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Abstract001

There has been increasing interest in building002
multilingual foundation models for NLP and003
speech research. This paper examines how004
to expand the speech translation capability of005
these models with restricted data. Whisper, a006
speech foundation model with strong perfor-007
mance on speech recognition and English trans-008
lation, is used as the example model. Using009
speech-to-speech retrieval to analyse the audio010
representations generated by the encoder, we011
show that utterances from different languages012
are mapped to a shared semantic space. This013
shared embedding space can then be leveraged014
for zero-shot cross-lingual transfer in speech015
translation. By fine-tuning the Whisper decoder016
with only English-to-Chinese speech transla-017
tion data, improved performance for translation018
to Chinese can be obtained for multiple lan-019
guages, in addition to English. Furthermore,020
for languages related to those seen in training021
it is possible to perform speech translation, de-022
spite the model never seeing the language in023
training, or being able to perform transcription.024

1 Introduction025

Speech translation (ST) systems directly generate026

transcriptions in the target language from spoken027

utterances in a different language and have vari-028

ous applications (Inaguma et al., 2019; Nakamura,029

2009). With the growing demand for multilingual030

models, it is crucial to develop translation systems031

that support multiple languages, both as source and032

target. However, data collection for training ST033

systems is more challenging than for Neural Ma-034

chine Translation (NMT) and Automatic Speech035

Recognition (ASR) tasks. Unlike NMT, where the036

same text corpus can be used for both translation037

directions (Artetxe and Schwenk, 2019), ST sys-038

tems face challenges due to their asymmetric input-039

output nature. For instance, data for translating040

audio in language X into text in English (X→en)041

would be easier to collect than en→X data, largely042

due to the higher global demand for English trans- 043

lations. Moreover, high-resource language pairs 044

have more available data than low-resource pairs. 045

Given the high cost of collecting diverse data 046

pairs for ST systems, understanding what is re- 047

quired to build a multilingual ST model and expand 048

its capability to more languages is essential. In this 049

work, we use OpenAI’s Whisper (Radford et al., 050

2023) as a case study to explore the behavior of 051

multilingual speech foundation models. Whisper 052

is pre-trained to support speech recognition in 100 053

languages and translation from 99 languages into 054

English (X → en). The encoder can extract se- 055

mantic information from the acoustic features. We 056

hypothesise that the features in different languages 057

are aligned within a shared semantic space, and 058

this alignment could enable the model to support 059

translation from multiple source languages, a key 060

feature for expanding multilingual ST capabilities. 061

Whisper’s decoder acts as a language model that 062

generates tokens conditioned on the encoder out- 063

puts. By supporting multiple languages at the token 064

level, the decoder facilitates translation into vari- 065

ous target languages. This flexibility allows us to 066

test and expand its ST capabilities to new target 067

languages, which we verify through zero-shot and 068

fine-tuning experiments. 069

In this work, we explore how to extend Whis- 070

per’s capability in speech translation, expanding 071

its supported translation language pairs. First, we 072

evaluate the level of language invariance in the em- 073

beddings produced by the Whisper encoder using 074

a speech-to-speech retrieval task (Lee et al., 2015). 075

Second, we expand the translation to a new target 076

language by fine-tuning Whisper, the results show 077

a level of cross-lingual transferability among the 078

source languages. Third, we show that Whisper can 079

translate spoken utterances from previously unseen 080

languages into English texts, indicating its ability 081

to map unseen languages into a shared speech em- 082

bedding space. 083
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Figure 1: Illustration of the decoding process of Whisper for ASR and speech translation tasks.

2 Related Works084

Prior work has shown that multilingual text mod-085

els, such as M-BERT (Pires et al., 2019), produce086

language-invariant embeddings, mapping the same087

semantic information from different languages to088

a similar embedding space. This language invari-089

ance enables cross-lingual text retrieval (Pires et al.,090

2019; Wu and Dredze, 2019; Cao et al., 2019) and091

boosts the model performance in other languages,092

when fine-tuned only on English corpus (Pires093

et al., 2019). This transfer learning capability094

is particularly beneficial in low-resource settings.095

(Schwenk and Douze, 2017; Artetxe and Schwenk,096

2019) have shown that using machine translation097

as the training objective can effectively generate098

language-invariant embeddings. In this work, we099

examine whether it applies to speech-based mod-100

els with speech translation as the training objec-101

tive. Unlike text models, Whisper’s pre-training for102

speech translation only uses English as the target103

language, and its utterance embeddings are not ex-104

plicitly aggregated. Additionally, speech represen-105

tations are much longer than text tokens. These dif-106

ferences add to the difficulty of the auto-alignment107

in the speech encoder space.108

3 Speech Translation109

Whisper Model110

The Whisper models are trained in a weakly su-111

pervised way and come in various sizes, from the112

tiny model with 39M parameters to the large model113

with 1550M parameters (Radford et al., 2023). Dur-114

ing pre-training, the model learns in a multi-task115

fashion on automatic speech recognition, speech116

translation, voice activity detection, and language117

identification. In decoding, it generates different118

outputs based on the “context” tokens given to the119

decoder. For ASR, Whisper converts an utterance120

in language L into its corresponding transcription,121

UttL → TextL. For speech translation, it supports122

translation from any supported language to English,123

represented as UttL→TextEN. Figure 1 illustrates124

the example decoding process and the associated 125

context tokens in orange and purple text blocks. 126

Audio Embeddings 127

Given that multilingual text models like M-BERT 128

generate language-invariant embeddings, it’s rea- 129

sonable to investigate whether Whisper, a multi- 130

lingual speech model, exhibits similar properties. 131

If Whisper’s encoder produces language-invariant 132

speech embeddings, it would be a significant ad- 133

vantage for handling multiple source languages in 134

speech translation. This cross-lingual capability 135

enables Whisper to effectively translate between 136

various language pairs by aligning speech represen- 137

tations across different source languages. 138

To assess the cross-lingual alignment of Whis- 139

per, we use zero-shot speech-to-speech retrieval 140

tasks (Boito et al., 2020; Duquenne et al., 2023) as 141

an evaluation method. In this task, given a query 142

audio q, the goal is to retrieve an utterance r̂q in 143

the target language that conveys the same meaning 144

as q from a set of R candidates. We measure the 145

performance of the speech retrieval task using the 146

recall rate, R@1 = 1
|Q|

∑
q∈Q I(rq, r̂q) where rq 147

is the retrieved result and r̂q is the reference. For 148

each query q and candidate audio r, we extract the 149

encoder output sequences from Whisper, denoted 150

as Eq and Er. The retrieved utterance rq is then 151

determined as the one with the highest similarity 152

score, rq = argmaxr∈R Sim(Eq, Er). 153

We propose SeqSim, a metric inspired by 154

BERTScore (Zhang et al., 2019), to compute simi- 155

larity between two speech embedding sequences: 156

Reseq =
1

|X|
∑
x∈X

max
y∈Y

x⊤y; Prseq =
1

|Y |
∑
y∈Y

max
x∈X

x⊤y

SeqSim = 2 · Prseq · Reseq
Prseq + Reseq

(1) 157

While BERTScore evaluates text generation tasks 158

by comparing embeddings of individual tokens, Se- 159

qSim adapts this concept for audio frames. It com- 160

putes the cosine similarity between embeddings 161

of audio frames from one speech utterance X and 162

those from another speech utterance Y . Specifi- 163
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cally, SeqSim measures how well each audio frame164

in X matches with the most similar frame in Y .165

New Target Languages166

Although Whisper was trained to translate speech167

into English, its decoder has been exposed to a di-168

verse range of languages and their corresponding169

tokens throughout its training. This extensive mul-170

tilingual exposure suggests that the model might171

also be capable of translating into other languages.172

To investigate this potential, we evaluate Whisper’s173

baseline translation performance for languages be-174

yond English. Following (Peng et al., 2023), which175

demonstrated that the <transcribe> task token176

can outperform <translate> in the translation177

task, we compare these tokens in the zero-shot178

experiments to test translation into new target lan-179

guages. Fine-tuning the model for a new target180

language is also compared. Figure 1 shows the181

decoding process with an added target language:182

Chinese, zh.183

We discuss above the potential of Whisper’s en-184

coder generating embeddings within a shared se-185

mantic space, facilitating cross-lingual transferabil-186

ity. This feature allows Whisper to handle multi-187

ple source languages in speech translation. When188

fine-tuning Whisper for a specific language pair189

to expand the speech translation to a new target190

language (e.g. en → zh), we expect improved191

performance for other source languages translat-192

ing into the same target language (X→zh). This193

aspect will be examined in Section 4.3.194

New Source Language195

Low-resource languages not seen during Whisper’s196

training have different lexical representations com-197

pared to the languages the model was trained on.198

However, they may share similar acoustic features.199

It remains to be seen whether speech embeddings200

for these low-resource languages also fall within201

the model’s shared semantic space. If so, this align-202

ment could enable Whisper to effectively expand203

its speech translation capabilities to include these204

new source languages. Section 4.4 will explore this205

possibility through experiments.206

4 Experimental Results207

4.1 Setup208

The Whisper large-v2 model is selected for the209

multilingual speech translation experiments, which210

shows superior performance compared to other211

model sizes (Radford et al., 2023). We evaluate212

speech translation on the FLEURS dataset (Con-213

Query R@1 [%]
en fr de zh ja

en - 80.0 80.0 46.2 45.5
fr 73.2 - 64.8 42.0 48.1
de 70.4 62.2 - 42.7 48.1
zh 26.5 25.4 19.0 - 43.2
ja 18.1 22.3 16.4 35.2 -

Table 1: Zero-shot speech-to-speech retrieval results
measured with SeqSim on FLEURS.

neau et al., 2023), which provides n-way parallel 214

speech data. For the main experiments, we selected 215

5 languages: English (en), French (fr), German 216

(de), Chinese (zh), and Japanese (ja), chosen for 217

their wide usage and representation of different 218

language families. To extend Whisper’s ability to 219

translate into a new target language, we use the 220

en-to-zh subset from the CoVoST dataset (Wang 221

et al., 2021), totalling 428 hours, in supervised 222

training. For experiments in Section 4.4 evaluat- 223

ing new source languages, we choose 6 languages 224

unsupported by Whisper: Kabuverdianu (kea), As- 225

turian (ast), Cebuano (ceb), Kyrgyz (ky), Sorani 226

Kurdish (ckb), and Irish (ga). Detailed descrip- 227

tions of the datasets and the experimental setup are 228

provided in Appendix A.1 and A.2. 229

4.2 Results on Speech-to-Speech Retrieval 230

In preliminary experiments, we compared various 231

similarity measures on three language pairs from 232

FLEURS. SeqSim consistently outperformed other 233

measures in capturing speech embedding similarity. 234

Consequently, SeqSim is adopted for the retrieval 235

experiments presented in this paper. Detailed com- 236

parison and results are discussed in Appendix B.2. 237

Using SeqSim, we conduct experiments on 20 238

language pairs from the FLEURS dataset, with re- 239

sults detailed in Table 1. On all 20 language pairs, 240

SeqSim consistently achieved remarkably higher 241

recall rates compared to a random baseline of 0.2%. 242

This suggests that these languages share a com- 243

mon embedding space, where semantically similar 244

speech utterances are mapped to close regions. No- 245

tably, retrieval performance is better when both the 246

query and the candidate utterances belong to the 247

same language family. For instance, retrieval be- 248

tween English (en), French (fr), and German (de) 249

– all Indo-European languages – show higher per- 250

formance. This is likely due to greater overlap in 251

phoneme representations among these languages, 252

which facilitates the model’s ability to align and 253

match audio frames effectively. 254
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BLEU / COMET Zero-shot Fine-tune
Dataset src Translate Transcribe en-to-zh

FLEURS

en 1.0 / 58.8 10.3 / 66.3 29.1 / 78.4
fr 0.9 / 56.2 15.7 / 66.7 23.0 / 74.1
de 1.0 / 57.2 16.8 / 67.1 24.0 / 74.7
ja 1.0 / 59.3 15.9 / 70.7 19.2 / 74.7

CoVoST en 1.8 / 59.0 3.8 / 61.2 31.9 / 76.3

Table 2: Zero-shot and fine-tuning results
(BLEU/COMET) for Whisper speech translation
into Chinese.

4.3 New Target Language255

Whisper is originally designed for speech transla-256

tion into English. This section explores methods to257

extend its capabilities to translate into other target258

languages, using Chinese as an example.259

Zero-shot: Following research by (Peng et al.,260

2023), we tested two sets of context tokens in the261

zero-shot experiments: <sot><zh><translate>262

and <sot><zh><transcribe>. The first set fol-263

lows Whisper’s default decoding process. Since264

Whisper was initially trained to produce English265

translations, it outputs English words even when a266

target language code zh is used. In contrast, using267

the transcribe token gave a large performance268

improvement, as the results show in Table 2. This269

suggests that Whisper has learned to handle to-270

kens of multiple languages through its multilingual271

speech recognition training, suggesting its potential272

for translating into languages beyond English.273

Fine-tune: We fine-tune Whisper on English-to-274

Chinese speech translation data from CoVoST,275

freezing the encoder to preserve the audio embed-276

ding space and updating only decoder parameters277

with the context tokens <sot><zh><transcribe>.278

This improved English-to-Chinese translation on279

the FLEURS and CoVoST datasets, as shown in280

Table 2. Testing French, German, and Japanese281

utterances from FLEURS revealed that fine-tuning282

also improved BLEU and COMET scores for these283

languages. Although these source languages were284

not included in fine-tuning, the improvements in285

English translation capabilities benefited them due286

to the cross-lingual alignment feature of Whisper.287

4.4 New Source Languages288

We have shown that Whisper features a shared se-289

mantic embedding space across languages. This290

section explores whether this cross-lingual trans-291

ferability extends to low-resource languages that292

Whisper has not been directly trained on. To test293

this, we select 6 unsupported languages from the294

src code WER R@1 ST (en)

kea pt 89.5 85.4 32.6
ast es 47.8 72.8 27.9
ceb en 98.1 37.9 10.0
ky ru 103.2 21.0 4.2
ckb fa 107.1 19.1 1.9
ga en 105.9 11.0 2.6

Table 3: ASR, retrieval (R@1), and ST (BLEU score)
into English for 6 unsupported languages on FLEURS
data, with Whisper decoding language code specified.

FLEURS dataset and used a language code from 295

their most similar language, chosen based on vo- 296

cabulary overlap, for decoding (Qian et al., 2024). 297

While Whisper struggles with accurate ASR tran- 298

scriptions for these low-resource languages, as 299

shown by high WER in Table 3, some languages 300

exhibit high recall (R@1) rates when retrieving En- 301

glish speech (such as kea and ast). This suggests 302

that even though these languages were unseen dur- 303

ing training, their audio embeddings are mapped 304

to the shared semantic space. This effectiveness 305

likely results from the audio similarities between 306

these low-resource languages and those in Whis- 307

per’s training data. 308

Utilising these speech embeddings, the Whis- 309

per decoder can translate these languages into En- 310

glish. The results in Table 3 reveal surprisingly 311

good BLEU scores for languages like Kabuver- 312

dianu (kea) and Asturian (ast) (only BLEU scores 313

are given as some languages are not supported 314

by COMET). This suggests that Whisper’s cross- 315

lingual alignment enhances performance in both 316

retrieval and translation tasks for languages not 317

explicitly included in its training. 318

5 Conclusions 319

This work demonstrates how to extend speech trans- 320

lation capabilities in Whisper. Whisper’s decoder, 321

supporting diverse language tokens, allows for ef- 322

fective expansion to new target languages. Our 323

experiments reveal high recall rates in speech-to- 324

speech retrieval, indicating that Whisper’s encoder 325

captures language-invariant features across lan- 326

guages. Fine-tuning Whisper on en-to-zh data im- 327

proved BLEU scores by 5.9 for three other source 328

languages. Furthermore, Whisper can successfully 329

translate speech from some previously unseen lan- 330

guages into English, despite high WERs. These 331

results confirm that Whisper maps utterances into a 332

shared embedding space, enabling effective cross- 333

lingual transfer for speech translation. 334
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6 Limitations335

Despite promising results, this work has several336

limitations. First, fine-tuning Whisper on en → zh337

translation data led to performance degradation on338

X → en translations, highlighting a common is-339

sue of catastrophic forgetting. Additionally, our340

experiments focused on one new target language.341

While we believe the findings are applicable to342

other target languages, evaluating the model across343

a broader range of target languages would provide a344

more comprehensive assessment of its capabilities.345

Lastly, although Whisper shows potential for un-346

seen languages, there is room for improvement in347

handling low-resource languages more effectively,348

such as Irish (ga). Future work will explore these349

aspects.350

7 Risks and Ethics351

There are no known ethical concerns or risks asso-352

ciated with the findings of this work.353
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A Experimental Setup503

A.1 Data Details504

Table 4 listed three public datasets we used in the505

experiments. For the FLEURS dataset (Conneau506

et al., 2023), we processed the data by retaining507

only the utterances that are available in all five se-508

lected languages. The original dev and test sets509

provided in the dataset are combined to create a510

bigger evaluation set. To increase the difficulty511

of the designed retrieval task, we randomly kept512

only one instance for utterances with the same tran-513

scription but recorded by different speakers. For514

the supervised experiments, we fine-tune the Whis-515

per model on the CoVoST dataset (Wang et al.,516

2021), which is part of the Common Voice project517

(Ardila et al., 2020). In the speech retrieval experi-518

ments to demonstrate the alignment of the encoder519

outputs, an additional dataset MaSS (Boito et al.,520

2020) is used. The MaSS dataset contains parallel521

speech data extracted from verses in 8 languages:522

English (en), Spanish (es), Russian (ru), Romanian523

(ro), French (fr), Finnish (fi), Hungarian (hu), and524

Basque (eu). As the released Hungarian data is525

incomplete we discarded it in the experiments.526

Dataset Split Langs Utts Hours Words

FLEURS test 5 426 1.1 9K

CoVoST
train 2 288,204 428 2.8M
dev 2 1,000 1.6 9K
test 2 1,000 1.6 9K

MaSS test 7 814 8.3 18K

Table 4: Dataset description. The number of utterances,
total duration of speech data, and word counts in the
references are calculated based on the English data.

A.2 Training Details527

In the training and evaluation of Whisper, the origi-528

nal audio is chunked or padded into segments with529

a length of 30 seconds. In our zero-shot speech-530

to-speech retrieval experiments, we only keep the531

embedding vectors that correspond to meaning-532

ful content in the original audio and remove the533

ones associated with the padded part. This practice534

proves to be effective in the retrieval experiments.535

To evaluate the model performance on ST, we use536

BLEU (Papineni et al., 2002) and COMET scores537

(Rei et al., 2020; Stewart et al., 2020; Rei et al.,538

2022) with the Unbabel/wmt22-comet-da model.539

In the supervised ST setting, the model parame-540

ters are updated on the training set of CoVoST for541

220K steps with fine-tuning or LoRA tuning (Hu 542

et al., 2022). The initial learning rate is 1e−5 for 543

fine-tuning and 1e−3 for LoRA tuning and decays 544

linearly. A batch size of 16 is used during training. 545

B Analysis of Audio Embeddings 546

B.1 Visualisation of Encoder Alignment 547

Figure 2: t-SNE visualization of contextual speech em-
beddings generated by Whisper large-v2 encoder for 6
word tuples across 5 languages.

To study the language-invariance of the Whisper en- 548

coder space, we use the Amazon text-to-speech ser- 549

vice (Lorenzo-Trueba et al., 2019; Klimkov et al., 550

2019) to generate utterances for a set of words in 551

different languages. From these utterances, the av- 552

erage speech embedding was computed using the 553

Whisper large-v2 encoder. The resulting embed- 554

dings were reduced using t-SNE (Van der Maaten 555

and Hinton, 2008) and plotted as shown in Figure 2. 556

This initial analysis indicates that embeddings for 557

words with the same meaning, such as “thanks” in 558

different languages (merci, danke, grazie, gracias), 559

are closely aligned. 560

To further illustrate how languages share a com- 561

mon embedding space, we present an example of 562

two parallel utterances from the FLEURS dataset, 563

as shown in Figure 3. We computed average speech 564

embedding vectors for each word based on word- 565

level timestamp information. The figure reveals 566

that words with similar meanings, even if they are 567

in different languages and have different pronunci- 568

ations, tend to be mapped to similar regions in the 569

embedding space. For instance, doorbell (English) 570

and Türklingel (German) show high cosine simi- 571

larity scores despite their distinct pronunciations, 572

indicating their embeddings are close due to their 573

shared meaning. Additionally, the cosine similarity 574

matrix also reflects word order changes. For exam- 575
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Figure 3: Cosine similarity matrix of utterance repre-
sentations between an English sentence and its German
counterpart selected from FLEURS test sets.

ple, built (English) and gebaut (German) have high576

cosine similarity because they convey the same577

concept, and sagte (German) aligns closely with578

said (English). This alignment in the embedding579

space supports the idea that semantically similar580

utterances across different languages are mapped581

to nearby regions in the embedding space, high-582

lighting the shared nature of the embedding space.583

B.2 Comparison of different similarity584

measures585

To compute the similarity between two speech em-586

bedding sequences, we propose to use the AvgSim587

metric. The mean vector of embedding sequences588

X and Y are aggregated and then the cosine simi-589

larity between them is calculated to get an average590

similarity score. Compared to SeqSim, AvgSim591

captures the overall vector similarity rather than592

individual contextual speech embedding vectors.593

AvgSim = CosSim

(
1

|X|
∑
x∈X

x,
1

|Y |
∑
y∈Y

y

)
(2)594

In Table 5, different similarity measures are com-595

pared on three language pairs from the FLEURS596

data for the speech-to-speech retrieval task. Re-597

sults from two additional metrics are listed here.598

In (Le et al., 2023), distance metrics based on Dy-599

namic Time Warping (DTW) (Salvador and Chan,600

2004) and Optimal Transport (OT) (Peyré and601

Cuturi, 2019) are used to measure the similarity,602

Sim(X,Y ), between the contextual speech embed-603

dings X and Y . Both metrics use cosine distance604

to derive an overall sequence similarity score.605

While AvgSim is straightforward to compute, it606

overlooks the nuanced differences between the two607

sequences. DTWSim aligns the utterance represen- 608

tations in a monotonic fashion, which may not hold 609

when the word order is different for the source and 610

target sentence. To this end, we also use Optimal 611

Transport (following (Le et al., 2023)) to compare 612

individual embedding pairs. We do not add a cost 613

associated with the embedding index to ensure OT 614

can capture token re-orderings. As the results show, 615

it outperforms the previous two methods. Across 616

three retrieval settings, our proposed SeqSim bet- 617

ter captures the speech embedding similarity and 618

shows the best performance. 619

Method R@1 [%]
en-fr en-de de-fr

Random 0.2 0.2 0.2

AvgSim 28.2 27.5 24.6
DTWSim 29.9 26.5 22.1
OTSim 72.3 66.7 55.2
SeqSim 80.0 80.0 62.2

Table 5: Comparison of different similarity measures
for zero-shot speech-to-speech retrieval on FLEURS
test sets.

B.3 Analysis of Speech-to-Speech Retrieval 620

In Figure 4 we alternate the speech embeddings us- 621

ing outputs from different encoder layers of Whis- 622

per. As shown, outputs from the last encoder layer 623

consistently achieve the best retrieval performance. 624

For bottom layers, the recall rate drops significantly. 625

The results indicate that outputs from higher layers 626

are better aligned and exhibit stronger cross-lingual 627

characteristics. 628

Figure 4: Speech-to-speech retrieval performance using
outputs from different encoder layers of Whisper large-
v2.

In Table 6 we show the retrieval performance us- 629

ing encoder outputs from different Whisper models 630
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on FLEURS test sets. Even for the tiny model with631

only 39M parameters, the recall rate is much better632

than the random baseline of 0.2%, suggesting that633

all models acquire the capability to do cross-lingual634

utterance alignment during pre-training. When635

the model size increases, the recall rate also im-636

proves. This implies that the retrieval performance637

will likely continue to improve if larger and more638

capable multilingual models are released in the639

future. For the Whisper large models (released640

at different times), the v2 model shows the best641

performance compared to the other two versions.642

Whisper large-v3 is trained on additional data (5M643

vs 680k hours) in the form of 320k hours of weakly644

and 4M pseudo-labeled training data. We believe645

the latter degrades performance here.646

Model Size R@1 [%]
en-fr en-de de-fr

tiny 39M 9.2 9.9 6.8
base 74M 16.7 16.0 11.0
small 244M 27.7 26.1 20.2

medium 769M 50.7 41.8 39.7

large-v1
1550M

59.9 51.6 48.8
large-v2 80.0 80.0 62.2
large-v3 59.9 50.5 47.2

Table 6: Ablation of R@1 against different model sizes.

In addition to FLEURS, we run speech-to-647

speech retrieval experiments on MaSS to validate648

the effectiveness of the aligned speech embedding649

space. Retrieval performance is presented in Ta-650

ble 7 across paired datasets in seven languages. The651

baseline for random selection is 0.1% in this set-652

ting. The supervised baseline is taken from (Boito653

et al., 2020) who built a system based on contrastive654

learning (Harwath et al., 2018). Excluding the low-655

resource language Basque (eu), the proposed zero-656

shot retrieval method outperforms the baseline and657

shows an average R@1 of 75.3%. Although Whis-658

per is only trained using utterances in different lan-659

guages translated to English, it demonstrates good660

retrieval performance between arbitrary language661

pairs, which can be seen as an emergent ability.662

C Ablation of Speech Translation663

Ablation results are shown in Table 8. For FT (all),664

we fine-tune all the parameters of Whisper. For665

LoRA (dec), trainable LoRA parameters with a rank666

of 8 are inserted in the decoder and updated on the667

training set. In both settings, performance in all lan-668

guages improved compared to the zero-shot results669

Query R@1 [%]
en es ru ro fr fi eu

en - 79.5 66.8 71.7 86.6 64.1 7.6
es 71.9 - 62.7 83.4 87.5 62.9 13.4
ru 67.8 72.4 - 83.4 70.4 72.0 5.5
ro 65.5 84.8 79.1 - 85.1 69.0 9.7
fr 83.0 91.3 67.0 89.8 - 66.2 6.9
fi 70.1 74.2 77.4 81.6 71.7 - 11.2
eu 14.6 25.7 6.5 14.6 11.3 9.6 -

Table 7: Zero-shot speech-to-speech retrieval results on
42 language pairs measured with SeqSim on MaSS.

Dataset src BLEU / COMET
FT (dec) FT (all) LoRA (dec)

FLEURS

en 29.1 / 78.4 29.3 / 77.8 23.3 / 73.1
fr 23.0 / 74.1 21.5 / 72.3 19.5 / 69.3
de 24.0 / 74.7 23.3 / 72.8 20.1 / 70.2
ja 19.2 / 74.7 17.7 / 72.6 16.8 / 72.3

CoVoST en 31.9 / 76.3 31.2 / 75.8 26.3 / 72.9

Table 8: Ablation of zero-shot cross-lingual transfer.

in Table 2, highlighting Whisper’s effective cross- 670

lingual transfer capability. LoRA shows worse 671

performance compared to fine-tuning while being 672

more parameter efficient. Moreover, compared to 673

only fine-tuning the decoder part, fine-tuning all 674

parameters shows similar performance on the En- 675

glish test set. Since the encoder parameters are 676

changed in the adaptation, there is a shift in the 677

speech embedding space, leading to a performance 678

drop in languages not seen in the training. This sug- 679

gests that only adapting the decoder parameters is 680

a better strategy when extending Whisper’s speech 681

translation ability. 682

src code WER ST (zh)

kea pt 89.5 19.5
ast es 47.8 18.7

Table 9: ASR and ST (BLEU score) into Chinese results
on FLEURS data Kabuverdianu (kea) and Asturian (ast),
with Whisper language code specified.

In Section 4.4, we showed that the audio em- 683

beddings for some previously unseen languages 684

(e.g. kea and ast) align well in the shared semantic 685

space, and these languages achieve good BLEU 686

scores when translated into English using the base- 687

line Whisper large-v2 model, as shown in Table 3. 688

Table 9 demonstrates that these languages also 689

achieve reasonable BLEU scores for Chinese trans- 690

lation with the fine-tuned model from Section 4.3 691

despite the high WERs. 692
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