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Abstract

We propose a novel neural network-based approach to modeling protein dynamics
using an implicit representation of a protein’s surface in 3D and time. Our method
utilizes the zero-level set of signed distance functions (SDFs) to represent protein
surfaces, enabling temporally and spatially continuous representations of protein
dynamics. Our experimental results demonstrate that our model accurately captures
protein dynamic trajectories and can interpolate and extrapolate in 3D and time.
Importantly, this is the first study to introduce this method and successfully model
large-scale protein dynamics. This approach offers a promising alternative to
current methods, overcoming the limitations of first-principles-based and deep
learning methods, and provides a more scalable and efficient approach to modeling
protein dynamics. Additionally, our surface representation approach simplifies
calculations and allows identifying movement trends and amplitudes of protein
domains, making it a useful tool for protein dynamics research. Codes are available
at https://github.com/Sundw-818/DSR, and we have a project webpage that shows
some video results, https://sundw-818.github.i0/DSR/.

1 Introduction

Proteins, which are made up of chains of amino acids, are essential molecules in living organisms.
Protein with specific three-dimensional structures are responsible for a wide range of biological
processes such as enzymatic reactions, transport of molecules, and structural support. However,
proteins are not static objects in vivo, but constantly in motion, with individual amino acids vibrating,
rotating, and shifting in response to the change of environment. The biological functions of proteins
are fulfilled by their dynamical behaviors, and researchers study the dynamics and functions of
proteins by molecular dynamics(MD) simulations[1} 2].

First-principles molecular dynamics use the forces calculated from the electronic states by solving the
Schrodinger equation (namely, density functional theory) to compute the coordinate trajectories|3],
with programs such as VASP[4] and GPAWI[5]. However, the computational expense of MD typically
increases exponentially in relation to the number of electronic degrees of freedom. In order to reduce
the computational cost, empirical force field (classical force field) models with simplified functional
forms are employed in MD simulation, such as AMBER[6, [7], CHARMM][| 9|, and GROMOS|10-
12], which are designed to capture the bonded and non-bonded interactions between atoms. Besides,
machine learning techniques can be employed to fit force fields or potential energy surfaces[[13-H16].
These force field-based methods are much faster than ab initio methods without exhaustive QM
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calculations. However, the integration time step in MD cannot be too large to resolve the fastest
motion in the system, for example the vibration of hydrogen-involved bonds whose timescales are as
short as a few femtoseconds. This restricts MD from having more speed advantages. To address this
problem, coarse-grained methods are being developed to perform molecular dynamics simulations
faster and on larger systems by eliminating some unimportant degrees of freedom[17H20]]. Fast as it is,
coarse-grained simulations are only able to reproduce molecular properties at low resolution, such as
Rg?, sacrificing the all-atom details. Given this perspective, existing molecular dynamics approaches
suffer from either unaffordable computational costs or insufficient precision. Moreover, inherent
limitations such as the considerable random fluctuation of simulated trajectories and the consequential
low signal-to-noise ratio pose significant challenges in detecting crucial protein functional motion.
Even for the current most advanced Anton 3, under the parallel processing of 512 nodes, for a large
system of 1 million atoms, only 100 microseconds of MD simulation can be performed each day[21].

These aforementioned methods give thorough under-
standing of the natures of proteins by modeling pro-

tein molecules as discrete particles. But when study- )

ing protein-protein interaction or protein-ligand bind- ' j(
ing, knowledge about surfaces of proteins is what re- q g
searchers need. To fulfill such demands, a continuous,

high-level representation of molecular shape known as )

the molecular surface is proposed, as shown in Figure Figure 1: The protein surface representa-
[MIBased on the the concept of "key-lock pairs" empha- 100 Showing the protein surface (PDB ID:
sizing complementarity of molecular surface[22]], the 1PGA) at different time steps in a molecular
molecular surface models a protein as a continuous dynamics trajectory.

shape with geometric and chemical features. One repre-

sentative method, molecular surface interaction fingerprinting (MaSIF), is a geometric deep learning
method that captures fingerprints important for specific biomolecular interactions, enabling accurate
and efficient analysis of protein-ligand complexes and potential applications in drug discovery and
molecular design[23], [24]. Furthermore, some works investigated the application of end-to-end
learning techniques for the analysis of protein surfaces and the identification of potential functional
sites, such as drug-target binding sites[25].

Previously, surface representation was mainly used for studying inter-molecular interactions or
assisting molecular docking, and it had not been applied to analysing molecular dynamics simulation
data. Inspired by the above works, we propose Dynamical Surface Representation (abbreviated
as DSR), a method for modeling protein dynamics by representing protein surfaces with implicit
neural networks. Implicit neural representations[26, 27]] are a class of deep learning models that can
represent complex geometric shapes using a continuous function without requiring an explicit surface
representation. It’s well-suited for modeling the dynamic shapes of proteins which have complex
and varied conformations. Currently, deep learning applications in molecular dynamics (MD) mainly
target small molecules, while our method can be applied to very large proteins.

In this paper, we explore the use of implicit neural representations for modeling the dynamic shapes of
proteins. To be specific, protein surfaces are represented as a zero-level set of signed distance function
(SDF) in DSR. The value of SDF is defined as the minimum distance from a point in Euclidean
space to the surface of the object, where the positive value indicates that the point is outside the
object, otherwise, it is inside. In addition, we introduce a time variable in DSR model to simulate the
change of the protein surface over time, which is the dynamic simulation of the protein. In summary,
we use the idea of implicit neural representation and use the neural network as the implicit neural
representation of points on the 3D and time region, so as to achieve the purpose of modeling protein
dynamic changes in continuous space and time domain.

In summary, our paper’s main contribution is two-fold:

* We build an implicit neural network that learns SDF from raw point cloud data in 3D + time
domain, which is a both temporally and spatially continuous protein dynamic representation.

* We have achieved dynamic modeling of large proteins by using surface representations,
which overcomes the limitations of previous atomic models or coarse-grained models that
were restricted to small molecules or proteins.



2 DSR

In this section, we present DSR, a dynamical surface representation as implicit neural networks
for protein. We first introduce the definition of SDF, and then describe how we use SDF to model
proteins. The architecture of the whole method is shown in Figure 2}

2.1 SDF Representation
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The zero-level set, which is the surface of the protein at time ¢, is presented by the points where
fm, () = 0. That is, the points on the protein surface at time ¢ can be represented as set {x |

fm, () =0,z € Q}.
2.2 Modeling Protein Dynamical Surface with SDFs

The protein surface representation is in the form of a 3D shape. In order to utilize the implicit function
form of SDF, a typical approach is to partition the space into a grid, and then compute the SDF value
for each grid point. However, for irregular objects, the accurate SDF values cannot be computed and
thus approximation algorithms, such as the 8SSEDT algorithm, are usually employed. This method is
associated with two limitations: firstly, protein surfaces are often intricate and rugged, and estimation
errors can result in larger biases after modeling; secondly, the SDF calculation for dynamic models
is linearly dependent on time and cubically dependent on resolution, and pre-computed SDFs will
incur high computational costs. Hence, an alternative strategy is used herein, whereby SDF is learned
directly from the raw point clouds, rather than utilizing pre-computed SDF for supervised learning.
This completely circumvents the need for pre-computing SDF, significantly reduces computational
costs, and enhances computational efficiency. In the following, we will elaborate on how to learn
SDF directly from the raw point clouds.

For a given input point cloud X = {x;};c; C R? at time ¢,with point normal vector data (optional),
N = {n;}ic; C R3, our objective is to find the optimal parameters ¢ of an MLP f(x,t;0), where
f :R44= 5 R, that can accurately estimate a signed distance function to a surface M, defined by
the point cloud X and normals N at time ¢.

The form of our loss function is as follows:

0(0) = Lx(0) + \Bq (| Voo f (2,1:0) = 1)* + | 2| )
where A > 0 is a parameter, || - || = || - ||2 is the Euclidean 2-norm, and
1
e (0) = 77 2 (1F (@ 60)] + 7 [ VoS (@i, 156) = mul) 3)
iel

promotes the vanishing of f on X, and in the presence of normal data (i.e., 7 = 1), Vf to the
given normals N.

The first term in the summation part of Eq. (3) indicates that the SDF value of the surface points
should be as small as possible. The second term represents the loss between the point normal vector
and the ground truth.

The second term in Eq. called the Eikonal term promotes the gradients V,, f to possess a 2-norm
of unity, i.e. ||V f|| = 1, which is the gradient property of SDFs. Note that this property is crucial to
the loss design, allowing us to avoid using pre-computed SDF values for supervised learning. While
its sufficiency has not been fully established in previous literature, we provide a more comprehensive
proof in the Appendix



The third term z in Eq. (Z) is a latent code that we introduce into the model to specify different
protein types, and its parameters are learnable. We claim that with sufficient data, we can explore the
latent space for greater generalization.

The global minimum of the loss in Eq. (@) will be the solution of the Eikonal partial differential
equation, i.e.,

IVaf(x)] =1, )
which will also be a signed distance function, where f approaches 0 on X, with gradients A/. The

calculation of the expectation is based on some probability distribution  ~ D in R3, which will be
introduced in Section

Throughout the optimization process, we did not use the pre-computed SDF value to supervise the
training, which is an end-to-end learning architecture from raw point clouds data to SDF value. In the
next section, we will introduce the experiment setup in detail, including the datasets, implementation
details, and model evaluation metrics.
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Figure 2: Overview of DSR. The upper part is the training process. First, the manifold and space
points are sampled at different times, added the time dimension and be input into the DSR Model to
obtain SDF. And then the Gradient Module is used to calculate the derivative of SDF with respect
to (, t). The lower part is the inference process. We first divide the space into a grid based on the
desired resolution, then adds the time dimension and inputs them into the DSR Model to predict
the SDF. Finally, the Marching Cube algorithm is utilized to generate different level sets, with the
zero-level set representing the protein dynamical surface.

3 DSR on large-scale proteins simulation data

3.1 Dataset.

500ns Trajectory Data. This data set[28]] currently contains two 100ns atomistic molecular dy-
namics trajectories of Abeta (40 residues), one wild type and one E22G, following the protocol of the
500ns trajectories published in [29]. The simulation was performed at 310K in a generalized Born
implicit solvent. In this work, we used the first 2000 frames of wild type trajectories.

MDAnalysisData. MDAnalysisData collects a set of data resources pertaining to computational
biophysics, primarily focusing on molecular dynamics (MD) simulations and the structural and
dynamic attributes of biomolecules. We used five of these datasets,
(1) AdK equilibrium dataset[30] of 4187 frames,
(2) AdK conformation transition[31] sampled with two methods:

* Dynamic importance sampling molecular dynamics (DIMS MD) of 102 frames[32]],

» Framework Rigidity Optimized Dynamics Algorithm (FRODA) of 142 frames[33],



(3) A short MD trajectory of I-FABP (intestinal fatty acid binding protein) of 500 frames[34]],
(4) A trajectory of the NhaA membrane protein of 5000 frames[35]],

(5) Two MD trajectories of YiiP membrane protein, the short one has 900 frames, and the long one
has 9000 frames[36]]. We opted for the longer one here.

For these 6 trajectories data, we use a fixed size 2000 to crop the frames due to the computational
resources, and we keep the full length for those shorter than the cropping size.

GPCRmd. The GPCRmd (http://gpcrmd.org/)[37] is an online platform that incorporates web-
based visualization capabilities and shares data. The GPCRmd database includes at least one
representative structure from each of the four structurally characterized GPCR classes. The GPCRmd
platform holds more than 600 GPCR MD simulations from GPCRmd community and individual
contributions. Each system was simulated for 500 ns in three replicates (total time 1.5 pus). We
selected one system per GPCR family, and a total of 4 trajectories were used to train the model, of
which trajectory ids are 10792_trj_81, 10840_trj_87, 10912_trj_95 and 15711_trj_791 respectively.

DRYAD_MD. This dataset contains the trajectory data of 23 proteins simulated by Jumper JM[3§]].
It is worth noting that the protein trajectories within this dataset exhibit significant oscillations, posing
a challenge for model training and resulting in a high failure rate. For this reason, we screened out 14
proteins with mean RMS]ﬂ less than 1.0 for our experiments.

3.2 Implementation Details.

Problem setup. In this paper, we use PyMol[39] to obtain the protein surface representation, the
points and normal vectors, to train the model. The goal is to obtain a protein surface dynamic model
with respect to continuous space and time.

Architecture. For representing shapes we used level sets of MLP f(z,¢;0) = R* x R% — R,
called DSR Model, with 8 layers, each containing 512 hidden units, and a single skip connection from
the input to the middle layer. We set the loss parameters to A = 0.1,7 = 1, = le — 3. And the
model architecture is as Figure 2] The activation function between fully connected layers is softplus
activation: x +— % In (1 + eﬁx), where 8 = 100. The initial latent code vector z of size 192, were

sampled from N(0, 1.0%). The Gradient Module was implemented by PyTorch Autograd to calculate
Va f(x).

Distribution D. For all experiments, we utilize the distribution D as defined in the IGR[40] for the
expectation in Eq. (2). This distribution is determined by taking the average of a uniform distribution
and a sum of Gaussians that are centered at X’ with a standard deviation equal to the distance to the
k-th nearest neighbor (where we set k = 50).

Level set extraction. We extract the zero (or any other) level set of a trained model f(z,¢; 0) using
the Marching Cubes algorithm[41] implemented in the python scikit-image package, which can use
any large-size grid to achieve any high resolution.

3.3 Evaluation Metrics.

We use three evaluation metrics commonly used in 3D modeling to evaluate the similarity between
two 3D shapes from three aspects: volume, distance, and normal vectors, which are Volumetric
Intersection over Union (IoU), Chamfer distance and Normal Consistency (NC). These three metrics
are all normalized to a range of 0-1, providing a comprehensive evaluation of the model’s performance
from different perspectives.

IoU. IoU compares the reconstructed volume with the ground truth shape (higher is better). For
two arbitrary shapes A, B C S € R" is attained by:
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>The RMSD here was calculated between consecutive frames to reflect the smoothness of the protein
trajectory.

IoU =
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Chamfer distance. Chamfer distance is a standard metrics to evaluate the distance between two
point sets X7, Xo> C R™ (lower is better).

do (X1, Xp) = 5 (dg (X1, Xp) +dg (X2, A1) (6)

N =

where 1
g (A0, 0) =z 3 min oy — o a

x1EX

NC NC evaluate estimated surface normals (higher is better). Normal consistency between two

normalized unit vectors n; and n; is defined as the dot product between the two vectors. For evaluating
. . . . — w

the surface normals, given the object surface points and normal vectors: X,cq = {(x;,n;)}, and the

ground truth surface points and normal vectors: Xg; = {(y;, m})}, the surface normal consistency

between X.q and X, denoted as I', is defined as:
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4 Results and Analysis

We design experiments from three aspects to verify the ability to learn SDF from the raw point clouds,
the ability to reconstruct the protein dynamical surface, and the generalization of the model in terms
of temporal interpolation and extrapolation. To our knowledge, we are the first to model long-term
dynamics of large proteins through surface representation, with no other methods currently available
for comparison. Therefore, we conduct the following analysis to verify the learning ability of the
DSR model and the effectiveness of protein surface representation. Additionally, to demonstrate
that our model is not doing something trivial, we compare our method with linear interpolation on
interpolation tasks.

4.1 The Ability to Learn SDF

We show the reconstruction results of training on Abeta protein in Figure 3] which demonstrates the
ability of our model to learn the signed distance field. The first row in the figure is the reconstruction
results of our model, and the second row is the ground truth. It can be seen that our model has the
ability to reconstruct the dynamic shape of the protein at different moments, and can restore a clearer
and more delicate shape than the ground truth. Furthermore, we show some videos of this protein on
the webpage and discuss the effect of normal vectors on learning process in the Appendix
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Figure 3: Given different times as input, the zero-level set visualization of the SDF value predicted
by the model for protein abeta. The first row is the reconstruction result of our model, and the second
row is the ground truth.

Note that SDF represents the shortest distance (signed) from the surface of the object, which means
that different level sets form surfaces at certain distances from the manifold surface. As shown



in Figure [4] (a), the visualization of different level sets of SDF values predicted by our model is
consistent with the meaning expressed by SDF. In addition, our model is continuous with respect
to spatial and can use to reconstruct and predict for arbitrary space resolutions. Figure f{b) shows
the reconstruction of a protein at different resolutions at a certain time. We also calculated three
evaluation metrics, namely IoU, Chamfer distance and NC, which have values of 0.9361+0.0265,
0.0009+0.0008 and 0.9967+0.0011 respectively.
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Figure 4: (a) The visualization of different level-set of the SDF predicted by our model; positive level
sets are in red; negative ones are in blue; the zero level set, represents the approximated surface in
white. (b) The reconstruction of a protein at different resolutions.

4.2 Reconstruction across Time

In this experiment, we validate the ability of our trained model to reconstruct the protein shapes in
training frames (see Table m) For data AdK equilibrium, NhaA, YiiP, and DRYAD_MD, we used the
first 1500 frames of each trajectory and diluted them by ten times. That is, selecting 150 frames for
each trajectory for training. Similarly, every second frame was selected within the first 80 frames for
DIMS, every third frame was chosen within the first 120 frames for FRODA, and every fifth frame
was selected within the first 400 frames for I-FABP.

As we can see from the Table[I] the model can reconstruct well in many cases. For example, DIMS,
the IoU value is as high as 0.9316, which means that the shape reconstructed by the model is almost
completely consistent with the ground truth on the entire timeline.

Table 1: Evaluation on the surface reconstruction across time.

ToU?T Chamfer_dist| NCt ToU?T Chamfer_dist] NCt
DIMS 0.9316+0.0070  0.0003£0.0001 0.9671+0.0050 I-FABP  0.8907+0.0071 0.0005+0.0001 0.9382+0.0072
YiiP  0.8425+0.0161 0.0003+£0.0001 0.8737+0.0164 FRODA  0.8318+0.0286 0.0004+0.0001  0.9098+0.0175
NahA  0.8265+0.0202  0.0005+0.0001  0.8372+0.0245 adk_equi 0.7526+0.0396 0.0020+0.0009  0.7914+0.0308
protG  0.6580+0.0695 0.0036+0.0017  0.8287+0.0595 ntl9 0.6342+0.1244  0.0066+0.0051  0.8165+0.0911
bba  0.6163+0.1481 0.0057+0.0073 0.8158+0.1044 cspa 0.6136+0.0682  0.0074+0.0036  0.8047+0.0527
TO765 0.5997+0.0923  0.0039+0.0022  0.7991+0.0757 wWW 0.5920+0.1056  0.0088+0.0055 0.8196+0.0691
TO0855 0.5585+0.0898 0.0117+0.0095 0.7804+0.0647  T0773  0.5289+0.0833 0.0123+0.0091 0.7404+0.0632
T0O816 0.5284+0.1366  0.0083+0.0071  0.7368+0.0979 gpW 0.4836+0.1253  0.0093+0.0072  0.7176+0.0905
bbl 0.4603+0.1422  0.0094+0.0067  0.6968+0.0896 hyp 0.4578+0.1154  0.0099+0.0066  0.7104+0.0873
T0769 0.4535+0.0871 0.0191+0.0101 0.7102+0.0738  T0771 0.4219+0.0711  0.0111+0.0073  0.6537+0.0491

We analyze the effect of RMSD on model training quality, indicating that data containing high levels
of noise and significant vibration pose challenges to model training. As illustrated in the Figure[5] the
model shows superior performance on smoother and less noisy trajectory data.

4.3 Generalization Ability

Our model has generative capabilities to predict missing or future trajectories of a protein. Here we
obtain different samples in two aspects, interpolation and extrapolation of time.

4.3.1 Interpolation

Our model enable the prediction of protein shape at any given time due to its temporal continuity.
This is very useful when we only know the structures of two moments but not what the intermediate
process is. During training sample selection, we extract one frame at intervals of several frames to
evaluate the model’s interpolation capability in the temporal space. To demonstrate that our model



1.0 1.0
e
=
08 08 8 08 08 fﬂh}ﬁ {E fhos
n 3 10? 3 ¥ E:}
06 062 3 f 06 2 06 06 2
2 1%} = (%) (%]
° o 2 f f ¥ =4 ¥ o
0.4 043 & f 04 0.4 04 3.
= i z i =
© LN «*
02 02 ¥ 02 02 02
7Y oA p
" -
0.0 T -00 10*"\\”\””\””!””0.0 0.0 T 00
OFR QI SOLRLE OGO VI G EFR LT OR L QL HOBO NI S EFREITS PR GO SOBONID S
PPGAPERRTRE B e Sl B
° o " Chamfer distance ® - NC -= RMSD

—— loU -=— = RMSD

RMSD

Figure 5: The correlation between RMSD and three metrics was evaluated across various protein
trajectories, revealing a significant relationship between the metrics and RMSD, highlighting that
smaller RMSD and system noise levels correspond to improved model performance and easier
modeling of protein surface dynamics.

learns the protein’s inherent dynamic variations and is not just performing trivial tasks, we compared
it with linear interpolation, as shown in Figure[6] even though there were no previous works for direct
comparison. The evaluation results of our model and linear interpolation are shown in Appendix
Table [ [5]respectively, and the performance of interpolation has reached a level comparable to that of
reconstruction.

~=— Our
= Linear

Chamfer distance

Figure 6: The three evaluation metrics for the interpolation task are shown in the plot, with the red
line representing our method and the blue line representing linear interpolation.

4.3.2 Future Prediction

Our model can not only interpolate missing frames in the middle, but also predict future dynamics
by extrapolating over time. To validate this, we use models trained on the MDAnalysisData and
DRYAD_MD datasets to predict future frames. Table 2] shows the prediction results of the model for
the next 10 frames and the next 11 ~ 20 frames on some proteins. Due to space limitations of the
main text, the full results are presented in the Appendix [E.2]

Table 2: Evaluation on the future 10 frames and 11 ~ 20 frames

Future 10 frames

Future 11~20

ToU?T Chamfer_dist] NC?T ToU?T Chamfer_dist) NCt
DIMS  0.8467+£0.0423 0.0010+0.0005 0.8666+0.0504 0.6835+0.0551  0.0055+£0.0020  0.6932+0.0474
I-FABP  0.8878+0.0142 0.0006+0.0001  0.9271+0.0159 0.8444+0.0153  0.0012+0.0002  0.8797+0.0164
FRODA 0.7660+0.0502 0.0012+0.0006  0.8267+0.0490 0.6043+0.0474  0.0044+0.0012  0.6783+0.0384

4.3.3 A Case Study on GPCRmd

Furthermore, we have explored the model’s simultaneous simulation of multiple protein trajectories.
Here we use the four protein trajectories data in GPCRmd dataset. The model trains different latent
vectors to represent different proteins. In addition, in selecting training frames, we have employed
another strategy, wherein the interval between the frames utilized for training is gradually increased
with the sequence.

As shown in Figure[7} our model can learn the shapes of multiple proteins simultaneously, and it can
recover the fine details of the protein surfaces well despite their ruggedness. An interesting finding
is that the trajectories obtained from molecular dynamics simulations often have a lot of random
jittering or noise, while the trajectories interpolated by our model can well fit the main functional



ground truth reconstruction
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Figure 7: Comparison of ground truth and reconstruction for GPCRmd data at t = 2000. From (a) to
(d) are 10792_trj_81, 10912_trj_95, 15711 _trj_791 and 16105_trj_848 respectively, ground truth and
reconstruction (top row) after rotating 90 degrees (bottom row) clockwise along the horizontal axis.

motion of the protein without noise. We put the detailed results and discussion in the Appendix [E3]
video demonstration on the webpage.

5 Discussions

Molecular surface Representation The molecular surface representation is commonly adopted
for tasks involving molecular interfaces[42]], where non-covalent interactions (e.g., hydrophobic
interactions) play a decisive role[43]]. Non-Euclidean convolutional neural networks[44] and point
cloud-based learning models[45] have been applied to encode the molecular surface for downstream
applications, e.g., protein binding site prediction[46]]. However, it has not been applied to molecular
dynamic simulation, especially protein. In fact, this work explored the more essential application
scenarios of molecular surface representation, that is, we believe that chemical molecules are more
suitable to be regarded as electron clouds that can be represented by 3D shapes.

Deep learning molecular dynamics Deep learning is being used more in molecular dynamics
simulations, which has shown promising results. There have been several approaches, such as Behler-
Parrinello network[47]], DTNN[48], and SchNet[49], that focus on predicting molecular properties
and potential energy. However, these methods are limited to small molecules and may not work
for proteins, which have many atoms. To address this issue, several coarse-grained models have
been proposed, such as CGnet[17], DeePCG[50]], ARCG[31], and a CG auto-encoder[52]. Recent
works, flow-matching[53]] and DFF[54], have used normalizing flows and diffusion models to model
coarse-grained force fields for dynamic simulation of small proteins. Another approach, DiffMD[53]],
can predict simulation trajectories without energy or forces. However, these methods are currently
limited to simulating small proteins due to computational constraints and are not yet practical for
real-world applications, while the method in this paper provides a new idea for long-term modeling
of large proteins.

Implicit neural representations SIREN][56] and NeRF[26] have led to the popularity of implicit
neural representations (INR) for tasks like new view synthesis and geometry reconstruction. INR
involves creating a continuous function that can map coordinates to high-frequency information.
NeRF’s highly expressive nature has allowed it to be effectively employed in numerous fields,
such as image processing[57]] (e.g., compression, denoising, super-resolution, inpainting), video
processing[58]], medical imaging[359], etc. Signed distance function (SDF) is a type of INR that
characterizes an object’s shape well. DeepSDF[60] uses INR to model SDF, and IGR[40]] simplifies
the modeling of SDF by using its gradient property. Drawing inspiration from the aforementioned
studies, our work learns a unified implicit representation of proteins that will facilitate future large-
scale modeling of protein dynamics like NeRF’s contribution in vision.

6 Conclusions and Future work

We introduced a method for learning implicit neural representations of protein surface dynamics in
continuous spatial and temporal space. Experimental results show that our method is very effective in
reconstructing proteins with smooth dynamic changes, and has a certain ability to interpolate in time.



In addition, we found that our model tends to model major conformation changes of proteins rather
than those noise-like random vibrations. The case study of GPCRmd shows that the model has the
potential to learn the dynamics of a class of similar proteins, such as a protein family.

The main limitation of this method is that it is sensitive to noise in protein dynamic trajectories, as
discussed in Section[4.2] In addition, the generalization of the model needs to be further improved.
The first is the temporal generalization, especially future prediction. So far, there is no effective
method that can better predict the future in various motion prediction tasks. We believe that modeling
motion or velocity fields can help future predictions for a longer time.

We anticipate DSR as a powerful tool for building general-purpose protein surface models, and hope
that our work helps shed some light on a more efficient and generalizable protein representation.
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