CULTUREVLM: CHARACTERIZING AND IMPROVING CULTURAL UNDERSTANDING OF VISION-LANGUAGE MODELS

Anonymous authorsPaper under double-blind review

ABSTRACT

Vision-language models (VLMs) have advanced human-AI interaction but struggle with cultural understanding, often misinterpreting symbols, gestures, and artifacts due to biases in predominantly Western-centric training data. In this paper, we introduce **CultureVLM** for improved global cultural perception and understanding, with cross-cultural and cross-regional generalization while preserving general visual understanding and reasoning capabilities. To characterize and improve VLMs' multicultural understanding, we develop **CultureVerse**, a scalable multimodal cultural data collection and construction framework, which ultimately leads to a large-scale corpus covering 188 countries/regions, 15 cultural topics, and 3 question types. CultureVLM and CultureVerse effectively mitigate regional disparities, enabling cultural evaluation and enhancement to extend to low-resource regions. Further analysis and case studies also show that VLMs tend to produce fine-grained hallucinations in cultural understanding. We hope that this work could lay the foundation for more equitable and culturally aware multimodal AI systems.

1 Introduction

Vision-language models (VLMs) have achieved great performance in various tasks, such as visual question answering and captioning (OpenAI, 2024b; Hurst et al., 2024; Team et al., 2023; Anthropic, 2024; Wang et al., 2024; Liu et al., 2024b). Meanwhile, one of the most vital aspects of human experience, cultural understanding, which encompasses language, cultural values, social norms, culinary practices, and artistic expressions—remains a challenging area for these models (Winata et al., 2024; Adilazuarda et al., 2024).

Challenges. Cultural understanding is essential for AI systems intended for global deployment, as it enables them to interact appropriately and sensitively with users of diverse cultural, ethnic, and social backgrounds. However, current VLMs often struggle to grasp the deeper cultural meanings embedded in symbols and artifacts. For instance, a VLM may identify an eagle as merely a bird, overlooking its symbolic significance as a national emblem representing the spirit and identity of the United States. Similarly, the lotus flower is not only a plant, but a profound symbol of purity and spiritual enlightenment in Indian culture. Gestures present an even more complex challenge: the "OK" hand gesture, which conveys a positive meaning in North American countries, is interpreted as offensive in countries such as Brazil and Turkey (Medhat, 2015). Misinterpretations of culturally significant symbols can lead to misunderstandings and even cause offense.

These challenges partially stem from inherent biases and limitations in VLMs' training data: *1) Skewed Domain Coverage*. Pre-training images and texts predominantly feature *generic* daily scenes or natural settings, often lacking coverage of *culturally specific* artifacts, traditions, beliefs, and historical sites. Models may fail to interpret culturally significant symbols, particularly those from underrepresented regions. *2) English-centric Data and Western Bias*. The texts for pre-training VLMs is primarily sourced from English content (Naous et al., 2023a; Jin et al., 2024a), which predominantly represents high-resource cultures and introduces a Western bias, thereby limiting the models' understanding of diverse cultures (Young, 2014; Deng et al., 2024; Chiu et al., 2024).

Addressing these challenges is crucial for developing culturally aware AI systems that can engage effectively and respectfully with global users. Although there have been efforts to build culturally

060 061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

081

082

083

084

085

087

090

091

092

094

095

096

098

099

100

101

102

103

104

105

107

Figure 1: Our pipeline to collect Culture Verse and build Culture VLM.

aware large language models (LLMs) through data collection (Shi et al., 2024; Li et al., 2024b; Chiu et al., 2024), improving VLMs for cultural understanding remains in its infancy. Existing multimodal cultural corpora (Romero et al., 2024; Nayak et al., 2024) usually rely on small-scale human annotation for data curation, and such unsystematic collection often lacks sufficient regional and national representation, failing to capture deep cultural relevance. From the *modeling* perspective, they cannot provide large-scale training to enhance models' cultural perception. From the *bench-marking* perspective, they tend to overlook low-resource and non-representative regions, resulting in incomplete evaluation and limiting the ability to analyze global trends from a broader perspective.

This Work. We take the first step toward enhancing VLMs' cultural understanding by introducing CultureVLM, a series of globally aware VLMs with targeted improvements across more than 188 countries and regions. To support this, we develop a scalable framework for multimodal cultural data collection and construction (Figure 1), resulting in a large-scale and high-quality multimodal cultural resource, CultureVerse. Our flexible pipeline encompasses dataset collection, quality verification, and filtering processes, and can easily incorporate additional languages and cultures, ensuring both high quality and inclusiveness. To enable a more comprehensive evaluation of VLMs, we also create a non-overlapping test set, carefully curated and verified by human experts, serving as a benchmark to assess VLMs' performance in low-resource regions and to conduct global analysis from a macro perspective. Our work lays a solid foundation for developing more equitable AI systems that meet the needs of developing nations, ethnic minorities, and underrepresented cultural groups.

Key Findings. We conduct extensive exploration and analysis of CultureVLM and CultureVerse from multiple perspectives. The key findings are as follows.

- **Disparity in Cultural Understanding**: *All* VLMs show highly consistent regional disparities in cultural understanding, with the highest cultural understanding for the Americas, followed by Europe and Oceania, and the weakest understanding for Asia and Africa.
- Training for Enhanced Cultural Perception: Fine-tuning effectively enhances the cultural perception of VLMs, narrowing the gaps in cultural understanding across different regions and categories without significantly compromising the model's general capabilities.
- Model and Data Scale Enhance Cultural Understanding: Cultural understanding is generally
 positively correlated with model size, though not absolutely, as demonstrated by the Llama 3.2-11B
 model achieving performance comparable to that of Qwen 2-72B. Regarding fine-tuning, larger
 training datasets lead to more significant improvements, but gains slow as data grows.
- Generalization across Cultures, Concepts, Continent, and Datasets: Due to the inherent correlations between cultures of different regions and types, fine-tuning for cultural understanding exhibits reasonable generalization across different cultures, concepts, continents, and even datasets, showing great potential to improve cultural understanding via generalization research.

Contributions. Our contributions are as follows:

- Large-scale Dataset. We present Culture Verse, a massive scale benchmark consisting of 19, 682 cultural concepts and 228, 053 samples, covering 3 tasks, 188 countries/regions, and 15 cultural topics. Over two-thirds of these countries/regions contribute more than 30 cultural concepts each. The testset includes 11, 085 widely recognized concepts and corresponding 31, 382 samples.
- Comprehensive Evaluation. We evaluate a variety of cultural concepts across 16 open-source and proprietary models of varying scales, and provide analyses from the perspective of different tasks.
- Improvement of Multimodal Cultural Understanding. We present Culture VLM, which includes a flexible and cost-effective data collection and construction process and a series of VLMs fine-tuned on our dataset. Experimental results show that Culture VLMs enhance cultural understanding while maintaining general capabilities and exhibiting a degree of generalization abilities.

2 RELATED WORK

Cultural Bias in LLMs and VLMs. Recent research has increasingly focused on cultural biases present in LLMs. Johnson et al. (2022) investigated conflicts between model outputs and input values and found that GPT-3's responses aligned more closely with dominant U.S. cultural norms. Similarly, Naous et al. (2023b) observed a bias toward Western cultural perspectives in models processing Arabic text. The Cultural Alignment Test, based on Hofstede's cultural dimensions framework (Geert Hofstede, 2010), was used to evaluate the cultural alignment of models like ChatGPT and Bard across various regions, showing that GPT-4 exhibited the strongest alignment with U.S. values (Masoud et al., 2023). Additionally, Cao et al. (2023) found that, while ChatGPT was well-aligned with American cultural values, it struggled to represent other cultures accurately, especially when responding to English prompts. Liu et al. (2023) further reported that multilingual LLMs showed limited proficiency in reasoning with proverbs and revealed a "culture gap" in translation.

Data and Models for Cultural Understanding. Most research adopt public datasets. (Wang et al., 2023) introduced a benchmark based on the World Values Survey (WVS) (Survey, 2022) and the Political Culture and Trust dataset (Mudde, 2016). Subsequent works include the Cultural Alignment Test (Masoud et al., 2023), NORMSAGE (Fung et al., 2022), WorldValueBench (Zhao et al., 2024), and NORMAD (Rao et al., 2024), each drawing on various existing datasets. Other sources include CultureAtlas (Fung et al., 2024) and MAPS (Liu et al., 2023), which collected data from Wikimedia, while Candle (Nguyen et al., 2023a) and CultureBank (Shi et al., 2024) gathered data from social media including TikTok and Reddit. In contrast, there is a growing trend toward data augmentation such as Li et al. (2024b;c). Recent work built culture-specific LLMs on large-scale datasets for alignment (Pires et al., 2023; Chan et al., 2023; Nguyen et al., 2023b; Pipatanakul et al., 2023; Abbasi et al., 2023; Lin & Chen, 2023). Instead of relying on manual data collection, Li et al. (2024b;c) proposed cost-efficient approaches to fine-tuning cultural-specific LLMs with data augmentation.

Unlike LLMs, VLMs face more severe situation in obtaining sufficient cultural training data. Such research is still preliminary, with most efforts in *manual* data collection (Liu et al., 2021; Romero et al., 2024; Nayak et al., 2024; Bhatia et al., 2024; Vayani et al., 2024; Baek et al., 2024). MaRVL (Liu et al., 2021) built an ImageNet-style hierarchy that represents a wider range of languages and cultures. CVQA (Romero et al., 2024) proposed a culturally diverse multilingual VQA benchmark to

Table 1: Comparison of various cultural datasets with features. 'Multi.' indicates whether the dataset provides multi-faceted questions rather than just one single type.

Dataset	Country	Concept	Image	Question	Multi.	Trainset
MaRVL (Liu et al., 2021)	5	454	4,914	5,670	Х	Х
CVQA (Romero et al., 2024)	28	-	4,560	9,044	X	Х
CulturalVQA (Nayak et al., 2024)	11	-	2,328	2,328	X	X
GlobalRG (Bhatia et al., 2024)	50/15	-	3,591	-	/	Х
ALM-Bench (Vayani et al., 2024)	73	-	2,929	22,763	1	X
CultureVerse	188	11,085	11,085	31,382	,	,
w/ Train Set	188	19,682	74,959	196,673	•	•

encompass a wide variety of lingual and cultural contexts, engaging native speakers and cultural experts for data collection. CulturalVQA (Nayak et al., 2024) developed a visual question-answering benchmark focused on evaluating VLMs' understanding of culturally diverse, geographically specific content. GlobalRG (Bhatia et al., 2024) presents two challenging tasks: retrieval across cultural universals and culturally specific visual grounding. ALM-Bench (Vayani et al., 2024) expanded the languages of the test data to 100 through large-scale machine translation.

However, these datasets are often built by randomly sampling images rather than *concept-driven*, typically limited in scale and coverage, with insufficient regional and national representation. More critically, at the model level, there has been no effort to develop culturally aware VLMs, posing a major barrier to AI equity for underrepresented cultures. By systematically constructing datasets and models through *tangible concepts*, we achieve both *reduced manual effort* and ensured *scalability*. Table 1 shows the key difference between our benchmark and existing multimodal cultural datasets.

3 CultureVerse for Scalable Cultural Corpus Construction

Collecting reliable culture datasets presents two key challenges: *Diversity* and *Scalability*. Achieving comprehensive coverage is especially difficult for *culturally diverse* topics, particularly underrepresented groups in the Global South. The construction and annotation of such datasets would typically require substantial local residents from various countries and ethnic groups, resulting in poor scalability and high costs. Existing cultural benchmarks for VLMs usually lack adequate representation of diverse regions and communities, and often reflect a bias towards dominant cultures (Liu et al., 2021; Romero et al., 2024; Oh et al., 2024).

To overcome these limitations, we introduce a scalable data collection pipeline that integrates automated web crawling for *scalability* and *diversity* with expert human annotation for *reliability*. Our pipeline (Figure 1) consists of three stages: tangible cultural concept collection, question-answer generation, and quality assurance. This hybrid approach ensures that our dataset captures a wide spectrum of cultural contexts while maintaining high standards of data quality and relevance.

3.1 TANGIBLE CULTURAL CONCEPT COLLECTION

To construct a comprehensive set of cultural concepts, a common approach is to employ a bottom-up strategy to retrieve specialized knowledge from open web documents. For example, Fung et al. (2024) begin with an initial set of cultural topics (e.g., education and holiday traditions), collect relevant Wikipedia documents, and expand their scope through linked connections. However, many resulting documents primarily describe general, abstract, or high-level concepts, such as Renaissance Art or Mediterranean cuisine, which often lack specific, unambiguous visual representations.

Concept Construction. To overcome this issue, we adopt a top-down approach, starting with 15 predefined cultural categories of tangible cultural concepts such as food, festivals, landmarks, and performing arts (Figure 2 and Table 2). These categories are chosen to capture culturally distinctive and visually recognizable elements suitable for image retrieval and analysis. We then use GPT-40¹ to process all relevant Wikipedia documents, extracting conceptual entities that align with the 15 predefined categories. To ensure the quality and specificity of the extracted entities, we implement a 3-step filtering process on the extracted conceptual entities: 1) Entity Consolidation. We unified duplicate entities, merging those that are identical or differ solely by case, and eliminated entities with formatting issues or irregularities; 2) Frequency-based Thresholding. We retained only entities that appeared at least twice across the documents from a country, ensuring these concepts are wellrecognized within their cultural context and preventing formatting errors; 3) Entity Refinement. We filtered out overly abstract or generic entities such as Imperial Cuisine and those lacking distinct regional specificity such as Steak using additional judgment by GPT-4o. Through this refined process, we curated a collection of over 19,682 cultural concepts from 188 countries, as shown in Table 10. Our pipeline ensures that the selected concepts are diverse and recognizable, relevant for evaluating VLMs in understanding global cultural diversity.

Image Retrieval. Using these concepts and their corresponding countries, we scrape images from Google Images for each cultural concept, obtaining 5 images for each concept. During the development of CultureVLM, we found that no existing benchmark could adequately evaluate the performance of our intermediate models, as none provided coverage comparable to our corpus. Therefore, we reserved the first image for a human-curated test set and allocated the remaining images to the training set. Images larger than 10MB were compressed to ensure compatibility with typical input requirements of VLMs.

3.2 QUESTION-ANSWER GENERATION

We designed three levels of VQA tasks to assess and improve the multicultural knowledge of VLMs:

Image Recognition Questions evaluate models' ability to identify cultural concepts in images. Accurate identification of such concepts is fundamental to retrieving relevant cultural knowledge. Given an image and a cultural concept, models answer questions like "What dish is in the image?"

Cultural Knowledge Questions further evaluate model's deeper understanding of the cultural background associated with the concepts. For each concept, we generate comprehensive descriptions, including aspects like location, characteristics, history, and cultural significance. Then, we instruct GPT-40 to formulate a question based on the introduction and image to probe this cultural knowledge without directly naming the concept. These questions require the model to identify cultural concepts and apply various levels of reasoning, drawing on relevant cultural knowledge for accurate answers.

Scene Understanding Questions are designed to assess the model's ability to interpret, interact, and respond within culturally specific contexts, rather than simply recalling factual information as in the previous two categories. We curate scenarios with cultural elements or characteristics depicted in the images, providing context cues that challenge the VLMs to make contextually appropriate choices.

¹GPT-40 has strong performance for *text*-based cultural understanding (Li et al., 2024c).

Figure 2: Overview of Culture Verse. There are over 220k instances and 19k cultural concepts for training and evaluation, composed of 3 different types of questions from 188 countries.

Using the detailed introductions of the previous steps, we prompt GPT-4o² to generate scenario-based understanding questions. These questions require the model to not only recognize cultural concepts but also apply contextual reasoning based on the associated cultural knowledge.

3.3 QUALITY ASSURANCE

We pursue an *optimal integration* of LLM assistance and human expert annotation to ensure both accuracy and scalability in dataset construction. To ensure the quality of CultureVerse, every cultural concept—together with its paired images and QA triplets underwent a rigorous quality-control pipeline in which erroneous samples were removed or corrected. Concretely, we applied multiple LLM-based filtering rounds to the full corpus and engaged human experts to refine the test set (details are in Appendix D), focusing on three dimensions:

- Image-Concept Alignment. We assessed whether each cultural concept accurately represents the culture of its respective country or region and is either unique to or widely recognized within that. We started with frequency analysis and leverage GPT-40 for preliminary screening, effectively filtering out less desirable data and significantly reducing the manual review workload.
- **Image Quality Check.** We checked the image quality and ensured that the cultural concept is accurately presented in the image, filtering out non-matching or low-quality instances.
- Question & Answer Validation. We verified that all generated questions are reasonable, clear, logically sound, and have a single correct answer. Annotators refined the questions and answers by removing redundant information and resolving any ambiguities to maintain clarity and accuracy.

Following the quality assurance process, we utilized human annotations for the evaluation set of CultureVerse while applying the automated annotation pipeline to the larger training set. With over 90% of the evaluation set samples correctly annotated by the LLMs-based filtering (Appendix D.2), we conclude that the pipeline is highly effective. Any remaining erroneous or challenging samples that could not be refined were filtered out to maintain the dataset's high quality.

3.4 DISCUSSION ON SCALABILITY

Our approach is notably more scalable and comprehensive than existing methods which mostly rely on *manual* efforts to search for cultural concepts, retrieve images, and formulate questions, significantly increasing human efforts beyond quality check (Chiu et al., 2024; Romero et al., 2024; Jin et al., 2024b). This manual process typically results in limited or biased coverage due to the limited scope of cultural concepts explored. For example, some datasets (Bhatia et al., 2024) cover only 15 countries with 40 cultural concepts for each country.

²As for *cultural image* understanding, GPT-40 may perform worse, motivating the quality assurance in §3.3.

Figure 3: Accuracy of different models on three tasks (upper), five regions (middle), and three categories of concepts (lower).

In contrast, our work is the first to advance the number of cultural concepts to the scale of tens of thousands, with a coverage of ~ 200 countries/regions (Table 10). Additionally, our dataset construction process allows for further large-scale expansion, including the retrieval of more images and the synthesis of QAs, such as open-ended QAs, multiple-choice and reasoning QAs. Note that our work is *not* replacing human annotations; expert annotation is still valuable, and the combination of expert and automatic pipeline provides a promising solution for massive cultural data collection.

Dataset Analysis. Figure 2(a) illustrates the distribution of three tasks (Section 3.2), 5 continents (188 countries, with North and South America combined into America) and 15 cultural topics in Culture Verse. Since cultural concepts are collected at the country level, regions with more countries, such as Asia and Europe, naturally yield larger datasets. Detailed counts of countries and concepts are provided in the Table 10. Despite the limited web data in non-representative regions, over 120 regions still yield more than 30 concepts each, offering a more comprehensive perspective. Detailed statistics of the concepts are provided in Table 1. Compared to recent multi-model culture datasets, Culture Verse is driven by *tangible, presentable cultural concepts*, achieving an order of magnitude increase in the number of regions, images, and questions. This expansion advances multimodal and multicultural research beyond a limited set of countries, moving toward truly global, inclusive cultural integration. Figure 2(b) shows examples of three questions from one concept, clearly demonstrating that different question types evaluate different abilities.

4 EXPERIMENTS WITH CULTUREVERSE

4.1 EXPERIMENTAL SETUP

Data Split. To ensure robust evaluation, we partition CultureVerse into training/test sets for all countries/regions, allowing us to assess transferability between regions. We select more common cultural concepts from the entire dataset for the test set, which underwent manual quality checks, while the training set includes all cultural concepts. We ensured that the images in training and test sets did not overlap to prevent data leakage. More details are in Appendix C.1.

Models and Hyperparameters. We evaluate Culture Verse on 14 open-source and 2 proprietary VLMs. For multi-choice questions, we employ greedy search decoding for deterministic predictions. We use vllm (Kwon et al., 2023) and Imdeploy (Contributors, 2023) to speed up inference. We report accuracy following previous work (Liu et al., 2024b). More details are in Appendix C.1.

Figure 4: Results and analysis of CultureVLM by fine-tuning on our CultureVerse.

4.2 MAIN RESULTS

The main results are in Figure 3 with details in Appendix C.2. Our main findings are as follows.

Task Characteristics: Cultural Awareness Outpaces Image and Detail Recognition. From the task perspective, we observe that image recognition and cultural knowledge questions pose challenges comparable for VLMs. *Image recognition* tests VLMs' ability to identify culturally specific objects or concepts, which relies heavily on diverse and relevant image data. For instance, recognizing traditional foods like *kimchi* from Korea, or regional attire such as a *sari* from India, requires the model to have encountered similar image-text pairs in its training data. In contrast, cultural knowledge questions assess the model's understanding of broader cultural elements based on text-based training. For example, asking about the significance of a festival like *Diwali* or the symbolism of a *red envelope* during Lunar New Year taps into the model's text-based memory, which tends to be richer due to the abundance of internet text data. Interestingly, in the *scene understanding* task, which integrates images with contextual background (e.g., a Japanese tea ceremony scene or a Brazilian Carnival parade), VLMs tend to generate culturally appropriate responses, avoiding inappropriate or culturally insensitive outputs. This can be attributed to the model's inherent multicultural awareness and its alignment with ethical and harm-reduction training.

Regional Disparities: Better Performance in Western Cultures. A dominant regional disparity is observed among all models: VLMs demonstrate the strongest cultural understanding of the Americas, followed by Europe and Oceania. This trend reflects the dominance of English data centered around the Global North, leading to a disproportionate focus on Western cultural content. North America's relatively homogenous cultural landscape, combined with fewer countries, contributes to better model performance. In contrast, Asia and Africa show significantly weaker results, likely due to the scarcity of digitized, English-language data and the high cultural diversity in these regions. For instance, Asia consists of many countries with distinct and complex cultural contexts, such as those from East Asia, South Asia, and Southeast Asia, both within and across nations. Although Asia has the most data in CultureVerse (see Figure 2), the models struggle to capture the intra-regional and inter-regional cultural nuances, resulting in suboptimal performance.

Weak Understanding of History and Landmarks. VLMs generally exhibit weaker recognition and understanding of cultural concepts related to history and landmarks. The primary reason is the relatively limited internet data available on historical figures and landmarks. Additionally, recognizing a landmark typically requires training data that includes images from multiple perspectives to form a comprehensive, three-dimensional understanding.

Performance Variability from Model Level. Proprietary models continue to outperform open-source counterparts, with GPT-40 achieving the best results. Although larger models tend to demonstrate better performance, size alone is not the determining factor. For example, the size variations of LLaVA-1.5 and Qwen2-VL show similar performance. Cultural knowledge often resides in model's memory, an aspect overlooked in VLMs development. Thus, smaller models (e.g. Phi-3-Vision) with comparable training data can already exhibit strong cultural understanding when using similar training data as larger models.

Direct Answer v.s. Stepwise Reasoning. For image recognition tasks, we compare two prompt methods: 1) the model directly identifies and outputs the cultural concept, and 2) first provides a detailed image description and then analyzes and compares the options to reach a final answer. As shown in Figure 4a, we find that stepwise reasoning does not improve cultural recognition and, in most cases, significantly *impairs* performance. Upon analyzing the answers, we observe that VLMs

382

384 385 386

387

388

389

390

391

392

393 394

395

397

398

399

400 401

402 403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418 419 420

421 422

423

424

425 426

427

428

429

430

431

Base refers to the original adapted using our Culture Verse.

frequently exhibit hallucinations (Bai et al., 2024; Tonmoy et al., 2024; Agarwal et al., 2024) during step-by-step explanations, as shown in Figure 8. This poor robustness suggests that while VLMs may have encountered similar images during training and associated them with certain concepts, they may lack a deeper understanding of the details and components that make up those concepts.

TRAINING CULTUREVLM 4.3

We fine-tuned three models: LLaVA-1.5, Phi-3-Vision, and LLaMa-3.2-Vision, with the results presented in Figure 4b. Cultural knowledge, in contrast to reasoning tasks such as mathematics and coding, is relatively easier to enhance as a form of memory-based perception. Consequently, all models achieved consistent and substantial improvements, reaching performance levels comparable to closed-source models, with the most significant gains observed in Asia and Africa, thereby promoting inter-regional balance (Table 4). We also performed ablation studies to analyze the impact of fine-tuning data size and decoding temperature.

Impact of Fine-tuning Data Size. We vary the number of fine-tuning examples within [5%, 20%, 50%, 75%, 100%]. Figure 4c and 4d show the model's performance decreases as the training data is reduced. However, the decline is minimal, indicating that even a small amount of training data can effectively enhance the model's multicultural awareness.

Impact of Decoding Temperature. We evaluate the performance of the original models and CultureVLMs under different temperature and decoding settings in Appendix C.3. It can be observed that VLMs perform better when the temperature is lower and decoding diversity is reduced. However, when the temperature reaches 1.0, there is a noticeable and expected decline in performance.

GENERALIZATION AND ROBUSTNESS

To evaluate the generalizability of VLMs in multicultural contexts, we partitioned the training data by continents (Americas, Asia, Europe, Africa, Oceania) and fine-tuned LLaVA-1.5-7B (Liu et al., 2024b) on each subset. Table 5 in the appendix illustrates the performance of each model trained on specific continental data and tested in all regions, and Figure 5 shows the aggregated results.

Intra- and Inter-continent Generalization. The diagonal values represent cases where the model was trained and evaluated on data from the same continent, consistently yielding the highest scores. Notably, Asia achieved the best performance (90.8), followed closely by Europe and the Americas (90.5), indicating strong regional specialization. Furthermore, the off-diagonal values reveal models' ability to generalize across regions. Although cross-region scores are generally lower, the model still exhibits reasonable transferability. Fine-tuning on Oceania, however, resulted in the lowest average performance drop, from 85.2 to 75.0, suggesting a distinct data distribution for this region.

Question: Which cultural synthesis is reflected in the architecture and artistic features of the structure shown in the image?

Options: (A) Native American and Colonial Spanish (B) Italian Renaissance and Gothic (C) Byzantine and Ottoman (D) Moorish and

Culture VI.A.L.12N.* The image depicts the Mission San Xavier del Bar, a historic Spanish Catholic mission located in Arbona. U.Sa. ... Option (A) Native American and Codorial Spanish: This option reflects the cultural synthesis present in the Mission San Xavier del Bar. The mission was established by Spanish colorisors and incorporates elements from both Spanish and indigenous cultures, wident in its architecture and artistic features Option (D) Moorish and Romanesque. This option is also unrelated, as the mission does not evalible characteristics of Moorish or Romanesque architecture. Based on the analysis, the cultural synthesis reflected in the architecture and artistic features of the Mission San Xavier del Bars is best described by option (A) Native American and Colorish Spanish.

Figure 7: Results on CVQA (Romero et al., 2024).

Options: (A) Bacat (B) Zongat (C) Jiacat (D) Shaomal
Direct Output: B) Zongat
Direct Output: B) Zongat
Stepwise Reasoning: The image shows a plate with two wrapped dumplings, likely Bacat, and a piece of meat in a wrapper. The dumplings are filled with meat and have
sauce on hem. They are placed on a table, and a kindle is also viable in the scene. (A) Bacat is a traditional Chinese date made from a doubt filled with meat and other
incredients. Then sheared or botled, it is a coolured in this Chinese cubine and is commonly severed as a traditional Chinese date made from a doubt filled with meat and other
incredients. Then sheared or botled, it is a coolured in this Chinese cubine and is commonly severed as a traditional Chinese date made from a doubt fill with meat and other
incredients. Then sheared or botled, it is a coolured in this Chinese cubine and is commonly severed as a traditional Chinese date made from a doubt fill with meat and other
incredients. The sheared or botled, it is a coolured in this Chinese cubine and is a traditional Chinese date made from a doubt fill with meat and other
incredients. The sheared or botled, it is a coolured in the Chinese cubine and is a traditional Chinese date made from a doubt fill with meat and other
incredients. The sheared or botled, it is a coolured in the Chinese cubine and is commonly as the contract of the common and the common

Figure 8: Case study on the effect of fine-tuning and prompt variations.

Robustness across Concepts. We grouped the 15 concepts into 3 main classes: Cultural Heritage and Traditions (CHT), History and Landmarks (HL), and Natural Environment and Local Resources (NELR) using GPT-40. We then conducted training in each group and evaluated on all groups. The specific category mappings are in Appendix B. As shown in Figure 5 (right), models generally perform the best when trained and evaluated within the same category (in-distribution). The model fine-tuned on HL exhibits greater generalization, achieving an average performance of 87.8, compared to NELR (84.3). High off-diagonal scores, such as CultureVLM-HL's 87.2 when tested on CHT, indicate substantial cross-category knowledge transfer, particularly between culturally related classes.

Cross-dataset Generalization. We also evaluated the generalization ability of CultureVLM for cultural reasoning on other datasets. We tested LLaVA-1.5-7B on CVQA (Romero et al., 2024) and CulturalVQA (Nayak et al., 2024) before and after fine-tuning, as shown in Figure 7 and Table 10. It is evident that our CultureVLM achieves improvements across most cultures and gets 22.56% improvement on average on CulturalVQA, which can be attributed to the comprehensive coverage of our dataset global nations and cultures, indicating the potential of CultureVLM for cultural research.

4.5 CATASTROPHIC FORGETTING AND CASE STUDY

Catastrophic forgetting (Kirkpatrick et al., 2017) happens when a model loses previously learned knowledge when trained on new information, especially when the new data diverges significantly from the pretraining data. This can be especially problematic in cultural knowledge acquisition, as it may cause the model to compromise essential commonsense knowledge in favor of culture-specific details. To assess this, we evaluate the models on standard VQA benchmarks, including ScienceQA (Saikh et al., 2022), TextVQA (Singh et al., 2019), MMLU (Hendrycks et al., 2020) and MathVista (Lu et al., 2024) to determine if the process of acquiring cultural knowledge inadvertently diminishes their grasp of general commonsense concepts. The results in Figure 6 reveal that our fine-tuned CultureVLM merely influences general VLM tasks, indicating the versatility of the solution.

Figure 8 shows the responses of LLaVA and CultureVLM. We incorporate extensive explanations into the training data, enriching CultureVLM with substantial knowledge that enhances its cultural recognition and understanding ability. More analysis and case studies are in Appendix E.

5 CONCLUSION

We constructed CultureVerse, a large-scale multimodal resource for VLM cultural understanding. Extensive evaluation shows significant performance disparities across regions and tasks, highlighting VLMs' cultural biases and weak performance in underrepresented regions. The fine-tuned CultureVLM improved cultural perception and cross-cultural generalization. Our findings underscore the importance of culturally diverse training data and provide actionable insights to improve VLMs.

We acknowledge several limitations. First, we use languages as proxies for cultural boundaries, but the complexity of culture can be better captured by other aspects such as accents and norms. This simplification was made to address challenges in defining cultural contexts, inspired by previous research (Li et al., 2024b; Appadurai, 1996; Myung et al., 2024). Our pipeline is flexible to incorporate additional languages and cultures. Second, current dataset lacks multilingual support. Most foundational models currently exhibit weak multilingual capabilities, so fine-tuning on multilingual cultural data is less effective than on English data (Li et al., 2024b). Therefore, the English data provided currently is also timely and valuable. Third, CultureVerse only contains multiple-choice questions. Exploring open-ended questions could also offer additional avenues for assessment.

ETHICAL CONSIDERATIONS

For our corpus and models, we have implemented multiple safeguards, such as content filtering and screening, to prevent potential harm to individuals or groups. Given the social sensitivity of cultural understanding research, we wish to reiterate that all data and models are intended solely for research purposes, and will be governed through protocols and licenses.

REPRODUCIBILITY STATEMENT

We have taken comprehensive steps to ensure the reproducibility of our results. Code and data will be made publicly available after careful review to support academic research within the community. Public benchmarks used in this work further support verifiability and consistency.

REFERENCES

- Mohammad Amin Abbasi, Arash Ghafouri, Mahdi Firouzmandi, Hassan Naderi, and Behrouz Minaei Bidgoli. Persianllama: Towards building first persian large language model. *arXiv:2312.15713*, 2023.
- Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report: A highly capable language model locally on your phone. *arXiv:2404.14219*, 2024.
- Muhammad Farid Adilazuarda, Sagnik Mukherjee, Pradhyumna Lavania, Siddhant Singh, Ashutosh Dwivedi, Alham Fikri Aji, Jacki O'Neill, Ashutosh Modi, and Monojit Choudhury. Towards measuring and modeling" culture" in llms: A survey. *arXiv:2403.15412*, 2024.
- Vibhor Agarwal, Yiqiao Jin, Mohit Chandra, Munmun De Choudhury, Srijan Kumar, and Nishanth Sastry. Medhalu: Hallucinations in responses to healthcare queries by large language models. *arXiv*:2409.19492, 2024.
- Pravesh Agrawal, Szymon Antoniak, Emma Bou Hanna, Baptiste Bout, Devendra Chaplot, Jessica Chudnovsky, Diogo Costa, Baudouin De Monicault, Saurabh Garg, Theophile Gervet, et al. Pixtral 12b. *arXiv:2410.07073*, 2024.
- Anthropic. Claude 3.5 sonnet, 2024. URL https://www.anthropic.com/news/claude-3-5-sonnet.
- Arjun Appadurai. Modernity at large: Cultural dimensions of globalization. *U of Minnesota P*, 1996.
- Yujin Baek, ChaeHun Park, Jaeseok Kim, Yu-Jung Heo, Du-Seong Chang, and Jaegul Choo. Evaluating visual and cultural interpretation: The k-viscuit benchmark with human-vlm collaboration. *arXiv preprint arXiv:2406.16469*, 2024.
- Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He, Zongbo Han, Zheng Zhang, and Mike Zheng Shou. Hallucination of multimodal large language models: A survey. *arXiv:2404.18930*, 2024.
- Mehar Bhatia, Sahithya Ravi, Aditya Chinchure, Eunjeong Hwang, and Vered Shwartz. From local concepts to universals: Evaluating the multicultural understanding of vision-language models. *arXiv*:2407.00263, 2024.
- Y Cao, L Zhou, S Lee, L Cabello, M Chen, and D Hershcovich. Assessing cross-cultural alignment between chatgpt and human societies: An empirical study. arxiv. *Preprint posted online on March*, 31, 2023.
- Alex J Chan, José Luis Redondo García, Fabrizio Silvestri, Colm O'Donnel, and Konstantina Palla. Harmonizing global voices: Culturally-aware models for enhanced content moderation. *arXiv*:2312.02401, 2023.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. *arXiv*:2312.14238, 2023.

Yu Ying Chiu, Liwei Jiang, Bill Yuchen Lin, Chan Young Park, Shuyue Stella Li, Sahithya Ravi, Mehar Bhatia, Maria Antoniak, Yulia Tsvetkov, Vered Shwartz, et al. Culturalbench: a robust, diverse and challenging benchmark on measuring the (lack of) cultural knowledge of llms. *arXiv*:2410.02677, 2024.

- LMDeploy Contributors. Lmdeploy: A toolkit for compressing, deploying, and serving llm. https://github.com/InternLM/lmdeploy, 2023.
- Chengyuan Deng, Yiqun Duan, Xin Jin, Heng Chang, Yijun Tian, Han Liu, Henry Peng Zou, Yiqiao Jin, Yijia Xiao, Yichen Wang, et al. Deconstructing the ethics of large language models from long-standing issues to new-emerging dilemmas. *arXiv*:2406.05392, 2024.
- Yi Fung, Ruining Zhao, Jae Doo, Chenkai Sun, and Heng Ji. Massively multi-cultural knowledge acquisition & lm benchmarking. *arXiv*:2402.09369, 2024.
- Yi R Fung, Tuhin Chakraborty, Hao Guo, Owen Rambow, Smaranda Muresan, and Heng Ji. Normsage: Multi-lingual multi-cultural norm discovery from conversations on-the-fly. *arXiv*:2210.08604, 2022.
- Michael Minkov Geert Hofstede, Gert Jan Hofstede. *Cultures and Organizations: Software of the Mind, Third Edition.* McGraw Hill Professional, https://books.google.co.uk/books?id=7bYWmwEACAAJ, 2010.
- Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024.
- Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *arXiv preprint arXiv:2009.03300*, 2020.
- Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv:2410.21276, 2024.
- Yiqiao Jin, Mohit Chandra, Gaurav Verma, Yibo Hu, Munmun De Choudhury, and Srijan Kumar. Better to ask in english: Cross-lingual evaluation of large language models for healthcare queries. In *Web Conference*, pp. 2627–2638, 2024a.
- Yiqiao Jin, Minje Choi, Gaurav Verma, Jindong Wang, and Srijan Kumar. Mm-soc: Benchmarking multimodal large language models in social media platforms. In *ACL*, 2024b.
- Rebecca L Johnson, Giada Pistilli, Natalia Menédez-González, Leslye Denisse Dias Duran, Enrico Panai, Julija Kalpokiene, and Donald Jay Bertulfo. The ghost in the machine has an american accent: value conflict in gpt-3. *arXiv:2203.07785*, 2022.
- James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks. *PNAS*, 114(13):3521–3526, 2017.
- Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with pagedattention. In *SIGOPS*, 2023.

- Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv:2408.03326,
 2024a.
 - Cheng Li, Mengzhou Chen, Jindong Wang, Sunayana Sitaram, and Xing Xie. Culturellm: Incorporating cultural differences into large language models. In *NeurIPS*, 2024b.
 - Cheng Li, Damien Teney, Linyi Yang, Qingsong Wen, Xing Xie, and Jindong Wang. Culturepark: Boosting cross-cultural understanding in large language models. In *NeurIPS*, 2024c.
 - Yen-Ting Lin and Yun-Nung Chen. Taiwan llm: Bridging the linguistic divide with a culturally aligned language model. *arXiv*:2311.17487, 2023.
 - Chen Cecilia Liu, Fajri Koto, Timothy Baldwin, and Iryna Gurevych. Are multilingual llms culturally-diverse reasoners? an investigation into multicultural proverbs and sayings. *arXiv:2309.08591*, 2023.
 - Fangyu Liu, Emanuele Bugliarello, Edoardo Maria Ponti, Siva Reddy, Nigel Collier, and Desmond Elliott. Visually grounded reasoning across languages and cultures. *arXiv:2109.13238*, 2021.
 - Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *CVPR*, pp. 26296–26306, 2024a.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *NeurIPS*, 36, 2024b.
 - Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. In *International Conference on Learning Representations (ICLR)*, 2024.
 - Reem I Masoud, Ziquan Liu, Martin Ferianc, Philip Treleaven, and Miguel Rodrigues. Cultural alignment in large language models: An explanatory analysis based on hofstede's cultural dimensions. *arXiv*:2309.12342, 2023.
 - Noha Medhat. 8 normal signs and gestures that can be offensive in the middle east. *StepFeed*, November 2015. URL https://www.stepfeed.com. Retrieved 25 February 2019.
 - Meta. Llama 3.2. https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices, 2024.
 - Cas Mudde. The 2012 stein rokkan lecture: Three decades of popu list radical right parties in western europe: so what? In *The Populist Radical Right*, pp. 545–558. Routledge, 2016.
 - Junho Myung, Nayeon Lee, Yi Zhou, Jiho Jin, Rifki Afina Putri, Dimosthenis Antypas, Hsuvas Borkakoty, Eunsu Kim, Carla Perez-Almendros, Abinew Ali Ayele, et al. Blend: A benchmark for llms on everyday knowledge in diverse cultures and languages. *arXiv:2406.09948*, 2024.
 - Tarek Naous, Michael J Ryan, Anton Lavrouk, Mohit Chandra, and Wei Xu. Readme++: Benchmarking multilingual language models for multi-domain readability assessment. In *EMNLP*, 2023a.
 - Tarek Naous, Michael J Ryan, and Wei Xu. Having beer after prayer? measuring cultural bias in large language models. *arXiv*:2305.14456, 2023b.
 - Shravan Nayak, Kanishk Jain, Rabiul Awal, Siva Reddy, Sjoerd van Steenkiste, Lisa Anne Hendricks, Karolina Stańczak, and Aishwarya Agrawal. Benchmarking vision language models for cultural understanding. *arXiv*:2407.10920, 2024.
 - Tuan-Phong Nguyen, Simon Razniewski, Aparna Varde, and Gerhard Weikum. Extracting cultural commonsense knowledge at scale. In *Web Conference*, pp. 1907–1917, 2023a.
 - Xuan-Phi Nguyen, Wenxuan Zhang, Xin Li, Mahani Aljunied, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, et al. Seallms–large language models for southeast asia. arXiv:2312.00738, 2023b.

- Sejoon Oh, Yiqiao Jin, Megha Sharma, Donghyun Kim, Eric Ma, Gaurav Verma, and Srijan Kumar. Uniguard: Towards universal safety guardrails for jailbreak attacks on multimodal large language models. *arXiv preprint arXiv:2411.01703*, 2024.
- OpenAI. Gpt-4o, 2024a. URL https://openai.com/index/gpt-4o-system-card.
 - OpenAI. Gpt-4v, 2024b. URL https://openai.com/research/gpt-4v-system-card.
 - Kunat Pipatanakul, Phatrasek Jirabovonvisut, Potsawee Manakul, Sittipong Sripaisarnmongkol, Ruangsak Patomwong, Pathomporn Chokchainant, and Kasima Tharnpipitchai. Typhoon: Thai large language models. *arXiv:2312.13951*, 2023.
 - Ramon Pires, Hugo Abonizio, Thales Sales Almeida, and Rodrigo Nogueira. Sabiá: Portuguese large language models. In *Brazilian Conference on Intelligent Systems*, pp. 226–240. Springer, 2023.
 - Abhinav Rao, Akhila Yerukola, Vishwa Shah, Katharina Reinecke, and Maarten Sap. Normad: A benchmark for measuring the cultural adaptability of large language models. *arXiv:2404.12464*, 2024.
 - David Romero, Chenyang Lyu, Haryo Akbarianto Wibowo, Teresa Lynn, Injy Hamed, Aditya Nanda Kishore, Aishik Mandal, Alina Dragonetti, Artem Abzaliev, Atnafu Lambebo Tonja, et al. Cvqa: Culturally-diverse multilingual visual question answering benchmark. *arXiv*:2406.05967, 2024.
 - Tanik Saikh, Tirthankar Ghosal, Amish Mittal, Asif Ekbal, and Pushpak Bhattacharyya. Scienceqa: a novel resource for question answering on scholarly articles. *International Journal on Digital Libraries*, 23(3):289–301, 2022.
 - Weiyan Shi, Ryan Li, Yutong Zhang, Caleb Ziems, Raya Horesh, Rogério Abreu de Paula, Diyi Yang, et al. Culturebank: An online community-driven knowledge base towards culturally aware language technologies. *arXiv:2404.15238*, 2024.
 - Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach. Towards vqa models that can read. In *CVPR*, pp. 8317–8326, 2019.
- World Values Survey. World values survey. https://www.worldvaluessurvey.org/wvs.jsp, 2022.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal models. *arXiv:2312.11805*, 2023.
- SM Tonmoy, SM Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman Chadha, and Amitava Das. A comprehensive survey of hallucination mitigation techniques in large language models. *arXiv:2401.01313*, 2024.
- Ashmal Vayani, Dinura Dissanayake, Hasindri Watawana, Noor Ahsan, Nevasini Sasikumar, Omkar Thawakar, Henok Biadglign Ademtew, Yahya Hmaiti, Amandeep Kumar, Kartik Kuckreja, et al. All languages matter: Evaluating lmms on culturally diverse 100 languages. *arXiv preprint arXiv:2411.16508*, 2024.
- Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv*:2409.12191, 2024.
- Wenxuan Wang, Wenxiang Jiao, Jingyuan Huang, Ruyi Dai, Jen-tse Huang, Zhaopeng Tu, and Michael R Lyu. Not all countries celebrate thanksgiving: On the cultural dominance in large language models. *arXiv:2310.12481*, 2023.
- Genta Indra Winata, Frederikus Hudi, Patrick Amadeus Irawan, David Anugraha, Rifki Afina Putri, Yutong Wang, Adam Nohejl, Ubaidillah Ariq Prathama, Nedjma Ousidhoum, Afifa Amriani, et al. Worldcuisines: A massive-scale benchmark for multilingual and multicultural visual question answering on global cuisines. *arXiv:2410.12705*, 2024.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv:2408.01800*, 2024.

Alex Young. Western theory, global world: Western bias in international theory. *Harvard International Review*, pp. 29–31, 2014.

Wenlong Zhao, Debanjan Mondal, Niket Tandon, Danica Dillion, Kurt Gray, and Yuling Gu. World-valuesbench: A large-scale benchmark dataset for multi-cultural value awareness of language models. *arXiv*:2404.16308, 2024.

Appendix CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models CONTENTS Introduction **Related Work CultureVerse for Scalable Cultural Corpus Construction** 3.2 3.3 3.4 **Experiments with CultureVerse** 4.2 4.3 4.4 Conclusion A LLM Usage Statement **Details of the CultureVerse Dataset** C Experimental Details and Results **D** Details of Human Annotation E Case Study **Prompt List**

A LLM USAGE STATEMENT

We utilized ChatGPT and Grammarly to polish the language of the manuscript. LLMs were employed solely for language refinement and editing purposes, such as improving readability and clarity. They played no role in shaping research ideas, methodology, or analysis. The authors assume full responsibility for all content.

B DETAILS OF THE CULTURE VERSE DATASET

Table 2 shows the definition of cultural concepts in our dataset. Table 10 shows the number of concepts in different countries from the evaluation set. In total, we have 11,085 evaluation samples and 19,682 training samples from 188 countries/regions.

Overall Category	Category	Example Description
Cultural Heritage and Traditions	Festivals Traditional Clothing Handicrafts and Artifacts Music and Dance Religion and Belief Entertainment and Performing Arts	Unique festival celebration scenes Ethnic clothing, festival attire Ethnic handicrafts, traditional handmade items Traditional musical instruments, dance scenes Temples and churches, religious ceremonies Theater performances, street performers
History and Landmarks	Famous Landmarks Historical Artifacts Historical Figures Architectural Styles	Famous historical sites, buildings Museum collections, ancient relics Portraits of historical figures, statues Traditional architecture, modern landmark buildings
Natural Environment and Local Resources	Food Plants Animals Natural Scenery and Ecosystems Markets and Shopping Traditions	Local specialty dishes, traditional festival foods Unique flowers, crops in a certain area Unique wild animals, livestock in a certain area Unique natural landscapes, ecological reserves Local markets, specialty shops

Table 2: Collected concepts, their overall categories, and descriptions in the dataset.

C EXPERIMENTAL DETAILS AND RESULTS

C.1 EXPERIMENT SETUP

Evaluation Models. We conduct evaluations on the following models: (a) open-source models including LLaVA-1.5 (Liu et al., 2024a), LLaVA-1.6-Mistral-7B-Instruct (Liu et al., 2024b), LLaVA-OneVision (Li et al., 2024a), LLaMA-3.2-Vision (Meta, 2024), Qwen2-VL (Wang et al., 2024), InternVL-2 (Chen et al., 2023), Phi-3-Vision (Abdin et al., 2024), MiniCPM-Llama3-V-2.5 (Yao et al., 2024), GLM-4V (GLM et al., 2024), Pixtral 12B (Agrawal et al., 2024); (b) proprietary models such as GPT-4o (OpenAI, 2024a), Gemini-1.5-Pro (Team et al., 2023).

Evaluation Setup. For LLaVA-1.5, LLaMA-3.2-Vision and InternVL-2, we use Imdeploy Contributors (2023) for inference acceleration. For other models, we use vllm Kwon et al. (2023) for the acceleration of inference. For models before and after fine-tuning, we use the same acceleration toolkit to prevent potential impact. The number of questions differs across the three tasks. This is because generating questions for cultural knowledge and scenario reasoning is more complex, and in some cases, GPT-40 refused to provide answers, making it impossible to generate valid questions. For image recognition questions, we directly use the questions and options as prompts. For cultural knowledge and scene understanding questions, we employ stepwise reasoning prompts to facilitate the reasoning explanation. The prompts are available in the Appendix **F**. For all proprietary models, we utilize the default hyper-parameters, setting the temperature to 0 and the max tokens to 1,024. For all open-source models, do_sample is set to False, max_gen_len is set to 512, and the temperature is set to 0.01.

Training Setup. We use the official train ing scripts of LLaVA³, Phi⁴, and LLaMA⁵ for model training, largely adhering to the original hyperparameters, except for appropriately adjusting the batch size to accommodate the GPU memory capacity. For LLaVA-1.5, a learning rate of 2×10^{-5} is used, with no weight decay applied (0.0). The learning rate followed a cosine schedule, gradually increasing during the initial phase with a warmup ratio of 0.03. For Phi-3, we use a learning rate of 4×10^{-5} and a weight decay of 0.01. A linear learning rate scheduler is utilized, with 50 warmup steps to stabilize the early training stage. For LLaMA-3.2, fine-tuning is conducted using a learning rate of 1×10^{-5} with no weight decay (0.0). A multiplicative learning rate decay is applied after each epoch, with a gamma value of 0.85. The batch sizes are set to 64, 16 and 32 respectively. All models are trained for one epoch on the training set and fully fine-tuned on 4×A100 80GB GPUs. For the training data, although we do not conduct large-scale human annotation, we synthesize the data using only concepts that passed either GPT-40 or human quality assurance, significantly improving the accuracy of the dataset. The prompts used for GPT quality check can be found in the Appendix F.

C.2 DETAILED MAIN RESULTS

Detailed results on different tasks, continents, and cultural categories can be found in Table ??.

C.3 Detailed Fine-tuning Results

The detailed results of the fine-tuned models are shown in Table 3. Detailed results for different temperature settings can be found in Figure 9. Detailed results on the generalization of the fine-tuned model in different regions and for different categories can be found in Table 5 and Table 6. Detailed results of the models before and after fine-tuning on the general VQA benchmark are shown in Table 7.

	Task			Continent				Category			
Model	Image Recognition	Cultural Knowledge	Scene Understanding	Africa	Asia	Europe	America	Oceania	СНТ	HL	NELR
LLAVA-v1.5 7B	88.03	90.87	95.66	91.68	91.61	91.02	91.91	90.61	92.58	90.98	91.70
LLaVA-v1.5 13B	89.72	92.20	96.09	92.68	92.37	92.59	93.05	92.73	93.17	92.40	92.60
Phi-3-vision 4B	87.53	90.84	95.77	90.80	91.56	91.41	90.91	91.16	92.83	90.50	92.35
LLaMA-3.2-Vision 11B	89.13	91.49	96.20	91.99	92.24	91.82	93.08	91.34	93.20	91.78	92.50

Table 3: Performance of fine-tuned models across three tasks, five continents, and three categories. CHT denotes *Cultural Heritage and Traditions*; HL denotes *History and Landmarks*; and NELR denotes *Natural Environment and Local Resources*.

Figure 9: Impact of different decoding temperatures on performance

Model	Score
LLaVa	32.8
CultureVLM-LLaVa-7B	40.2 (+22.56%)

Figure 10: CultureVLM (based on LLaVa-7B) achieved a 22.56% improvement on CultureVQA (Nayak et al., 2024). These results were obtained through an evaluation we requested from the CulturalVQA team.

³https://github.com/haotian-liu/LLaVA.

⁴https://github.com/microsoft/Phi-3CookBook.

⁵https://github.com/meta-llama/llama-recipes/blob/main/recipes/ quickstart/finetuning/finetune_vision_model.md.

Model (Improvement)	Africa	Asia	Europe	America	Oceania
LLaVA-7B	36.06	37.83	33.78	28.64	30.20
LLaVA-13B	42.85	45.14	41.07	35.52	38.22
Phi-3-vision-4B	30.20	30.57	28.20	23.13	22.47
LLaMA-3.2-Vision-11B	17.44	15.62	14.25	12.18	12.06
Average Improvement	31.64	32.29	29.32	24.87	25.74

Table 4: Performance improvement across different cultural regions. CultureVLM demonstrates the most significant improvements in Africa and Asia, both exceeding +30 points, highlighting its enhanced effectiveness for regions traditionally underrepresented in cultural understanding.

Task	Model	Total	Africa	Asia	Europe	America	Oceania
	LLaVA-v1.5-7B-Africa	72.73	85.79	72.69	70.54	71.37	69.74
	LLaVA-v1.5-7B-America	75.84	75.35	73.24	72.52	86.00	76.05
Image Recognition	LLaVA-v1.5-7B-Asia	80.20	75.78	88.62	75.04	75.84	75.26
	LLaVA-v1.5-7B-Europe	79.34	77.61	75.64	86.89	75.62	76.05
	LLaVA-v1.5-7B-Oceania		65.28	83.95			
	LLaVA-v1.5-7B-Africa	78.54	86.77	75.82	78.28	80.38	79.42
	LLaVA-v1.5-7B-America	81.85	79.29	78.33	80.45	90.78	85.22
Cultural Knowledge	LLaVA-v1.5-7B-Asia	84.42	81.25	88.76	81.27	82.90	83.77
_	LLaVA-v1.5-7B-Europe	84.12	80.52	80.20	90.43	83.15	81.74
	LLaVA-v1.5-7B-Oceania	73.78	11.85 79.29 78.33 80.45 90.78 85.22 14.42 81.25 88.76 81.27 82.90 83.77 14.12 80.52 80.20 90.43 83.15 81.74 13.78 73.16 72.38 73.91 75.03 81.16 11.29 93.63 91.06 90.87 91.41 91.41	81.16			
	LLaVA-v1.5-7B-Africa	91.29	93.63	91.06	90.87	91.41	91.41
	LLaVA-v1.5-7B-America	92.70	93.40	92.24	91.85	94.81	91.69
Scene Understanding	LLaVA-v1.5-7B-Asia	94.16	94.44	95.11	92.92	94.52	92.52
	LLaVA-v1.5-7B-Europe	93.26	92.71	92.64	94.08	93.45	92.52
	LLaVA-v1.5-7B-Oceania	87.54	86.57	88.08	86.55	88.11	90.58

Table 5: Accuracy across different continents for each fine-tuned model.

Task	Model	Total	Cultural Heritage and Traditions	History and Landmarks	Natural Environment and Local Resources
	LLaVA-v1.5-7B-CHT	77.91	88.58	74.36	77.48
Image Recognition	LLaVA-v1.5-7B-HL	84.76	81.57	86.89	80.25
	LLaVA-v1.5-7B-NELR	73.46	74.89	69.18	89.88
	LLaVA-v1.5-7B-CHT	83.29	88.53	81.71	82.16
Cultural Knowledge	LLaVA-v1.5-7B-HL	87.99	84.91	90.58	82.03
	LLaVA-v1.5-7B-NELR	81.17	80.71	79.91	86.84
	LLaVA-v1.5-7B-CHT	92.96	95.27	92.45	91.73
Scene Understanding	LLaVA-v1.5-7B-HL	94.77	95.23	94.90	93.62
	LLaVA-v1.5-7B-NELR	91.85	92.58	91.16	93.62

Table 6: Accuracy across different categories for each fine-tuned model.

Dataset	Model	Base	Finetuned
ScienceQA	LLaVA 7B	70.12	69.28
	LLaVA 13B	74.91	75.04
	LLAMA 3.2 11B	88.97	89.30
TextVQA	LLaVA 7B FT	58.32	57.89
	LLaVA 13B FT	61.18	61.13
	LLAMA 3.2 11B	71.34	70.67

Table 7: Performance of models before and after fine-tuning on general VQA datasets. *Base* refers to the original model, while *Finetuned* refers to the model adapted using our CultureVerse. The comparable performance across both versions suggests that finetuning on our dataset preserves the models' natural language understanding and commonsense reasoning abilities.

D DETAILS OF HUMAN ANNOTATION

It is important to note that while CultureVerse's construction pipeline leverages LLMs (e.g., GPT-40) as an auxiliary tool, we emphasize the optimal synergy between LLM assistance and human verification. For cultural concepts, our primary source is Wikipedia documents, where LLMs only perform basic term extraction. In image collection, while initial retrieval may include irrelevant results, human annotators rigorously filter and curate the final selections. LLMs excel at scalable data retrieval/generation, but human experts ensure correctness through refinement and filtering. Such balanced human-AI collaboration is a key factor in CultureVerse's high-quality dataset construction.

D.1 STATISTICS OF HUMAN ANNOTATORS AND THE PROCESS

Given that CultureVerse covers nearly 200 countries and regions, it is **nearly impossible to recruit native annotators from all these areas for data annotation**. Therefore, we endeavored to enhance the information retrieval awareness of human annotators to facilitate the labeling process. We conducted a one-week annotation training session for the annotators, utilizing online search engines such as *Google Search* and *Wikipedia*, along with the *Wiki documents* we provided, to verify the test set. This ensured that each data point was annotated and supported by evidence from at least three distinct sources.

Table 8 shows the statistics of human annotators in our study. In total, through the contractor company, we hired 10 expert annotators whose ages are between 20 and 36 with at least a bachelor's degree. Most of them are within the non-AI areas such as education, specific languages, and history. When assigning the annotation job, we asked each annotator to label the correctness, consistency, and relatedness of our questions and answers. Specifically, correctness refers to the correctness of the generated questions and answers, consistency refers to the consistency between the questions, answers, and the concepts, and relatedness aims to make sure that the concepts and generated questions are related to each other. Each instance is labeled by two experts and then verified by another to ensure correctness and consistency. All annotation operations are performed following local laws and regulations to ensure fairness, equity, and accountability.

Age	%	Degree	%	Major
	5 50% 6 50%		50% 50%	Education; Specific languages; Computer science; Communication; Public relation; History

Table 8: Statistics of the human annotators to validate CultureVerse.

D.2 ACCURACY OF HUMAN ANNOTATION

Table 9 shows the precision of human annotators in our generated questions. We then filter out all the wrong questions and only retain the correct ones. It is surprising that automatically generated questions can achieve high accuracy, indicating the promising future of the adoption of advanced AI models like GPT-40 for data collection and annotation.

Check Item	Accuracy
Concept-Region Alignment	98.25%
Concept-Image Alignment	99.49%
Image Recognition Question-Answer Correctness	98.61%
Cultural Knowledge Question-Answer Correctness	96.52%
Scene Understanding Question-Answer Correctness	93.18%

Table 9: Accuracy of Culture Verse based on the human annotations.

E CASE STUDY

Below, we present examples from CultureVerse representing three different countries. Each example includes a cultural concept, country, category, image recognition question, cultural knowledge question, and scene understanding question.

1077

1078

1079

Concept: Peking Opera **Country:** China

Category: Music and Dance

Image Recognition:

Question: What traditional Chinese performance is shown in this

image?

Options: (A) Henan Opera (B) Peking Opera (C) Kunqu Opera (D)

Yue Opera

Ground truth: (B) Peking Opera

Cultural Knowledge:

Question: Which musical instrument is traditionally associated with accompanying the theatrical art form depicted in the image?

Options: (A) Guzheng (B) Pipa (C) Jinghu (D) Dizi

Ground truth: (C) Jinghu

Scene Understanding:

Question: In a theatrical performance known for its vibrant costumes and symbolic gestures, what might the intricate face paint and elaborate attire of a character symbolize?

Options: (A) The character's age and wisdom (B) The character's social status and role (C) The weather conditions in the story (D)

The importance of technology in the narrative

Ground truth: (B) The character's social status and role

Concept: Florence Cathedral

Country: Italy

Category: Famous Landmarks

Image Recognition:

Question: What famous cathedral is shown in this image?

Options: (A) St. Peter's Basilica (B) Milan Cathedral (C) Florence

Cathedral (D) Siena Cathedral

Ground truth: (C) Florence Cathedral

Cultural Knowledge:

Question: Which renowned architect was responsible for engineering the innovative dome of the structure shown in the image?

Options: (A) Leon Battista Alberti (B) Filippo Brunelleschi (C)

Giorgio Vasari (D) Michelangelo Buonarroti Ground truth: (B) Filippo Brunelleschi

Scene Understanding:

Question: Imagine you are visiting the city depicted in the image during the Renaissance period. You hear local legends about a stone head on a famous structure there. According to the legend, what was the purpose of this stone head?

Options: (A) To ward off evil spirits (B) To grant wishes to passersby (C) To commemorate a donor who contributed a bell (D) To mark the entrance for pilgrims

Ground truth: (C) To commemorate a donor who contributed a bell

1082 1083

1084 1085

1092 1094

1095

1096 1097

1099

1104 1105 1106

1107 1108 1109

1110

1111 1112

1113

1114 1115 1116

1124 1125 1126

1127

1128

1129 1130 1131

1132 1133 **Concept:** Pha That Luang

Country: Lao People's Democratic Republic

Category: Famous Landmarks

Image Recognition:

Question: What famous structure is shown in this image?

Options: (A) Wat Arun (B) Angkor Wat (C) Pha That Luang (D)

Shwedagon Pagoda

Ground truth: (C) Pha That Luang

Cultural Knowledge:

Options: (A) King Jayavarman VII (B) King Setthathirath (C) King

Anawrahta (D) King Ramkhamhaeng Ground truth: (B) King Setthathirath

Scene Understanding:

Question: Imagine you are attending a festival at the site shown in the image, which is considered one of the most significant Buddhist celebrations in the country. During this event, which of the following cultural practices would you most likely observe that emphasizes the religious and national significance of this site?

Options: (A) A parade featuring traditional music and dance (B) A ceremony honoring ancient Hindu deities (C) A cooking contest of traditional Lao dishes (D) A fireworks display celebrating the lunar

Ground truth: (A) A parade featuring traditional music and dance

PROMPT LIST

Concept: {concept} Country: {country} Class: {class_} Please determine whether "{concept}" is a kind of {class_} that can reflect {country} culture and whether it can serve as a symbol of { country} culture (unique and very famous within {country}, and not commonly seen in other parts of the world). Additionally, the symbol should not be a broad category that includes various specific items, but rather a distinct and indivisible entity, such as a specific dance form, a famous individual's photograph, a renowned landmark, etc. Here are some counterexamples: - Broad concepts like "fast food" (which includes burgers, fries, etc.), "traditional Chinese instruments" (which include guzheng, erhu, etc.) " Dance" (which include jazz dance, Square dancing, etc.) are not acceptable due to their lack of a unified visual marker. - Concept itself is the wrong word, such as "...", "N/A". - Concept exists in many regions, such as "pork", "duck" or "grapes" (which might be a specialty or staple in certain countries but is quite common in many places. However, specific concepts like "peking duck" or " schweinshaxe" would be correct).

1135

1136

1137

1138

1172

```
Please provide your short explanation and include your answer (Yes/No) into <<<>>>. For example, if you think "{concept}" is a specific and indivisible symbol of {country} culture, please write <<<Yes>>>.
```

1: Prompt of concept judgement.

```
1139
      Please extract cultural elements from the given wikipedia document that
1140
      can represent {country} culture or are very famous in {country},
1141
      including the following categories:
1142
1143
      ### Categories
1144
      - Food: e.g., local specialty dishes, traditional festival foods.
      - Plants: e.g., unique flowers, crops in {country}.
1145
      - Animals: e.g., unique wild animals, livestock in {country}.
1146
      - Famous Landmarks: e.g., famous historical sites, buildings.
1147
      - Festivals: e.g., unique festival celebration scenes.
1148
      - Historical Artifacts: e.g., museum collections, ancient relics.
1149
      - Historical Figures: e.g., portraits of historical figures, statues.
      - Traditional Clothing: e.g., ethnic clothing, festival attire.
1150
      - Architectural Styles: e.g., traditional architecture, modern landmark
1151
      buildings.
1152
      - Handicrafts and Artifacts: e.g., ethnic handicrafts, traditional
1153
      handmade items.
1154
      - Music and Dance: e.g., traditional musical instruments, dance scenes.
      - Religion and Belief: e.g., temples and churches, religious ceremonies.
1155
      - Natural Scenery and Ecosystems: e.g., unique natural landscapes,
1156
      ecological reserves.
1157
      - Markets and Shopping Traditions: e.g., local markets, specialty shops.
1158
      - Entertainment and Performing Arts: e.g., theater performances, street
1159
      performers.
1160
      Please note that not all categories may be included in the document. Only
1161
       list the most famous cultural elements, with a total not exceeding 10.
1162
      For categories without famous elements, use '{\rm NA}' to indicate. Directly
1163
      output in the format "Category: [Element1, Element2, ...]", for example:
1164
      ### Cultural Elements
1165
      - Food: [Food 1], [Food 2], ...
1166
      - Plants: NA
1167
      - Music and Dance: [Musical Instrument 1], [Dance Scene 2], ...
1168
1169
      The following is the wikipedia document.
      ### Wikipedia Document
1170
      {wikipedia}
1171
```

2: Prompt for extracting cultural concept entities from Wikipedia documents.

```
1173
1174
      This is the {concept} of {country}. Your task is to generate a multiple-
1175
      choice question that asks the user to identify what is shown in the image
1176
      . Use the following format for your question:
       - Question: [Your Question] Options: (A) [Option 1] (B) [Option 2] (C) [
1177
      Option 3] (D) [Option 4]
1178
1179
      For example, if the image shows a Peking Duck of China, the question and
1180
      options should look like this:
1181
      - Question: What traditional dish is shown in this image? Options: (A)
1182
      Cantonese Roast Duck (B) Peking Duck (C) Sichuan Spicy Duck (D) Nanjing
      Salted Duck
1183
1184
      If the image shows the Erhu of China:
1185
       - Question: What musical instrument is shown in this image? Options: (A)
1186
      Pipa (B) Erhu (C) Sanxian (D) Yanggin
1187
      If the image shows the White House of US:
```

```
- Question: What famous American building is shown in this image? Options : (A) The Capitol (B) The White House (C) The Lincoln Memorial (D) The Supreme Court Building
```

Ensure that "{concept}" should be included in one of the options. Ensure that the options are plausible but only one is the correct answer. The incorrect options should be similar enough to the correct one to create a challenge, but not so similar that they cause any potential ambiguity.

3: Prompt for generating scene recognition questions.

```
Please provide a detailed introduction of {concept} of {country}, including information such as: Location and Features (where it is found or originates from, what makes it unique); Time period (when it was created or became significant); History (historical background and development, or any significant events); Cultural significance (cultural Context in {country}, modern-day significance); Stories or Legends (Any stories, legends, or folklore associated with {concept}).
```

Use the following format for your introduction: Introduction of {concept}: [Detailed Introduction of {concept}]

Here are two examples:

Introduction of Peking Duck: Peking Duck is a famous Chinese dish that originated in Beijing during the Imperial era. The dish dates back to the Yuan Dynasty (1271-1368) and became a staple in the Ming Dynasty (1368-1644). Traditionally, Peking Duck is known for its thin, crispy skin and is served with pancakes, hoisin sauce, and scallions. The preparation involves inflating the duck to separate the skin from the fat, marinating it, and roasting it in a closed or hung oven. It is considered a national dish of China and a symbol of Chinese culinary art.

Introduction of The White House: The White House, located at 1600 Pennsylvania Avenue NW in Washington, D.C., is the official residence and workplace of the President of the United States. Construction began in 1792 and was completed in 1800. The building was designed by Irish-born architect James Hoban in the neoclassical style. It has been the residence of every U.S. president since John Adams. The White House has undergone several renovations and expansions, including the addition of the West Wing and the Oval Office. It is a symbol of the U.S. government and a site of significant historical events.

Now please provide the introduction for {concept}. Introduction of {concept}:

4: Prompt for generating the introduction of cultural concept.

```
1229
      This public image shows the "{concept}" of {country}. Generate a multiple
1230
      -choice question based on this image and the introduction of {concept}.
1231
      Provide the correct answer immediately following the question.
1232
      Ensure the question delves into deeper cultural knowledge but does not
1233
      directly name the {concept}. The options should be somewhat confusing to
1234
      increase the difficulty, but there must be only one correct answer. Users
1235
      can only answer based on the image, so don't mention any "introduction"
      or "{concept}" in the question. Use the following format for your
1236
      generated question:
1237
      - Question: [Your Question] Options: (A) [Option 1] (B) [Option 2] (C) [
1238
      Option 3] (D) [Option 4]
1239
      - Answer: (X) [Option X]
1240
1241
      Here are two examples:
```

```
1242
      Image: Peking Duck
1243
      Introduction of Peking Duck: Peking Duck is a famous Chinese dish that
1244
      originated in Beijing during the Imperial era. The dish dates back to the
1245
       Yuan Dynasty (1271-1368) and became a staple in the Ming Dynasty
      (1368-1644). Traditionally, Peking Duck is known for its thin, crispy
1246
      skin and is served with pancakes, hoisin sauce, and scallions. The
1247
      preparation involves inflating the duck to separate the skin from the fat
1248
      , marinating it, and roasting it in a closed or hung oven. It is
1249
      considered a national dish of China and a symbol of Chinese culinary art.
1250
      - Question: During which dynasty did the dish shown in the image become a
1251
       staple in the cuisine of its country? Options: (A) Tang Dynasty (B) Song
1252
       Dynasty (C) Ming Dynasty (D) Qing Dynasty
1253
      - Answer: (C) Ming Dynasty
1254
1255
      Image: The White House
1256
      Introduction of The White House: The White House, located at 1600
1257
      Pennsylvania Avenue NW in Washington, D.C., is the official residence and
1258
       workplace of the President of the United States. Construction began in
1259
      1792 and was completed in 1800. The building was designed by Irish-born
1260
      architect James Hoban in the neoclassical style. It has been the
      residence of every U.S. president since John Adams. The White House has
1261
      undergone several renovations and expansions, including the addition of
1262
      the West Wing and the Oval Office. It is a symbol of the U.S. government
1263
      and a site of significant historical events.
1264
1265
       - Question: Who was the architect responsible for designing the building
      shown in the image? Options: (A) James Hoban (B) Benjamin Latrobe (C)
1266
      Thomas Jefferson (D) Charles Bulfinch
1267
      - Answer: (A) James Hoban
1268
1269
      Now please generate the question for the Image: {concept} of {country}
1270
      {introduction}
1271
```

5: Prompt for generating cultural knowledge questions based on the introduction of cultural concepts.

```
1272
1273
1274
      This public image shows the "{concept}" of {country}. Generate a visual
1275
      reasoning multiple-choice question based on this image and the
1276
      introduction of {concept}. Provide the correct answer and reason
1277
      immediately following the question.
1278
1279
      Here are some requirements:
1280
      - The question must describe a specific scenario crafted to test deeper
      cultural understanding without directly naming {concept}. The scenario
1281
      can be related to cultural background, regional characteristics,
1282
      historical legends, or etiquette and customs, etc.
1283
      - The question needs to be related to the image but does not need to
1284
      describe the content of the image.
1285
      - Ensure the question requires the user to recognize the image and use
      relevant knowledge to answer through reasoning based on the scenario
1286
      provided. Users can only answer based on the image, so don't mention any
1287
      "introduction" or "{concept}" in the question.
1288
1289
      Use the following format for your introduction and question:
      - Question: [Your Scenario-based Question] Options: (A) [Option 1] (B) [
1290
      Option 2] (C) [Option 3] (D) [Option 4]
1291
      - Answer: (X) [Option X]
1292
      - Reason: [Your Reason for the Answer]
1293
1294
      Here are two examples:
1295
      Image: Peking Duck
```

```
1296
      Introduction of Peking Duck: Peking Duck is a famous Chinese dish that
1297
      originated in Beijing during the Imperial era. The dish dates back to the
1298
       Yuan Dynasty (1271-1368) and became a staple in the Ming Dynasty
1299
      (1368-1644). Traditionally, Peking Duck is known for its thin, crispy
      skin and is served with pancakes, hoisin sauce, and scallions. The
1300
      preparation involves inflating the duck to separate the skin from the fat
1301
      , marinating it, and roasting it in a closed or hung oven. This
1302
      meticulous process ensures the skin becomes crispy while the meat remains
1303
       tender. Peking Duck is often carved in front of diners and served in
1304
      three stages: the skin, the meat, and a broth made from the bones. It is
      considered a national dish of {country} and a symbol of Chinese culinary
1305
      art. Peking Duck has also been a part of many state banquets and
1306
      diplomatic events, symbolizing Chinese hospitality and culinary
1307
      excellence.
1308
      - Question: During a state banquet featuring the dish in the image, which
1309
       aspect of its presentation is most likely emphasized to symbolize
1310
      Chinese culinary excellence and hospitality? Options: (A) The use of
1311
      exotic spices (B) The serving of the duck with rice (C) The incorporation
1312
       of seafood (D) The carving of the duck in front of diners
1313
      - Answer: (D) The carving of the duck in front of diners
1314
      - Reason: The traditional carving of Peking Duck in front of diners
      highlights the skill involved in its preparation and serves as a symbol
1315
      of Chinese culinary excellence and hospitality.
1316
1317
1318
      Image: The White House
      Introduction of The White House: The White House, located at 1600
1319
      Pennsylvania Avenue NW in Washington, D.C., is the official residence and
1320
       workplace of the President of the United States. Construction began in
1321
      1792 and was completed in 1800. The building was designed by Irish-born
1322
      architect James Hoban in the neoclassical style, featuring a white-
1323
      painted Aquia Creek sandstone exterior. It has been the residence of
1324
      every U.S. president since John Adams. The White House has undergone
      several renovations and expansions, including the addition of the West
1325
      Wing, East Wing, and the Oval Office. The building's iconic appearance
1326
      and historical significance make it a symbol of the U.S. government and a
1327
      site of significant historical events. The White House has been the
1328
      location of many important decisions, meetings with foreign dignitaries,
      and addresses to the nation. It also serves as a museum of American
1329
      history, housing numerous artifacts and pieces of art. The White House is
1330
      not only a residence but also a working office, with various staff
1331
      members ensuring the smooth operation of the executive branch of the U.S.
1332
       government.
1333
      - Question: During a critical diplomatic event, the President is
1334
      scheduled to meet with several foreign dignitaries to discuss global
1335
      climate initiatives. As depicted in the image, which room inside the
1336
      building is most likely to be used for this high-level diplomatic meeting
1337
      ? Options: (A) The Lincoln Bedroom (B) The Oval Office (C) The White
1338
      House Kitchen (D) The East Room
      - Answer: (B) The Oval Office
1339
      - Reason: The Oval Office is traditionally used for important meetings
1340
      and discussions, making it the most likely choice for a high-level
1341
      diplomatic meeting with foreign dignitaries.
1342
1343
```

6: Prompt for generating scene reasoning questions based on the introduction of cultural concepts.

Now please generate the question for the Image: {concept} of {country}

(Hint: This image shows the {concept} of {country}.)

1344

1345 1346

1347 1348 1349 {introduction}

```
Here is a question about this image:
{question}

First, describe the image in detail and analyze its features. Then,
analyze the characteristics of the four options and compare each one with
the features of the image. Finally, provide your final answer. Please
include your answer into (). For example, if you choose A, please write (
A).
```

7: Prompt for generating knowledge-based reasoning response to image recognition questions in training set.

```
1360
1361
      (Hint: This image shows the {concept} of {country}. {introduction})
1362
      Here is a question about this image:
1363
      {question}
1364
1365
      First, provide a detailed description and identification of the image,
1366
      analyzing its features. Then, conduct a comprehensive analysis of the
      question and four options based on the Hint and your knowledge. Finally,
1367
      present the final answer.
1368
1369
      Please refrain from explicitly mentioning the "Hint" in your response, as
1370
       these are for your discreet knowledge and not provided by the question.
      Please include your answer into (). For example, if you choose A, please
1371
      write (A).
1372
1373
      Response:
1374
```

8: Prompt for generating knowledge-based reasoning response to cultural knowledge / scene reasoning questions in training set.

```
Here is a question about this image:
Question: {question} Options: {options}

First, describe and identify the image. Then, analyze the question and all four options in detail. Finally, provide the answer, indicating your final choice in parentheses. For example, if you choose A, please write (A).
```

9: Prompt for stepwise reasoning in the evaluation of Culture Verse.

Country	Concept	Country	Concept	Country	Concept
SUM of Concepts	19,682	Sri Lanka	90	Samoa	30
India	1,430	Democratic People's Republic of Korea	90	Turkmenistan	27
United States of America	1,411	Saudi Arabia	87	Qatar	26
Italy China	661 545	Lithuania Malta	86 86	Guyana	26 25
Mexico	545 524	Uzbekistan	86 84	Kuwait Paraguay	25 24
Japan	522	Algeria	83	Sudan	24
Philippines	465	Lebanon	79	Angola	24
Indonesia	400	Nigeria	78	Fiji	24
France	374	Colombia	78	Seychelles	23
Russian Federation	328	Austria	77	Lesotho	22
Greece	300	Cyprus	75	Barbados	21
Germany	273	Mongolia	74	Dominica	21
Egypt	272	Cuba	73	Mauritius	20
Armenia	259	Bosnia and Herzegovina	72	Maldives	19
Australia	254	Ecuador	71	Niger	18
Spain	249	Slovakia	65	Zambia	18
Georgia Brazil	245 239	Iceland	65	Antigua and Barbuda	17
Canada	239	Luxembourg Iraq	65 62	Saint Lucia Eswatini	16 16
Thailand	228	Ghana	61	Bahrain	15
Myanmar	226	Albania	60	Papua New Guinea	15
Ireland	220	Uruguay	60	Kazakhstan	15
Pakistan	218	Montenegro	60	Tuvalu	14
Nepal	216	Uganda	58	Liechtenstein	14
New Zealand	209	Chile	56	Côte d'Ivoire	14
Portugal	199	Senegal	56	Suriname	13
Ukraine	197	United Republic of Tanzania	56	Bahamas	12
Malaysia	189	United Arab Emirates	56	Eritrea	12
Bangladesh	188	Guatemala	54	Mozambique	12
Peru	188	Latvia	53	Burundi	11
Poland Bulgaria	186 182	Yemen	52 51	Marshall Islands Honduras	11 11
United Kingdom of Great		Afghanistan		Honduras	
Britain and Northern Ireland	176	Belarus	50	San Marino	11
Croatia	176	Benin	50	Liberia	11
Serbia	172	Oman	50	Tajikistan	11
Romania	167	Dominican Republic	49	Solomon Islands	10
Ethiopia	155	Tunisia	48	Comoros	ç
Cambodia	154	Trinidad and Tobago	48	Nauru	9
Netherlands	151	El Salvador	47	Vanuatu	8
Denmark	142	Monaco	47	Kiribati	8
Lao People's Democratic Republic	141	Mali	46	Timor-Leste	8
South Africa	138	Kenya	45	Grenada	8
Argentina Republic of Korea	134 132	Estonia Haiti	45 44	Sierra Leone Rwanda	7
Czechia	132	Jamaica	43	Guinea	7
Bhutan	130	Belize	42	Libya	7
Azerbaijan	129	Plurinational State of Bolivia	41	Andorra	7
Morocco	126	Congo	40	Gambia	7
Norway	120	Namibia	39	Burkina Faso	7
Sweden	112	Somalia	39	South Sudan	5
Finland	112	Nicaragua	38	Gabon	5
Israel	109	Kyrgyzstan	36	Togo	4
Türkiye	109	Bolivarian Republic of Venezuela	35	Malawi	4
Viet Nam	109	Madagascar	35	Saint Kitts and Nevis	4
Hungary	101	Republic of Moldova	34	Djibouti	4
Ethnic_and_religiou_groups	94 94	Zimbabwe	33	Saint Vincent and the Grenadines	
North Macedonia Slovenia	94 93	Jordan Tonga	33 32	Central African Republic Chad	
Islamic Republic of Iran	93	Tonga Botswana	32	Cnad Mauritania	1
Switzerland	93	Cameroon	31	Panama	
Singapore	93	Costa Rica	31	Federated States of Micronesia	
Belgium	91	Democratic Republic of the Congo	31	Equatorial Guinea	1

Table 10: Number of cultural concepts of different countries or regions.