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ABSTRACT

In this paper we propose a crossover operator for genetic algorithms with binary
chromosomes population based on the cellular automata (CGACell). After pre-
senting the fundamental elements regarding cellular automata with specific ex-
amples for one- and two- dimensional cases, the the most widely used crossover
operators in applications with genetic algorithms are described and the crossover
operator based on cellular automata is defined. Specific forms of the crossover
operator based on the ECA and 2D CA cases are described and exemplified.
The CGACell crossover operator is used in the genetic structure to improved the
KNN algorithm in terms of the parameter represented by the number of nearest
neighbors selected by the data classification method. Validity and practical perfor-
mance testing is performed on image data classification problems by optimizing
the nearest-neighbors-based algorithm. The experimental study on the proposed
crossover operator, by comparing the algorithm based on CGACell with standard
data classification algorithms such as PCA, Kmeans or KNN, attests good quali-
tative performance in terms of correctness percentages in the recognition of new
images, in classification applications of facial image classes corresponding to sev-
eral persons.

1 INTRODUCTION

The numerous theoretical and practical applications, conferred by the ability to offer innovative
solutions for a varied range of complex problems, have positioned optimization techniques in the
attention of researchers from various fields such as machine learning, operations research, computa-
tional systems biology, mechanics or economics and finance. Among the categories of optimization
techniques, we can specify stochastic optimization, linear programming, quadratic programming,
continuous optimization, discrete optimization, unconstrained optimization, as well as evolutionary
algorithms that are able to find solutions in complex and large data spaces (4), (18), (32). The main
evolutionary algorithms used are: Genetic Algorithms, Particle Swarm Optimisations (PSO), Ant
Colony (AC), Simulated Annealing (SA), Immune Algorithms (IA), Artificial Bee Colony (ABC),
Firefly Algorithm (FA) and Differential Evolution (DE). Realizing the percentages of use in ap-
plications, with a value of over 50%, genetic algorithms were chosen (48). Among the various
applications of genetic algorithms, the most important is the optimization of problems by determin-
ing the optimal solutions. Genetic algorithms are optimization algorithms inspired by the process
of natural selection through which representative individuals are advantaged and were developed by
Goldberg (1989) (18). Applications using GA include: data clustering and mining, neural networks,
image processing, feature selection for machine learning, medical science, learning robot behavior,
traveling salesman problem, vehicle routing problem, financial markets, manufacturing system or
mechanical engineering design (24), (36). In the process of searching for solutions in the solution
space, a genetic algorithm performs an evolutionary transformation of the population, over several
generations, by using the genetic operators of selection, crossover and mutation, and the quality
of the descendants of the chromosomes in the current population is evaluated by the function fit-
ness that decides the composition of the new population of chromosomes. An essential role in the
evolutionary process of a genetic algorithm is represented by the reproduction stage in which the
chromosomes, selected to participate in the formation of the new generation, determine the new
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descendants through the gene crossing operation (24), (38), (50). Thus, the crossover problem has
many developments in specialized research, establishing experimental performances from classic
methods (with one point, with two or more crossing points, uniform or order) to techniques to solve
object classification problems (Looseness control crossover or Greedy partition crossover) (5), (29),
(30), (45), (47). The aim of the paper is to propose a crossover operator for genetic algorithms
using cellular automata and to establish the experimental performance in specific data classification
applications.

2 THE CELLULAR AUTOMATA

Cellular automata are among the oldest models of natural computing, the first studies being carried
out by John von Neumann in the 1940s. Cellular automata have a biological motivation rendered
by the design of artificial systems that have the property of self-replication, having as inspiration
the model from the level of the human brain in which memory and processing units do not operate
separately but are able to work together (25). At the S. Ulam’s suggestions, J. Neumann developed
the system by considering a discrete space consisting of a two-dimensional mesh of machines with
finite states. Given the ability to solve problems of high complexity, cellular automata have been
used in the fields of natural sciences, mathematics or computer science (51; 42). After A. Burks
published J. von Neumann’s book in 1966, more scientists became interested in cellular automata.
John Conway in 1970 introduced a CA called Game of Life. He used a two-dimensional lattice
with two possible states for the cells (dead and alive) and the transition being made based on the
neighboring cells of the dead or alive type (17). A cellular system constitutes a basic framework
or cellular space in which the events of the automaton can take place and the simple and precise
rules applied will ensure the functioning of the system (6). The cellular space is defined by an n-
dimensional space together with a neighborhood relation defined on this space. The neighborhood
relation associates each cell in the cell space with a lot of neighboring cells. A cellular automata is
specified by a finite list of states for each cell, an initial state and a transition function that, based on
the neighborhood relationship at time t, establishes a new state at time t+ 1 corresponding to each
cell. In the standard formulation, CA can be studied in the Zd (d ∈ N∗) space and using an alphabet
L. In recent years, several generalizations relative to the CA alphabet have been developed through
the use of groups, vector spaces or commutative monoids (8), (9), (10), (53). For the case of a group
V and an alphabet set L, the specific elements (configuration space, shift action, memory set and
local function) for defining a cellular automaton are given below (7), (26). The configuration space
represents the set of functions defined on V with values in L of the form LV = {f : V → L}.

The shift action of V on LV is defined by g · f(h) = f · (g−1h), for all f ∈ LV , g, h ∈ V .

The memory set represents a subset M of the set V (M ⊆ V ) and a local function is defined by a
function φ : LM → L.

A cellular automaton is defined by a function γ : LV → LV that satisfies the property γ(f)(g) =
φ(g−1 · f)|M ), with memory set M and local function φ, ∀f ∈ LV , g ∈ V and where |M denotes
the restriction to M of a configuration in LV .

Elementary Cellular Automaton (ECA) 1D CA The elementary cellular automaton represents
a one-dimensional cellular automaton (1D CA) with two states (L = {0, 1}), and the transi-
tion rule in a new state of a cell depends only on the neighborhood formed with the adjacent
cells (the current cell and the left and right neighbors of the cell). An ECA capable of univer-
sal computation due to the property of simulating any Turing machine, and thus the system is
able to recognize or decide other sets of data manipulation rules, is a one-dimensional CA cor-
responding to rule 110 of the Wolfram Code, establishing the resulting states for the eight possi-
ble configurations associated for a cell with its two adjacent neighbors. To establish the particu-
lar case of the ECA, the settings corresponding to the one-dimensional case with two cell states
are considered by: V = Z and L = {0, 1}. With these conditions, the configuration space
LV = LZ = {f : Z → L}, LZ = {. . . , f−n, f−(n−1), . . . , f−2, f−1, f0, f1, f2, . . . , fn, . . . },
where f i = {. . . , f−m, f−(m−1), . . . , f−2, f−1, f0, f1, f2, . . . , fm−1, fm, . . . }, fi = f(i),
∀i ∈ Z and f(i) represents the value of the image of i by the function f i,
n,m ∈ N. In this case the shift action of r ∈ Z on LZ can be written
by the following relation r · f = {. . . , f−r−m, f−(r+m−1), . . . , f−r−2, f−r−1, f−r, f−r+1,
f−r+2, . . . , f−r+m−1, f−r+m, . . . }. Also, the memory set M is established based on the pattern
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Figure 1: Neighborhood templates used for 2D CA - in order two von Neumann neighborhoods with
5 neighbors and extended to 13 neighbors, Moore template with 9 neighbors, Smith and Cole (two
images) neighborhoods.

associated with the neighborhood used for the cells of the automaton by M = {−1, 0, 1} and the
local function of the automaton is defined by φ : LM → L (φ : {0, 1}{−1,0,1} → {0, 1}).

The cellular automaton is defined based on set memory M and the local function φ through the
function γ : {0, 1}Z → {0, 1}Z that satisfies the property γ(f)(j) = φ(j−1 · f)|M ), ∀f ∈ {0, 1}Z,
j ∈ Z and where |M denotes the restriction to M = {−1, 0, 1} of a configuration in {0, 1}Z.

Two-dimensional cellular automata (2D CA) There are several approaches in the field to define
two-dimensional cellular automata (2D CA). As in the case of ECA, the components of a cellular
automaton are the lattice (set of cells - each one in a state), the neighborhood and the local transition
rules. The rules represent the communication between each cell and its neighborhood, it is local,
uniform for the whole lattice and synchronous. The rules determine the global evolution of the
system at each discrete step in time. The lattice represents the V group also considered for the
definition of one-dimensional cellular automata ECA. If V = Z was considered for ECA, V = Z2

is considered for the definition of two-dimensional cellular automata. The neighborhood is the set
of cells taken into account in the evolution of the cell. The most used are the Von Neumann and
Moore neighborhoods (34). The von Neuman neighborhood model is a template that contains the
immediate north, south, east, and west neighbors of the current cell. The Moore neighborhood model
is a template that includes all the immediate neighbors of the current cell (from the north, south,
east, west, northeast, northwest, southeast and southwest). Over time, several models with adequate
results in applications have been added to these templates (49), (13) (Figure 1). The states of a 2D
CA at any moment can be represented by a binary matrix A of size m·n, m,n ∈ N∗ that will contain
the cells of the automaton. According to the definition in (34), for the von Neumann neighborhood
consisting of five neighbors and the lattice A, the state of a cell in position (i, j) (i, j ∈ N∗) of
A, at+1

ij is updated from a new generation t + 1 (t ∈ N∗) through a relation of the form: at+1
ij =

ϕ(atij−1, a
t
ij+1, a

t
ij , a

t
i−1j , a

t
i+1j) with i = 1..n, j = 1..m, t = 1..Ng , where Ng ∈ N∗ is the

number of generations of evolution of the automaton. Given the size of the considered neighborhood
with k = 5 neighbors, we have 2k possible states associated with cells in the neighborhood based
on a rule for associating bits from the binary representation of numerical values in the interval
[0, 22

k − 1] ∩ N.

Another variant used is the one in which the state of the current cell is determined by a rule based on
a function f with the argument represented by the sum of the values of the states of the neighbors
retrieved according to the template used at+1

ij = f(atij−1 + atij+1 + atij + ati−1j + ati+1j) with
i = 1..n, j = 1..m and t = 1..Ng with the extension of f̃ through at+1

ij = f̃(atij , a
t
ij−1 + atij+1 +

ati−1j + ati+1j) by using only the four neighbors. In this case the sum of the binary state of the
neighbors are maximally 4 and we may establish that the new state of the cell at+1

ij to be equal with
the bit value by position atij−1+atij+1+ati−1j+ati+1j from the binary representation for the choose
rule in numerical domain like [0, 2k − 1] = [0, 25 − 1] ∩ N.

2.1 CROSSOVER METHODS USED BY GA

Crossover operators are used to generate offspring chromosomes by recombining selected individu-
als from the current population to form the new generation. Among the most used crossover oper-
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ators are single point, two-point, k-point, uniform, partially matched, order, precedence preserving
crossover, shuffle, reduced surrogate and cycle (24), (29).

3 CGACELL OPERATOR FOR BINARY CHROMOSOMES POPULATION OF
GENETIC ALGORITHMS

In this section, the crossover operator based on cellular automata is introduced (CGACell operator)
for the case of chromosomes represented by genes with binary values.

Consider a cellular automaton γ and a genetic algorithm G with the population consisting of
genes with binary values P (t) = {ch1, ch2, . . . , chnc}, where chi is the i chromosome, chi =
{gi1, gi2, . . . , gng}, giq ∈ {0, 1} for q = 1..ng and i = 1..nc, nc ∈ N∗ is the number of chromo-
somes in P (t) at time t ∈ N∗ and ng ∈ N∗ is the number of genes of the chromosomes chi with
i ∈ N∗.

[CGACell Crossover operator] The crossover operator CGACell is defined for a population of
binary chromosomes P (t) = {ch1, ch2, . . . , chnc}, a cellular automaton γ (k- dimensional, k ∈
N∗) and a neighborhood Vh established according to a given template for taking neighbors, Vh =
{v1, v2, . . . , vnr}, vi ∈ Nk, i = 1..nr, nr ∈ N∗ is the elements number of Vh, as follows:

CGACell(Cs, Vh, γ) = kD CA(Cs, Vh, γ), (1)

where kD CA(Cs, Vh, γ) represents the descendant chromosome obtained by applying a k-
dimensional cellular automaton (kD CA) on a set of chromosomes Cs (with Cs ⊂ P (t)) chosen
by the selection techniques established by GA, with a cardinality correlated with the size of the
neighborhood used Vh.

[CGACell ECA] In the one-dimensional case of cellular automata, the crossover operator CGACell
ECA is obtained. We have the relationship CGACell(Cs, Vh, γ) = 1D CA(Cs, Vh, γ), where the
neighborhood Vh consists of 3 elements represented by the neighboring cells on the left and right
of the current cells, Vh = {v1, v2, v3}, vi ∈ {0, 1}, nr = 3, i = 1..nr, nr ∈ N∗ is the elements
number of Vh.

The CGACell ECA operator can be applied in two ways: individually on each chromosome chosen
in the selection stage for recombination, or mixed on genes on the same positions (or corresponding
through a mapping) from a number of chromosomes chosen for recombination equal to the cardi-
nality of the set of memory M of the cellular automaton (equal to three for the exemplified case).

Example 1 - CGACell ECA The method of applying the operator CGACell ECA at the chromo-
some level using an ECA with rule 110 previously presented in section CA (remark 1) is illustrated
in Figure 2. Also, the results of the CGACell ECA crossover operator for ECA Rule 90 are illus-
trated in Figure 3. The two offspring chromosomes correspond to the chromosomes chosen by
selection to participate in reproduction for GA. Cells that change their state by applying CGACell
ECA Crossover and according to ECA Rule 110 or 90 are highlighted on a white colored back-
ground for each descendant. For cells in extreme positions, they are generically filled with inactive
values equal to zero for full ECA rule application.

Figure 2: The CGACell ECA Crossover for two parents with 9 genes by applying ECA Rule 110 at
the individual chromosome level

Example 2 - CGACell ECA The crossover operator CGACell ECA can also be applied in mixed
mode on three chromosomes, chosen after the selection stage. Let the set of chromosomes chosen
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Figure 3: The CGACell ECA Crossover for two parents with 9 genes by applying ECA Rule 90 at
the individual chromosome level

for reproduction in the GA selection stage be of the form Cs = {ch1, ch2, ch3} from the current
population P (t).

Having the representation of chromosomes chi = {gi1, gi2, . . . , ging}, giq ∈ {0, 1} for q = 1..ng
(ng = 9) and i = 1..nc, nc = 3, the neighborhood Vh is formed for the application of the CGACell
ECA crossover operator, by Vh = {v1, v2, v3}, with vi = gij , j ∈ {1, 2, . . . , ng}, vi ∈ {0, 1} ,
nr = 3, i = 1..nc.

The application of the operator CGACell ECA at a mixed level on three chromosomes using ECA
with rule 110 is presented in Figure 4 and by using ECA with rule 90 in Figure 5. We can see the
descendant chromosome (D1 or D2) obtained by CGACell ECA crossover using ECA Rule 110 or
90 with the neighborhood formed by taking the values of the genes on the same positions from the
three chromosomes selected for crossing.

Descendant chromosome (D1 or D2) cells that differ from the corresponding states in chromo-
some two, after applying CGACell ECA Crossover and ECA Rule 110 or 90, are highlighted
on a white background. [CGACell 2D CA] By using two-dimensional cellular automata,

Figure 4: The CGACell ECA Crossover in the mixed variant for three chromosomes with 9 genes by
applying ECA Rule 110

Figure 5: The CGACell ECA Crossover in the mixed variant for three chromosomes with 9 genes by
applying ECA Rule 90

the version of the CGACell 2D CA crossover operator is obtained. We have the relationship
CGACell(Cs, Vh, γ) = 2D CA(Cs, Vh, γ), where the neighborhood V sh is built in accordance
with the templates presented for two-dimensional cellular automata (remark 2, figures 1), the most
representative being the von Neumann neighborhood with five neighbors, respectively, the Moore
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neighborhood with nine neighbors, Vh = {v1, v2, vnv}, vi ∈ {0, 1}, i = 1..nr and nv ∈ N∗ is the
number of neighbors in Vh.

The configuration space of the cellular automaton V is formed by completing the two-dimensional
space with chromosomes chosen (Cs) from the current population P (t) to participate in the creation
of descendants and the new generation of individuals.

Application in data classification with KNN method of the CGACell crossover-based genetic
algorithm It is considered a data classification application using the KNN algorithm based on the
nearest neighbors (2), (3), (21). Performance testing in data classification through the KNN algo-
rithm is performed on the basis of a set of training data XL and a set of test data Xt, both sets
of data from multiple data classes, and the key element that determines the improvement of the
results is the parameter k number of neighbors taken into account for classification. For the opti-
mal establishment regarding the performance in classification of the value of the k parameter, it can
be achieved by applying a genetic algorithm based on CGACell crossover. The genetic algorithm
based on the CGACell crossover operator (usually the ECA or 2D CA versions are used), denoted
by CGACell-GA for data classification by the nearest neighbors method includes the following work
steps:

+ The population is made up of chromosomes with binary values corresponding to the binary
representation of the values in the field of representation of the k parameter that designates
the number of nearest neighbors that will decide, depending on the classes of origin, the
classification results for the KNN algorithm.

+ The population consists of binary chromosomes with a size equal to the number of bits
(nb ∈ N∗) in the representation of the maximum value (Kmax) in the range of possible
values for the parameter k. Let Kmax be the maximum value of k established based on the
number of data used for training by Kmax = pk ∗

∑l
i=1 n

L
i , (k ∈ [Kmin,Kmax]), where

nL
i is the number of the training data input from class i, i = 1..l), l ∈ N∗ is number of data

classes, and pk is the selection weight for the maximum number of neighbors with values,
usually chosen, in the interval pk ∈ [0.4, 0.8] and Kmin = 0.

+ The population of the genetic algorithm consists of chromosomes as follows: P (t) =
{ch1, ch2, ..., chnc}, where chi is the i chromosome, chi ∈ [Kmin,Kmax], chi =
{b1, b2, ..., bnb}, bq ∈ {0, 1} for q = 1..nb and i = 1..nc, with nc ∈ N∗ is the number
of chromosomes and in the experiments a value adapted to the total number of training data
was used.

+ The fitness function f(chi), i = 1..nc is represented by the performance (percentage of
correct classification) in the classification of the test data obtained by using a number of
nearest neighbors equal to the value in base ten of the chromosome (chi) argument of the
function.

+ The selection is carried out by the roulette type method after determining the scaling func-
tion for the chromosomes in the current population (the moment of time t ∈ N∗), es-
tablishing the selection probabilities and the actual selection of chromosomes P1(t) =
{chi1 , chi2 , ..., chinsc

} with {i1, i2, ..., insc} ⊂ {1, 2, ..., nc} and nsc ∈ N∗ is the number
of selected chromosomes for the crossing stage based on randomly generated values in the
numerical range [0, 1].

+ The CGACell crossover is performed for the chromosomes selected from the set P1(t)
through several transformation methods at the level of the binary vectors from the chromo-
some representations. CGACell ECA or 2D CA crossover are used. For each crossing case,
the corresponding experimental results were established in the classification of the test data
from the test set Xt.

+ The mutation is carried out at the level of the chromosomes in the set P1(t) resulting after
the step of crossing the binary genes. The mutation operation involves updating certain
genes, in a very small proportion (between 1% − 5%) by transforming the chosen genes
into the complementary binary value.

+ After the genetic mutation operation, the set of chromosomes in P1(t)∪P (t) is reevaluated
by applying the fitness function in order to establish their quality and the new generation
of chromosomes is formed by choosing the best nc chromosomes.
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+ The algorithm is repeated by applying the genetic operators of selection, CGACell
crossover and mutation and forming new generations with the best performing nc chro-
mosomes until a predetermined maximum number of training generations is reached or the
optimal value is reached or in the situation where the classification performance test data
stagnates.

The experimental results regarding the application of CGACell crossover in KNN data classification
showed good performance in a study compared to other classification methods and are presented in
the experimental analysis section.

4 RELATED WORK

In the specialized literature there are many optimization applications in which genetic algorithms
are used with improvements at the crossover stage. E. Tafehi et al. introduced a new and im-
proved method for GA based on Chaotic Cellular automata (CCA) along with influencing pseudo
random number generator. The operations specific to the genetic algorithm of selection, mutation
and crossover are influenced by pseudo random number generator and thus change the behavior of
the evolution of chromosomes in the exploration space (40). U. Cerruti et al. introduced an original
implementation of a cellular automaton whose rules use a fitness function to select for each cell
the best mate to reproduce and a crossover operator to determine the resulting offspring. They also
created two generalizations of the game of life and other applications in the paper (11). Deng et al.
in the paper (14) proposed a hybrid cellular genetic algorithm with simulated annealing in which the
genetic algorithm used together with cellular automata. They applied a hybrid cellular genetic algo-
rithm combined with a simulated annealing algorithm to solve the TSP, and the experimental results
showed the optimization performance of the hybrid cellular genetic algorithm. In the paper (28) M.
Mitchell et al. have applied genetic algorithms to the design of cellular automata that can perform
calculations that require global coordination. The proposed work method establishes for each chro-
mosome in the population a candidate rule table. The evolution of CA with GA has provided an
appropriate framework in which to study the mechanisms by which an evolutionary process could
create complex coordinated behavior in decentralized distributed natural systems. S.J. Louis and
G.L. Raines used a genetic algorithm to calibrate a cellular automaton that modeled mining activity
on public land in Idaho and Western Montana. The genetic algorithm searches in the parameter
space of the transition rules of a 2D CA to find the parameters of the rule that matches the observed
mining activity data (27).

5 EXPERIMENTAL ANALYSIS FOR CGACell CROSSOVER OPERATOR IN
SPECIFIC TASKS

The performance testing of the CGACell crossover operator based on cellular automata is performed
in two-dimensional data classification applications (images). The CGACell crossover operator pre-
sented in this paper is used in image classification problems through the KNN algorithm to optimize
the parameter k representing the number of nearest neighbors. The genetic algorithm (CGACell-
GA) based on CGACell crossover is detailed in remark 5. The Yale database contains 165 images

Figure 6: Case I - Image classification for three face image classes from the Yale face database

of faces corresponding to 15 people with 11 images each representing certain facial expressions or
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Figure 7: Case II - Image classification for seven face image classes from the Yale face database

configurations (glasses, happy, left light, right light, sad, sleepy, surprised, wink, center light, no
glasses and normal). The experimental results are achieved by the stability of the correctness per-
centages in the classification of image classes from the Yale image database. The performances in
testing new images for the proposed algorithm are highlighted through an experimental comparative
study with standard classification methods such as the KMeans algorithm, the Principal Component
Analysis (PCA) algorithm and the standard KNN algorithm. In the comparative study, three cases
are considered regarding the number of classes of images: the classification of 3 classes of images,
the classification of 7 classes of images and, respectively, all the classes (11) of images available in
the database. For each case of the number of classes of images, the correctness percentages in the
classification of images corresponding to the use of three, five, and eight training images from each
class of images are established. In all three cases, the number of images used for the training stage is
represented by the labels Series1- three training images, Series2- five training images, and Series3-
eight training images, in figures 6 - 9. Figure 9 shows results obtained from the experimental anal-

Figure 8: Case III - Image classification for eleven face image classes from the Yale face database

Figure 9: Graphic representation of correct classification percents of face images for three, seven,
and eleven classes of face images, respectively, and having three, five, and eight training images,
respectively

ysis based on the Yale image database for the classification of images from 3, 7 and 11 face image
classes by using a name of 3, 5, respectively 8 training face images. Also, the numerical results ob-
tained from the experimental analysis for the algorithm based on CGACell crossover, using the Yale
image database for classifying images from face image classes 3, 7, and 11 and having successive
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values of 3, 5, and 8 training face images, respectively, and the rest of the images remained in the
test set, are specified in table 1.

Table 1: Values of correct classification percents of face images from the Yale database for three,
seven, and eleven classes of face images, and having three, five, and eight training images

Algorithm No. of img. No. of training images
classification classes 3 img.tr. 5 img.tr. 8 img.tr.

Kmeans 3 (27.27%) 79.17% 88.89% 88.89%
Kmeans 7 (46.66%) 87.50% 88.10% 85.71%
Kmeans 11 (73.33%) 88.64% 92.42% 87.88%

KNN 3 (27.27%) 91.67% 94.44% 88.89%
KNN 7 (46.66%) 91.07% 92.86% 90.48%
KNN 11 (73.33%) 92.05% 93.94% 93.94%
PCA 3 (27.27%) 91.67% 94.44% 100.00%
PCA 7 (46.66%) 92.86% 95.24% 95.24%
PCA 11 (73.33%) 93.18% 93.94% 96.97%

CGACell-GA 3 (27.27%) 95.83% 94.44% 100.00%
CGACell-GA 7 (46.66%) 96.43% 97.62% 95.24%
CGACell-GA 11 (73.33%) 95.45% 98.48% 96.97%

Case I. For the first test, the images from three classes of images taken from the Yale face database
are classified by applying the proposed CGACell-GA algorithm, as well as the KMeans, standard
KNN and PCA algorithms. The percentages of correct classification of images from the three classes
are graphically represented in figure 6 for different values (three, five, and eight images, respectively)
of the number of training images from each class of face images.

Case II. For the second test, the procedure is similar to the working method of case 1, except that
seven classes of images are classified and the results are in figure 7.

Case III. For the third test, the procedure is similar to the working method of cases 1 and 2, except
that eleven classes of images are classified and the results are in figure 8.

6 SUMMARY AND CONCLUSIONS

In the elaborated work, a version of crossover specific to genetic algorithms by using cellular au-
tomata, was described and established. The introduced crossover operator is based on the functional-
ity of cellular automata, and the specification of the operator for the cases most used in applications,
of elementary automata, respectively, two-dimensional and with von Neumann and Moore neighbor-
hood, are described. The results of the comparative study are performed for the proposed algorithm
based on the cellular crossover operator with other standard image classification methods from the
Yale face database and established good performance in the classification of new images from the
considered image classes. In the future development, it will be analyzed the possibility of using
the proposed crossover operator in an integrated system of multilayer neural networks with applica-
tions in image recognition, as well as in applications for generating knowledge assessment tests of
different difficulty categories in the educational system.
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