8,10, LORE10 ImageNet-100 Initial performance drop
Figure 1-b FARE2, LORE2 ImageNet-100 Robustness–accuracy Pareto front
Figure 3 LORE2 ImageNet-100 Controllability of LORE
Figure 4-a FARE2, LORE2 ImageNet OOD robustness
Figure 4-b FARE1,2,4,6,8,10, LORE1,2,4,6,8,10 ImageNet Effect on image embedding interpretability
Figure 5 FARE1,2,4,6,8,10, LORE1,2,4,6,8,10 ImageNet Accuracy & robust accuracy across ε
Figure 6 LORE4 ImageNet Fidelity analysis of LORE
Table 1 FARE2,4, LORE2,4 ImageNet-100 In-domain image classification
Table 2 FARE4,8, LORE4,8 ImageNet-100 In-domain image classification (DINOv2)
Table 3 FARE1,2,4, LORE1,2,4 ImageNet Zero-shot image classification

D Constraint Satisfaction in LORE

To further understand the behavior of constraint enforcement under varying adversarial budgets,
we visualize the distribution of distances between clean embeddings and their corresponding pre-
trained references throughout training for ε = 1, 2, and 4 in Figure 7. As we can observe, larger
perturbation strengths lead to greater deviation from the pre-trained reference in the early stages
of training. This early-stage divergence results in a more pronounced initial drop in the model’s
nominal performance. However, LORE is able to effectively regulate this deviation through its
constraint-aware mechanism, gradually aligning the clean embeddings back within the ρ threshold.
This demonstrates the robustness and practicality of LORE in preserving clean performance even
under severe adversarial training regimes.

In contrast, due to the lack of such constraint regulation in FARE, the distance between clean
embeddings and pre-trained references cannot be reliably controlled. As a result, FARE experiences
a catastrophic initial drop in nominal accuracy, particularly under larger perturbation budgets. This
failure to maintain embedding fidelity further underscores the importance of the dual network in
LORE for stabilizing the training process and preserving clean accuracy.

To better illustrate this behavior, all subfigures in Figure 7 show the distance distributions beginning
from the 20th training iteration onward. These comparisons clearly highlight the contrast between
LORE’s effective enforcement of the proximity constraint and FARE’s limited capability to manage
deviation across increasing adversarial strengths.

E Generalization Gap in Adversarial Training

Theorem E.1 (Generalization Gap in Adversarial Training). It is well known that the generalization
gap for a given loss function is upper bounded by complexity measures, giving rise to theoretical
justifications of the bias-variance trade-off. Assuming bounded norm embeddings, i.e., ∥ϕ(x)∥2 ≤ K
for all x, ϕ, we can see that the uniform loss bound B satisfies:

B := sup
ϕ,x
|ℓ(ϕ, x)| = sup

ϕ,x
max
δ
∥ϕ(x+ δ)− ϕ0(x)∥2 ≤ sup

ϕ,x
max
δ

[∥ϕ(x+ δ)∥2 + ∥ϕ0(x)∥2] ≤ 2K.

Therefore, with probability at least 1− 2δ,∣∣∣∣∣∣Ex[ℓ(ϕ, x)]− 1

|D|

|D|∑
i=1

ℓ(ϕ, xi)

∣∣∣∣∣∣ ≤ 2Rn(LH) +B

√
log(1/δ)

2|D|
≤ 2Rn(LH) +K

√
2 log(1/δ)

|D|
,

where LH = {ℓ(ϕ, ·) | ϕ ∈ H} is the loss class induced by hypothesis class H, Rn(LH) is the
empirical Rademacher complexity of LH, and supϕ,x |ℓ(ϕ, x)| ≤ B.

In adversarial training, the loss classLH becomes extremely complex due to the inner maxδ operation,
leading to large Rademacher complexity Rn(LH). This explains why adversarial training requires
significantly more samples for generalization compared to standard training.

When we restrict to simpler hypothesis classesHρ ⊂ Horg (through techniques like Lipschitz con-
straints or norm bounds), the Rademacher complexity decreases, potentially improving generalization.
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(a) LORE, ε = 1
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(b) LORE, ε = 2
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(c) LORE, ε = 4
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(d) FARE, ε = 1
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(e) FARE, ε = 2
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(f) FARE, ε = 4

Figure 7: Constraint satisfaction comparison between LORE and FARE across adversarial training
budgets ε = 1, 2, 4. (Top): LORE maintains strong proximity between clean embeddings and pre-
trained references throughout training, with distances concentrating below the ρ threshold. (Bottom):
FARE exhibits weaker fidelity preservation and fails to effectively regulate distance under increasing
adversarial strength.

However, the bounds we derived are notoriously crude; they fail to capture important phenomena like
double descent and often dramatically overestimate the actual generalization gap in practice.

F Deviation Between Cosine Similarities

Assumption F.1. For each input x, let

u = ϕorg(x), û = ϕθ(x),

and suppose
∥û− u∥22 ≤ ρ ∥u∥22 for some ρ ∈ [0, 1).

Proposition F.2. Under the above assumption, for any nonzero v ∈ Rn,∣∣SC(u, v)− SC(û, v)∣∣ ≤ 2
√
ρ.

We show that enforcing
∥ϕθ(x)− ϕorg(x)∥22 ≤ ρ ∥ϕorg(x)∥22

implies a uniform bound on the change in cosine similarity to any fixed vector v ∈ Rn.

Proof. Write

SC(u, v) =
vTu

∥v∥∥u∥
, SC(û, v) =

vT û

∥v∥∥û∥
,
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so ∣∣SC(u, v)− SC(û, v)∣∣ = ∣∣∣∣ vT∥v∥( u
∥u∥ −

û
∥û∥

)∣∣∣∣ ≤ ∥∥∥ u
∥u∥ −

û
∥û∥

∥∥∥.
Now decompose

u

∥u∥
− û

∥û∥
=

( u

∥u∥
− û

∥u∥

)
+
( û

∥u∥
− û

∥û∥

)
,

so by the triangle inequality,∥∥∥ u
∥u∥ −

û
∥û∥

∥∥∥ ≤ ∥u− û∥∥u∥
+ ∥û∥

∣∣∣ 1
∥u∥ −

1
∥û∥

∣∣∣.
Since

∣∣∥û∥ − ∥u∥∣∣ ≤ ∥u− û∥ and ∥û∥ ≤ ∥u∥+ ∥u− û∥, one shows easily

∥û∥
∣∣∣ 1
∥u∥ −

1
∥û∥

∣∣∣ ≤ ∥u− û∥∥u∥
.

Hence ∣∣SC(u, v)− SC(û, v)∣∣ ≤ 2
∥u− û∥
∥u∥

≤ 2
√
ρ,

as claimed.

Remark. In vision–language models one may take v = ψ(t), the text embedding of prompt t, so the
same bound guarantees|SC(ϕorg(x), ψ(t))− SC(ϕθ(x), ψ(t))| ≤ 2

√
ρ.)

G Impact of Dual Network on Model Performance

G.1 Comparison of Alternative Architectures for the Dual Function

In Figure 8, we compare the clean and robust accuracy achieved by two different architectures
used for the dual function: a simple scalar value and a network-based (sample-dependent) function,
as adopted in the current LORE setting. While both configurations perform comparably in terms
of clean accuracy, the network-based dual function generalizes substantially better on adversarial
examples, leading to consistently higher robust accuracy throughout training. This highlights the
importance of a flexible, sample-adaptive mechanism in effectively enforcing robustness constraints
during adversarial fine-tuning.

(a) (b)

Figure 8: Comparison of clean and robust accuracy when using different architectures for the dual
function in LORE. (a): Clean accuracy over training steps. (b): Robust accuracy over training
steps. The Network-based dual function (sample-based) used in the current LORE setting leads to
significantly higher robust accuracy compared to the Scalar baseline, while maintaining competitive
clean accuracy.
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G.2 Effect of the Dual Network λω(x) on Clean Accuracy

Figure 9 illustrates the impact of the dual network λω(x) on model performance. As shown, at the
initial steps, higher values of λω(x) help maintain the model’s nominal performance, ensuring it
performs well on clean data. In contrast, for FARE, due to the absence of such a proximity constraint
during the early iterations, the model, lacking robustness, passes through suboptimal states, leading
to a significant drop in nominal performance.

To further support this observation, we present comprehensive results in Figure 10 and Figure 11,
showcasing the behavior of the dual network and its impact across different architectures. In Figure 10,
experiments on DINOv2 models (base and small) demonstrate that LORE consistently achieves
higher clean accuracy compared to FARE, especially in the early stages of training, while adaptively
modulating λω(x) to control constraint satisfaction. Similarly, Figure 11 reports the performance
of ViT-B/16 and ConvNeXt-B models, confirming the effectiveness and generality of the dual
network across various architectures and perturbation strengths. These results highlight that LORE’s
constraint-aware mechanism is stable, avoiding the sharp degradation commonly observed in FARE
adversarial fine-tuning.

(a) (b)

(c)

Figure 9: Comparison of the performance of two methods and the output of the dual network. (a)
Clean accuracies over iterations, (b) Robust accuracies over iterations, (c) Average output of the dual
network λω(x).

H Revisiting Embedding Models

CLIP [Radford et al., 2021]. A major part of our experiments builds upon CLIP, which consists
of an image encoder ϕ and a text encoder ψ that map images and text descriptions into a shared
embedding space. For zero-shot classification, textual descriptions are typically formatted as "This
is a photo of a [CLS]”, where [CLS] represents class labels. The probability of assigning an
image x to a class ŷ is computed via a softmax over cosine similarities:

p(ŷ | x) = exp(cos(ψ(tŷ), ϕ(x))/τ)∑K
j=1 exp(cos(ψ(tj), ϕ(x))/τ)

. (23)

where τ is a temperature parameter, and K denotes the number of classes.

DINOv2 [Oquab et al., 2024]. In addition to CLIP, we incorporate DINOv2, a powerful self-
supervised visual transformer-based encoder, into our exploration of embedding models. While
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(a) DINOv2-base, Clean accuarcay (ε = 16) (b) DINOv2-base, Dual Network Output (ε = 16)

(c) DINOv2-base, Clean accuarcay (ε = 8) (d) DINOv2-base, Dual Network Output (ε = 8)

(e) DINOv2-small, Clean accuarcay (ε = 16) (f) DINOv2-small, Dual Network Output (ε = 16)

(g) DINOv2-small, Clean accuarcay (ε = 8) (h) DINOv2-small, Dual Network Output (ε = 8)

Figure 10: Comparison of LORE and FARE on DINOv2-base and DINOv2-small models under
different adversarial budgets ε ∈ {8, 16}. Left: Clean accuracy over training iterations, illustrating
LORE’s superior stability and performance. Right: Average output of the dual network λω(x) across
iterations, highlighting how LORE dynamically adjusts its constraint enforcement.

CLIP provides a joint image-text embedding space, DINOv2 focuses solely on visual representation
learning. This complementary perspective allows us to compare and leverage both multimodal and
unimodal embedding paradigms.
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(a) ViT-B/16, Clean accuarcay (ε = 8) (b) ViT-B/16, Dual Network Output (ε = 8)

(c) ConvNeXt-B, Clean accuarcay (ε = 4) (d) ConvNeXt-B, Dual Network Output (ε = 4)

Figure 11: Comparison of LORE and FARE on ViT-B/16 and ConvNeXt-B models under adversarial
fine-tuning. Left: Clean accuracy over training iterations (ε = 8 for ViT-B/16 and ε = 4 for
ConvNeXt-B), showing LORE’s improved stability and performance. Right: Average output of the
dual network λω(x), indicating LORE’s dynamic constraint adjustment during training.

DINOv2 learns visual features by minimizing a cross-view prediction loss between student and
teacher networks. Given N image views, the loss is computed as:

LDINO = − 1

N

N∑
i=1

C∑
c=1

qic log pic, (24)

where qic and pic are the teacher and student probabilities for class c and view i, respectively, and C
is the number of output dimensions.

Our broader work centers around embedding models, with a primary emphasis on CLIP, while also
investigating the capabilities and representations of models like DINOv2. In general, we found that
the DINOv2 model has much richer image embeddings than CLIP and can achieve much higher
robustness over the same perturbation and dataset.

I Impact of K on Model Performance

LORE alternates between K steps of updating the primal encoder and one step of updating the
dual network. In this section, we study the effect of the hyperparameter K on final performance.
As shown in Table 8, increasing K leads to improved clean accuracy (Acc) and robust accuracy
(RAcc), particularly when moving from K = 1 to K = 3 or 5. This demonstrates that more frequent
primal updates between dual updates help stabilize training and improve performance. Based on
this observation, we choose K = 5 as the default in our final LORE implementation. For further
discussion on how K impacts computational cost and training time, see Appendix K.

J Additional Experimental Results

In this section, we present additional experiments to further validate the robustness and generalization
capabilities of our proposed method. These evaluations span multiple settings, including black-
box adversarial attacks (e.g., Square Attack), Gaussian noise corruption, in-domain and zero-shot
classification, and out-of-distribution (OOD) robustness. By comparing against the FARE baseline
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Table 8: Effect of the K hyperparameter on model performance. Clean accuracy (Acc) and robust
accuracy (RAcc) (%) are reported for various values of K. Results are based on ViT-B/32 trained
with LORE2 evaluated on ImageNet-100 under ε = 2/255 APGD attack.

K 1 2 3 5 7 10

Acc (%) 64.11 66.43 64.58 60.19 59.96 56.46
RAcc (%) 9.54 13.78 19.48 27.01 31.81 39.71

Table 9: Evaluation on Square Attack, a Black-Box attacks, averaged over the previous mentioned 13
zero-shot datasets

Method Backbone Clean ε = 1 ε = 2 ε = 4 ε = 6

FARE4 ViT-B/32 42.6 40.0 36.4 30.0 23.6
LORE4 ViT-B/32 50.1 43.9 40.3 33.5 27.1

across diverse conditions and datasets, we demonstrate that LORE consistently achieves superior
performance, particularly under challenging threat models and distributional shifts.

J.1 Square Attack Evaluation

In this section, we evaluate the robustness of our fine-tuning approach against a black-box adversarial
attack known as the Square Attack [Andriushchenko et al., 2020]. Unlike gradient-based methods,
Square Attack operates without access to model gradients and perturbs the input using a query-
efficient, score-based strategy. This makes it a strong candidate for evaluating real-world robustness
where white-box access is not feasible. We conduct experiments on LORE4, which is adversarially
fine-tuned on ImageNet, to assess how well the model generalizes to such black-box settings. The
results, summarized in Table 9, show that our method consistently outperforms the baseline under
this challenging threat model.

J.2 Evaluation Under Gaussian Noise Corruption

To further assess the robustness of our method, we evaluate the performance of LORE4 and FARE4

under varying levels of Gaussian noise corruption. We use the ViT-B/32 CLIP model, with both
methods fine-tuned on ImageNet. As shown in Figure 13, LORE4 consistently maintains higher
accuracy than FARE4 across a wide range of noise strengths (σ), especially in low to moderate noise
settings. The right subplot illustrates the accuracy gap, highlighting LORE4’s robustness advantage
up to σ = 40, beyond which the performance of both models converges as the corruption becomes
extreme. This evaluation further supports the generalization capabilities of our method in the presence
of unseen corruptions. Figure 12 provides a visual illustration of how a single image degrades under
increasing levels of Gaussian noise.

Noise: 0 Noise: 32 Noise: 64 Noise: 128

Figure 12: Visualization of a single image under increasing levels of Gaussian noise (σ = 0, 32,
64, 128). This figure helps set reasonable expectations for model performance by illustrating how
perceptual degradation progresses with noise intensity.
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Figure 13: Robustness evaluation under Gaussian noise corruption. Left: Classification accuracy of
LORE4 and FARE4 under increasing Gaussian noise strength (σ). LORE4 consistently outperforms
FARE4, particularly in moderate noise regimes. Right: Accuracy gap between LORE4 and FARE4,
showing a stable and significant margin up to σ = 40, after which the gap decreases as both models
degrade under extreme noise conditions.

Table 10: Clean and adversarial accuracy for in-domain image classification on ImageNet-100 across
different CLIP vision encoders, evaluated using the APGD attack.

Method Backbone Clean ε = 1 ε = 2 ε = 4 ε = 8

FARE8 ViT-B/16 26.5 20.4 17.0 10.3 2.3
LORE8 ViT-B/16 70.5 53.6 48.5 37.8 17.8

FARE8 ViT-B/32 LAION 17.0 11.3 7.3 3.16 0.40
LORE8 ViT-B/32 LAION 28.2 12.1 10.0 6.54 3.51

FARE8 ConvNeXt-B 61.6 55.3 48.5 35.7 43.4
LORE8 ConvNeXt-B 72.2 56.2 49.1 38.3 47.2

J.3 In-domain Image Classification

Table 10 presents a comparison of clean and adversarial accuracy across various CLIP-based vision
backbones, all trained with ε = 8, on the ImageNet-100 dataset under the APGD attack.

J.4 Zero-shot Image Classification

Table 11 presents the results of different settings for zero-shot image classification using the ViT-B/32
CLIP model, highlighting the superiority of our method over the FARE baseline. Additionally, for
a more challenging scenario, Table 12 reports model performance under high-intensity adversarial
attacks, further demonstrating the resilience of our approach. These tables serve as the complete
version of the results summarized in the main paper.

J.5 Out-of-Distribution Robustness

As shown in Figure 14, increasing the training perturbation strength leads to greater degradation in
out-of-distribution (OOD) robustness across common corruptions in ImageNet-C. Despite this trend,
models trained with LORE consistently exhibit better robustness compared to those trained with the
FARE method, highlighting LORE’s superior generalization under distributional shifts.

J.6 Ablation on Sample-Specific Margin m(x)

The choice of a sample-specific tolerance margin, m(x) = ρ∥ϕθ0(x)∥2, is a crucial design decision
in the LORE framework.

Using a sample-invariant tolerance (ρfixed), where the constraint is fixed across all data points
(d(ϕθ(x), ϕθ0(x)) ≤ ρfixed), offers an alternative but is challenging. It requires extensive, task-
dependent and model-dependent hyperparameter tuning that severely limits its practical utility and
generalization ability.
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Figure 14: Robustness to common corruptions on ImageNet-C as an OOD evaluation for models
trained with (a) ε = 4, and (b) ε = 8. As we can observe, as the training perturbation strength
increases, the degradation in OOD robustness also increases. Nevertheless, LORE consistently shows
lower degradation compared to models trained with the FARE method.

By contrast, the sample-specific margin provides an adaptive, scale-invariant tolerance tied to the pre-
trained embedding’s norm. This design choice reduces manual tuning, preserves semantic structure
by relating the constraint geometrically to the cosine similarity of embeddings, and ultimately offers
greater stability.

Experimental Comparison. To validate this choice, we conducted experiments using ViT-B/32 CLIP
models fine-tuned for 5 epochs on ImageNet-100. We compare the adaptive margin (LOREm(x))
against several empirically chosen fixed tolerances (ρ = 0.6, 0.8, 1.5). The superscript (ε) denotes
the training perturbation budget.

As shown in Table 13, fixed tolerances of 0.6 and 1.5 lead to suboptimal performance, demonstrating
that a fixed margin is either overly restrictive (degrading robustness) or overly loose (causing behavior
similar to FARE). The sample-specific margin (LOREm(x)) consistently achieves the best overall
Average Robust Accuracy, validating its superior stability and efficacy across different training
settings.

J.7 LORE in Supervised Adversarial Fine-Tuning

Given an image-label pair (x, y), TeCoA [Mao et al., 2023] optimizes a contrastive loss to align
adversarial image embeddings with text embeddings. The loss function is defined as:

Lsup(x, y; θ) = max
δ∈∆
−
∑
i

[
yi log

exp(cos(z, ψ(ti))/τ)∑
k exp(cos(z, ψ(tk))/τ)

]
, (25)

where z = ϕθ(x + δ) is the adversarial image embedding and ψ(ti) is the text embedding. Here,
ψ(ti) corresponds to the text embedding of the i-th class, where each class label is inserted into a
fixed natural language template (e.g., "This is a photo of {class}").

We incorporated our proximity-based regularizer into TeCoA, forming a combined method (TeCoA +
l2), where l2 denotes the ℓ2-based embedding proximity constraint:

max
ω∈Ω

min
θ∈Θ

Ex,y∼D
[
Lsup(x, y; θ) + λω(x)

(
|ϕθ(x)− ϕ0(x)|22 − ρ|ϕ0(x)|22

)]
Distribution-Level Constraint. We also explored a probability-distribution variant of LORE for the
supervised setting, constraining the KL divergence between the fine-tuned model’s output distributions
and those of the pretrained model. This approach requires only class text embeddings, not sample
labels. Applied to TeCoA, it yields a second regularized variant: TeCoA + KL.
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Table 11: A comprehensive evaluation of clean and adversarial performance is conducted across
various image classification datasets using the ViT-B/32 CLIP model. All models are trained on
ImageNet and evaluated in a zero-shot setting across diverse benchmarks. Table demonstrates the
increase (↑) in performance of our method relative to the corresponding FARE models.
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CLIP 59.8 84.1 59.6 89.7 63.3 44.4 46.1 19.6 66.3 69.3 42.3 62.3 87.5 97.2 64.0
FARE1 56.6 84.0 56.3 86.4 61.1 40.5 27.2 18.1 62.0 66.4 40.5 55.5 86.1 95.8 60.0
LORE1 57.4 84.4 55.9 88.5 64.5 40.1 29.9 16.7 61.3 67.2 41.5 53.8 86.9 96.3 60.5 ↑0.5

FARE2 52.9 82.2 49.7 76.3 51.1 36.4 18.4 15.7 53.3 60.4 35.9 48.2 82.7 93.0 54.1
LORE2 55.7 83.0 51.0 83.4 59.7 37.2 23.0 15.9 54.5 63.4 39.3 51.2 84.3 94.5 57.0 ↑2.9

FARE4 42.6 78.1 36.5 55.9 35.8 28.8 15.7 10.6 36.1 49.3 27.1 50.0 71.8 85.6 44.7
LORE4 50.1 80.3 40.1 72.4 49.6 32.4 17.7 11.4 39.7 55.1 33.6 50.0 79.3 90.4 50.2 ↑5.5

FARE6 33.0 73.0 24.7 40.0 24.9 23.7 15.2 6.24 22.7 39.5 20.2 50.0 52.4 75.0 36.0
LORE6 42.6 75.3 28.7 61.5 35.8 26.1 16.4 8.25 25.8 45.2 26.2 50.0 69.3 84.2 42.5 ↑6.5

FARE8 27.6 69.1 17.0 34.2 20.2 20.6 15.0 4.68 16.5 34.1 16.8 50.0 37.6 67.3 31.0
LORE8 41.3 74.6 24.9 61.5 35.9 24.5 16.0 7.14 22.8 43.0 24.4 50.0 67.4 83.5 41.2 ↑10.2

FARE10 23.2 66.0 12.8 31.3 17.5 18.8 15.0 4.11 13.7 30.2 14.4 50.0 27.6 61.9 28.0
LORE10 40.5 74.3 23.8 64.8 38.8 24.3 16.2 6.75 22.0 41.9 22.9 50.0 66.4 84.2 41.2 ↑13.2

ε
=

1
.0

CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
FARE1 27.8 68.6 16.1 61.0 35.6 22.5 6.1 2.9 30.6 34.4 22.5 24.7 55.8 82.2 35.6
LORE1 32.9 71.0 18.7 67.1 40.0 23.7 9.4 4.2 33.5 37.6 24.8 28.3 60.5 84.1 38.7 ↑3.1

FARE2 34.3 75.2 22.6 60.1 35.4 24.7 12.6 5.3 33.9 39.7 24.1 30.4 64.8 83.3 39.4
LORE2 39.3 76.3 23.3 67.0 43.2 26.4 12.3 6.5 35.8 42.4 26.4 39.0 68.5 85.6 42.5 ↑3.1

FARE4 33.2 74.8 21.4 44.9 28.0 22.4 14.0 5.8 27.3 37.1 21.3 50.2 59.3 77.7 37.2
LORE4 41.8 77.2 24.1 61.2 39.9 24.5 14.3 7.8 30.2 41.6 25.5 50.2 68.8 83.2 42.2 ↑5.0

FARE6 26.3 70.7 15.2 32.8 20.0 19.5 14.1 3.6 19.3 30.0 15.1 50.2 43.5 70.2 31.1
LORE6 36.2 74.4 18.9 52.2 30.6 20.8 15.4 6.3 22.3 34.2 22.1 50.2 60.5 78.1 37.4 ↑6.3

FARE8 23.1 66.9 10.8 28.2 16.7 17.7 14.6 3.1 15.5 25.3 12.5 50.2 30.9 62.7 27.3
LORE8 35.5 73.6 15.9 51.1 31.2 20.1 14.2 5.8 20.0 33.3 20.7 50.2 58.6 77.4 36.3 ↑9.0

FARE10 19.0 65.4 8.20 26.3 14.3 16.7 14.8 3.0 13.1 22.0 11.0 50.2 23.7 57.2 25.1
LORE10 33.8 71.2 14.3 51.7 30.1 19.5 12.9 4.2 18.9 31.5 19.4 50.2 53.9 76.7 35.0 ↑9.9

ε
=

2
.0

CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
FARE1 8.0 43.5 1.9 31.0 14.7 12.9 0.6 0.2 6.8 13.4 11.7 14.1 15.9 54.9 17.0
LORE1 13.1 49.0 3.3 37.9 19.0 14.2 2.5 0.5 10.1 17.6 13.1 19.1 23.1 61.2 20.8 ↑3.8

FARE2 19.3 59.9 7.7 41.2 22.8 17.8 9.6 1.5 16.4 24.2 15.9 23.4 38.6 68.6 26.7
LORE2 24.0 63.3 8.6 47.2 27.2 18.2 10.6 1.7 18.5 26.0 18.4 28.0 44.4 73.1 29.6 ↑2.9

FARE4 24.1 65.5 10.4 36.0 21.6 18.8 12.3 2.7 17.9 27.7 15.8 50.0 44.4 68.8 30.1
LORE4 32.6 69.5 12.4 50.8 29.6 20.9 13.0 3.3 21.6 32.3 20.0 50.1 55.9 76.1 35.0 ↑4.9

FARE6 20.2 64.6 8.4 27.4 16.7 17.1 13.0 1.8 14.3 23.6 11.8 50.2 33.3 62.1 26.5
LORE6 30.1 68.3 10.7 44.0 25.6 18.5 13.8 3.7 16.8 27.6 17.0 50.2 49.7 71.2 32.1 ↑5.6

FARE8 17.4 62.7 6.4 24.5 13.7 15.4 13.1 1.5 11.2 19.7 10.7 50.2 24.0 56.2 23.8
LORE8 30.9 68.8 10.5 43.3 25.7 18.5 13.5 3.2 16.6 27.8 17.0 50.2 49.2 71.6 31.9 ↑8.1

FARE10 15.1 60.0 5.0 23.5 11.8 14.3 13.5 1.7 10.6 18.5 9.2 50.2 18.4 52.5 22.2
LORE10 29.7 66.8 8.8 38.8 24.1 17.9 12.4 2.5 14.9 27.0 16.2 50.2 45.5 69.1 30.3 ↑8.1

ε
=

4
.0

CLIP 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
FARE1 0.3 6.3 0.0 1.7 2.0 2.3 0.0 0.0 0.1 2.6 2.4 0.9 0.0 5.3 1.8
LORE1 0.7 9.7 0.0 3.5 3.1 4.0 0.0 0.0 0.2 3.8 2.8 2.7 0.0 9.4 3.0 ↑1.2

FARE2 3.2 27.5 0.5 12.3 7.0 7.7 4.3 0.0 2.4 6.8 5.1 15.8 3.0 30.1 9.4
LORE2 5.7 31.1 0.7 13.0 8.2 9.7 0.8 0.0 3.1 8.3 6.5 18.2 7.2 33.5 10.8 ↑1.4

FARE4 10.7 46.3 1.5 19.7 11.8 11.9 10.2 0.6 6.4 11.4 8.7 45.2 16.2 46.1 18.2
LORE4 17.8 54.2 2.8 27.4 16.8 14.4 10.0 0.6 8.0 16.4 11.7 48.4 25.5 56.1 22.5 ↑4.3

FARE6 11.6 50.5 1.6 19.2 9.8 12.1 11.1 0.6 6.3 12.7 7.4 50.2 15.8 46.0 18.7
LORE6 19.2 57.0 3.5 26.2 16.4 13.9 12.7 1.0 8.9 16.9 10.5 50.2 26.9 57.0 23.2 ↑4.5

FARE8 10.9 50.0 1.5 18.3 9.2 11.4 11.8 0.7 6.3 11.9 6.5 50.2 12.4 44.3 18.0
LORE8 21.7 58.8 4.1 28.0 17.2 13.8 12.8 1.1 9.5 17.7 10.9 50.2 31.5 59.0 24.2 ↑6.2

FARE10 9.03 48.3 1.1 17.7 8.3 10.4 11.5 0.4 5.5 11.1 5.4 50.2 10.6 41.9 17.1
LORE10 21.1 56.8 3.5 22.1 14,8 13.7 11.8 0.9 9.3 17.4 10.6 50.2 28.8 52.9 22.5 ↑5.4

For classification using probability distributions induced by the contrastive model, we formulate the
constrained optimization problem:

min
θ∈Θ

Ex,y∼D
[
Lsup(x, y; θ)

]
s.t. DKL(pθ0(· | x), pθ(· | x)) ≤ ρ·m(x), where m(x) = H(pθ0(· | x))
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Table 12: Evaluation under high-intensity adversarial attacks. A comprehensive assessment of
clean and adversarial performance is conducted across various image classification datasets using
the ViT-B/32 CLIP model. All models are trained on ImageNet and evaluated in a zero-shot setting
across diverse benchmarks.
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ε
=

6
.0

FARE6 5.5 28.5 0.1 11.4 6.2 7.7 10.4 0.0 2.7 5.8 3.5 50.2 3.6 30.4 12.3
LORE6 10.4 40.1 0.6 13.7 9.6 9.9 11.9 0.1 4.5 9.4 6.6 50.2 11.4 40.1 16.0 ↑3.7

FARE8 5.5 30.6 0.0 12.5 6.1 7.8 11.4 0.0 3.1 6.2 3.7 50.2 3.9 29.6 12.7
LORE8 12.9 44.6 1.4 15.0 10.9 10.4 12.2 0.6 5.3 11.0 7.4 50.2 15.3 43.2 17.5 ↑4.8

FARE10 5.3 31.4 0.0 13.7 5.4 7.3 11.8 0.0 3.2 6.1 3.6 50.2 4.2 28.5 12.7
LORE10 13.6 45.0 1.5 10.7 9.6 10.1 11.3 0.6 5.4 11.3 7.1 50.2 14.2 35.3 16.3 ↑3.6

ε
=

8
.0

FARE6 1.9 16.8 0.0 5.9 3.5 5.7 9.2 0.0 0.7 3.2 2.2 50.2 0.7 13.8 8.6
LORE6 4.8 24.3 0.2 6.7 5.0 7.4 8.1 0.0 2.0 5.5 4.0 50.2 3.6 22.3 10.7 ↑2.1

FARE8 2.2 19.1 0.0 8.4 3.8 5.4 10.0 0.0 1.4 3.2 2.2 50.2 0.9 16.2 9.3
LORE8 7.5 30.4 0.4 7.6 6.2 8.0 10.2 0.0 3.8 6.5 4.8 50.2 6.6 25.6 12.3 ↑3.0

FARE10 2.6 19.5 0.0 9.1 4.0 5.2 10.1 0.0 1.6 3.3 2.1 50.2 1.2 16.7 9.4
LORE10 8.0 31.9 0.4 5.0 5.3 8.0 10.6 0.0 4.0 6.8 5.0 50.2 6.8 20.0 11.8 ↑2.4

ε
=

1
0
.0

FARE6 0.7 9.2 0.0 2.8 1.9 3.3 6.8 0.0 0.1 1.5 1.2 50.0 0.2 4.4 6.3
LORE6 1.7 13.9 0.0 2.8 2.7 4.8 0.1 0.0 0.7 3.2 2.2 50.1 0.4 9.5 6.9 ↑0.6

FARE8 0.8 10.5 0.0 3.9 2.2 3.6 8.0 0.0 0.5 1.5 1.1 50.1 0.5 6.5 6.8
LORE8 3.2 18.9 0.1 3.7 3.3 5.6 2.9 0.0 1.6 4.2 3.0 50.1 2.1 13.8 8.4 ↑1.6

FARE10 1.0 11.5 0.0 5.1 2.3 3.4 8.5 0.0 0.6 1.8 1.2 50.1 0.6 7.6 7.1
LORE10 4.0 20.2 0.1 2.1 3.2 6.0 7.1 0.0 1.7 4.9 3.3 50.2 2.8 11.2 8.7 ↑1.6

Table 13: Comparison of Adaptive Margin m(x) vs. Fixed Margins (ViT-B/32 on ImageNet-100).
The Avg Robust Acc column is the average of the three adversarial perturbation levels (ε = 1, 2, 4).

Train ε Method ρ Clean ε = 1 ε = 2 ε = 4 Avg Robust Acc

2

LORE2
m(x) 0.1 68.81 51.51 33.71 9.93 31.72

LORE2 0.6 70.12 24.32 18.65 0.56 14.51
LORE2 0.8 69.65 45.65 29.45 5.65 26.92
LORE2 1.5 63.45 41.23 25.47 3.64 23.45
FARE2 — 62.23 40.12 23.15 3.40 22.22

4

LORE4
m(x) 0.1 66.91 46.99 35.71 17.58 33.43

LORE4 0.6 67.21 19.50 7.21 1.23 9.31
LORE4 0.8 64.32 40.21 32.23 14.68 29.04
LORE4 1.5 55.24 33.21 29.32 11.74 24.76
FARE4 — 53.68 34.85 28.78 12.87 25.50

Building on this formulation, LORE’s final objective function can be computed as before. The
framework adjusts the proximity constraint by model confidence: low entropy (high confidence)
tightens the constraint, while high entropy relaxes it for greater adaptation flexibility.

Results. The experimental setting involved fine-tuning ViT-B/32 CLIP models for 15 epochs on
ImageNet-100 using a learning rate of 1e− 5. The proximity constraint hyperparameter used ρ = 0.1.
The results are shown in Table 14.

TeCoA consistently benefits from both LORE-based (l2) and KL regularization, achieving improved
robustness while maintaining clean performance. Notably, for high adversarial training budgets (e.g.,
Train ε = 8), the TeCoA + l2 method yields a massive increase in clean accuracy compared to the
baseline TeCoA. These results demonstrate that proximity-based constraints—whether applied in
embedding space (l2) or probability space (KL)—can effectively stabilize adversarial fine-tuning in
supervised frameworks as well.
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Table 14: Extension to Supervised Fine-Tuning (ViT-B/32 CLIP on ImageNet-100). The Avg Robust
Acc column is the average of the four adversarial perturbation levels (ε = 1, 2, 4, 8).

Train ε Method Clean ε = 1 ε = 2 ε = 4 ε = 8 Avg Robust Acc

2
TeCoA2 60.04 (ref) 49.11 35.94 14.73 0.50 25.07 (ref)
TeCoA2 + l2 75.97 (+15.93 ↑) 53.24 39.12 18.12 1.23 27.93 (+2.86 ↑)
TeCoA2 + KL 66.50 (+6.46 ↑) 53.04 39.53 16.94 0.60 27.53 (+2.46 ↑)

4
TeCoA4 49.55 (ref) 44.20 38.21 19.80 1.03 25.81 (ref)
TeCoA4 + l2 73.12 (+23.57 ↑) 56.20 53.12 49.12 5.23 40.92 (+15.11 ↑)
TeCoA4 + KL 56.01 (+6.46 ↑) 48.62 42.03 22.18 1.25 28.52 (+2.71 ↑)

8
TeCoA8 30.22 (ref) 24.72 19.09 7.41 2.35 13.39 (ref)
TeCoA8 + l2 67.23 (+37.01 ↑) 36.21 26.40 15.12 4.23 20.49 (+7.10 ↑)
TeCoA8 + KL 38.06 (+7.84 ↑) 27.69 21.94 8.75 2.82 15.30 (+1.91 ↑)

J.8 Validation on Downstream Tasks (Segmentation)

To confirm LORE’s generalizability beyond classification, we evaluated its effectiveness on semantic
segmentation, a critical VLM downstream task. We use the open-source benchmark from Kowalczuk
et al. [2024] to have a fair comparison with our baselines.

We assessed the robustness of the DINOv2 ViT-S/14 model on the ADE20k segmentation dataset.
The results in Table 15 show that the LORE-hardened model improves robustness against adversarial
attacks in the embedding space while maintaining a favorable clean accuracy trade-off.

Table 15: Segmentation Results on ADE20k (DINOv2 ViT-S/14). LORE8 and FARE8 denote models
trained with an ε = 8/255 perturbation budget. mIoU is reported for clean data and under an
adversarial attack in the embedding space.

Method Clean mIoU Embed Attack mIoU

Pretrained 0.42 0.23
LORE8 0.43 0.35
FARE8 0.23 0.15

K Computation and Efficiency Analysis

In this section, we analyze the computational aspects of LORE in terms of training time, efficiency,
and convergence behavior. While LORE introduces an additional dual network and constraint
enforcement mechanism, we find that its cost remains practical and comparable to FARE baselines.

K.1 Convergence Efficiency.

To compare the training efficiency of FARE and LORE, we measure the total training time (in
minutes) required to reach specific robust accuracy (RAcc) thresholds on the validation set. Table 16
reports this comparison across various model backbones, including ViT-B/16, ViT-B/32, ConvNeXt-
B, ViT-S/14, and ViT-B/14. LORE often reaches target RAcc levels in fewer training minutes than
FARE, highlighting its superior optimization efficiency and stability.

K.2 Impact of λω architecture on Training Time.

The results in Table 17 show that LORE’s current dual network design is not only significantly more
efficient than using a separate pretrained CLIP model as a dual network, but also achieves comparable
runtime to simpler parameterizations (scalar or linear forms). This demonstrates that LORE achieves
computational efficiency without sacrificing expressive capacity.
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Table 16: Training time (in minutes) required to reach different robust accuracy (RAcc) thresholds
under PGD attack (ε = 2/255). Lower is better. All models were trained using 4 NVIDIA H100
80GB GPUs.

Model Method 10% 20% 30% 35% Dataset

ViT-B/16 FARE 23 38 64 98 ImageNet-100LORE 11 17 23 31

ViT-B/32 FARE 30 86 – – ImageNetLORE 25 68 185 –

ViT-B/32 FARE 62 115 165 285 ImageNet-100LORE 47 84 148 268

ConvNeXt-B FARE 19 26 34 40 ImageNet-100LORE 52 57 60 63

ViT-S/14 FARE 25 43 100 181 ImageNetLORE 39 71 124 126

ViT-B/14 FARE 22 28 43 56 ImageNetLORE 29 32 42 53

Table 17: Training time (in seconds) for 50 iterations of LORE using 4×H100 GPUs
across different architectures for λω. The Linear model uses a single-layer projection:
nn.Linear(self.embedding_size, 1). Lower is better.

Architecture Training Time (s)

LORE (Current Dual Network) 551
Scalar λ (input-independent) 533
Linear λ (input-independent) 540
Pretrained CLIP 692

K.3 Impact of K on Training Time.

As described in Section 5, LORE alternates between K primal updates and one dual update per batch.
While Section I analyzes the impact of K on final performance, here in Fig. 15, we empirically
examine how varying K affects training time.

38



Figure 15: Figure: Training time (in seconds) for completing 30 training iterations of LORE under
different values of K, using 8×H100 GPUs. Results are reported for two architectures: ViT-B/32
and ConvNeXt-B. Increasing K slightly raises the training time due to more frequent primal updates,
with consistent trends across both models.
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