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Abstract

We formalise the essential data of objective functions as equality constraints on composites
of learners. We call these constraints “tasks”, and we investigate the idealised view that
such tasks determine model behaviours. We develop a flowchart-like graphical mathematics
for tasks that allows us to; offer a unified perspective of approaches in machine learning
across domains; design and optimise desired behaviours model-agnostically; and import
insights from theoretical computer science into practical machine learning. As preliminary
experimental validation of our theoretical framework, we exhibit and implement a novel
“manipulation” task that minimally edits input data to have a desired attribute. Our model-
agnostic approach achieves this end-to-end, and without the need for custom architectures,
adversarial training, random sampling, or interventions on the data, hence enabling capable,
small-scale, and training-stable models.

1 Introduction

The primary instrument for controlling the training of machine learning (ML) models is the objective function,
which can be broken into three modular parts. Let Θe,Θd be the parameter-spaces of a model enc and dec
respectively. Then the reconstruction loss that characterises an autoencoding task amounts to minimising
(for θe ∈ Θe, θd ∈ Θd) the following objective function:

argminθe,θd
(
Ex∼X [D

(
decθd(encθe(x)), x

)])
We take the expected value over a data distribution X of a measure of statistical divergence D (such as
cross-entropy or log-likelihood) of two expressions that, under ideal conditions, should be equal: the decoding
of the encoding of some data x, and the original x. In this work, we focus on the two expressions that want
to be equal, and we call this equational constraint a task.

In practice, designing a good objective function incorporates many technical choices, such as choice of
architecture, measure of statistical divergence, and training data (Ciampiconi et al., 2023; Richardson, 2022;
Terven et al., 2023). However, these choices are often made by heuristics, or rationalised post hoc. While
such choices are sometimes required to make training tractable, they are not always relevant to understanding
the final behaviour of the trained model. Instead, we propose and investigate the idealised view that tasks
determine model behaviour.

To explore the expressive power of tasks, we abstract away implementation details such as architecture and
training by idealising models to be universal function approximators that can, in principle, perfectly optimise
objective functions: in other words, we consider learners to be typed function-variables. Thus each task can
be viewed purely as an equational constraint on the behaviour of the learners, exactly analogous to equational
constraints on the possible values of variables in algebra (Definition 2.6).

Unpacking this bird’s eye perspective of deep learning for a mathematical audience, the view we propose is
that deep learning is nonlinear representation theory: instead of linear maps representing groups, smooth maps
represent higher algebraic structures such as coloured PROPs (Yau, 2008) for typed function composition, and
the role of gradient descent is to convert data and compute into instances of these functorial representations.
Unpacking the same perspective as a value proposition for practitioners, we suggest that deep learning
solutions may be constructed declaratively, by writing down task equations that capture what we want them
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to do in terms we understand, letting neural networks and gradient descent figure out how to satisfy those
equations by themselves.

Our primary aim is to provide theoretical foundations that unify existing methods and enable rigorous
reasoning, supported by practical demonstrations designed to illustrate rather than benchmark empirically.
While the theory we present is deliberately broad and architecture-agnostic, the examples we provide are
designed as illustrative rather than exhaustive demonstrations. Large-scale empirical validations or competitive
benchmarking against established architectures, though important for broader practical adoption, fall outside
the immediate scope of this paper.

1.1 Contributions

We make three primary contributions in this work. Our first, theoretical contribution is the formalisation of
a common but informal standard procedure in deep learning, which may be summarised as the following
recipe: Characterise desired behavior via equational constraints (tasks) between learners → Implement tasks
by treating neural networks as universal approximators → Convert equations to loss function by a choice of
hyperparameters, namely weighted sum of constituent losses and choice of divergences.

Our second, theoretical contribution is a demonstration that using our framework, we may analyse, predict,
and design behaviours of models. By diagrammatic algebraic reasoning, we can analyse the behaviour of
complex models via synthetic relationships between tasks we call specialisation (Definition 2.8) and refinement
(Definition 2.14), grounded by well-understood tasks we call patterns (Section 2.3). Altogether, we may use
these techniques to understand and compare the behaviour of models before committing to potentially costly
training. Example 2.12 and Propositions 2.17,3.6 and 3.8 illustrate the kinds of formal reasoning our language
enables.

Our third, practical contribution and proof-of-concept is the implementation of a novel task we call
manipulation (Section 3), which formalises (Bancilhon & Spyratos, 1981) the problem of viewing and
editing a targeted attribute of data while “leaving other aspects the same”. As examples in image domains,
we; change only the colour of a shape (Figure 2); change the value of a handwritten digit without affecting
other stylistic properties (Figure 3); and change only whether a person is smiling in an image (Figure 7).
Even in these toy domains, we observe a range of benefits we expect to scale: by following our recipe we
obtain architecture-agnostic (Table 1) style-transference models without the need for randomness, adversarial
training, or modality- and architecture-specific interventions, with good interpolation properties (Figure 7).

We conclude by discussing relations to similar approaches in the literature, along with avenues and prospects
for further development.

2 Tasks and patterns

2.1 An introduction via worked examples

Rather than starting with abstract definitions, we will begin gently with a series of worked examples to
introduce the core ideas of our framework in action, and to make the reader comfortable with string-
diagrammatic representation and reasoning. While the formal details (Appendix A) involve category theory,
the power of string diagrams lies in their intuitive visual nature: by reading the diagrams as flowcharts from
left to right, practitioners can leverage these diagrams to reason about ML tasks without needing to fully
grasp the underlying mathematical formalism.

As a running example, we present the reconstruction loss of autoencoders once again.
Example 2.1. For a hyperparametric choice of divergence D, where X is an input datatype, and LAT is the
datatype of the latent space, the two components of the empirical risk minimisation of the autoencoder task
consist of (1) applying the encoder enc (typed X → LAT ) followed by the decoder dec (typed LAT → X)
to inputs x drawn from a source of data X over the datatype X, which should be equal to (2) the original x.
Recall that by the Universal Approximation Theorem, we seek to treat learners as function-variables. So we
abstract away the parameter spaces θ, and simply depict the learners as black-boxes.
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decθd
(encθe (x)) x

Ex∼X [D(decθd
(encθe (x))︸ ︷︷ ︸

(1)

, x︸︷︷︸
(2)

)] X enc dec ⇋
enc,dec

X
LATX X X

The diagrammatic notation is formally equivalent to the traditional symbolic notation with the addition of
type-information about inputs and outputs. In summary, nodes depicted as various shapes are functions, and
wires are datatypes which can be understood as carrying information.

We observe that the function-variable perspective immediately suggests two ways of specialising such tasks
viewed as equational objectives: by imposing additional tasks, or by specifying architectural choices.

Example 2.2 (Perceptual losses as an additional objective). Adding a perceptual loss L : X → R≥0 to
an autoencoder is a common example of task specialisation by additional objectives. Adding additional
objectives means that the learners should optimise the original tasks as well as the new ones. In practice,
multiple tasks may be combined into a single objective function by means of weighted summation with
positive hyperparametric coefficients α, β, but we abstract away such choices in our visual presentation to
leave only the equational data. Depicting processes with no learnable parameters as white boxes, we have:

⇝X enc dec ⇋
enc,dec

X
LAT

X enc dec ⇋
enc,dec

X
LAT

X enc dec L ⇋
enc,dec

0X

argminθe,θd
(αEx∼X [D(decθd

(encθe (x)), x)]

+βEx∼X [D(L(decθd
(encθe (x)), 0)])

⇝argminθe,θd
(Ex∼X [D(decθd

(encθe (x)), x)])

Example 2.3 (Residuation as an architectural choice). A common example of an architectural specialisation
is adding a residual to a learner, where a learner N of type X → X is transformed into Nres := x 7→ N(x)+x,
depicted as:

NX ⇝
N

X +

Nres

In an exact analogy with symbolic variable substitution, specialisation in this manner diagrammatically
rewrites a function-variable in place as another diagram with matching input-output type constraints (which
may itself contain a function-variable). The full formal semantics for such substitutions are provided in
Appendix A.2. Intuitively, since a universal function approximator can be any function, it can be a particular
function (or subset of functions) of the same input-output type by a rewrite. Since such architectural choices
generally correspond to imposing inductive biases, these rewrites are usually one-way.

Although our framework is too abstract in its current formulation to remark directly on properties during
training, we may still reason about the relative expressivity of learners by specialisation alone, which we later
expand to compare different tasks (Definition 2.14).

Example 2.4 (Residuations do not alter expressivity). In the presence of negation, a nonresiduated learner
A can learn anything its residuated version can, and vice versa, as the following cycle of specialisations
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demonstrates:

AX ⇝
A

X + ⇝

A

X

+
×(−1)

+

= AX

A(x) ⇝ A(x) + x A(x) ⇝ A(x) − x

So, specialisations allow us to analyse and compare the behaviour of models in terms of their constituent tasks.
More productively, specialisations also give us a foothold for explaining and constructing model variants. As
a demonstrative example, we may obtain a variational autoencoder (VAE) (Kingma & Welling, 2022) from a
regular autoencoder by the two kinds of specialisation we have described.
Example 2.5 (VAE). Suppose we wish to construct a probabilistic autoencoder. As a first step, we may
achieve this by specialising the output type of the encoder to be a space (mean, variance) of parameters for
Gaussians, and specialising the decoder to be internally structured as the sequential composite of sampling
from a Gaussian of the input (mean, variance) followed by a learner.

X enc
(µ, σ)

samp. dec ⇋
enc,dec

X
LAT

By inspection, there are two salient cases in which models trained according to the above task may degenerate
into deterministic behaviour. The first is when the encoder exclusively chooses very small variance encodings,
and the second is when the encoder chooses means µ that are very far apart: in both cases, the decoder
receives point-like encodings.

Both cases are addressed by specialisation with an additional normalisation task which requires the outputs
of the encoder to be close to the parameters of the unit Gaussian (0, 1).

X enc
(µ, σ)

⇋
enc

X (0,1)
(Normalise)

Surprisingly, this behaviourally declarative presentation of VAEs is equivalent to the traditional probabilistic
form when the statistical divergence is KL (Rocca, 2021).

Altogether, these examples illustrate how tasks give a foothold for inspecting and designing desired behaviours,
and how specialisations may be used to pre-empt unwanted behaviours. We further elaborate on the use of
this form of reasoning for informing task design in Appendix B, in the context of obtaining guarantees for
the manipulation task.

2.2 Tasks, formally

We assume the following contextual data, omitted if there is no confusion. Let X, Y denote datatypes; Σ a
set of processes f , each of which has (possibly empty) learnable parameter datatypes pf . An atomic task
is a process-theoretic equational constraint on learners specifying that f should behave like g on all inputs.
The objective function of an atomic task φ of type X → Y equipped with distribution X corresponds to
a map pφ → R that sends π 7→ Ex∼X [D

(
sysφ;π(x), specφ;π(x)

)]
for some choice of statistical divergence D.

A learner can optimise multiple atomic tasks simultaneously by optimising a combination α of the atomic
objective functions (commonly obtained by taking a weighted sum).
Definition 2.6 (Tasks). An atomic task φ is a tuple (f, g,X , p), where f, g : X → Y are composite processes
of Σ, X is a distribution over X, and p ⊆ pf ⊕ pg is a space of trainable parameters. We indicate the system
f and specification g as sysφ and specφ and similarly the domain X and codomain Y as dom(φ) and cod(φ).
A compound task Φ (or just task) is a non-empty set of tasks. As we have seen in previous examples, we
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notate a task Φ as a collection of atomic tasks sysφ ⇋ specφ, where superscripts on the harpoons indicate
which learnable parameters are governed by each atomic task.

Tasks become concrete objective functions by a hyperparametric choice of divergences for atomic tasks,
followed by a combination via a weighted sum with hyperparameter coefficients, or more generally a compound
function. As such, a particular objective function that instantiates a task is one where the choices for the
measure of statistical divergence and compound function have been made. Beyond these hyperparameters,
tasks and objective functions may be viewed as informationally equivalent.
Definition 2.7 (Objective function). Let Φ = {(fi, gi,Xi, pi)}i∈N be a compound task with N atomic
tasks. Let l ∈ Σ be a learner of Φ. An objective function for l is a tuple (Φl,D, α) where Φl =
{(fi, gi,Xi, pi) | para(l) ⊆ pi} is the set of all tasks on which l is optimised, D is a set of statistical
divergences D(φ∈Φl) : cod(φ) × cod(φ) → R≥0, and the compound function α is a function (R≥0)×|Φl| → R≥0

that is differentiable, and typically non-decreasing in each argument.
Definition 2.8 (Specialisation). A specialisation of a task Φ is a task obtained by imposing additional
constraints on Φ. We identify two primary forms, both maintaining or strengthening original behavioural
guarantees, with architectural specialisation additionally enabling explicit engineering of inductive biases into
models.

• Objective Specialisation is adding further tasks, represented formally as extending the task set:
Φspec = Φ ∪ {ψi}i∈I , where each ψi is an additional atomic or compound task imposing further
behavioural constraints on learners.

• Architectural Specialisation: Let Φ contain an atomic task involving a learner f ∈ Σ with type
X → Y . A task Φ′ is an architectural specialisation of Φ if f is diagrammatically substituted with
a composite process C[f ] : X → Y such that C[f ] ∈ Σ∗ and dom(C[f ]) = X, cod(C[f ]) = Y .
Here, C[f ] is a well-typed composite in the free symmetric monoidal category over Σ, constructed by
replacing f with a structured process diagram using additional (possibly parameterised) components,
while preserving type compatibility. The substitution is interpreted as a one-way rewrite rule on
diagrams: f ⇝ C[f ], valid in the universal approximator regime (Appendix A.2).

To illustrate these definitions, throughout the following sections, we will show an abundance of tasks and
relate them to their respective objective functions.

2.3 Patterns are “nice” tasks

On the view that behaviour can be captured equationally, it would be desirable to have a bank of
correspondences between tasks and their behaviours. We do not expect there to be a general and systematic
method to translate between natural-language behavioural specifications and tasks; if such a method existed,
then all of deep learning would be reduced to hyperparameter search. There are often many different ways to
approach a problem in ML, much like there is no single correct way to write software, or design a building.
This suggests to us the view of patterns: some tasks are well understood, usable modularly and in many
contexts, and easily modifiable, and such tasks can be viewed as design patterns – borrowing a term from
software engineering (Beck & Cunningham, 1987)1. In this section, we suggest some examples of patterns
that correspond to well-studied methods and paradigms in ML, and we show how to use patterns as an
accessible basis to analyse models.

Pattern 2.9 (classification). Given a data-label pair (d, l) drawn from X with labels l ∈ L, a classifier
cls : D → L is a function that solves the classification task, in which it seeks to reconstruct the label
from the data:

X ⇋
clsD

L

cls
X

1And before that, architecture and urban design (Alexander et al., 1977).
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This can be done by minimising the corresponding objective function E(d,l)∼X [D(cls(d), l)] for some measure
of statistical divergence D on the label space, which may be continuous to encompass regression.
Pattern 2.10 (autoencoding). As we have seen, given a data distribution X over X and some latent space
LAT , an autoencoder consists of an encoder enc : X → LAT and a decoder dec : LAT → X which cooperate
to reconstruct the identity over the observed distribution:

X enc dec ⇋
enc,dec

X
LAT

This corresponds to minimising Ex∼X [D(dec(enc(x)), x)].
Pattern 2.11 (GAN). Given a data distribution X over X and noise distribution N over N , a generative
adversarial network (GAN) consists of a generator gen : N → X and a discriminator dsc : X → [0, 1]. The
prosaic explanation that “the discriminator seeks to distinguish real data from fake data while the generator
aims to fool the discriminator” translates directly into a task description: where 1 indicates “real” and 0
indicates “fake”:

N⇋
dsc

0X ⇋
dsc

⇋dsc N
gen

1NX 1 dscgen

In other words, the discriminator dsc seeks to minimise some positive combination of the
terms Ex∼X [D(dsc(x), 1)] and Ex∼X [D(dsc(gen(x)), 0)], while the generator gen seeks to minimise
Ex∼X [D(dsc(gen(x)), 1)].

For the sake of compactness, on the right hand side, we compressed the two adversarial tasks into one figure
where the discriminator and generator pull into opposite directions.

2.4 Analysing complex tasks

We can analyse the intended functions of models by viewing them as composites of simple patterns. We have
already seen in Example 2.5 how a VAE is analysable by inspection as a specialised regular autoencoder.
As a second example, a CycleGAN is two GANs on different distributions, whose generators are mutually
autoencoders by a cycle consistency loss (Zhu et al., 2017). This suggests that the generators encode the
distributions into each other in a reversible manner, and indeed this kind of style transfer between distributions
is what a CycleGAN does in practice.
Example 2.12 (CycleGAN). Below, i, j are nonequal indices taking values in {0, 1}, where X0 and X1 are
different distributions on the same space X: typically these are two classes of images.

Xj ⇋
dsci

Xj⇋
geni

Xj

Xj ⇋
geni, genj

Xj

0 1

geni

dscigeni

genj

Xi Xi

dsci
1 ⇋ dsci

GAN conditions

Cycle consistency loss

We can also upgrade informal intuitions into formal derivations. For example, on the account of Ranzato
et al. (2007), a broad class of unsupervised learning techniques — including PCA and k-means — are
specialisations of the energy minimisation task, which may be considered an autoencoding task from a
latent “code” space subject to the representations minimising a measure of “energy”. We can in fact formalise
the relationship between these forms of unsupervised learning and autoencoding, showing that under mild
assumptions, they are the same in the computational limit.
Pattern 2.13 (energy minimisation). energy minimisation consists of; three types of systems: D(ata),
C(ode), and R≥0; two learnable processes: an encoder enc : D → C and a decoder dec : C → D; two
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user-supplied energy functions: Eenc : C × C → R≥0 and Edec : D ×D → R≥0; and a user-supplied constant
γ ∈ R≥0. Provided a distribution of inputs Y on D, and a distribution Z on C the system seeks to minimise
Ey∼Y,z∼Z [γEenc(enc(y), z) + Edec(y, d(z))]. Such a task is called code-extracting when Z = enc(Y), in which
case, diagrammatically, this corresponds to the following task:

enc

dec
Y

D

Z : C Eenc

Edec

enc

R
×γ

⇋ 0+
enc,dec

R
Y

To formally relate code-extracting energy minimisation and autoencoding, we introduce a relationship
between tasks called refinement, which states that perfectly solving Φ allows one to construct perfect solutions
for Ψ. When Φ and Ψ refine each other, the tasks are “the same in the computational limit”; a perfect
autoencoder is a perfect code-extracting energy minimiser, and vice versa. These relationships are a proxy
for the behaviour and relative power of concrete implementations of tasks.
Definition 2.14 (Refinement and equivalence of tasks). Task Φ refines task Ψ if, by treating the atomic
tasks as equations, the processes of Φ may be composed to satisfy the equations of Ψ. Φ and Ψ are equivalent
if they refine one another, which we denote Φ ≡ Ψ.

Now we aim to prove that autoencoders and energy-minimisers are identical in the computational limit: that
a perfect deterministic autoencoder yields a perfect energy-minimiser, and vice versa.
Lemma 2.15. For all well-typed f , g, and for any positive linear combination α : R≥0 × R≥0 → R≥0:

f

g

X ⇋ X 0α ≡ f gX ⇋ X 0 X⇋

Proof. For the forward refinement, as α is a positive linear combination, we have for all x ∈ X that
α(f(x), g(x)) = α1 ·f(x)+α2 ·g(x) = 0. If f and g are constant-functions 0, we are done. Otherwise, positivity
implies that α1 · f(x) = α2 · g(x) = 0, and since α1, α2 ∈ R≥0, then f(x) = 0 = g(x), which is the desired task.
For the backwards refinement, if f(x) = 0 = g(x) for all x ∈ X , then α(f(x), g(x)) = α1 · f(x) + α2 · g(x) = 0.

Lemma 2.16. For a real-valued pairwise measure D : D(Y ) × D(Y ) → R≥0 on the space of distributions
over Y , the positivity axiom D(Y1,Y2) = 0 ⇐⇒ Y1 = Y2 implies, for (almost2) all f, g : X → Y and X :

f

g
X ⇋D X 0 ≡ f gX X⇋

Proof. For the forward refinement, we assume that D(f(X ), g(X )) = 0. By positivity of D, f(X ) =
g(X ), which is the right hand task. For the backward refinement, if f(X ) = g(X ), then, by positivity,
D(f(X ), g(X )) = 0.

Proposition 2.17. If enc and dec are deterministic and Eenc and Edec are positive (e.g. metrics or statistical
divergences), then energy minimisation ≡ autoencoding.

2When the function space containing f and g is large, the edge case where f and g are nonconstant and f = −g is measure-
theoretically negligible. Since we are concerned with behaviour in the computational limit, this is an acceptable assumption for
our purposes.
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Proof. As enc and dec are functions, we may copy them through their outputs to re-express energy
minimisation as:

⇋ 0

enc,decenc dec
Y

Eenc

Edec

enc dec enc

enc

×γ

+

By Lemma 2.15, this is equivalent to:

⇋ 0

enc,dec

enc dec
EencEdec

enc dec enc

enc
Y Y⇋

enc,dec

Recall that Eenc and Edec are positive by definition, hence Lemma 2.16 allows us to express the two
minimisations as:

⇋
enc,dec

enc dec enc dec enc encY ⇋
enc,dec

Y Y Y

The left task is autoencoding, so we have that energy minimisation refines autoencoding. For the other
direction, we observe that autoencoding refines the right task by postcomposing both sides with enc, and as
the left and right tasks together are equivalent to energy minimisation, we have the claim.

2.5 Proof of concept: Tasks from specifications - the stack

In this section and the following (Section 3), we will provide two examples of utilising the proposed perspective
to design new tasks. First, we will propose and experimentally verify a set of tasks that is restrain two
interacting learners to perform the push and pop operations of a stack. While by itself the stack is not
particularly interesting, this section is more used as a first introduction to working with tasks to create
desired behaviour. In Section 3 we will introduce a more involved tasks for manipulating attributes in data.

The well-known data structure stack consists of two interacting operations: push and pop.
Task 2.18 (stack). Given a data distribution X over X and a pretrained autoencoder (enc: X → LAT,
dec: LAT → X), a stack consists of a empty stack ⊥ : ⋆ → S, a push operation psh : S ×X → S and a pop
operation pop : S → S ×X. We recursively define the distribution:

D := ⊥ × enc(X ) | psh(d ∈ D, x ∈ X ) × enc(x)

meaning D is a stack of arbitrary size and an encoded element from X .

Then psh and pop have to obey the following rules:

⊥ pop ⇋
pop ⊥

0
psh pop ⇋

psh, pop

D

E(s,x)∼D [D2(popϕ(pushψ(s, x)), (s, x))]D1(popϕ(⊥χ), (⊥χ, 0))

(Empty) (PshPop)

For completeness, and to illustrate the ergonomic necessity of our diagrammatic notation, we display the
formulaically obtained hyperparameterised objective function of stack in standard notation below. The
appeal of the diagrammatic notation will become even more obvious in Section 3.

argminϕ,ψ,χ

(
αD1(popϕ(⊥χ), (⊥χ, 0))︸ ︷︷ ︸

Empty

+ βE(s,x)∼α[D2(popϕ(pushψ(s, x)), (s, x))]︸ ︷︷ ︸
PshPop

)
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Where ϕ, ψ, χ are the parameters of push, pop and ⊥ to be learnt; α, β are hyperparametric positive weighting
coefficients for each task; D1,D2 are hyperparametric statistical divergences for S ×X.

Given the purely demonstrational role of this experiment, we will do a proof-of-concept on a simple analytic
dataset (Figure 2) inspired by Spriteworld (Watters et al., 2019) consisting of images depicts a single shape
with varying properties. We observe that the stack works exactly as expected (see Figure 1). For additional
implementational details, see Section C.1.

Figure 1: In this example, we train a stack (alongside an autoencoder) to store the latent vectors of Spriteworld
shapes. With an image latent size 16 and stack vector size 64, it is able to retain information to faithfully
restore up to 4 shapes.

While the basic stack task is not particularly interesting, it does provide a fully differentiable data structure
which may be useful in composite with other tasks.

3 The manipulation task

In this section, we design and theoretically analyse manipulation, a novel task which aims to view and
edit a property of data without explicit guidance. In Section 4, we will experimentally validate the task.
There are many models that behave like manipulation, e.g. unsupervised sentiment translation (Li et al.,
2018; Sudhakar et al., 2019) in the text domain and prompt-based photo editing (Hertz et al., 2022; Kawar
et al., 2023) in the image domain. While most of these approach this question on the architectural level to
impose the desired behaviour, we will instead approach this problem via the objective function - constraining
the learning process. To constrain the behaviour of manipulation, we demonstrate another ability of our
framework: importing insights from computer science more broadly via the process-theoretic perspective. For
manipulation, we reference the field of Bidirectional Transformations, which studies consistency between
different overlapping representations of data (Abou-Saleh et al., 2018). A special case is the view-update
problem (Bancilhon & Spyratos, 1981) originally proposed for databases: how do we algebraically characterise
reading-out and updating an attribute a ∈ A from some data d ∈ D? There are a family of solutions
called lenses which are parameterised by algebraic laws of varying strength (Nakano, 2021), which we take
inspiration from below:

Task 3.1 (manipulation). Let X : (d, a) be a distribution over some data d ∈ D, each labelled with an
attribute a ∈ A and let A be a distribution over the attributes. A manipulation consists of a pair of
operations (get : D → A, put : D ×A → D) which can be understood as reading and writing, respectively.
In particular, the put edits a reference data point to exhibit the specified attribute. The two operations have
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to obey the following tasks, with respect to the modeller’s choice of distribution A on A:

X ⇋
get

X
get

(Classify)
X

put get ⇋
put,get X

A A
(PutGet)

X put ⇋
put,get

X (GetPut)

X
put

A put ⇋
put,get

(Undoability)
get

get

X

A

E(d,a)∼X [DA1 (getϕ(d), a)] E(d,a′)∼X |d×A[DA2 (getϕ(putψ(d, a′)), a′)]

Ed∼X |d
[DD1 (putψ(d, getϕ(d)), d)] E(d,a′)∼X |d×A[DD2 (putψ(putψ(d, a′), getϕ(d)), d)]

To provide an intuition for each of the tasks, assume that the data consists of images each containing a single
shape each labeled with the colour of the shape. Classify allows us to use get to read out the colour of
a shape. PutGet says that first editing the colour of a shape (say, from red to blue) and then immediately
reading out that colour will return the edited colour (blue). GetPut says that reading out the colour of a
shape (say, red) followed by editing the shape to have the same colour (i.e., an edit that leaves red unchanged)
is the same as doing nothing. Undoability says that edits can be undone; using the first put to change the
colour of a shape (say from red to blue), and then editing again with a second put to restore the original,
read-out colour of the shape (red) must restore the original image.

Once again, for completeness, we display the hyperparameterised objective function of manipulation in
standard notation below:

argminϕ,ψ


αE(d,a)∼X

(
DA

1
(
getϕ (d) , a

))︸ ︷︷ ︸
Classify

+ βE(d,a′)∼X |d×A
(
DA

2
(
getϕ

(
putψ

(
d, a′))

, a′))︸ ︷︷ ︸
PutGet

+ γEd∼X |d

(
DD

1
(
putψ

(
d, getϕ (d)

)
, a

))︸ ︷︷ ︸
GetPut

+ δE(d,a′)∼X |d×A
(
DD

2
(
putψ

(
putψ

(
d, a′) , getϕ (d)

)))︸ ︷︷ ︸
Undoability


Where ϕ, ψ are the parameters of put and get to be learnt; α, β, γ, δ are hyperparametric positive weighting
coefficients for each task; DA

1 ,DA
2 are hyperparametric statistical divergences for A; DD

1 ,DD
2 are statistical

divergences for D; and A is a hyperparametric distribution over A such that supp(A) contains the attributes
the modeller intends to have as targets.

3.1 Theoretical analysis

Beyond providing an intuitive language for objective functions, the proposed diagrammatic language can also
be used to prove properties about a particular choice of objective function. In this section, we will prove
two facts about the manipulation task that let us make predictions about its most likely behaviour after
training.

First, we argue that an idealised model satisfying the manipulation task — in which attribute information is
fully disentangled from the rest of the data — is inherently challenging to realise in practice. This is because,
in complex data domains, isolating and inverting attribute-specific structure often entails recovering detailed,
latent factors of variation. Such a disentangled inversion effectively requires the system to act as a conditional
generator that precisely modifies only the attribute of interest while leaving all other features unchanged.

Despite this, we still expect the manipulator to perform well in realistic settings. Specifically, we show
that the manipulation objective refines the structure of a CycleGAN, meaning that — under ideal training
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— it should match or exceed the behavioural guarantees of a standard CycleGAN system. Whether such
performance is actually achieved in practice depends on empirical training success, which we investigate in
Section 4.

3.1.1 Proof 1 - Bayesian inversion

In the ideal case, to solve manipulation, a model would completely separate the information about the
attribute it is manipulating from all other information. If it managed to do this, it could manipulate exactly
the attribute while leaving everything else as is. For this to be possible, there must exist a complement
datatype C such that our original data distribution D can be separated into two independent distributions A
and C. Assuming that this is possible, we will show that (a) being able to do such a separation would freely
give a manipulator and (b) that this manipulator would refine Bayesian inversion, a task that is known
to be difficult for complex data domains.

First, we define:
Definition 3.2 (Balanced entropy of an attribute). Given a distribution of data D on space D, we say that
a distribution A over space A represents an entropy-balanced attribute of D if there exists a complement type
C with distribution C such that we have the equality in distributions D = C × A up an isomorphism of the
underlying spaces D ≃ (C ×A).

If there exists such an isomorphism, then we know that there must exist two functions that observe the
isomorphism. We have:
Definition 3.3 (Latent split autoencoder). Let the attribute A induce a balanced attribute on some
distribution D on data D, and cls : D → A be a perfect classifier for the attribute A. Then the functions
enc : D → C ×A and dec : D → C ×A that observe this isomorphism between the two underlying spaces
satisfy the following three conditions:

decencD
C

A

D ⇋
enc,dec

D
D D (1)

C

A

C

A
⇋

enc,dec

dec enc (2)

encD
C

A

D ⇋
enc

clsD
D A (3)

The two functions are suggestively named enc and dec as the first condition indeed specifies that they have
to act as an autoencoder on D. We will show that given such an idealised autoencoder, we can freely, i.e.
without any additional training, satisfy manipulation:
Proposition 3.4 (Manipulation from latent split autoencoder). Let D be a distribution with a balanced
attribute A. Then a latent split autoencoder refines manipulation.

Proof. We can define:

dec

enc

A

D

D enc ADD get :=Aput D

D

A
:=

We now have to show that this indeed satisfies manipulation.
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For this, we show that the put and get observe the restrictions of manipulation:
PutGet:

dec

enc
enc =

enc

=

(Equation 2) (Delete naturality)

A
AA

DDD

GetPut:

dec

enc

enc

= enc dec =

(copy naturality) (copy-delete counitality)

enc dec =

(autoencoder)

DDDD

Undoability:

dec

enc

enc

dec

enc

=

(Equation 2)

enc

enc dec
=

(GetPut)

DD
D

AA

A

Thus, solving the information separation problem would also give a solution to manipulation.

We will now show that this is difficult by proving that this manipulation freely provides a Baysian inversion
to a classifier from D to A.

We define:

Definition 3.5 (Bayesian Inversion in Markov Categories). The Bayesian inversion (Cho & Jacobs, 2019;
nLab authors, 2024a) of a stochastic map f : X → Y with respect to a distribution P on X is a stochastic
map f† : Y → X such that, in distribution:

f
P

X Y

X
f†

P

X

Y

Y

= fX

(in dist.)

We can show:

Proposition 3.6 (Manipulation as Bayesian inversion). If a deterministic discriminative classifier cls :
D → A induces a balanced attribute cls(D) over A with respect to D, then the manipulator specified above
refines Bayesian inversion cls† : A → D.
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Proof. We show that the put composed with an independent copy of the data source X is the Bayesian
inversion of cls.

D
X cls

A

put
X

=

(By def.)

=

(By Definition 3.2)

=

(Counit)

=

(autoencoder, by def.)

cls
=

(Copy)

(in dist.)

=

(By Definition 3.2)

(in dist.)

=

As such, we have shown that the idealised solution to the manipulation problem would also give a solution
to Bayesian inversion, which is generally considered a challenging problem in machine learning. Given this
inherent difficulty, one might reasonably question why we expect this setup to succeed. Before providing
empirical evidence, we will first develop theoretical intuition by relating manipulation to the established
task of CycleGAN.

3.1.2 Proof - CycleGAN

CycleGANs solve a similar task as manipulation, translating between two distributions. In fact, with the
additional regularisation terms, strong manipulation is a refinement of CycleGAN, giving us more guarantees
by avoiding certain failure cases.

To prove this relationship formally, we have to add additional regularisation terms to the manipulation task.
While these are theoretically justified, in practice they are less train stable. Therefore, in our experiments,
we will use the vanilla manipulation as a starting point.
Task 3.7 (strong manipulation add-ons). The strong manipulation task consists of all the tasks con-
tained in manipulation, we well as:

X
put

A

A

⇋
put,get X

A

A

(PutPut)

X dsc

X
put dsc

X

A

A
(Fake)

⇋
dsc

X

X

A
(Fool)

(True)1

⇋
dsc

⇋
put

0

1

put
put

The PutPut task (which, paired with PutGet and GetPut is strictly stronger than Undoability in that
it is algebraically implied) says that the effect of putting twice is the same as discarding the effect of the first
edit and only keeping the last edit. In conjunction with PutGet and GetPut, this creates what is known
in the literature as a very well-behaved lens. The True, Fake, and Fool tasks introduce a discriminator
component dsc, which forms a GAN pattern with respect to put as the generator. When well-trained, this
forces the outputs of put to lie in-distribution. As in general there are no algebraic or equational laws that
characterise arbitrary distributions of data, using GANs in this way is a generic recipe for shaping outputs of
generators to behave well in-distribution.

To show that strong manipulation refines CycleGAN, we require one additional assumption: a generator
in a generative-adversarial setting is optimal if and only if its output distribution is equal to the original
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distribution. This is a natural assumption for such settings, and has been proven formally (Goodfellow et al.,
2020, Theorem 1) by Goodfellow et al for an appropriate choice of measure of statistical divergence. We may
now prove a weaker variant of refinement, relative to optimal (rather than perfect) tasks.
Proposition 3.8 (Strong Manipulation and CycleGAN). Given appropriate choices of statistical divergence
measures, optimal solutions to the strong manipulation task can be used to construct optimal solutions to
the CycleGAN task.

Proof. Let X0,X1 be two distributions over the same type. We create a combined space X = {(x, i) | x ∈
Xi, i ∈ {0, 1}} where the label i indicates which distribution the data point came from.

Assume we have functions (get, put, dsc) that optimally satisfy the strong manipulation task for this new
dataset. Then we show that we can construct an optimal CycleGAN from these functions.

For i ∈ {0, 1}, j = 1 − i, we can construct generators G0 and G1 as follows:

Gi := put
i

First, we show that the cycle-consistency requirements of CycleGAN are satisfied:

Gi GjXj =
(Def)

Xj
put

i
put

j
=

(PutPut)

Xj
put

j

=
(Classify)

Xj put
get

=
(GetPut)

Xj

Next, we show that these generators are optimal in the GAN sense. As outlined above, we say a generator is
optimal if and only if its output distribution matches the target distribution. Since put is optimally trained
with the discriminator dsc, put(x, i) produces outputs indistinguishable from Xi.

By the PutGet property:

Gi getXj =
(Def)

Xj
put

i
get =

(PutGet)

Xj i

Combined with the Classify property, this ensures that Gi produces outputs that belong to the correct
distribution Xi.

Thus, the generators G0 and G1 derived from strong manipulation are optimal solutions to the CycleGAN
task.

However, the converse does not hold: CycleGAN is not a refinement of strong manipulation. For example, a
CycleGAN could learn generators that apply a consistent reversible transformation (like horizontal flipping)
while preserving cycle-consistency, but such a solution would violate the PutPut property of strong
manipulation. This demonstrates that strong manipulation provides stronger guarantees about the behavior
of its learned functions than CycleGAN does.
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Despite the additional guarantees, strong manipulation does not guarantee that it indeed only changes as
little as necessary to go from one distribution to the other. To showcase this, we can consider a degenerate
example where no unique solution to manipulation can exist: imagine data with four objects—circle, square,
red and green. There is no unique mapping between shapes and colors. Without further information, it is
therefore impossible to say what it would mean to change as little as possible to go from shapes to colors.
Yet, despite these theoretical concerns, in practice, manipulation often converges to the desired behavior,
similar to CycleGAN, which has even fewer guarantees.

4 Experimental validation of manipulation

In this section, we provide simple but illustrative demonstrations of the manipulation task, designed
primarily to validate theoretical predictions about task-driven behaviour in controlled settings. While
these examples do not represent state-of-the-art performance, they clearly illustrate how our framework
systematically predicts model behaviour from task structure alone.

We will first provide some toy examples of the vanilla manipulation task, a setting in which we can also
adapt to distributions without balanced entropy. Then we will showcase the manipulation task with more
realistic data, manipulating attributes of faces. For technical implementation details, see Appendix C.

4.1 Experimental Results I: Simple attributes of synthetic and real-world data

We first demonstrate initial proofs-of-concept of the manipulation task on a simple analytic dataset (Figure 2)
inspired by Spriteworld (Watters et al., 2019), and on MNIST (Figure 3). In the former, each image depicts
a single shape with varying properties, and is labelled by two attributes: shape – circle, square or triangle –
and colour – red, green or blue. For each attribute, we train a get/put pair according to the manipulation
task specification.

These initial demonstrations on synthetic data illustrate the potential generalisation properties theoretically
predicted by our formal task analysis, particularly the ability of models to interpolate smoothly between
attribute states. We emphasise that our goal here is not performance optimisation, but rather to transparently
illustrate theoretical predictions in a comprehensible setting.

Figure 2: An input Spriteworld image alongside a spectrum of outputs exhibiting the ability of the put to
manipulate a single attribute of the input while preserving its other properties. Additionally, the model is able
to generalise by interpolating to attribute values unseen during training, in this case producing orange and
cyan shapes, whereas during training, it only sees red, green or blue shapes. (further details in Section C.2)
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Original 0 1 2 3 4 5 6 7 8 9

Figure 3: Outputs of a put trained against an MNIST classifier. The put preserves several graphological
aspects, such as stroke weight, slant, and angularity. This represents qualitative evidence to support our
prediction that put as a class-conditioned generative model behaves as a style-preserving edit.
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4.2 Experimental Results II: Derived attributes of synthetic data

The following demonstrations explore theoretically anticipated challenges in manipulating complex, derived
attributes—particularly entropy imbalances known to cause issues in more practical, large-scale contexts. We
intentionally simplify and explicitly control our synthetic scenario (Spriteworld) to provide clear, instructive
validation of our theoretical insights into the interplay between task constraints and model behaviours.

Often in practice we are interested in complex, non-explicit attributes that are derived from those labelled
in the data: for example, “eligibility for a loan” may be derived from other explicit attributes of people
in a database by an operationally opaque classifier, with unknown range, distribution, and dependencies
on other attributes. A known challenge in manipulating derived attributes is unequal entropy in attribute
classes (Chu et al., 2017), which may cause models such as CycleGANs to hide data imperceptibly, making
them particularly vulnerable to adversarial attacks. Various solutions have been proposed, including masks
(Wu et al., 2024), blurring (Fu et al., 2019) and compression (Dziugaite et al., 2016). We demonstrate via a
modification of manipulation (Task 3.1,Figure 5) that our framework permits the design and implementation
of end-to-end approaches to editing complex attributes without interventions on the data.

bc =


min(1, cs + 0.6) if shape = circle
min(0.8, max(0.2, cs)) if shape = square
max(0, cs − 0.6) if shape = triangle

Figure 4: To illustrate the concepts of derived attributes and unequal entropy, consider an attribute on the
Spriteworld data called blue-circleness, which broadly measures how similar a shape is to a blue circle. We
define blue-circleness (bc) as a function of explicit attributes shape and colour ; we assign a continuous colour
score cs ∈ [0, 1] based on the hue, where red = 0 and blue = 1. To illustrate unequal entropy in this example,
the class 0 has higher entropy than 0.4 because there are more shapes that have bc-value 0. So manipulating
a shape with bc-value 0 to 0.4 must lose information.

Task 4.1 (complement manipulation). Inspired by the complement of symmetric lenses (Hofmann et al.,
2011), we introduce a complement C to put, changing its type to S × L× C → S × C. Let (d, a) ∼ X be
a distribution over some data d ∈ D, each labelled with an attribute a ∈ A. complement manipulation
consists of a pair (get : D → A, put : D ×A× C → D × C) fulfilling the following rules:

X ⇋
get

X
get

get

⇋
put,get

X

A

X

⇋
put,get X

X

A ⇋
put,get X

A

get

C

put put

X

A

C

put

C

C C

put

C

get

The idea of the complement is that it provides the manipulation with a scratchpad C to keep track of
additional data. As none of the tasks check the output of the complement, the put and get can use it freely
to store relevant data.

While the complement manipulator successfully demonstrates our theoretical predictions at small scales, we
stress that this controlled scenario is illustrative of underlying theoretical mechanisms rather than directly
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Figure 5: A complement manipulator (Task 4.1) can manipulate derived attributes such as blue-circleness,
by using the complement as a scratchpad to record a correspondence between data points (further details in
Section C.2) while preserving attributes such as position and size.

indicative of performance at scale. The value here lies primarily in transparently validating predictions about
how task structure can address known issues (e.g., entropy imbalance) without requiring explicit architectural
interventions.

4.3 Experimental results III: Interpretability applications on real-world data

In this section, we further illustrate theoretical predictions of our task framework by applying manipulation
tasks to a somewhat more complex, yet still controlled, real-world dataset (CelebFaces Attributes). These
experiments demonstrate how specific theoretical insights, such as the introduction of linearity constraints, can
systematically yield interpretable and theoretically anticipated behaviours in practice, albeit at exploratory
scales.

In the same way that we would expect a latent space “filtered through” the probabilistic structure of Gaussians
to yield good sampling properties (Example 2.5), we would expect that enforcing linear structure on the
latent space would yield linear properties. So we specialised the put to be a simple vector addition in the
latent space of an autoencoder (Figure 6), for the relatively complex Large-scale CelebFaces Attributes dataset.
We found that restricting put to be linear in this way not only increased training stability, but indeed
exhibited continuous interpolation in generated outputs between normally discrete class labels (Figure 7), and
class-sensitive separation of latent space embeddings in the autoencoder. We consider this to be compelling
evidence that since our framework is agnostic, implementation details may be engineered to obtain additional
desirable properties without compromising behavioural specifications.

put ⇝
enc dec+

put’

Figure 6: Recalling that architectural choices are a form of specialisation by diagrammatic substitution, the
linear put is a specialisation of a generic put as an autoencoder task-bound pair of learners enc and dec,
along with a put’ that computes single shift vector to be added into the latent space, depending only on
the label value. enc, dec, and put’ are trained simultaneously along with the manipulation tasks, and
intuitively this pressures the autoencoder pair to adapt their latent representations to fit the needs of the
broader manipulation task.

These illustrative results support our theoretical claim that structured tasks systematically induce predictable
model behaviours: in this case, linearity enabling continuous latent interpolations. Although the complexity
of the chosen dataset moves beyond simple synthetic data, we explicitly note these demonstrations remain
exploratory validations intended primarily as proofs-of-principle for theoretical predictions rather than
definitive large-scale benchmarks.

Taken together, the illustrative examples presented across synthetic and small-scale real-world datasets
serve primarily as concrete demonstrations of our framework’s theoretical predictive power, rather than
comprehensive empirical evaluations of practical performance or scalability. Such demonstrations confirm the
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Original Not smiling Smiling

(a)

Smiling
Not smiling

Autoencoder Only

Linear Manipulator

(b)

Figure 7: Left: Outputs of a linear manipulator trained on face image data paired with a binary smile/no-smile
label. The remarkable aspect of this experiment is that the original data only carried binary smile/no-smile
labels, and that the linear structure in the specialisation of the put admits continuous interpolation. Right:
A comparison of the spread of the latent embeddings of images from the validation set when pre-training an
autoencoder and then training a (linear) classifier on the latent space (top), vs. when trained with a linear
manipulator (bottom). We find that linear put automatically separates latent space embeddings of classes:
the graphs depict the relative density of embeddings along the direction of the classifiers’ weight vectors,
normalised so that each combined data spread is centred and has unit variance (details in Section C.3).

clarity and utility of our theoretical framework, and explicitly highlight opportunities for future exploration
at larger scales and across broader practical domains.

5 Concluding discussion

5.1 Summary

We introduced a diagrammatic language for representing and reasoning about the behaviour of machine
learning models in terms of tasks, viewed as the essential data of objective functions. By leveraging category
theory and string diagrams, our work establishes a cross-disciplinary formal bridge between theoretical
computer science and practical machine learning, providing new conceptual tools for analyzing ML systems
and permitting the transfer of insights between traditionally separate fields.

The proposed framework allows capturing existing tasks in machine learning, providing intuitive insights
rooted in mathematical rigour. We identify a set of widespread and well-understood tasks, which we call
patterns. We can analyse some tasks as composites of patterns (Example 2.12) while other tasks can be
understood as specialisations of patterns (Example 2.5). The rewrite system inherent to string diagrams, allows
us to identify relationships between different tasks and formalise intuitions (Proposition 2.17, Proposition 3.8).

Beyond theoretical insights, the proposed language also allows the creation of new training paradigms. As
preliminary empirical validation of our theory’s utility and potential, we introduced a novel task type called
manipulation that produces a class-conditioned and style-preserving generative model counterpart for a
given classifier. In the image domain, we were able to verify predicted behaviours (Section 4.1), and we
demonstrated the ability to design novel end-to-end capabilities, such as end-to-end editing of complex
attributes (Section 4.2) and the imposition of linear structure on latent space representations (Section 4.3),
which allowed continuous interpolation between discrete class labels on real data, and separated latent space
embeddings of different classes. Notably, this was achieved without adversarial training conditions, random
sampling, preprocessing of data, or hardcoded interventions in the architectures, i.e.: our framework enables
capable, small-scale, and training-stable models.
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5.2 Relation to extant work

Regarding our nascent theoretical framework as a whole, the style of engineering beginning from tasks is
already common practice in many fields of ML, and we sought here to place these practices on a more rigorous
footing, and to probe their strengths and limitations. Our mathematical approach draws broadly from the
field of Applied Category Theory (Fong & Spivak, 2019a), particularly in the use of string diagrams for the
higher-algebraic data of concurrently and serially composed functions, which enables compact representation
and reasoning with otherwise cumbersome symbolic equivalents when dealing with multiple learners in
tandem. To our knowledge, our concern with the composition of tasks among many learners distinguishes our
aims and formal choices from approaches that employ similar mathematical formulations, both within the
category-theoretic literature (cf. Gavranović et al. (2024)), and without (cf. the variational generalisation of
Bayesian inference presented in Knoblauch et al. (2022)).

While our approach is essentially neurosymbolic in spirit, it does not fit neatly into the mainstream triad
of neurosymbolic approaches (d’Avila Garcez & Lamb, 2020); we do not encode symbolic data for neural
operations, nor do we interface neural approaches with symbolic engines, nor are we hardcoding expert
knowledge representations. Moreover, our aims differ: while neurosymbolic approaches often seek to
manipulate symbolic data systematically by neural means, our framework operates at a higher level of
abstraction, seeking to use the systematicity of higher-algebraic equational characterisations as a means to
shape the neural ends. Hence our perspective may complement existing approaches to structure in machine
learning.

Regarding manipulation in particular, this was to our knowledge the first practically demonstrated synthesis
of insights from Bidirectional Transformations as a subfield of database theory (Abou-Saleh et al., 2018) with
ML. While explicitly neurosymbolic approaches have been tried for similar editing tasks before (see e.g. Smet
et al. (2023)), owing to the influence of database theory in our approach, to our knowledge our statement
and execution of this task enjoys the maximal permissible generality and implementation agnosticism among
similar attribute-editing tasks, without sacrificing rigour and systematicity.

5.3 Limitations and Prospects

5.3.1 Scaling and Empirical Validation

Our experimental results are necessarily preliminary and limited in scale, intended primarily as sanity checks
and first demonstrations rather than definitive benchmarks. Recognising this, we note explicitly that further
empirical exploration, while beyond our current scope, would be valuable and necessary to fully assess
practical scalability and broader utility. Future work should rigorously test our theoretical predictions at
larger scales and in comparison with established state-of-the-art frameworks.

Concerning manipulation in particular, an immediately evident limitation of this practical demonstration
is a lack of exploration of how the difficulty of training such ensembles of learners behaves at scale, with
respect to more complex and multimodal datasets, and with a wider range of architectures. While none of
the products of our experimentation are state-of-the-art with respect to specific applications, we believe the
variety and promise of these results serve as a compelling validation of our theoretical framework’s utility
and potential.

Concerning applications of manipulation beyond the image domain, we report on some sketch experiments in
sentiment-manipulation on text in Appendix D, where we also comment on the nature of technical difficulties
to be overcome in the application of manipulation to complex domain data, and offer an explanation for mode
collapses observed during training by empirically relating manipulation to other generative classification
approaches.
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5.3.2 Complexity and Theoretical Formalism

We acknowledge that our reliance on categorical formalisms and abstract mathematical structures, while
foundationally valuable, may impose an initial barrier to practitioners less familiar with these tools. However,
we believe that such rigour is precisely what enables clear theoretical insights and structured reasoning about
model behaviour. To aid accessibility, we have provided intuitive explanations accompanying formal constructs
and a friendly diagrammatic syntax that can be used productively without a detailed understanding of the
formal semantics. We anticipate practitioners can benefit from engaging with these theoretical underpinnings
incrementally.

Addressing the theoretical framework of tasks more broadly, our reliance on equational characterisations is
double-edged. On one hand, it is uncommon to find such characterisations of mathematical systems of interest
as they are usually defined by more direct means, and this presents a theoretical limitation. On the other hand,
it appears that the strength of equational characterisations when applied to ML lies in imposing structure on
“the way to learn to solve a problem” rather than on the solutions or problems themselves (Sutton, 2019).
This suggests promising future possibilities of our mathematical framework in bridging structural-symbolic
approaches from computer science more broadly with methods that can effectively leverage computation.

5.3.3 Theoretical Gaps

While we have demonstrated that, in certain cases, tasks can determine behaviours, there is a theoretical gap
in the converse analysis of behaviours of trained models in terms of their basic tasks.

Our theoretical framework currently best handles static, equilibrium conditions of task-optimisation, providing
robust insights into structural behaviour under idealised limits. Dynamic adversarial interactions, such
as those arising in GAN-based architectures, introduce complexity that our present theoretical treatment
explicitly acknowledges but does not fully resolve. This represents a fruitful avenue for future theoretical
expansion, underscoring the potential for this framework to evolve and integrate more sophisticated dynamical
systems analysis.

Future theoretical developments will also seek to incorporate other aspects of ML: for example, relating
to work that focuses on the choice of model architecture (Khatri et al., 2024) and interactions with the
underlying data distribution (Bronstein et al., 2021). While our current experiments focus on demonstrating
our framework’s validity, future practical developments will explore applications to more complex, real-world
ML challenges, where we envision our approach informing areas such as AutoML, interpretable AI, and formal
verification of ML systems: the compositional nature of our task-based framework naturally aligns with neural
architecture search by potentially informing principled search strategies for optimal model architectures, and
the explicit representation of model behaviours as equational constraints could enhance interpretability and
facilitate formal verification.
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A String diagrams for tasks

String diagrams are a formal diagrammatic syntax that take semantics in symmetric monoidal categories,
and they find usage in a broad variety of fields3. Our string diagrams are built using sequential and parallel
composition from the following generators, along with a stock of function labels:

fRM RN f

(g ◦ f) : RA → RC

Sequential composition

g

f : RM → RN

Function

f

g

(f ⊕ g) : R(A+C) → R(B+D)

Parallel composition

RA
RB

RC

RA RB

RC RD
{⋆}

v ∈ RN

Vector

RM

∆ : RM → R(M+M)

Copy

RM
RN

RM

RM

ϵ : RM → {⋆}

Delete

{⋆}

R0 ≃ {⋆}

Singleton space

{⋆}

X : {⋆} → RM

Data from X

RMX

(X × Y) : {⋆} → R(M+N)

Independent X , Y

RMX

RNY

θ : R(N+M) → R(M+N)

Swap

RM

RNRM

RN
v

For conventional reasons that were not by our choice, vectors are depicted as triangular nodes with only
output wires, reminiscent of bra-ket notation. (co)associative (co)monoids, such as copy-delete and add-zero,
are specially depicted as circular nodes as is common in applied category theory. In this work, encoders and
decoders are sometimes depicted as “bottlenecking trapezia”, as is common in ML, and distributional states
are given their own notation as thick bars.

An attractive characteristic of string diagrams is that visually intuitive equivalences between information flows
are guaranteed to correspond to symbolic derivations of behavioural equivalence: tedious algebraic proofs of
equality between sequentially- and parallel-composite processes are suppressed and absorbed by (processive)
isotopies of diagrams. In the diagrammatic syntax it is conventional to notate such isomorphisms as plain
equalities. Interested readers are referred to (Selinger, 2011) for the relevant mathematical foundations.

(1 ⊕ θ) ◦ (∆ ⊕ g) ◦ (f ⊕ 1)
≃ (1 ⊕ θ) ◦ (1 ⊕ 1 ⊕ g) ◦ (∆ ⊕ 1) ◦ (f ⊕ 1) [Identity, interchange]
≃ (1 ⊕ g ⊕ 1) ◦ (1 ⊕ θ) ◦ (∆ ⊕ 1) ◦ (f ⊕ 1) [Braid naturality]
≃ (1 ⊕ g ⊕ 1) ◦ (1 ⊕ θ) ◦ (f ⊕ f ⊕ 1) ◦ (∆ ⊕ 1) [Copy naturality]
≃ (1 ⊕ g ⊕ 1) ◦ (f ⊕ 1 ⊕ f) ◦ (1 ⊕ θ) ◦ (∆ ⊕ 1) [Braid naturality]

⇔ f

g

=
f

f

g

A.1 Categorical semantics of task diagrams

The functional effect of the construction below is to extend the category of continuous maps between Euclidean
spaces with global elements that behave as probability distributions instead of points. We presume familiarity
with symmetric monoidal categories and their graphical calculi (Selinger, 2011).

Let CartSp denote the coloured PROP (Yau, 2008) of continuous maps between Euclidean spaces, where
the tensor product is the cartesian product — i.e. CartSp is cartesian monoidal.

Let BorelStoch denote the Markov category (Cho & Jacobs, 2019; Fritz, 2020) of stochastic kernels
(Panangaden, 1999) between Borel-measurable spaces. Stochastic kernels in particular subsume the continuous
maps between Euclidean spaces.

As a Markov category, in the terminology of (Fong & Spivak, 2019b), BorelStoch supplies cocommutative
comonoids. By Fox’s theorem (Fox, 1976b) cartesian monoidal categories are precisely those isomorphic to
their own categories of cocommutative comonoids. Hence there is a (semicartesian) functorial embedding of
CartSp into BorelStoch sending RN to RN (equipped with the usual Borel measure), and continuous maps
to deterministic continuous maps. We declare our semantics to be taken in the category to be generated

3Including linear and affine algebra (Sobociński, 2015; Bonchi et al., 2017; 2019), first order logic (Haydon & Sobociński,
2020), causal models (Lorenz & Tull, 2023; Jacobs et al., 2019), signal flow graphs (Bonchi et al., 2014), electrical circuits
(Boisseau & Sobociński, 2022), game theory (Hedges, 2015), petri nets (Baez & Master, 2020), probability theory (Fritz et al.,
2021), formal linguistics (Coecke et al., 2010; Wang-Mascianica et al., 2023; Wang-Maścianica, 2023), quantum theory (Coecke &
Duncan, 2011; Coecke & Kissinger, 2017; Poór et al., 2023), and aspects of machine learning such as backpropagation (Cruttwell
et al., 2022).
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by the image of this embedding along with the probability distributions X : {⋆} → RN , where {⋆} is the
singleton monoidal unit of BorelStoch.

A.2 Categorical semantics for idealised universal approximators

As we are concerned with behaviour, not implementation details, we idealise all neural networks as perfect
universal approximators, which we may formulate string-diagrammatically in a monoidal closed category,
borrowing evaluator-notation from (Pavlovic, 2013; 2023). In essence, we are assuming that architectures
are sufficiently expressive to optimise whatever tasks we give them; in practice, the conditions under which
architectures become universal approximators can be mild (Hornik et al., 1989), and the idealisation is
increasingly true-in-practice in the contemporary context of increasing data and compute.
Definition A.1 (Learner). Let X,Y denote input and output types. A process Ω : p ⊕ X → Y with
parameters in para(Ω) = p = Rn (for sufficiently large n) is a universal approximator or learner when4:

f
X Y =∀fX→Y ∃f̂∈p :

f̂

X
Y

p

Ω

The parameter space could represent e.g. the phase space of weights and biases of a neural network.
Example A.2. By visual convention, we use colours to indicate different data types of wires. We depict
processes with no free parameters as white boxes, and learners as black-boxes with variable labels to indicate
distinct or shared parameters. The following composite process has one function f with no learnable
parameters, and three neural nets: the two labelled α share a parameter in the space p, and the one labelled
β takes a parameter in Q. In this paper, we favour the shorthand on the right.

f
≜

Ω
Ω

f
Ω

p

Q α
αβ

The universal approximation theorem, suitably idealised, manifests as the capacity for a black-box learner to
be diagrammatically substituted for any other composite diagram with equal input and output, including
those composites that contain other learners. For example, recall the linear put below, which may be viewed
as substituting a particular composite of put’, enc, dec, and addition in place of put:

put ⇝
enc dec+

put’

This ability is referred to in this work intermittently as specialisation, and as expressive reduction in (Khatri
et al., 2024) where the concept first appeared. For the sake of completeness, we reproduce the relevant
construction that gives category-theoretic semantics to universal approximators and specialisation below,
along with standard definitions, with the authors’ permission.
Definition A.3 (PROP). A PROP is a strict symmetric monoidal category generated by a single object x:
every object is of the form

n⊗
x = x⊗ · · · ⊗︸ ︷︷ ︸

n

x

PROPs may be generated by, and presented as signatures (Σ, E) consisting of generating morphisms Σ with
arity and coarity in N, and equations E relating symmetric monoidal composites of generators.

4We adapt the shape of the universal approximators to clearly indicate the parameters.
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Definition A.4 (Coloured PROP). A multi-sorted or coloured PROP with set of colours C has a monoid of
objects generated by C.
Definition A.5 (Cartesian PROP). By Fox’s theorem (Fox, 1976a), a cartesian PROP is one in which
every object (wire) is equipped with a cocommutative comonoid (copy) with counit (delete) such that all
morphisms in the category are comonoid cohomomorphisms.
Definition A.6 ((symmetric, unital) coloured operad). Where (V,⊠, J) is a symmetric monoidal category
and C denotes a set of colours ci, a coloured operad O consists of:

• For each n ∈ N and each (n+ 1)-tuple (c1, · · · , cn; c), an object O(c1, · · · , cn;n) ∈ V

• For each c ∈ C, a morphism 1c : J → O(c; c) called the identity of c

• For each (n + 1)-tuple (c1 · · · cn; c) and n other tuples (d1
1 · · · d1

k1
) · · · (dn1 · · · dnkn) a composition

morphism

O(c1, · · · , cn; c)⊠O(d1
1 · · · d1

k1
)⊠ · · ·⊠O(dn1 · · · dnkn) → O(d1

1 · · · d1
k1

· · · dn1 · · · dnkn ; c)

• for all n ∈ N, all tuples of colours, and each permutation σ ∈ Sn the symmmetric group on n, a
morphism:

σ∗ : O(c1 · · · cn; c) → O(cσ∗(1) · · · cσ∗(n); c)

The σ∗ must represent Sn, and composition must satisfy associativity and unitality in a Sn-invariant manner.
Construction A.7 (Hom-Operad of coloured PROP). Where (P,⊗, I) is a coloured PROP with colours
CP , we construct OP , the hom-operad of P . We do so in two stages, by first defining an ambient operad, and
then restricting to the operad obtained by a collection of generators. Let the ambient symmetric monoidal
category be (Set,×, {⋆}). Let the colours CO be the set of all tuples (A,B), each denoting a pair of tuples
(A1 ⊗An, B1 ⊗Bn) of Ai, Bi ∈ CP .

• The tuple
(
(A1,B1) · · · (An,Bn); (A,B)

)
is assigned the set [P(A1,B1) × · · · × P(An,Bn) →

P(A,B)] ∈ Set; the set of all generated functions from the product of homsets P(Ai,Bi) to the
homset P(A,B).

• 1(A,B) : {⋆} → [P(A,B) → P(A,B)] is the identity functional that maps f : A → B in P(A,B) to
itself.

• The composition operations correspond to function composition in Set, where [X → Y ]× [Y → Z] →
[X → Z] sends (f:X→Y , g:Y→Z) 7→ (g ◦ f):X→Z ; appropriately generalised to the multi-argument case.
The permutations are similarly defined, inheriting their coherence conditions from the commutativity
isomorphisms of the categorical product ×.

The generators are:

• For every f ∈ P(A,B) that is a generator of P, define a corresponding generator of type {⋆} →
[P(I, I) → P(A,B)], which is the functional

(
− 7→ (f ⊗ −)

)
that sends endomorphisms of the

monoidal unit of P to their tensor with f , viewed as an element of the set [P(I, I) → P(A,B)].

• For every pair of tuples
(
(X1,Y1) · · · (Xm,Ym); (A,B)

)
and

(
(J1,K1) · · · (Jn,Kn); (B,C)

)
in CO, a

corresponding sequential composition operation of type:

[
∏
i⩽m

P(Xi,Yi) → P(A,B)] × [
∏
j⩽n

P(Jj ,Kj) → P(B,C)]

→ [
( ∏
i⩽m

P(Xi,Yi) ×
∏
j⩽n

P(Jj ,Kj)
)

→ P(A,C)]

Which maps pairs of functionals (F:
∏
i⩽m

P(Xi,Yi)→P(A,B), G:
∏
j⩽n

P(Jj ,Kj)→P(B,C)) to the functional

which sends pi : Xi → Yi and qj : Xj → Yj to G(p1 · · · pm) ◦ F (q1 · · · qn).
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• An analogous parallel composition for every pair of tuples, which sends pairs of functionals (F,G) to
G(p1 · · · pm) ⊗ F (q1 · · · qn).

Remark A.8. For technical reasons involving scalars (the endomorphisms of the monoidal unit), this
construction only works in semicartesian settings, i.e. where the monoidal unit is also terminal, but that is
sufficiently general to admit our use cases, which are primarily in cartesian monoidal settings (Fox, 1976a)
and semicartesian Markov categories for probabilistic settings (nLab authors, 2024b).

Example A.9. Construction A.7 can be thought of as bridging diagrams with their specific algebraic
descriptions using just the basic constructors ◦,⊗; the hom-operad (when notated suggestively in the usual
tree-notation, found e.g. in Markl et al. (2007)) plays the role of the syntactic tree of ◦,⊗ operators. For
instance, given the composite morphism (g ⊗ 1E) ◦ (1A ⊗ f) in PROP P, the corresponding diagram and
operad-state in OP is:

f

g
A

B

D

E

↔C

1A

f

1E

g
◦

⊗

⊗

[P(I, I) → P(A,A)]

[P(I, I) → P(B,C ⊗ E)]

[P(I, I) → P(A ⊗ C,D)]

[P(I, I) → P(E,E)]

[P(I, I)2 → P(A ⊗ B,A ⊗ C ⊗ E)]

[P(I, I)2 → P(A ⊗ C ⊗ E,D ⊗ E)]

[P(I, I)3 → P(A ⊗ B,D ⊗ E)]

Since the PROPs CartSp and its free tensoring are cartesian, P(I, I) is a singleton containing only the
identity of the monoidal unit, so in the settings we are concerned with, we may simplify colours of the form
[P(I, I)N → P(A,B)] to just P(A,B), and operad-states {⋆} → P(A,B) are in bijective correpondence
with morphisms f : A → B of P; the fact that all f : A → B are representable as operad states follows by
construction, since any f in P is by definition expressible in terms of the generators of P, and sequential
and parallel composition ◦,⊗. As we assume homsets are already quotiented by the equational theory of P
and the symmetric monoidal coherences, our operadic representations inherit them: for example, we obtain
interchange equalities such as the one below for free:

v

P(A,C)

A

B

C

D

E

F

u

v

w

x

u

w

x

↔

⊗

⊗

◦
P(B,D)

P(C,E)

P(D,F )

P(A ⊗ B,C ⊗ D)

P(C ⊗ D,E ⊗ F )

P(A ⊗ B,E ⊗ F ) w

P(A,C)
u

v

x

◦

◦

⊗
P(B,D)

P(C,E)

P(D,F )

P(A,E)

P(B, F )

P(A ⊗ B,E ⊗ F )
=

Definition A.10 (Universal approximators and specialisation). A morphism of a coloured PROP P of
type (A,B) containing universal approximators as black-boxes of types Ai⩽n → Bi⩽n is a morphism(
(A1,B1) · · · (An,Bn); (A,B)

)
of OP , and by construction, vice versa. Specialisation corresponds to precom-

position in OP .

Example A.11. The inputs of open morphisms in OP correspond to “typed holes”, and operadic precomposi-
tion corresponds to “filling holes”, with contents that may themselves also contain typed holes. This precisely
formalises the intuition that expressive reductions correspond to the ability of a universal approximator to
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simulate anything, including composites containing other universal approximators.

f
f

≜

A

B

C

D

E

F

G G

1G

P(A ⊗ D,E ⊗ F )
f

⊗

◦

P(G,G)

P(A ⊗ D ⊗ G,E ⊗ F ⊗ G)

1A
P(A,A)

⊗ P(A ⊗ B ⊗ C,A ⊗ D ⊗ G)

P(B ⊗ C,D ⊗ G)

P(A ⊗ B ⊗ C,E ⊗ F ⊗ G)
↔

f

h

f

≜

A

B

C

E

F

G G

h

1G

f

⊗

◦

1A

⊗

7→

h ⊗
P(B,D)

P(C,G)

P(B ⊗ C,D ⊗ G)

↔

7→

Remark A.12. The extension of the current theory to accommodate parameter sharing between universal
approximators is conceptually straightforward but technically involved. Parameter sharing corresponds to the
ability to reuse – i.e. copy – data between open wires in the operad OP , which amounts to having a cartesian
operad.

B Strong manipulation

The basic manipulation admits pathological counterexamples, which we may block by imposing additional
tasks as regularisation terms. This section further illustrates a form of legalistic thinking using tasks: by
thinking of ways that “noncooperative” or “naughty” learners might seek to satisfy tasks without exhibiting
the behaviour that the modeller desires. By identifying these counterexamples and constructing additional
tasks that block them, the modeller may iteratively improve the behaviour of the model. For illustration,
consider the following examples of pathological behaviour that satisfy basic manipulation, again in the
setting of editing the colour of a shape.

Example B.1 (Flipping). Consider a put that changes the colour of a shape as desired, but then vertically
flips the shape. If the classifier get is insensitive to the position and orientation of the shape, then Classify,
PutGet, and GetPut are satisfied. Moreover, since a vertical flip is its own inverse, composing two puts
as in the Undoability task will not detect this aberration. Speaking in more general terms, if there are
properties that get is insensitive to, there must be additional guardrails to ensure that put preserves these
other properties as the identity, rather than one of potentially very many self-inverse symmetries.

Example B.2 (Adversarial decorations). While the classifier get may be perfect in-distribution, there are
no guarantees about its behaviour out of distribution, for example, when given images with multiple shapes,
where it might only classify the leftmost shape. So, it is possible that put learns to make edits that take
the resulting image out-of-distribution: for example, by adding a red circle next to a blue square to fool
the classifier into outputting “red”. This would satisfy Classify, PutGet, and GetPut. If the put can
recognise and undo its own decorations, then Undoability will also be satisfied. Speaking more generally,
we require additional guardrails to ensure that put returns something in-distribution.

The strong manipulation adds additional tasks to manipulation. A strong manipulator has to satisfy
the original four tasks plus the following four:
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Task B.3 (strong manipulation add-ons). The strong manipulation task consists of all the tasks con-
tained in manipulation, we well as:

X
put

A

A

⇋
put,get X

A

A

(PutPut)

X dsc

X
put dsc

X

A

A
(Fake)

⇋
dsc

X

X

A
(Fool)

(True)1

⇋
dsc

⇋
put

0

1

put
put

The PutPut task (which is strictly stronger than Undoability in that it is algebraically implied) says
that the effect of putting twice is the same as discarding the effect of the first edit and only keeping the
last edit. In conjunction with PutGet and GetPut, this creates what is known in the literature as a very
well-behaved lens, which blocks Example B.1 and similar modifications of the data get is insensitive to.

The True, Fake, and Fool tasks introduce a discriminator component dsc, which forms a GAN pattern with
respect to put as the generator. When well-trained, this forces the outputs of put to lie in-distribution. As
in general there are no algebraic or equational laws that characterise arbitrary distributions of data, using
GANs in this way is a generic recipe for shaping outputs of generators to behave well in-distribution.

Remark B.4 (Why basic manipulation is preferable in practice). We have observed informally that
conditions such as those in basic manipulation where learners are cooperative and there are only learners on
the LHS appear to be more stable during training. We suggest a sketch reason why: in the tasks of strong
manipulation, PutPut has put occur on both the LHS and RHS, which establishes a nontrivial dependence
on the current position on parameter-space of put in the process of finding a solution. Similarly, the GAN
rules of strong manipulation establishes adversarial mutual dependencies in the parameters of dsc and
put. Conceptually, these dependencies create dynamical systems on the paths that the learners take over the
course of training in parameter-space, which may for instance include stable orbits and chaotic behaviour,
and may be highly sensitive to initial conditions. A further elaboration of “static” versus “dynamic” tasks in
tandem with the ability to express equivalent tasks is potentially useful for creating train-stable models with
equivalent behaviour, but this is beyond the scope of this paper, and left for future work.

C Experiment Details

C.1 Stack

This experiment uses an autoencoder architecture for processing 32 × 32 RGB images, with a latent space
size of 16 dimensions. The encoder consists of four convolutional layers, each with 64 channels and a channel
multiplier of 1. Additionally, a stack of 64 latent features is processed through an MLP with 256 hidden
units. Training is performed on a GPU, with a batch size of 64, learning rate of 1 × 10−4, weight decay of
1 × 10−2, and gradient clipping at 1. The model trains for 100,000 steps, logging every 10,000 steps. Input
images are converted to tensors and scaled to floating-point precision, and a fixed random seed of 0 ensures
reproducibility. The stack space S has to be n times larger than the latent space Lat for the stack to be able
to hold up to n items.

C.2 Spriteworld

For the Spriteworld experiment, we procedurally generate 32x32 images containing a single shape with the
following attributes:
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Attributes Possible Values
Shape { Ellipse, Rectangle, Triangle }
Hue { Red : 0±8, Green : 85±8, Blue : 170±8 }
Saturation 64-255
Value 64-255
Background Color Black
Width & Height 5-27
X & Y position 5-27

Only the first two attributes, shape and hue, are changed in the manipulation task, but all unchanged
properties are intended to be preserved by the transformation. We use an autoencoder with a CNN/DCNN
architecture to embed each image into a latent space:

Parameter Value
Latent Size 32
Layers 4
Hidden Channels 64
Kernel Size 5x5
Stride 2
Activation Function LeakyReLU(0.1) followed by BatchNorm

We train separate get/put models for each of the three concepts: shape, colour, blue-circleness. Each model
uses the encoder of the autoencoder to embed input images into latent space, and only sees the labels for the
particular attribute it is manipulating.

For shape and colour, the get model uses a linear classifier from the latent space (of size 32) to 3 output
logit values, one for each possible value. The put model maps a one-hot vector of the input value to a vector
in latent space that is added to the embedding. This new embedding is then decoded by the autoencoder.

For blue-circleness, the get model uses a linear classifier from the latent space to a single output value from
zero to one (we do not use a sigmoid output layer to restrict the output). The put model uses a complement
of size 8. It concatenates the one-hot value vector with the image embedding and the complement vector
(using a default trainable complement vector if one is not provided) and passes that through a linear layer to
get a new embedding vector (which is then decoded) and complement vector.

In total, these models contain 644,130 parameters. All models are trained simultaneously according to the
autoencoding and manipulation rules, along with PutPut. At each step, a batch of images is generated,
along with four batches of random values, containing random labels for the shape and colour, and random
real numbers for the blue-circleness, uniformly sampled from [−0.1, 1.1] and then clamped to [0, 1]. The loss
function is a weighted sum of the losses from each atomic task in order to balance the signal from the image
loss with the signal from the classifier loss:

Hyper-parameter Value
Steps 100,000
Batch Size 512
Optimiser AdamW
Learning Rate 10−3

Weight Decay 10−2

Gradient Clipping 1 (element-wise)
Image Loss L2 + 0.25 · L1
Discrete Value Loss Binary cross-entropy
Continuous Value Loss Mean squared error
Seed 0

Task Weight
autoencoding 100
GetPut 1
PutPut 1
Undo 10
PutGet
(blue-circleness) 10
(shape and colour) 1
Classification
(blue-circleness) 10
(shape and colour) 1
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C.3 Faces

For the faces experiment, we use the CelebFaces Attributes dataset (Liu et al., 2015), with an off-the-shelf
data augmentation method called TrivialAugment (Müller & Hutter, 2021). Again, we use an autoencoder
with a CNN/DCNN architecture to embed each image:

Parameter Value
Latent Size 128
Layers 5
Hidden Channels 8, 16, 32, 64, 128
Kernel Size 5
Stride 2
Activation Function LeakyReLU(0.1) followed by BatchNorm

We train linear get/put models for the binary concept of “Smiling”, resulting in a total of 1,071,749 parameters.
The loss function is a weighted sum of the losses from each atomic task:

Hyper-parameter Value
Steps 100,000
Batch Size 64
Optimiser AdamW
Learning Rate 10−3

Weight Decay 10−2

Gradient Clipping 1 (element-wise)
Image Loss L2 + 0.2 · L1 + SSIM
Value Loss Binary cross-entropy
Seed 0

Task Weight
autoencoding 10
GetPut 1
PutPut 1
Undo 1
PutGet 1
Classification 1

C.4 MNIST

We trained the manipulation task on the MNIST dataset, using the digit label as the property. The get
operated directly on images, while put was trained to act on the latent space of an autoencoder, as in option
(1) of Section 4.3. The images are input as 28 × 28 matrices, flattened to 784-dimensional vectors, and the
labels are provided as 10-dimensional vectors with one-hot encoding. All of the components were structured
as multilayer perceptrons. The hyperparameters are given below:

enc dec put get

Input Dimension 784 = 28 × 28 32 42 = 32 + 10 784 = 28 × 28
Output Dimension 32 784 = 28 × 28 32 10
Hidden Dimensions {128, 128, 64} {64, 128, 128} {128, 128, 128} {64, 64}
Hidden Activations ReLU ReLU ReLU ReLU
Final Activation Sigmoid Sigmoid Sigmoid Softmax

With these architectural components, we trained four tasks: (a) training get supervised, (b) training get
given pre-trained put, enc, and dec, (c) training put given pre-trained get’, enc, and dec, and (d) training
get to match a previous get’. These were trained using the manipulation rules, as well as PutPut, and
additional regularization term we denote as Entropy. The loss function of Entropy is given by

LEntropy = E[H(get(enc(x)))] −H(E[get(enc(x))])

where x is a batch of input images, H(·) is the entropy of a categorical distribution, and the expectation is
approximated by the mean over each batch. The idea behind Entropy is to encourage the output of get
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to be well-distributed across labels (by maximizing the entropy of the mean distribution) but to be sure of
each label (by minimizing the entropy for each specific input). For task (d), labels were generated for the
Classify rule using get’. Each task is trained by minimizing a weighted linear combination of the rules.
We give the hyperparameters, rule weights, and loss functions for each of these below.

(a) (b) (c) (d)
Optimizer Adam Adam Adam Adam
Learning Rate 0.001 0.001 0.0001 0.001
Epochs 20 20 20 20

Weight Loss Weight Loss Weight Loss Weight Loss
Classify 1 CE – – – – 1 CE
PutGet – – 10 CE 10 CE – –
GetPut – – 10 L2 10 L2 – –
PutPut – – 10 L2 10 L2 – –
Undoability – – 10 L2 10 L2 – –
Entropy – – 1 LEntropy – – – –

We also have an additional task (e) of training enc and dec unsupervised. This was done using the Adam
optimizer, with a learning rate of 0.001 for 80 epochs. The reconstruction loss was given by

L(x, x̂) = L2(x, x̂) + (1 − SSIM(x, x̂))

where SSIM is the structure similarity image metric.

To produce Figure 3, an enc, dec, put, and get were trained using (a) → (e) → (c), followed by training
(c) for an additional 40 epochs. A slightly larger (but still MLP-based) model, where both put and get act
on the latent space of the autoencoder, was used to achieve better visual quality. The hyperparameters are
detailed below:

enc dec put get

Input Dimension 784 = 28 × 28 32 42 = 32 + 10 32
Output Dimension 32 784 = 28 × 28 32 10
Hidden Dimensions {128, 128, 128,

32, 32}
{32, 32, 128,
128, 128}

{256, 256} {256}

Hidden Activations ReLU ReLU ReLU ReLU
Final Activation Sigmoid Sigmoid Sigmoid Softmax

enc, dec, and put were used to manipulate six examples picked from the dataset, putting each of the ten
classes onto each example. The examples were cherrypicked to provide maximum stylistic contrast across the
sample but were not selected for maximum style transfer accuracy - a similar level was observed across the
entire dataset. Code for all of these models, as well as the training schedules of tasks (a)-(e), are provided in
the supplementary material.

D Examining Manipulation in complex domains

D.1 Manipulation for text sentiment

We attempted to fine-tune an extant strong solution for text-sentiment modification by additionally imposing
the constraints of manipulation on top of the original objective function. Our findings suggest that
additionally imposing the constraints of manipulation on architectures that are already performant does not
make an appreciable difference (Table 1). We pretrained the Blind Generative Style Transformer (B-GST)
model of (Sudhakar et al., 2019) which takes in the non-stylistic components of a sentence and the target
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sentiment, and outputs the sentence generated in the target style. This was done until we achieved baselines
higher than the original ones reported by the authors of the model. Afterwards, we continued training under
three different conditions: (1) resuming training with only the original objective, (2) only using objective
functions from manipulation, and (3) using both. For (1) and (3), we reused the same objective in the
original paper. In all experiments, we used the YELP dataset used by (Li et al., 2018), reusing the same
train-dev-test split they used. It consists of 270K positive and 180K negative sentences for the training set,
2000 sentences each for the dev set, and 500 sentences each for the test set. Furthermore, we used the human
gold standard references they provided for their test set. B-GST uses a sequence length of 512, 12 attention
blocks each with 12 attention heads. We used 768-dimensional internal states (keys, queries, values, word
embeddings, positional embeddings). We tokenized the input text using Byte-Pair Encoding (BPE).

We used the same input autoencoding and output decoding used in (Sudhakar et al., 2019) across all
experiments. For the get of the manipulation task, we used the PyTorch version of the pretrained
Transformer by HuggingFace, which uses the OpenAI GPT model pretrained by (Radford & Narasimhan,
2018) on the BookCorpus dataset which contains over 7000 books with approximately 800M words. We trained
it on a sentiment classification task using the YELP dataset reaching 98% accuracy on the test set. The get
was fixed for the entire duration of training conditions (2) and (3) above. For the put of manipulation, we
used the B-GST model to generate text with a specified sentiment. This was a computational bottleneck for
training conditions (2) and (3) as autoregressive decoding is required to generate model inputs for PutGet
and Undoability in manipulation. We used ’teacher forcing’ or ’guided approach’ (Bengio et al., 2015;
Williams & Zipser, 1989) whenever we computed the reconstruction loss of put. Additionally, for training
conditions (2) and (3), we only used PutGet, GetPut, and Undoability from manipulation. We used
a weighted sum of the losses computed for each of these and the original reconstruction loss if present -
the weights can be considered as training hyperparameters. For (2), we used (PutGet=5, GetPut=20,
Undoability=20), while for (3), we used (PutGet=5, GetPut=10, Undoability=25, B-GST=30).
Code for all of the models, training schedules, and hyperparameter values for training conditions (1)-(3) are
also provided in the supplementary material.

Model GLEU BLEUSRC BLEUREF ACC (fasttext)
B-GST-pretrained 11.869 74.563 52.770 84.6
B-GST-only 11.426 74.876 52.549 85.7
manipulation-only 11.712 74.428 52.646 84.1
B-GST+manipulation 11.338 74.608 52.836 85.1
Human Reference 100.00 58.158 100.00 67.6

Table 1: We pretrained the Blind Generative Style Transformer (B-GST) model (Sudhakar et al., 2019)
based on the Delete-Retrieve-Generate (Li et al., 2018) framework for sentiment modification until we
recovered higher baselines than reported by the authors of the model (GLEU=11.6, BLEUSRC=71.0), and we
continued training in three different conditions: (1) keeping the original objective, (2) only using objective
functions obtained from manipulation, and (3) using both. We report no statistically significant differences
in scores, even under continued training. The table reports the results of training conditions (1) and (2) for
an additional epoch, and (3) for two epochs.
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D.2 Characterising Manipulation as generative classification

Training manipulation autoregressively (e.g. when instantiating the learners as transformers for sequential
data) is slow due to autoregressing twice for PutPut and Undoability. Moreover, our attempts to
autoregressively manipulate the sentiment of IMDB reviews often resulted in a form of posterior collapse
where put ignored the attribute and behaved as the identity function on text. Conceptually, this is because
the identity function satisfies GetPut, PutPut and Undoability, and while the identity fails on PutGet,
failing on one component of the combined loss function does not provide a strong enough incentive to move
away from the identity in parameter-space.

Notably, these shortcomings mirror that of VAEs, which also suffer from posterior collapse (Bond-Taylor
et al., 2022) in highly structured domains such as video (Babaeizadeh et al., 2018) and text (Bowman et al.,
2016). This suggested to us that puts may be generative classifiers, which could potentially explain why mode
collapse was occurring in complex domains. Borrowing terminology from (Ng & Jordan, 2001), classifiers
are discriminative if they seek to learn the conditional distribution p(a|d) of attributes given data (as in
the classification pattern), and otherwise they are generative if they seek to learn the joint distribution
p(d, a) (as, for example, a VAE). The tradeoffs between the two types are well studied, e.g. performance-wise,
generative models may converge faster with limited data, but discriminative models often achieve lower
asymptotic error, and it is well known that learning generative models is harder (Vapnik, 1998).

Manipulation cannot be viewed directly as a generative classifier, as the put admits extraneous conditionali-
sations on a reference and a target attribute. So we resorted to an empirical comparison of manipulation
and VAEs as a known generative classifier; specifically, we compared their ability to approximate the Bayesian
inverse, and we found their performance comparable. To demonstrate this, we tried three ways to train an
informationally identical cls′ given an initial cls, provided access to unlabelled data to obtain a distribution
of pairs (d, cls(d)) by: (a) directly training cls by classification, (b) training a generative classifier, in
our case a VAE, and (c) training manipulation around cls-as-get to obtain a put, and then train cls′ to
satisfy the tasks of manipulation except for Classify. Repeating this process several times, we would expect
to see some loss of accuracy due to imperfect Bayesian inversion. Indeed, we see in Figure 8 that (b) and (c)
have similar decays in accuracy, indicating that manipulation and VAEs have similar performance in this
case. This experiment was performed using the trained components obtained from the MNIST experiment
(Section C.4), and in addition to the tasks (a-e) we (f) trained a VAE to learn the joint distribution of images
and labels produced by get’, and we (g) trained a get supervised using labels and images generated from
the VAE. The VAE encoder and decoder are also based on multilayer perceptrons - each is comprised of an
MLP trunk and two linear heads for generating the means and log-variances of the latent space, or the image
and labels, respectively. The latent space is comprised of independent normally distributed variables as in
(Kingma & Welling, 2022), and is sampled using the standard reparameterization trick. The hyperparameters
of the architecture are given below:

VAE Encoder VAE Decoder
Input Dimension 794 = 28 × 28 + 10 32
Hidden Dimensions {128, 128, 64} {64, 128, 128}
Hidden Activations ReLU ReLU
Head 1 Dimension 32 784 = 28 × 28
Head 1 Activation – Sigmoid
Head 2 Dimension 32 10
Head 2 Activation – Softmax

Three loss functions were used for tasks (f) and (g) — the reconstruction loss of the autoencoder, which can
be separated into a label loss and an image loss, the K-L divergence regularization term LKL of the VAE
(Kingma & Welling, 2022), and the Classify loss of get. The training hyperparameters are given as follows:
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(f) (g)
Optimizer Adam Adam
Learning Rate 0.001 0.001
Epochs 40 20

Weight Loss Weight Loss
Classify – – 1 CE
Image Reconstruction 100 L2 – –
Label Reconstruction 1 CE – –
K-L Divergence 0.5 LKL – –

In order to evaluate the three methods, we trained the tasks in the following order. At each step, the
component being trained (e.g. get, put, etc) was initialized randomly (the previous weights were discarded).
Measurements of the test accuracy were made after each (a), (b), (d), or (g) training run, and used to produce
Figure 8.

get → get’ =⇒ (a) → (d) → (d) → · · · → (d)
get → put → get’ =⇒ (a) → (e) → (c) → (b) → (e) → (c) → (b) → · · · → (b)
get → VAE → get’ =⇒ (a) → (f) → (g) → (f) → (g) → · · · → (g)
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Figure 8: We tried three ways to distil an informationally identical cls′ given an initial cls - depicted are the
results of training successive MNIST classifiers using methods (a), (b) and (c) given above. ’steps’ refers to the
number of times this process was repeated. We observe that the degradation of accuracy is approximately the
same for both (b) and (c), which we consider evidence that manipulators and VAEs have similar performance
characteristics. Both models had roughly the same number of parameters (300K) and were based on the
same MLP architecture. We ran 20 repetitions of each method, the shaded regions represent one standard
deviation (method (a) had a standard deviation of less than 1%).
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