
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCT-G: STRUCTURAL-AWARE PRETRAINING FOR
GRAPH AND TASK TRANSFER LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Transfer learning has revolutionized domains like vision and language by enabling
pretrained models to adapt rapidly with minimal supervision. However, applying
transfer learning to graph-structured data faces unique challenges: graphs exhibit
diverse topology, sparse or heterogeneous node attributes, and lack consistent se-
mantics across datasets, making it difficult to learn representations that generalize
across domains. Recent graph pretraining efforts including generative methods
and contrastive objectives have shown promise but often rely on complex archi-
tectures, rich feature modalities, or heavy computation, limiting their applicability
to structure-only graphs and resource-constrained settings. In an attempt to ad-
dress these challenges, we introduce STRUCT-G, a lightweight pretraining model
that decouples global topology capture from local feature refinement. STRUCT-
G first computes shallow random-walk–based structural embeddings, then fuses
them with raw attributes via an adaptive, feature-wise gating network and a shared
message-passing backbone. By jointly optimizing multiple self-supervised objec-
tives such as link prediction, node classification, feature reconstruction, and struc-
tural alignment, STRUCT-G learns robust node embeddings that transfer effec-
tively with fine-tuning. Our extensive experiment results demonstrate that explicit
structural inductive bias and self-supervised multi-task learning provide a scalable
and accessible foundation for graph representation learning.

1 INTRODUCTION

Transfer learning (Zhuang et al., 2020) is an important topic in modern machine learning. In com-
puter vision and natural language processing domains, transfer learning reduces the data and compu-
tational requirements of downstream tasks. Graph domains, however, present unique obstacles: ir-
regular connectivity patterns, sparse or heterogeneous node attributes, and varying semantics across
datasets make it difficult for a graph neural network (GNN) trained on one task or domain to general-
ize to another (Lee et al., 2017; Xu et al., 2023). As a result, standard GNNs often require extensive
retraining or large labeled cohorts to perform well on new graphs, undermining the efficiency bene-
fits of transfer learning.

To overcome these challenges, recent studies have explored graph transfer learning through self-
supervised pretraining, where models are first trained on large unlabeled graphs using carefully
designed pretext tasks and later adapted to downstream tasks with limited supervision. Generative
approaches (Li et al., 2023; Hu et al., 2020; Sun et al., 2022) mask and reconstruct node features or
substructures, teaching the model to capture local and mid-range patterns. Contrastive methods (You
et al., 2020; Sun et al., 2019) create augmented views of the same graph—through edge perturba-
tions, node dropping, or subgraph sampling—and train the encoder to bring these views’ embeddings
closer while pushing apart different graphs. More recently, prompting-based techniques (Liu et al.,
2023) have reframed downstream tasks as learned queries to a pretrained graph encoder, offering a
flexible way to adapt the foundation model.

Contributing to this area of research, we present STRUCT-G, a novel graph pretraining model de-
signed to capture and transfer global structural patterns in various graph settings. Our key contri-
butions are: (i) a lightweight structural encoding step based on random-walk embeddings, which
precomputes high-order topology in a compact form and remains frozen during downstream train-
ing to provide stable global context; (ii) an adaptive, feature-wise gating mechanism that fuses

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

structural encodings with raw node attributes, allowing the model to dynamically balance topology
and features on a per-node and per-task basis; and (iii) a unified multi-task self-supervised pretrain-
ing objective—comprising link prediction, node classification, feature reconstruction, and structural
alignment—that instills robust, transferable invariances in the shared graph encoder. Our extensive
experiment results demonstrate that STRUCT-G achieves faster convergence, superior performance
compared to the existing methods.

2 RELATED WORK

Pre-training has proven transformative in language and vision domains, and recent years have seen
substantial effort to replicate this success in graph representation learning. Graph pre-training
methods typically aim to learn transferable structural and semantic representations by solving self-
supervised tasks before downstream fine-tuning. These methods differ in both pretext task design
and the level of supervision—node-level, edge-level, or graph-level.

Early graph autoencoders and masked-feature models focus on reconstructing hidden inputs. Hu et
al. (Hu et al., 2019) introduce attribute masking, context prediction, and graph-level classification
tasks, demonstrating transferability across multiple datasets. Lu et al. (Lu et al., 2021) further ana-
lyze the effect of pre-training on different levels of graph granularity. Jiang et al. (Jiang et al., 2021)
extend this to heterogeneous graphs, while Wang et al. (Wang et al., 2021) explore pre-training in
the cross-domain recommendation setting. These works emphasize the importance of pretext-task
design and alignment with downstream objectives.

Another class of methods adapts generative and autoregressive objectives. GPT-GNN (Hu et al.,
2020) introduces a framework that pre-trains GNNs via edge sequence generation, drawing analo-
gies to language modeling. GROVER (Rong et al., 2020) employs masked subgraph and motif
prediction to pre-train transformers on molecular graphs, achieving state-of-the-art property pre-
diction. GPPT (Sun et al., 2022) combines pre-training with prompt tuning to reduce the need
for task-specific supervision. Similarly, GraphPrompt (Liu et al., 2023) introduces a unified view
of graph pre-training and prompting, enabling task adaptation through learned queries rather than
fine-tuning the full model.

Contrastive objectives have gained popularity in self-supervised graph learning. GCC (Qiu et al.,
2020) formulates graph contrastive coding by aligning node representations across graph augmen-
tations at multiple scales. This approach promotes generalization without explicit labels, and has
inspired a range of subsequent models in the contrastive graph learning literature. GraphCL (You
et al., 2020) maximizes mutual information between global and local views or between distinct
graph augmentations.

Inspired by large language models (LLMs), researchers have begun incorporating graph structure
into language-based pre-training pipelines. Xie et al. (Xie et al., 2023) propose a graph-aware pre-
training framework on large text–graph corpora to unify graph learning and language modeling.
These approaches blur the boundary between graph and textual modalities and open new avenues
for multi-modal graph tasks.

Recent work has questioned the universality of pre-training benefits. Cao et al. (Cao et al., 2023)
investigate the conditions under which pre-training improves downstream performance, highlighting
the influence of data distributions and the structure-task gap. Similarly, Min et al. (Min et al., 2022)
explore the mismatch between graph structure and recommendation-specific semantics, suggesting
that pretext objectives must be carefully aligned with target domains.

We position our work at the intersection of structural embedding and GNN-based pre-training.
Instead of relying solely on attribute- or topology-based SSL objectives, we incorporate explicit
random-walk-based embeddings into a unified GNN architecture. Our model is trained end-to-end
across multiple tasks.

3 PROBLEM STATEMENT

We consider the setting of transfer learning on graphs. Formally, letG = (V, E) denote a graph with
N = |V| nodes, feature matrix X ∈ RN×din , and a small labeled subset L ⊂ V , where |L| ≪ N .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: STRUCT-G framework. Raw node features and structural signatures (from random walk
embeddings) are fused via a learnable gate. The resulting embeddings are passed through a shared
GraphSAGE-based encoder with GAT to produce a unified node representation used across multiple
tasks.

Our goal is to learn an encoder f : V → Rdout that produces node embeddings ev = f(v) which can
be efficiently adapted to multiple downstream tasks such as node classification, link prediction, and
attribute reconstruction. The key requirement is that f should enable effective transfer with limited
supervision and modest computational overhead.

This problem is challenging because real-world graphs vary widely in connectivity patterns (e.g.,
homophily vs. heterophily, strong clustering vs. scale-free structure). Moreover, labeled data is
often scarce, and practical applications require models that scale to large graphs without prohibitive
training cost.

4 STRUCT-G MODEL

We propose STRUCT-G, a unified pretraining framework that separates global topology capture from
local feature learning without relying on rich node attributes or complex generative models. Figure 1
illustrates the overall framework of our method. Each node is simultaneously described by a struc-
tural signature that is derived from random walk statistics to capture high-order connectivity, and a
lightweight, trainable GNN encoder that propagates and refines raw attributes via message-passing.
These two streams are merged through a learnable, element-wise gating module that dynamically
adjusts the influence of structural versus feature-based signals. During pretraining, STRUCT-G opti-
mizes a combination of self-supervised tasks to ensure that the resulting embeddings encode diverse,
transferable invariants.

4.1 STRUCTURAL SIGNATURE

To generate robust and transferable graph representations, STRUCT-G first computes a struc-
tural signature for each node by obtaining a shallow random-walk embedding model (e.g.,
Node2Vec grover2016node2vec) on the entire graph, thereby capturing high-order topology. Un-
derstanding such topology is crucial since many graph phenomena like community structures, struc-
tural roles, and long-range dependencies span multiple hops and are beyond the reach of purely local
aggregation. Specifically, we use biased random walks over G = (V, E) and treat the resulting node
sequences as a corpus. We then optimize the skip-gram objective with negative sampling as follows:

max
Θ

∑
u∈V

∑
v∈Ck(u)

[
log σ

(
z(0)⊤u z(0)v

)
+

∑
v′∼Pneg

log σ
(
−z(0)⊤u z

(0)
v′

)]
,

where z(0)u ∈ Rds is the learned structural vector for node u, Ck(u) its context window of size k,
and Pneg the negative-sampling distribution. After training, we assemble these into a fixed matrix
Z(0) = [z

(0)
u]u∈V and freeze it for all subsequent GNN training. By offloading high-order pattern

extraction to this lightweight embedding step, our main encoder can dedicate its capacity to refin-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ing and aligning these global cues with node features, resulting in faster convergence and stronger
transferability.

4.2 ADAPTIVE GATING FOR STRUCTURAL–FEATURE FUSION

To effectively combine global structural priors with local node features, STRUCT-G introduces a
learnable, element-wise fusion gate that modulates the contribution of each modality on a per-node
basis. This mechanism is particularly valuable in multi-task scenarios: for instance, when link
prediction benefits from high-order structural cues, while attribute imputation depends more on raw
features. Our gating module allows the network to dynamically interpolate between these signals,
adapting to the demands of the task and the quality of the inputs.

Let z(0)v ∈ Rds denote the frozen structural signature obtained via Node2Vec, and xv ∈ Rdx the raw
feature vector for node v. We first project z(0)v into the GNN’s hidden space:

z̃v =Wproj z
(0)
v , z̃v ∈ Rdh .

We then concatenate this with the raw features to form a fused input vector:

νv = [xv ∥ z̃v] ∈ Rdx+dh .

A learnable gate gv ∈ (0, 1)dh is produced via a sigmoid-activated linear transformation:

gv = σ(Wg νv + bg).

This gate modulates two candidate hidden states, both residing in the same latent space via a shared
projection matrix Wc:

ĥv =Wc νv, ȟv =Wc [xv ∥0],
where 0 is a zero vector of length dh. The resulting fused representation is a convex combination:

h(0)v = gv ⊙ ĥv + (1− gv)⊙ ȟv,

where ⊙ denotes element-wise multiplication.

By adjusting gv at the level of individual nodes and dimensions, the model can suppress unreliable
features, downweight uninformative structural priors, or interpolate adaptively between the two.
This flexible gating enables more robust initialization and improves transferability across diverse
downstream tasks.

4.3 UNIFIED GRAPH ENCODING BACKBONE

To support multiple self-supervised objectives with a shared representation, STRUCT-G employs
a single, parameter-shared message-passing stack that produces a unified node embedding for all
downstream tasks. This shared backbone ensures that improvements made by optimizing one task
(e.g., link prediction) can transfer to others (e.g., node classification or feature reconstruction), rather
than being confined to siloed branches.

The core architecture comprises a sequence of GraphSAGE layers using the mean aggregator hamil-
ton2017inductive, optionally followed by an attention-based refinement step, and finalized with a
projection to a universal embedding space:

SAGE1 ◦ · · · ◦ SAGEL︸ ︷︷ ︸
Backbone layers

(optional)−−−−−→ GAT︸︷︷︸
attention refinement

−→ SAGEout︸ ︷︷ ︸
dh→dout

.

Starting from the fused node representations h(0)v (see Section 4.2), each GraphSAGE layer applies
localized neighborhood aggregation:

h(ℓ+1)
v = σ

W (ℓ)h(ℓ)v + U (ℓ)
∑

u∈N (v)

h(ℓ)u

 , ℓ = 0, . . . , L− 1,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where σ denotes ReLU, and the mean aggregator is normalized internally as per
pyg.nn.SAGEConv. This stack progressively refines the node states while preserving compu-
tational efficiency.

To further sharpen neighborhood influence, we optionally insert a two-head GAT layer:

h⋆v = σ
(

GATConv(h(L), E)v
)
.

This attention-based refinement allows the model to reweight neighbors dynamically based on
learned edge-level importance. If disabled, we simply take h⋆v = h

(L)
v .

Finally, a projection layer maps the hidden state into a universal embedding space of dimension dout
(default: 32):

ev = SAGEout(h
⋆, E)v.

The resulting vector ev is the shared representation fed to all self-supervised heads, promoting align-
ment across objectives and enhancing generalization without requiring task-specific branches.

4.4 TASK-SPECIFIC HEADS AND MULTI-OBJECTIVE PRETRAINING

To maximize generality and transferability, STRUCT-G jointly optimizes a suite of self-supervised
and supervised tasks over a shared embedding space. Each task operates on the backbone embed-
dings ev ∈ Rdout and contributes to a composite training objective. Crucially, all task-specific heads
share parameters wherever possible to encourage feature reuse and cross-task regularization.

Given ground-truth labels yv ∈ {1, . . . , C} for nodes in a training subset Vtrain, we apply a linear
classifier:

ŷv =Wclsev + bcls, Wcls ∈ RC×dout .
The associated loss is standard cross-entropy:

Lcls =
1

|Vtrain|
∑

v∈Vtrain

H
(
ŷv, yv

)
.

To capture structural connectivity, we predict edges by contrasting true edges against random nega-
tive samples. Each node’s embedding is concatenated with its frozen structural signature:

u = [eu ∥ z(0)u], v = [ev ∥ z(0)v],

and passed through a multi-layer perceptron over the pairwise triple [u ∥v ∥u ⊙ v]. The link pre-
diction loss is binary cross-entropy over positive edges (u, v) ∈ E and K negative samples:

Llp = E(u,v)∼E

[
BCE(suv, 1) +

K∑
k=1

BCE(suv−
k
, 0)

]
.

To ensure that embeddings retain semantic information from input attributes, we optionally decode
them via a lightweight MLP fdec : Rdout → Rdx :

x̂v = fdec(ev), Lrec =
1

|V |
∑
v∈V

∥x̂v − xv∥22.

To preserve structural priors in the learned embeddings, we encourage alignment between the back-
bone output and the original Node2Vec signatures. This is done by projecting both vectors into a
common space via learnable MLPs ϕ and ψ, followed by cosine similarity after ℓ2 normalization:

Lalign =
1

|V |
∑
v∈V

(
1−

〈
ϕ(ev)

∥ϕ(ev)∥2
,

ψ(z
(0)
v)

∥ψ(z(0)v)∥2

〉)
.

This auxiliary objective nudges the encoder to retain global structure even as it adapts to downstream
tasks.

All active losses are combined into a single training signal:
Ltotal = λclsLcls + λlpLlp + λrecLrec + λalignLalign,

where weights λ• control task importance and can be toggled to activate or suppress individual
components. This multitask design allows STRUCT-G to integrate supervision signals from multiple
modalities—topology, attributes, labels—without requiring bespoke encoders for each.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL FRAMEWORK

To evaluate the effectiveness and generality of STRUCT-G, we design a systematic experimental
framework aligned with three key research questions:

RQ1: Performance on Downstream Tasks. Does STRUCT-G improve predictive performance on
downstream tasks compared to baselines across diverse real-world graphs?

RQ2: Transfer Learning Performance. How does STRUCT-G perform on inter-dataset tasks?

RQ3: Objective-Level Contributions. What are the individual contributions of each self-
supervised objective to downstream performance?

5.1 DATASETS AND GRAPH DIVERSITY

To evaluate generalization and efficiency across a range of domains and graph scales, we benchmark
all models on five real-world networks spanning diverse application areas: online social platforms,
corporate email communications, collaborative software development, and music recommendation
systems (Table 1). These datasets differ significantly in node count, edge density, class balance, and
feature sparsity, providing a comprehensive and challenging testbed for assessing the transferability,
robustness, and scalability of graph learning approaches. We report performance on both node
classification and link prediction tasks. For transfer learning, models are pretrained on Twitch-ES
and subsequently finetuned and evaluated on Twitch-RU to measure cross-domain adaptation.

Table 1: Graph Datasets
Dataset #Nodes #Edges Avg. Deg. Density

Synthetic 9,421 14,949 3.16 3.4×10−3

Facebook (Rozemberczki et al., 2019) 22,470 171,002 15.22 6.8×10−4

Email-EU-Core (Yin et al., 2017; Leskovec et al., 2007) 986 16,687 33.85 3.4×10−2

GitHub (Rozemberczki et al., 2019) 37,700 289,003 15.33 4.1×10−4

Deezer-Europe (Rozemberczki & Sarkar, 2020) 28,281 92,752 6.56 2.3×10−4

Twitch-ES (Rozemberczki et al., 2019) 4,648 59,382 25.54 5.5×10−3

Twitch-RU (Rozemberczki et al., 2019) 4,385 37,304 17.02 3.9×10−3

5.2 SYNTHETIC GRAPHS: STRUCTURAL SENSITIVITY ANALYSIS

To investigate the structural robustness of STRUCT-G in a controlled setting, we generate synthetic
graphs using a stochastic block model (SBM) (Holland et al., 1983) augmented with triangle closure
and edge rewiring operations. This setup enables precise manipulation of structural properties such
as homophily and clustering coefficient while keeping other global graph characteristics fixed (e.g.,
diameter = 3, density = 0.01).

Homophily ∈ {0.1, 0.5} × Clustering ∈ {0.0, 0.4}

producing four distinct structural regimes that test the model’s ability to adapt across different levels
of assortativity and local connectivity.

Each synthetic graph contains either 200, 500, of 1000 nodes with no node features, ensuring that all
predictive signal must be inferred from structural topology alone. We exclusively evaluate STRUCT-
G in this setting to isolate its capacity for encoding high-order structural information and to verify
that its performance gains are not solely attributable to node attributes. These results are in the
appendix.

5.3 BASELINE MODELS

To evaluate the performance, scalability, and adaptability of STRUCT-G, we benchmark against a di-
verse suite of graph neural network architectures encompassing classical message-passing models,
structure-aware pretraining methods, and multimodal approaches. This diversity ensures a fair and
comprehensive comparison across models with varying design philosophies and pretraining mecha-
nisms. Table 2 summarizes the models included in our study. Note that all models are trained and
evaluated under a unified protocol to ensure fair comparisons. We standardize training data splits,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

loss functions, optimization schedules, and evaluation metrics to isolate architectural differences and
minimize confounding from implementation-specific factors. This consistent experimental design
allows us to quantify the relative effectiveness of structural encoding, multimodal pretraining, and
task-specific fine-tuning across all competing models.

Table 2: Baseline models benchmarked in the study.
Model Description
GCN (Kipf & Welling, 2016) Message-passing with symmetric normalization.
GraphSAGE (Hamilton et al., 2017) Inductive aggregation over sampled neighbors.
GAT (Velickovic et al., 2017) Neighborhood attention with learned weights.
GPT-GNN (Hu et al., 2020) (text-augmented) Transformer-based GNN pretrained on textual node metadata.
DeepGCN (naively structure-aware) A deep residual GNN built by us and pretrained to regress clustering coefficients.
STRUCT-G (ours) Multi-task GNN built by us that combines structural and semantic signals.
GraphLoRA (Yang et al., 2025) Parameter-efficient GNN adaptation using Low-Rank Approximation (LoRA) modules.
GraphBERT (Zhang et al., 2020) Transformer-style architecture for graphs using attention without message passing.
GPPT (Sun et al., 2022) Prompt-based transfer learning for GNNs that aligns pretext and downstream tasks via tokenized link prediction.

5.4 TRAINING PROTOCOL, TRAINING ENVIRONMENT AND REPRODUCIBILITY

We adopt a two-stage training pipeline for applicable models: unsupervised pretraining followed
by supervised fine-tuning, enabling us to assess the benefits of structural pretraining. Pretraining
is applied to augmented GNN architectures such as Struct-G, GraphLoRA, GraphBert, GPPT, and
DeepGCN; other baselines are trained using their standard supervised objectives. Struct-G is trained
using multi-task self-supervision, combining link prediction, feature reconstruction, and alignment
with Node2Vec embeddings.

All models use the Adam optimizer with a learning rate of 0.01 and weight decay of 5e-4. We train
for 100 pretraining epochs and 30 fine-tuning epochs for each run. No early stopping is used. Node
classification and link prediction tasks are evaluated separately, with consistent settings across all
models. We use fixed random train/validation/test splits (60/20/20) generated per seed and applied
uniformly across all baselines for each dataset. Node classification is evaluated using accuracy,
precision, recall, F1 score, and AUC. Link prediction is evaluated using accuracy, F1 score, AUC,
and average precision based on dot-product scoring over held-out edges.

We ensure full reproducibility by releasing open-source code, preprocessed
datasets, and configuration files at https://anonymous.4open.science/r/
adaptable-transfer-learning-47AB/readme.md.

6 RESULTS

6.1 PERFORMANCE ON DOWNSTREAM TASKS (RQ1)

The results in Table 3 show that STRUCT-G consistently achieves state-of-the-art performance across
all node classification tasks, outperforming classical and pretraining-based baselines by a significant
margin. This superior performance can be attributed to its hybrid architecture that fuses shallow
structural priors with deep feature learning through adaptive gating. By integrating global topology
information derived from random walks with node features in a task-aware manner, STRUCT-G
learns expressive and generalizable embeddings that benefit from both structure and semantics.

While STRUCT-G may not achieve the absolute highest AUC on every link prediction benchmark,
it consistently delivers competitive, state-of-the-art performance across diverse datasets. In cases
where simpler models like GCN or GraphSAGE slightly outperform, gains are often attributable to
their tendency to overfit edge neighborhoods in highly homophilic graphs. In contrast, STRUCT-
G exhibits strong generalization, including on challenging synthetic datasets where node features
are absent—highlighting its ability to leverage structural signals alone. These results underscore
the robustness of our multi-task pretraining and structural integration approach across varied graph
learning settings.

————————————————————–

7

https://anonymous.4open.science/r/adaptable-transfer-learning-47AB/readme.md
https://anonymous.4open.science/r/adaptable-transfer-learning-47AB/readme.md

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Node classification performance (F1 Score).
Model Deezer Email Facebook GitHub Synthetic

Deep GCN 0.470 ± 0.086 0.004 ± 0.001 0.436 ± 0.102 0.752 ± 0.029 0.159 ± 0.016
GPT-GNN 0.362 ± 0.005 0.009 ± 0.004 0.258 ± 0.008 0.425 ± 0.001 0.447 ± 0.010
GAT 0.612 ± 0.009 0.173 ± 0.037 0.862 ± 0.002 0.781 ± 0.003 0.562 ± 0.048
GCN 0.580 ± 0.007 0.220 ± 0.019 0.881 ± 0.004 0.777 ± 0.006 0.409 ± 0.016
GraphSAGE 0.640 ± 0.008 0.174 ± 0.039 0.879 ± 0.004 0.798 ± 0.006 0.745 ± 0.015
Struct-G 0.849 ± 0.027 0.257 ± 0.053 0.948 ± 0.011 0.851 ± 0.013 0.621 ± 0.020
GraphLoRA 0.560 ± 0.025 0.454 ± 0.071 0.902 ± 0.005 0.786 ± 0.029 0.357 ± 0.033
GraphBERT 0.600 ± 0.009 0.005 ± 0.001 0.860 ± 0.005 0.763 ± 0.014 0.972 ± 0.001
GPPT 0.510 0.380 0.911 0.773 0.510

Table 4: Link prediction performance (AUC).
Model Deezer Email Facebook GitHub Synthetic

Deep GCN 0.598 ± 0.188 0.525 ± 0.289 0.772 ± 0.048 0.741 ± 0.330 0.494 ± 0.009
GPT-GNN 0.492 ± 0.012 0.520 ± 0.037 0.567 ± 0.027 0.500 ± 0.003 0.426 ± 0.013
GAT 0.813 ± 0.015 0.795 ± 0.034 0.910 ± 0.005 0.772 ± 0.004 0.533 ± 0.017
GCN 0.853 ± 0.002 0.709 ± 0.057 0.927 ± 0.002 0.905 ± 0.004 0.518 ± 0.016
GraphSAGE 0.822 ± 0.003 0.919 ± 0.005 0.911 ± 0.002 0.832 ± 0.006 0.543 ± 0.007
Struct-G 0.793 ± 0.023 0.894 ± 0.016 0.969 ± 0.004 0.894 ± 0.018 0.621 ± 0.020
GraphLoRA 0.816 ± 0.009 0.890 ± 0.007 0.932 ± 0.004 0.745 ± 0.025 0.691 ± 0.001
GraphBERT 0.489 ± 0.010 0.594 ± 0.011 0.860 ± 0.002 0.671 ± 0.027 0.496 ± 0.007

6.2 TRANSFER LEARNING PERFORMANCE (RQ2)

Table 5 presents the results of our transfer learning experiment. While GPPT achieves the high-
est classification accuracy, STRUCT-G attains the best F1 score, highlighting its robustness under
class imbalance and its ability to maintain precision-recall tradeoffs. GraphBERT, on the other
hand, achieves the highest AUC in link prediction, suggesting strong performance in capturing
neighborhood-level similarities. These complementary strengths across models reflect the diversity
of transfer learning challenges in graph domains.

6.3 ABLATION STUDY: OBJECTIVE-LEVEL CONTRIBUTIONS (RQ3)

Table 6: Impact of removing individual self-supervised
losses on FACEBOOK. Higher is better. Results are
single-run means; “—” denotes that the link-prediction
stage was skipped.

Variant Node-Cls (F1) Link-Pred (AUC)

FULL 0.962 0.976
–N2VALIGN 0.959 0.971
–FEATREC 0.971 0.968
–LINKPRED 0.971 —
–N2VALIGN AND –FEATREC 0.946 0.970
–CLASSIFICATION 0.864 0.934
–SSL (NO LP, NO ALIGN, NO FR) 0.862 —
+LINKPRED-ONLY 0.870 0.935

Table 6 highlights the impact of removing
individual self-supervised objectives from
STRUCT-G on the FACEBOOK dataset.
The full model (FULL) achieves the
best link prediction performance (AUC
= 0.976) and strong classification per-
formance (F1 = 0.962), highlighting its
effective multi-task capability. In con-
trast, disabling all self-supervised objec-
tives leads to the poorest classification re-
sults. Removing either the Node2Vec-
alignment or feature-reconstruction objec-
tive individually causes only a slight per-
formance degradations, suggesting that the model can compensate for the absence of one signal if
others are active.

Interestingly, removing link prediction (–LINKPRED) does not hurt node classification and actually
produces the highest F1 score (0.971), indicating that for node-level tasks, structural alignment
and feature consistency may suffice. However, removing both N2VALIGN and FEATREC leads
to a significant drop in classification performance (F1 = 0.946), emphasizing the complementary
nature of these objectives. The weakest performance is observed when all self-supervised losses are
removed (–SSL) or when only link prediction is used without supervised fine-tuning (+LINKPRED-
ONLY), highlighting the necessity of multi-signal learning and task supervision for generalizable
representations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Transfer Learning Performance: Classification (CLS) and Link Prediction (LP) Perfor-
mance and Runtime
Model Mode Classification Accuracy Classification F1 Link Prediction AUC
StructuralGNN Transfer 0.7355 0.4321 0.7414
GraphBERT Transfer 0.7343 0.4234 0.8758
GraphLoRA Transfer 0.7252 0.4204 0.7574
GPPT Transfer 0.7537 0.4298 —

6.4 EFFECTIVENESS OF FINE-TUNING (RQ4)

Table 7: Gain in macro-F1 score (%)
from task-specific fine-tuning compared
with structural-only pre-training.

Dataset Node-Cls Link-Pred

Synthetic +6.6 +4.8
Facebook +5.7 +14.9
Email-EU-Core +18.9 +28.1
GitHub +4.3 +8.0
Deezer-Europe +24.8 +15.5

Table 7 shows that task-specific fine-tuning consistently
improves macro-F1 performance over structural-only pre-
training across all datasets and tasks. Gains are particu-
larly pronounced on Email-EU-Core and Deezer-Europe,
where class imbalance and feature sparsity pose greater
challenges. These results highlight the value of adapting
pretrained embeddings to task-specific objectives, espe-
cially in low-resource or imbalanced settings. Notably,
even in synthetic graphs without input features, fine-
tuning yields meaningful performance gains, demonstrat-
ing the flexibility of STRUCT-G’s architecture in refining
representations for both node- and edge-level tasks.

7 CONCLUSION

We introduced STRUCT-G, a lightweight and effective framework for graph transfer learning that
integrates structural priors with message-passing architectures using adaptive gating. By leverag-
ing multi-task self-supervised pretraining which includes link prediction, feature reconstruction, and
structure alignment, our method produces generalizable node embeddings suitable for diverse down-
stream tasks. Extensive experiments across real-world and synthetic graphs show that our method
achieves strong performance in node classification and link prediction tasks while maintaining com-
petitive runtime efficiency. These results highlight the value of explicitly modeling graph structure
in pretraining without reliance on rich node attributes or external metadata.

Limitations and Future Work. Although STRUCT-G shows broad applicability, several limita-
tions remain that warrant further investigation. First, inter-graph performance requires deeper anal-
ysis and enhancement to achieve stronger transfer learning outcomes. Second, additional efforts are
needed to enrich the structural information captured in early-stage embeddings.

Ethics Statement. This work adheres to the ICLR Code of Ethics. Our study focuses on advancing
graph representation learning and does not involve human subjects, personally identifiable informa-
tion, or sensitive user data. All datasets used are publicly available benchmark graph datasets (e.g.,
Facebook, GitHub, Email-EU, Deezer), and we followed standard usage protocols as described in
prior literature. We acknowledge the potential for biases that may be present in these datasets (e.g.,
demographic or structural skew), and our study is limited to technical benchmarking without de-
ployment in sensitive applications.

We also disclose the use of large language models (LLMs) to support aspects of this research. Specif-
ically, LLMs were used to assist in rephrasing text for clarity and in generating or adapting code
templates. All scientific claims, analyses, and model implementations were independently validated
by the authors. The use of LLMs did not influence the empirical outcomes, interpretation of results,
or research integrity.

Reproducibility Statement. We have taken deliberate steps to ensure the reproducibility of our
work. All model configurations, hyperparameters, and training details are documented in the main
text and appendix. Extended experimental results, including accuracy, F1 score, AUC, and runtime

9

https://iclr.cc/public/CodeOfEthics

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

measurements, are reported with mean and standard deviation across multiple seeds. Additionally,
we release complete source code, including dataset preprocessing, training pipelines, and evalua-
tion scripts, in an open and version-controlled repository on GitHub: https://github.com/
your-repo-link Together, these resources enable independent verification and extension of our
results.

10

https://github.com/your-repo-link
https://github.com/your-repo-link

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Yuxuan Cao, Jiarong Xu, Carl Yang, Jiaan Wang, Yunchao Zhang, Chunping Wang, Lei Chen, and
Yang Yang. When to pre-train graph neural networks? from data generation perspective! In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 142–153, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. arXiv preprint arXiv:1905.12265,
2019.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining, pp. 1857–1867, 2020.

Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang. Pre-training on large-
scale heterogeneous graph. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining, pp. 756–766, 2021.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Jaekoo Lee, Hyunjae Kim, Jongsun Lee, and Sungroh Yoon. Transfer learning for deep learning
on graph-structured data. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 31, 2017.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 2007.

Zhonghang Li, Lianghao Xia, Yong Xu, and Chao Huang. Gpt-st: generative pre-training of spatio-
temporal graph neural networks. Advances in neural information processing systems, 36:70229–
70246, 2023.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. In Proceedings of the ACM web conference 2023,
pp. 417–428, 2023.

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. Learning to pre-train graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 4276–4284, 2021.

Xin Min, Wei Li, Jinzhao Yang, Weidong Xie, and Dazhe Zhao. Self-supervised graph neural
network with pre-training generative learning for recommendation systems. Scientific Reports,
12(1):15882, 2022.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. Gcc: Graph contrastive coding for graph neural network pre-training. In Proceed-
ings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining,
pp. 1150–1160, 2020.

Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou Huang.
Self-supervised graph transformer on large-scale molecular data. Advances in neural information
processing systems, 33:12559–12571, 2020.

Benedek Rozemberczki and Rik Sarkar. Characteristic functions on graphs: Birds of a feather, from
statistical descriptors to parametric models, 2020.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and
semi-supervised graph-level representation learning via mutual information maximization. arXiv
preprint arXiv:1908.01000, 2019.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 1717–1727, 2022.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10–48550, 2017.

Chen Wang, Yueqing Liang, Zhiwei Liu, Tao Zhang, and Philip S Yu. Pre-training graph neural
network for cross domain recommendation. In 2021 IEEE Third International Conference on
Cognitive Machine Intelligence (CogMI), pp. 140–145. IEEE, 2021.

Han Xie, Da Zheng, Jun Ma, Houyu Zhang, Vassilis N Ioannidis, Xiang Song, Qing Ping, Sheng
Wang, Carl Yang, Yi Xu, et al. Graph-aware language model pre-training on a large graph corpus
can help multiple graph applications. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 5270–5281, 2023.

Jiarong Xu, Renhong Huang, Xin Jiang, Yuxuan Cao, Carl Yang, Chunping Wang, and Yang Yang.
Better with less: A data-active perspective on pre-training graph neural networks. Advances in
neural information processing systems, 36:56946–56978, 2023.

Zhe-Rui Yang, Jindong Han, Chang-Dong Wang, and Hao Liu. Graphlora: Structure-aware con-
trastive low-rank adaptation for cross-graph transfer learning. In Proceedings of the 31st ACM
SIGKDD Conference on Knowledge Discovery and Data Mining V. 1, pp. 1785–1796, 2025.

Hao Yin, Austin R. Benson, Jure Leskovec, and David F. Gleich. Local higher-order graph cluster-
ing. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2017.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. Advances in neural information processing systems, 33:
5812–5823, 2020.

Jiawei Zhang, Haopeng Zhang, Congying Xia, and Li Sun. Graph-bert: Only attention is needed for
learning graph representations. arXiv preprint arXiv:2001.05140, 2020.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43–76, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Appendix

This supplementary material provides additional visualizations, structural analyses, and training de-
tails that complement the main paper. Section A presents t-SNE plots of learned node embeddings
for each ablation variant of STRUCT-G, illustrating the effects of individual self-supervised objec-
tives on the geometry of the embedding space. Section C summarizes results from a synthetic graph
sweep designed to isolate the impact of key structural properties on performance. Section D details
the hyperparameters used in our experiments for reproducibility.

All code, configuration files, and plotting scripts are available in our public repository at https:
//github.com/programmaman/adaptable-transfer-learning.

A T-SNE VISUALIZATIONS OF ABLATION VARIANTS

To qualitatively assess the representational impact of different self-supervised objectives, we visu-
alize the learned node embeddings for each ablation variant of STRUCT-G on the Facebook dataset
using t-SNE. All embeddings are taken after the final fine-tuning stage, and plotted using the same
random seed and perplexity to ensure comparability. Colors indicate ground-truth class labels.

These plots help illuminate how different combinations of objectives shape the class structure in
embedding space:

• Full Model: Contrary to expectation, the full configuration does not yield the cleanest clusters.
While some peripheral classes are clearly separated, there is noticeable overlap near the center.
This suggests that combining multiple objectives enhances general robustness but can introduce
trade-offs that reduce fine-grained class separability.

• No Link Prediction: This variant produces the most visually distinct class separation. Without
the link prediction objective, the model appears to rely more heavily on label supervision, form-
ing compact and well-isolated clusters. Although this sharpens the embedding space, it reduces
performance on structural tasks.

• No Feature Reconstruction: Cluster boundaries are present but less defined, and intra-class com-
pactness is reduced. This indicates that feature reconstruction contributes to local coherence and
tighter grouping within classes.

• No Node2Vec Alignment: Class regions show substantial overlap, suggesting that the alignment
objective helps enforce clearer inter-class separation and more structured geometry in the embed-
ding space.

• No SSL (Supervised Only): Supervised training alone leads to clear class groupings, but the
overall structure lacks nuance. The embeddings align well with labels but fail to capture broader
structural variation, limiting generality.

• Link Prediction Only: Embeddings exhibit meaningful class separation but remain loosely dis-
tributed. This reflects that structural signals alone can support class differentiation but do not
compact the space as effectively as when combined with feature-based or discriminative objec-
tives.

Overall, these visualizations reinforce our quantitative findings: individual objectives have comple-
mentary effects. Link prediction and feature reconstruction support geometric regularity and local
refinement, while supervised objectives ensure class alignment. The full model integrates these
forces, though the resulting embedding space reflects a complex trade-off between separation and
generalization.

13

https://github.com/programmaman/adaptable-transfer-learning
https://github.com/programmaman/adaptable-transfer-learning

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 2: t-SNE embedding of STRUCT-G (Full configuration).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 3: t-SNE embedding without the link prediction objective.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 4: t-SNE embedding without the feature reconstruction objective.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 5: t-SNE embedding without the Node2Vec alignment objective.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 6: t-SNE embedding with no self-supervised pretraining (supervised only).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: t-SNE embedding using only the link prediction objective.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B TRAINING TIME

Table 8 shows runtime comparisons for pretraining, node classification, and link prediction. While
STRUCT-G is not the fastest overall, it achieves low fine-tuning times across most datasets, making
it efficient for inference and task adaptation after pretraining.

An exception is the Deezer graph, where STRUCT-G has higher classification time due to the
dataset’s high-dimensional node features. This increases the cost of feature projection, gated fu-
sion, and reconstruction. Overall, STRUCT-G provides a favorable trade-off: moderate pretraining
cost with fast, scalable downstream performance—except in cases with unusually high feature di-
mensionality.

Table 8: Runtime comparison across models (in seconds). Classification and link prediction times
are reported per dataset; pretraining time is averaged across datasets.

Model Pretrain Classification Link Prediction
(avg s) Deezer Email Facebook GitHub Synth Deezer Email Facebook GitHub Synth

GNN - 23.42 1.28 9.94 15.88 0.83 23.42 1.28 9.94 15.88 0.83
GAT - 102.85 4.44 32.16 55.08 2.42 102.85 4.44 32.16 55.08 2.42
GraphSAGE - 500.26 12.59 79.35 130.73 8.28 500.26 12.59 79.35 130.73 8.28

Deep GCN 30.016 43.68 0.12 0.16 0.23 0.14 75.00 10.27 73.94 125.74 5.97
GPT-GNN 909.746 86.88 0.97 1.97 2.73 1.00 259.46 14.19 304.67 766.28 13.15
Struct-G 491.986 1,234.10 0.26 0.63 0.76 0.29 1,241.88 2.59 16.53 28.41 1.79

GraphLoRA 108.38 14,469.44 41.48 242.44 1,780.09 5.29 14,469.44 41.48 242.44 1,780.09 5.29

GraphBERT - 26.77 1.98 26.04 45.37 9.61 26.77 1.98 26.04 45.37 9.61

GPPT - 31.41 7.87 67.41 64.10 2.81 — — — — —

C PERFORMANCE TRENDS ACROSS GRAPH STRUCTURES

To further understand the influence of graph structure on learning, we performed a controlled sweep
on a synthetic graph where key topological factors were varied systematically. These include ho-
mophily, clustering coefficient, assortativity, graph diameter, number of nodes, and edge factor. The
analysis isolates structural effects by removing feature-based signal and measuring how STRUCT-G
responds under purely topological variation.

We report the internal classification (F1) and link prediction (AUC) performance of STRUCT-G
across these regimes. Results show relatively consistent trends across most dimensions, but a few
structural factors exhibit more pronounced effects:

• Homophily: Performance is lowest at moderate homophily levels (around 0.5) and improves
toward both higher and lower ends. This suggests that ambiguity in neighborhood structure may
pose greater challenges than either clear homogeneity or randomness.

• Graph Size: Larger graphs show a mild performance drop in this synthetic regime. However, this
trend likely reflects limitations of learning under random generation rather than a strict scalability
issue, since STRUCT-G performs well on large real-world graphs.

• Assortativity: Performance peaks at neutral assortativity (around 0.0) and declines as assorta-
tive or disassortative tendencies increase. This suggests that extreme mixing patterns introduce
structural irregularities that affect representation quality.

Other properties, such as clustering coefficient, diameter, and edge density, showed weak or incon-
sistent influence on downstream results. While these findings stem from synthetic benchmarks,
they offer useful intuition for understanding which types of graphs are structurally well-suited to
STRUCT-G’s multi-task objectives.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 8: STRUCT-G performance across homophily values.

Figure 9: STRUCT-G performance across varying graph sizes.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 10: STRUCT-G performance across assortativity values.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D HYPERPARAMETERS SETTINGS

The following tables list the hyperparameters used across all experiments. Unless otherwise speci-
fied, all models were trained with the same optimizer, learning rate, and training schedule. Pretrain-
ing was used where applicable, and all results are based on fixed seeds for reproducibility.

Table 9: Hyperparameters
Parameter Value
Hidden dimension 64
Output dimension 32
Final embedding dimension 128
Learning rate 0.01
Weight decay 5× 10−4

Batch size 128
Negative samples (link prediction) 5
Pretraining epochs 100
Fine-tuning epochs 30
Train/Val/Test split 60% / 20% / 20%
Optimizer Adam
Loss (classification) Cross-Entropy
Loss (link prediction) Binary Cross-Entropy (logits)
Edge split for LP 30% held out

23

	Introduction
	Related Work
	Problem Statement
	Struct-G Model
	Structural Signature
	Adaptive Gating for Structural–Feature Fusion
	Unified Graph Encoding Backbone
	Task-Specific Heads and Multi-Objective Pretraining

	Experimental Framework
	Datasets and Graph Diversity
	Synthetic Graphs: Structural Sensitivity Analysis
	Baseline Models
	Training Protocol, Training Environment and Reproducibility

	Results
	Performance on Downstream Tasks (RQ1)
	Transfer Learning Performance (RQ2)
	Ablation study: Objective-Level Contributions (RQ3)
	Effectiveness of Fine-Tuning (RQ4)

	Conclusion
	t-SNE Visualizations of Ablation Variants
	Training Time
	Performance Trends Across Graph Structures
	Hyperparameters Settings

