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ABSTRACT

Dataset condensation is a recent technique designed to mitigate the rising com-
putational demands of training deep neural networks. It does so by generating
a significantly smaller, synthetic dataset derived from a larger one. While an
abundance of research has aimed at improving the accuracy of models trained on
synthetic datasets and enhancing the efficiency of synthesizing these datasets, there
has been a noticeable gap in research focusing on analyzing and enhancing the ro-
bustness of these datasets against adversarial attacks. This is surprising considering
the appealing hypothesis that condensed datasets might inherently promote models
that are robust to adversarial attacks. In this study, we first challenge this intuitive
assumption by empirically demonstrating that dataset condensation methods are
not inherently robust. This empirical evidence propels us to explore methods aimed
at enhancing the adversarial robustness of condensed datasets. Our investigation is
underpinned by the hypothesis that the observed lack of robustness originates from
the high curvature of the loss landscape in the input space. Based on our theoretical
analysis, we propose a new method that aims to enhance robustness by incorpo-
rating curvature regularization into the condensation process. Our empirical study
suggests that the new method is capable of generating robust synthetic datasets that
can withstand various adversarial attacks.

1 INTRODUCTION

In the era of big data, the computational demands for training deep learning models are continuously
growing due to the increasing volume of data. This presents substantial challenges, particularly
for entities with limited computational resources. To mitigate such issues, concepts like dataset
distillation (Wang et al., 2018) and dataset condensation (Zhao et al., 2021; Zhao & Bilen, 2021;
2023) have emerged, offering a means to reduce the size of the data while maintaining its utility.

Dataset condensation specifically refers to the task of synthesizing a smaller dataset such that models
trained on this smaller set yield high performance when tested against the original, larger dataset.
The dataset condensation algorithm takes a large dataset as input and generates a compact, synthetic
dataset. The efficacy of this condensed dataset is evaluated by training models on it and subsequently
testing these models on a separate, real dataset.

The successful implementation of dataset condensation can bring many benefits, such as enabling
more cost-effective research on large datasets. Consequently, recent research has expanded rapidly
in this direction, with numerous studies examining different aspects of the process, with most
research efforts focusing on either improving the accuracy of models trained on condensed datasets
or enhancing the efficiency of the condensation procedure. Less attention, however, has been given to
other crucial properties such as the adversarial robustness of these datasets. Adversarial robustness is
integral to the condensation process, particularly considering the fact that dataset condensation holds
much potential in the future landscape of trustworthy machine learning, as highlighted by recent
surveys (Geng et al., 2023; Chen et al., 2023).

One intriguing area for exploration is the possibility that adversarial robustness might be inherently
induced by the dataset condensation process. The hypothesis that underpins our study is that during
the condensation process, the algorithms aim to condense larger datasets while maintaining the level
of accuracy associated with these larger sets. A plausible approach to achieve this is to preserve
the salient patterns in the images as much as possible and discard the non-essential information
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embedded in the original images. This relationship presents an intriguing link to studies focusing on
adversarial robustness, as previous work suggests that the adversarial vulnerability of models is often
tied to these non-observable features (Ilyas et al., 2019; Wang et al., 2020).

Drawing upon this connection, our research is driven by a fundamental question:

Do dataset condensation algorithms inherently generate datasets that can foster adversarially robust
models?

while our initial experiments quickly suggest a negative response, we continued to explore a more
challenging question:

How can we incorporate adversarial robustness into the dataset condensation process, thereby
generating datasets that lead to more robust models?

Motivated by this inquiry, we explored the theoretical link between adversarial robustness and the
curvature of the loss function. We propose a novel method, GUARD (Geometric regUlarization
for Adversarial Robust Dataset) , which incorporates curvature regularization into the condensation
process. By aligning the principles of gradient matching, we aim to create a synthetic dataset that
synchronizes the gradients of the model trained on this synthetic dataset with those of a model
trained under robust conditions. Our proposed method is comprehensively evaluated against existing
condensation methods on MNIST and CIFAR10 datasets.

In summary, our contributions of this paper are as follows

• Empirical and theoretical exploration of adversarial robustness in condensed synthetic
datasets

• Introduction of a new theory-motivated method, GUARD, that offers robust dataset conden-
sation.

• Presentation of the first comprehensive adversarial robustness benchmark for existing state-
of-the-art dataset condensation methods.

The remainder of this paper is structured as follows. In Section 2, we introduce a range of related
works that provide context for our research. In Section 3, we offer a concise overview of dataset
condensation and delve into the specific formulations of the two dataset condensation methods
pertinent to our approach. Section 4 examines the unexpected lack of robustness with dataset
condensation, despite intuitive reasoning that suggests otherwise. Section 5 presents a theoretical
bound on robustness, which we employ to introduce our method, GUARD, in Section 6. Our findings
are subsequently detailed in Section 7, and we conclude the paper with a summary in Section 8.

2 RELATED WORKS

Datasets Condensation Dataset condensation is a technique that has been developed to address the
issue of the increasing amount of data required to train deep learning models. The goal of dataset
condensation is to efficiently train neural networks using a small set of synthesized training examples
from a larger dataset. Dataset distillation (DD) (Wang et al., 2018) was one of the first such methods
developed, and it showed that training on a few synthetic images can achieve similar performance
on MNIST and CIFAR10 as training on the original dataset. Later, Cazenavette et al. (2022); Zhao
& Bilen (2021); Zhao et al. (2021) explored different methods of condensation, including gradient
and trajectory matching. These approaches focused on matching the gradient w.r.t. the real and
synthetic data, with stronger supervision for the training process. Instead of matching the weights of
the neural network, another thread of works (Lee et al., 2022; Wang et al., 2022) focuses on matching
feature distributions of the real and synthetic data in the embedding space to better align features or
preserve real-feature distribution. Considering the lack of efficiency of the bilevel optimization in
previous methods, Nguyen et al. (2021); Zhou et al. (2022) aim to address the significant amount
of meta gradient computation challenges. Nguyen et al. (2020) proposed a kernel-inducing points
meta-learning algorithm and they further leverage the connection between the infinitely wide ConvNet
and kernel ridge regression for better performance. Furthermore, Sucholutsky & Schonlau (2021)
focuses on simultaneously distilling images and the paired soft labels. These approaches can be
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broadly classified into four families based on their underlying principles: meta-model matching,
gradient matching, distribution matching, and trajectory matching (Sachdeva & McAuley, 2023).

Adversarial Attacks Adversarial attacks are a significant concern in the field of machine learning,
as they can cause models to make incorrect predictions even when presented with seemingly similar
input. Many different types of adversarial attacks have been proposed in the literature (Goodfellow
et al., 2015; Madry et al., 2018). In particular, Projected Gradient Descent (PGD) is a widely used
adversarial attack that has been shown to be highly effective against a variety of machine learning
models (Madry et al., 2018). Kurakin et al. (2017) demonstrates the real-world implications of these
attacks. The limitations of defensive distillation, a technique initially proposed for increasing the
robustness of machine learning models, were explored by Papernot et al. (2016b). Moosavi-Dezfooli
et al. (2016) introduced DeepFool, an efficient method to compute adversarial perturbations. In a
similar vein, Carlini & Wagner (2017) developed a procedure to increase the robustness of an arbitrary
neural network. Other notable works include the introduction of transferability in adversarial attacks
byPapernot et al. (2016a), the simple and effective black-box attack by Narodytska & Kasiviswanathan
(2016), and the zeroth-order optimization-based attack by Chen et al. (2017). More recently, Athalye
et al. (2018) investigated the robustness of obfuscated gradients, and Wong et al. (2019) introduced
the Wasserstein smoothing as a novel defense against adversarial attacks. Croce & Hein (2020)
introduced AutoAttack, which is a more recent suite of adversarial attacks. It consists of four diverse
and parameter-free attacks that are designed to provide a comprehensive evaluation of a model’s
robustness to adversarial attacks.

Adversarial Defense Numerous defenses against adversarial attacks have been proposed. Among
these, adversarial training stands out as a widely adopted defense mechanism that entails training
machine learning models on both clean and adversarial examples (Goodfellow et al., 2015). Several
derivatives of the adversarial training approach have been proposed, such as ensemble adversarial
training (Tramèr et al., 2018), and randomized smoothing (Cohen et al., 2019) — a method that
incorporates random noise to obstruct the generation of effective adversarial examples. However,
while adversarial training can be effective, it bears the drawback of being computationally expensive
and time-consuming.

Some defense mechanisms adopt a geometrical approach to robustness. One such defense mechanism
is Curvature Regularization (CURE), a method that seeks to improve model robustness by modifying
the loss function used during training (Moosavi-Dezfooli et al., 2019). The primary aim of curvature
regularization is to minimize the sensitivity of the model, to adversarial perturbations in the input
space and it is more difficult for an attacker to find adversarial examples which cross this boundary.
Miyato et al. (2015) focuses on improving the smoothness of the output distribution to make models
more resistant to adversarial attacks, while Cisse et al. (2017b) introduced Parseval networks, which
enforce Lipschitz constant to improve model robustness. Ross & Doshi-Velez (2018) presented a
method for improving the robustness of deep learning models using input gradient regularization.

Several other types of defense techniques have also been proposed, such as corrupting with additional
noise and pre-processing with denoising autoencoders by Gu & Rigazio (2014), the defensive
distillation approach by Papernot et al. (2016c), and the Houdini adversarial examples by Cisse et al.
(2017a).

3 PRIMER: DATASET CONDENSATION

Before we delve deeper into the theory of robustness in dataset condensation methods, we will
formally introduce their formulation in this section. Although there are different families of dataset
condensation methods, the central objective remains the same. The goal is to learn a synthetic dataset
S with |S| image-label pairs from a real dataset T with |T | image-label pairs, where |S| is much
smaller than |T |. Different methods accomplish this goal through different objective functions. In its
most general form, we can formulate the dataset condensation problem as

min
S

F (S, T )
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where F is some objective function that differs by each method. The original dataset condensation
method (DC) (Zhao et al., 2021) seeks to enable some network trained on the synthetic dataset to
converge to a similar parameter compared to training on the real dataset. Hence, it is formulated as
the problem

min
S
D(θS ,θT ) where θS(S) = argmin

θ
LS(θ)

where ϕ is some neural network and D is a distance function in the parameter space (Zhao et al.,
2021). To ensure the synthetic dataset works well on a range of network initializations, DC samples
initial weights from a random distribution and is modified into the below form:

min
S
Eθ0∼Pθ0

D(θS(θ0),θ
T (θ0)) where θS(S) = argmin

θ
LS(θ(θ0))

It can be seen that this method is computationally expensive as it is a dual optimization problem that
involves first optimizing θS with respect to the loss function L, and then optimizing S with respect
to the distance function to achieve a similar solution in the parameter space.

To address this issue, Dataset Condensation with Distribution Matching (DM) (Zhao & Bilen, 2023)
was proposed. DM uses maximum mean discrepancy (MMD) to directly optimize the synthetic
dataset, avoiding the need to train a network. Let ψ be an embedding function with parameter θ that
embeds each image x ∈ Rd intoRd′

, where d′ << d. The DM problem can be formulated as

min
S
Eθ∼Pθ

|| 1
|T |

|T |∑
i=1

ψθ(xi)−
1

|S|

|S|∑
j=1

ψθ(sj)||2

This particular formulation will prove integral to subsequent proofs detailed later in the paper.

Regardless of the formulation, dataset condensation methods usually allow for a flexible condensation
scale by setting |S| to different values when learning the synthetic dataset. However, instead of
expressing the condensation scale as |S| directly, it is more common to express it in the unit of
”images per class” (ipc).

4 DOES DATASET CONDENSATION CONTAIN ROBUSTNESS?

In this section, we delve into the robustness pertaining to dataset condensation methods. We are
interested in this question because, from intuition, dataset condensation could eliminate confounding
information and spurious features from images. Since dataset condensation usually needs to enable
the model to learn some representations of each class using fewer than 50 images, any instance-
specific features in the synthetic dataset would likely be replaced by the more generalizable intra-class
features. Previous research suggests that these non-observable features can, at times, be exploited by
adversarial attacks (Ilyas et al., 2019; Wang et al., 2020).

This hypothesis finds validation when we inspect the synthetic dataset generated by DC. In Figure 1,
we present an example comprising two images from the CIFAR10 dataset, used as initial images in
the synthetic dataset. Furthermore, we display the resulting image post-DC application. A noticeable
observation is the there is limited color information encoded in the synthetic car image. This is due to
cars often appearing in a wide color spectrum, and the image must facilitate model generalization
across this spectrum. In contrast, the synthetic horse image distinctly encodes the red/brown color
scheme typical of horses.

Empirical results To verify the robustness of dataset condensation methods, we evaluated the
robustness of models trained on the synthetic data from a variety of methods, DD (Wang et al., 2018),
DC (Zhao et al., 2021), MTT (Cazenavette et al., 2022), DiM (Wang et al., 2023), and FRePo (Zhou
et al., 2022) under ℓ∞ PGD attacks. The result is shown in Table 1. Contrary to our belief, the
results showed that the resulting models have little robustness to adversarial attacks. PGD attack
with default hyperparameters can diminish the accuracy to 0, and even attacks with much reduced
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Table 1: Clean accuracy and robust accuracy on ConvNet trained on 10 images per class synthetic
datasets produced by different methods, under ℓ∞ PGD attacks. For MNIST, the parameters of the
attack are ϵ = 0.3, α = 0.1, steps = 10. For CIFAR10, the parameters of the attack are ϵ = 8/255,
α = 2/255, steps = 10.

DD DC MTT DiM FRePo

MNIST Clean 79.5±8.1 96.4±0.1 97.3±0.1 98.6±0.2 98.6±0.1
Robust 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

CIFAR10 Clean 36.8±1.2 45.3±0.5 65.3±0.7 66.2±0.5 65.5±0.4
Robust 1.0±0.3 0.3±0.1 0.1±0.0 0.0±0.0 0.9±0.6

intensity degrade the performance severely (see Table 2). While current dataset condensation methods
effectively condense task-related information into a small set of parameters (usually dozens of times
the number of pixels in an image), the resulting models are easily fooled by adversarial attacks.

5 THEORETICAL BOUND OF ROBUSTNESS

Figure 1: A comparative analy-
sis of images from CIFAR10 and
the synthetic dataset generated us-
ing DC. The left column show-
cases original images from CI-
FAR10, while the right column
exhibits the corresponding images
post 1000 iterations of DC under
the 1 ipc setting. The top pair of
images represent a car, and the
lower pair represent a horse.

Theoretical explanation Previous work (Jetley et al., 2018; Fawzi
et al., 2018) has studied the adversarial robustness of neural networks
via the geometry of the loss landscape. Here we find connections
between standard training and dataset condensation to provide a
theoretical explanation on the observed adversarial vulnerability of
models trained with the standard dataset condensation methods.

Let ℓ(x, y; θ) denote the loss function of the neural network, or ℓ(x)
for simplicity, and v is a perturbation vector. By Taylor’s Theorem,

ℓ(x+ v) = ℓ(x) +∇ℓ(x)⊤v +
1

2
v⊤Hv + o(∥v∥2) (1)

We are interested in the property of ℓ(·) in the locality of x, so we
focus on the quadratic approximation ℓ̃(x+ v) = ℓ(x)+∇ℓ(x)⊤v+
1
2v

⊤Hv. Define the adversarial loss on real data as ℓ̃advρ (x) =

max∥v∥≤ρ ℓ̃(x+ v), we can expand this and take the expectation
over the distribution with class label c, denoted as Dc

E
x∼Dc

ℓ̃advρ (x) ≤ E
x∼Dc

ℓ(x) + ρ E
x∼Dc

∥∇ℓ(x)∥+ 1

2
ρ2 E

x∼Dc

λ1(x)

(2)
where λ1 is the largest eigenvalue of the Hessian matrix H(ℓ(x)).

Then, we have the proposition:

Proposition 1 Let x′ be a datum distilled from the training samples
with the label c, and satisfies ∥h(x′)−Ex∼Dc

[h(x)]∥ ≤ σ. Assume
ℓ(·) is convex in x and ℓ̃advρ (·) is L-Lipschitz in the feature space,
then the below inequality holds

ℓ̃advρ (x′) ≤ E
x∼Dc

ℓ(x) + ρ E
x∼Dc

∥∇ℓ(x)∥+ 1

2
ρ2 E

x∼Dc

λ1(x) + Lσ (3)

Because ℓ(x) and σ are typically small, the above inequality shows that the upper bound of ℓ̃advρ (x′)
is largely affected by the smoothness of the loss function in the locality of real data samples. In
Appendix A, we give a more thorough proof of the proposition and discuss the validity of some of
the assumptions made.

We wish to highlight a fundamental challenge associated with robust dataset condensation, which
is that there is always a distribution shift between the real and condensed datasets. This shift
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raises uncertainties about whether the enhanced robustness observed in the condensed dataset will
be effectively transferred when evaluated against the real dataset. Nevertheless, our theoretical
framework offers assurances regarding this concern. A comparison between Eq. 2 with Eq. 3 reveals
that the bounds of adversarial loss for real data and a distilled datum differ only by Lσ. We have
thus demonstrated that the disparity between minimizing adversarial loss on the condensed dataset
and doing so on the real dataset is confined to this constant. This finding allows for robust dataset
condensation methods to exclusively enhance robustness with respect to the condensed dataset.

6 METHODS

6.1 GEOMETRIC REGULARIZATION FOR ADVERSARIAL ROBUST DATASET

Let T = {xi, yi}ni=1 denote the real dataset and S = {x′
i, y

′
i}mi=1 denote the synthetic dataset. Robust

dataset condensation can be formulated as a tri-level optimization problem as below:

min
S

n∑
i=1

max
∥v∥≤ρ

ℓ((xi + v), yi;θ(S)), (4)

where θ(S) = argmin
θ

m∑
i=1

ℓ(x′
i, y

′
i) (5)

Note that max∥v∥≤ρ ℓ((xi + v), yi; θ) corresponds to the ℓadvρ (x) we have discussed above, which is
different from the standard loss ℓ(x) used in most of the current dataset condensation methods. While
recent theoretical works have led to different arguments as to whether accuracy is in principle at odds
with robustness (Tsipras et al., 2019; Pang et al., 2022), in practice it is important that the condensed
data enable the model to perform well both in i.i.d test setting and under adversarial attacks.

The most commonly used method to enhance robustness is adversarial training, which usually trains
the model on the original label with the perturbed image. However, the semantic of the input image is
sometimes changed by the perturbation even with the norm constraint, which may cause the cross-over
mixture problem and severely degrade the clean accuracy (Zhang et al., 2020). Moreover, finding
strong attacks often requires iterative optimization methods, which is computationally expensive.

On the other hand, if we choose to directly optimize for the robust dataset condensation objective, the
tri-level optimization problem will result in a hugely inefficient process.

We instead find solution based on our theoretical discussion in Section 5. Although the smoothness
of the loss landscape is related to both the gradient and curvature, previous work has shown that
regularizing gradients gives a false sense of security about the robustness of neural networks (Athalye
et al., 2018). With a vanished or obfuscated gradient around the data points, the model is still
inherently robust to small perturbations. Therefore we regularize the curvature term λ1 in our method,
GUARD.

Curvature Regularization To reduce λ1 in Eq. 3 requires computing the Hessian matrix and get
the largest eigenvalue λ1, which is quite expensive. Here we find an efficient approximation of it. Let
v1 be the unit eigenvector corresponding to λ1, then the Hessian-vector product

Hv1 = λ1v1 = lim
h→0

∇ℓ(x+ hv1)−∇ℓ(x)
h

(6)

We take the differential approximation of the Hessian-vector product, because we are interested in
the curvature in a local area of x rather than its asymptotic property. Therefore, for a small h,

λ1 = ∥λ1v1∥ ≈ ∥
∇ℓ(x+ hv1)−∇ℓ(x)

h
∥ (7)

Previous work (Fawzi et al., 2018; Jetley et al., 2018; Moosavi-Dezfooli et al., 2019) has empirically
shown that the direction of the gradient has a large cosine similarity with the direction of v1 in the
input space of neural networks. Instead of calculating v1 directly, it is more efficient to take the
gradient direction as a surrogate of v1 to perturb the input x. So we replace the v1 above with the

6



Under review as a conference paper at ICLR 2024

normalized gradient z = ∇ℓ(x))
∥∇ℓ(x))∥ , and define the regularized loss ℓR to encourage linearity in the

input space:
ℓR(x) = ℓ(x) + λ∥∇ℓ(x+ hz)−∇ℓ(x)∥2 (8)

where ℓ is the original loss function, h is the discretization step, and the denominator is merged to the
regularization coefficient.

Gradient Matching Given our discussion about the connection between robustness and curvature,
one may intuitively think that we can condense a robust dataset by matching its distribution with that
of the real data using a feature extractor with reduced curvature. However, this may not be the case.
While a robust dataset should be distributionally close to real datasets under robust feature extractors,
the converse may be not true, i.e., such a dataset does not necessarily equip a model with robustness.
Our experiment results have verified this in Appendix B.

Instead, we look for another solution. We argue that a robust dataset should be one that leads the model
to a parameter value with good accuracy and robustness via standard training by encouraging the
model to have a low curvature. Inspired by recent gradient-matching based methods, we hypothethize
that a robust dataset should produce similar gradients as a model under robust training, and that
the converse is also true. This motivates our method of regularizing curvature during gradient
matching-based condensation.

Given a real dataset T , the original DC formulation iteratively minimizes the distance between the
gradient of the loss function on T and the synthetic dataset S through some distance function D, for
a total of T iterations:

min
S
Eθ0∼Pθ0

[

T−1∑
t=0

D(∇θLT (θt),∇θLS(θt))] (9)

In the previous section, we have demonstrated that reducing the curvature of the loss function can
lead to reduced adversarial loss. Let H be the Hessian matrix at some data point, our goal is to limit
the largest eigenvalue λ1 of the synthetic dataset. To do this, we use the curvature regularization
method (Moosavi-Dezfooli et al., 2019). Consider the regularizer R = ||∇ℓ(x + hz) −∇ℓ(x)||2.
We define the regularized loss on the real dataset as LR = ℓ+ λR, where λ is some constant that
determines the strength of regularization. Then, we have the formulation for GUARD as

min
S
Eθ0∼Pθ0

[

T−1∑
t=0

D(∇θLT
R(θt),∇θLS(θt))] (10)

We showcase the exact algorithm of GUARD in Appendix C.

7 EXPERIMENTS

7.1 EXPERIMENT SETTINGS

We present classification results on two popular datasets: MNIST and CIFAR10. We train networks
using synthetic datasets and verify the network’s performance on the original datasets.

We use the same ConvNet architecture (Gidaris & Komodakis, 2018) across the two datasets. The
ConvNet contains 3 layers, with each layer using 128 filters, instance normalization (Ulyanov et al.,
2016), ReLU activation function, and average pooling. All network weights are initialized using He
Initialization (He et al., 2015).

We learn each synthetic dataset using 1000 iterations, with 256 images per training batch. We set the
learning rate ηθ for updating network weights as 0.01 and the learning rate ηS for updating synthetic
dataset as 0.1. We use a different number of steps to update the network weights (ςθ) and synthetic
dataset (ςS) depending on the condensation scale. At 1 image per class (ipc), we set ςθ = 1 and
ςS = 1. At 10 ipc, we set ςθ = 50 and ςS = 10. And at 50 ipc, we set ςθ = 10 and ςS = 50.

For evaluation, we train a randomly initialized network with synthetic dataset for 1000 epochs with a
learning rate of 0.01. We repeat each evaluation 50 times and report the mean and standard deviation.
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Figure 2: Visualization of synthetic datasets generated using GUARD with 10 images per class from
MNIST and CIFAR10 datasets.

7.2 COMPARISON WITH OTHER METHODS

We compare our method to a comprehensive robustness benchmark for a large number of SOTA
methods in dataset distillation, including DD (Wang et al., 2018), DC (Zhao et al., 2021), DSA (Zhao
& Bilen, 2021), DM (Zhao & Bilen, 2023), MTT (Cazenavette et al., 2022), and FrePo (Zhou et al.,
2022). We evaluate every method on each dataset with two condensation scales: 1 ipc and 10 ipc.

We conducted three set of attacks on each setting: ℓ∞*, ℓ∞, and ℓ2. The exact setting of each set of
attack differ depending on the dataset. ℓ∞* is the strongest set of attack. For MNIST, the parameters
are ϵ = 0.3, α = 0.1, steps = 10. For CIFAR10, the parameters are ϵ = 8/255, α = 2/255,
steps = 10. ℓ∞ is a weaker version of the previous attack, with ϵ = 0.1, α = 0.03, steps = 10
for MNIST and ϵ = 2/255, α = 0.5/255, steps = 10 for CIFAR10. Finally, ℓ2 is similar to ℓ∞
in intensity, except that it uses ℓ2 distance, and its parameters are ϵ = 1, α = 0.3, steps = 10 for
MNIST and ϵ = 0.2, α = 0.05, steps = 10 for CIFAR10.

7.3 RESULTS

Table 2: Robust accuracies of models trained on synthetic datasets from different methods, under
various attack settings.

ipc Attack Method
DD DC DSA DM MTT FrePo Ours

M
N

IS
T 1

ℓ∞* - 0.3±0.2 0.2±0.1 0.2±0.2 0.0±0.0 0.0±0.0 0.7±0.2
ℓ∞ - 50.0±1.8 50.4±1.8 52.0±1.9 44.6±1.9 36.2±3.8 55.6±0.2
ℓ2 - 63.6±1.1 63.5±1.0 65.8±1.1 62.2±1.9 59.1±2.3 66.2±0.5

10
ℓ∞* 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.5±0.2
ℓ∞ 34.3±4.1 68.0±1.9 71.2±1.6 65.3±2.7 63.7±2.0 54.3±3.7 74.6±0.5
ℓ2 52.1±2.6 80.5±0.8 81.5±0.6 78.6±1.2 74.3±1.3 74.4±2.0 81.8±0.4

C
IF

A
R

10 1
ℓ∞* - 2.1±0.4 3.1±0.5 2.1±0.7 0.1±0.1 0.4±0.3 4.7±0.3
ℓ∞ - 17.5±0.6 17.7±0.6 14.6±0.9 10.3±1.0 7.6±0.8 19.3±0.4
ℓ2 - 21.8±0.5 22.0±0.4 18.8±0.6 17.0±1.1 11.2±0.9 22.5±0.2

10
ℓ∞* 1.0±0.3 0.3±0.1 0.3±0.1 0.3±0.1 0.1±0.0 0.9±0.6 1.9±0.3
ℓ∞ 14.3±0.7 18.8±0.9 17.7±0.8 14.8±0.8 15.5±0.8 12.6±0.6 23.5±0.4
ℓ2 18.6±0.6 27.2±0.8 26.1±0.7 22.4±1.0 27.0±0.8 17.2±0.7 28.2±0.2

We provide a visualization of the synthetic dataset generated by GUARD in Figure 2, utilizing a
condensation scale of 10 images per class. While some images bear recognizable resemblances to
objects within their respective class, numerous images appear to be less distinguishable. Notably,
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classes possessing more distinctive outlines, such as horses, are far more recognizable than those
with simpler outlines, such as frogs, in the synthetic dataset.

The results of our experiment are shown in Table 2. It can be observed that our method, in all dataset
and attack settings, achieves the best performance. For instance, for the 10 ipc setting with CIFAR10,
GUARD shows an improvement of 1%, 4.7%, and 1% over the best performance among all other
methods, under the three sets of attack parameters, respectively. We also show a comparative analysis
between the clean accuracies of GUARD and other dataset condensation methods in Appendix D.
Generally, a model trained on GUARD is able to achieve clean accuracies that are almost at the same
level as DC.

Comparing the performance of GUARD to a benchmark of non-robust methods doesn’t fully demon-
strate its effectiveness. To provide a more complete evaluation, we also show that GUARD is not
only more efficient to train but also achieves better results when compared to adversarial training on
condensed datasets, as detailed in Appendix E. We believe our edge over adversarial training, which
is recognized as one of the most effective methods in real dataset settings, underscores the non-trivial
effectiveness of GUARD.

We also evaluated GUARD against a variety of other adversarial attacks to further study its capability
to enhance adversarial robustness in Appendix F. The adversarial attacks employed include PGD100,
Square, and AutoAttack. This assortment includes both white-box and black-box attacks, providing a
multifaceted evaluation of GUARD. The experimental outcomes demonstrate that the adversarial
robustness provided by GUARD extends well to a diverse array of attacks.

7.4 TRANSFERABILITY TO OTHER METHODS

Since GUARD is applied on top of another dataset condensation method, it is no surprise that
GUARD will inherit many limitations of that method. For example, it has been noted that DC (Zhao
et al., 2021) exhibits a limitation with high-resolution datasets like ImageNet, thereby impacting the
effectiveness of GUARD when DC is utilized as the underlying method.

However, we show that GUARD is able to be transferred to alternative dataset condensation methods.
Such transferability is feasible as long as the alternative method utilizes a network trained on the
real dataset as a comparison target during the condensation process, which is very common among
dataset condensation methods. To demonstrate this, we extended GUARD to a recent technique
called SRe2L (Yin et al., 2023), which performs much better on ImageNet than DC. The comparison
between vanilla SRe2L and SRe2L augmented with GUARD revealed that GUARD notably improves
the robustness of the method, indicating its effectiveness towards high-resolution datasets and proving
its flexibility to be incorporated with other condensation methods. Detailed results of this analysis are
provided in Appendix G.

8 CONCLUSIONS

Our work focuses on a novel perspective on dataset condensation, emphasizing its robustness
characteristics. While there are reasons that might suggest dataset condensation inherently boosts the
robustness of trained models, our empirical experiments indicate otherwise. This discovery prompted
us to delve deeper into understanding and resolving this issue. Through our investigation, we proposed
a theory for robust dataset condensation, deriving a significant insight: the optimization of robustness
with respect to synthetic and real datasets is differentiated only by a constant term. This conclusion
opens up various potentials for subsequent research in the field. Moreover, our GUARD method
has demonstrated effectiveness in enhancing robustness against diverse types of attacks. It is also
potentially applicable to numerous dataset condensation techniques, not limited to the DC method
exclusively. We have also established a robustness benchmark through extensive experimentation
with common dataset condensation methods, uncovering their respective robustness levels. Looking
forward, it is our hope that this work will inspire and support further research and development in this
area. We hope our work contributes to the development of dataset condensation techniques that are
not only efficient but also robust. Such advancements would broaden the applicability of condensed
datasets across many more settings.
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