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ABSTRACT

The era of real world evidence has witnessed an increasing availability of observa-
tional data, which much facilitates the development of causal effect inference. Al-
though significant advances have been made to overcome the challenges in causal
effect estimation, such as missing counterfactual outcomes and selection bias, they
only focus on source-specific and stationary observational data. In this paper, we
investigate a new research problem of causal effect inference from incrementally
available observational data, and present three new evaluation criteria accordingly,
including extensibility, adaptability, and accessibility. We propose a Continual
Causal Effect Representation Learning method for estimating causal effect with
observational data, which are incrementally available from non-stationary data
distributions. Instead of having access to all seen observational data, our method
only stores a limited subset of feature representations learned from previous data.
Combining the selective and balanced representation learning, feature represen-
tation distillation, and feature transformation, our method achieves the continual
causal effect estimation for new data without compromising the estimation ca-
pability for original data. Extensive experiments demonstrate the significance of
continual causal effect inference and the effectiveness of our method.

1 INTRODUCTION

Causal effect inference is a critical research topic across many domains, such as statistics, computer
science, public policy, and economics. Randomized controlled trials (RCT) are usually considered
as the gold-standard for causal effect inference, which randomly assigns participants into a treatment
or control group. As the RCT is conducted, the only expected difference between the treatment and
control groups is the outcome variable being studied. However, in reality, randomized controlled
trials are always time-consuming and expensive, and thus the study cannot involve many subjects,
which may be not representative of the real-world population the intervention would eventually tar-
get. Nowadays, estimating causal effects from observational data has become an appealing research
direction owing to a large amount of available data and low budget requirements, compared with
RCT (Yao et al.l [2020). Researchers have developed various strategies for causal effect inference
with observational data, such as tree-based methods (Chipman et al.,[2010; [Wager & Athey, |[2018)),
representation learning methods (Johansson et al., 2016} |L1 & Ful 2017; Shalit et al., [2017; |Chu
et al., [2020), adapting Bayesian algorithms (Alaa & van der Schaar, |2017), generative adversarial
nets (Yoon et al., [2018)), variational autoencoders (Louizos et al.,[2017) and so on.

Although significant advances have been made to overcome the challenges in causal effect estima-
tion with observational data, such as missing counterfactual outcomes and selection bias between
treatment and control groups, the existing methods only focus on source-specific and stationary ob-
servational data. Such learning strategies assume that all observational data are already available
during the training phase and from the only one source. This assumption is unsubstantial in prac-
tice due to two reasons. The first one is based on the characteristics of observational data, which
are incrementally available from non-stationary data distributions. For instance, the number of elec-
tronic medical records in one hospital is growing every day, or the electronic medical records for one
disease may be from different hospitals or even different countries. This characteristic implies that
one cannot have access to all observational data at one time point and from one single source. The
second reason is based on the realistic consideration of accessibility. For example, when the new
observational are available, if we want to refine the model previously trained by original data, maybe
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the original training data are no longer accessible due to a variety of reasons, e.g., legacy data may
be unrecorded, proprietary, too large to store, or subject to privacy constraint (Zhang et al., [2020).
This practical concern of accessibility is ubiquitous in various academic and industrial applications.
That’s what it boiled down to: in the era of big data, we face the new challenges in causal inference
with observational data: the extensibility for incrementally available observational data, the adapt-
ability for extra domain adaptation problem except for the imbalance between treatment and control
groups in one source, and the accessibility for a huge amount of data.

Existing causal effect inference methods, however, are unable to deal with the aforementioned new
challenges, i.e., extensibility, adaptability, and accessibility. Although it is possible to adapt existing
causal inference methods to address the new challenges, these adapted methods still have inevitable
defects. Three straightforward adaptation strategies are described as follows. (1) If we directly apply
the model previously trained based on original data to new observational data, the performance on
new task will be very poor due to the domain shift issues among different data sources; (2) If we
utilize newly available data to re-train the previously learned model, adapting changes in the data
distribution, old knowledge will be completely or partially overwritten by the new one, which can
result in severe performance degradation on old tasks. This is the well-known catastrophic forgetting
problem (McCloskey & Cohenl [1989; [Frenchl [1999); (3) To overcome the catastrophic forgetting
problem, we may rely on the storage of old data and combine the old and new data together, and then
re-train the model from scratch. However, this strategy is memory inefficient and time-consuming,
and it brings practical concerns such as copyright or privacy issues when storing data for a long
time (Samet et al.} 2013)). Our empirical evaluations in Section 4 demonstrate that any of these three
strategies in combination with the existing causal effect inference methods is deficient.

To address the above issues, we propose a Continual Causal Effect Representation Learning method
(CERL) for estimating causal effect with incrementally available observational data. Instead of hav-
ing access to all previous observational data, we only store a limited subset of feature representations
learned from previous data. Combining the selective and balanced representation learning, feature
representation distillation, and feature transformation, our method preserves the knowledge learned
from previous data and update the knowledge by leveraging new data, so that it can achieve the
continual causal effect estimation for new data without compromising the estimation capability for
previous data. To summarize, our main contributions include:

* Our work is the first to introduce the continual lifelong causal effect inference problem for
the incrementally available observational data and three corresponding evaluation criteria,
i.e., extensibility, adaptability, and accessibility.

* We propose a new framework for continual lifelong causal effect inference based on deep
representation learning and continual learning.

* Extensive experiments demonstrate the deficiency of existing methods when facing the
incrementally available observational data and our model’s outstanding performance.

2 BACKGROUND AND PROBLEM STATEMENT

Suppose that the observational data contain n units collected from d different domains and the d-th
dataset D, contains the data {(x,y,t)|lz € X,y € Y,t € T} collected from d-th domain, which
contains ng units. Let X denote all observed variables, Y denote the outcomes in the observational
data, and T is a binary variable. Let Dy.q = {Dj, Da,..., D4} be the set of combination of d
dataset, separately collected from d different domains. For d datasets { D1, D>, ..., Dy}, they have
the common observed variables but due to the fact that they are collected from different domains,
they have different distributions with respect to X, Y, and 7" in each dataset. Each unit in the
observational data received one of two treatments. Let ¢; denote the treatment assignment for unit
i; ¢ = 1,...,n. For binary treatments, ¢; = 1 is for the treatment group, and ¢; = 0 for the control
group. The outcome for unit 7 is denoted by yi when treatment ¢ is applied to unit #; that is, 3! is
the potential outcome of unit 7 in the treatment group and v is the potential outcome of unit 7 in the
control group. For observational data, only one of the potential outcomes is observed. The observed
outcome is called the factual outcome and the remaining unobserved potential outcomes are called
counterfactual outcomes.

In this paper, we follow the potential outcome framework for estimating treatment effects
1974} [Splawa-Neyman et al,[1990). The individual treatment effect (ITE) for unit 7 is the difference
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between the potential treated and control outcomes, and is defined as ITE; = yi — yj. The average
treatment effect (ATE) is the difference between the mean potential treated and control outcomes,
which is defined as ATE = 2 "7 (i — yi).

n

The success of the potential outcome framework is based on the following assumptions (Imbens
& Rubin, 2015)), which ensure that the treatment effect can be identified. Stable Unit Treatment
Value Assumption (SUTVA): The potential outcomes for any units do not vary with the treatments
assigned to other units, and, for each unit, there are no different forms or versions of each treatment
level, which lead to different potential outcomes. Consistency: The potential outcome of treatment ¢
is equal to the observed outcome if the actual treatment received is ¢. Positivity: For any value of z,
treatment assignment is not deterministic, i.e.,P(T = t|X = z) > 0, for all ¢ and z. Ignorability:
Given covariates, treatment assignment is independent to the potential outcomes, i.e., (y1,yo) L t|z.

The goal of our work is to develop a novel continual causal inference framework, given new available
observational data Dy, to estimate the causal effect for newly available data D, as well as the
previous data Dy, 4_1) without having access to previous training data in Dy.g_1).

3 THE PROPOSED FRAMEWORK

The availability of “real world evidence” is expected to facilitate the development of causal effect in-
ference models for various academic and industrial applications. How to achieve continual learning
from incrementally available observational data from non-stationary data domains is a new direc-
tion in causal effect inference. Rather than only focusing on handling the selection bias problem, we
also need to take into comprehensive consideration three aspects of the model, i.e., the extensibility
for incrementally available observational data, the adaptability for various data sources, and the
accessibility for a huge amount of data.

We propose the Continual Causal Effect Representation Learning method (CERL) for estimating
causal effect with incrementally available observational data. Based on selective and balanced rep-
resentation learning for treatment effect estimation, CERL incorporates feature representation dis-
tillation to preserve the knowledge learned from previous observational data. Besides, aiming at
adapting the updated model to original and new data without having access to the original data,
and solving the selection bias between treatment and control groups, we propose one representation
transformation function, which maps partial original feature representations into new feature repre-
sentation space and makes the global feature representation space balanced with respect to treatment
and control groups. Therefore, CERL can achieve the continual causal effect estimation for new data
and meanwhile preserve the estimation capability for previous data, without the aid of original data.

3.1 MODEL ARCHITECTURE

To estimate the incrementally available observational data, the framework of CERL is mainly com-
posed of two components: (1) the baseline causal effect learning model is only for the first available
observational data, and thus we don’t need to consider the domain shift issue among different data
sources. This component is equivalent to the traditional causal effect estimation problem; (2) the
continual causal effect learning model is for the sequentially available observational data, where we
need to handle more complex issues, such as knowledge transfer, catastrophic forgetting, global rep-
resentation balance, and memory constraint. We present the details of each component as follows.

3.1.1 THE BASELINE CAUSAL EFFECT LEARNING MODEL

We first describe the baseline causal effect learning model for the initial observational dataset and
then bring in subsequent datasets. For causal effect estimation in the initial dataset, it can be trans-
formed into the traditional causal effect estimation problem. Motivated by the empirical success of
deep representation learning for counterfactual inference (Shalit et al., [2017; |Chu et al., 2020), we
propose to learn the selective and balanced feature representations for treated and control units, and
then infer the potential outcomes based on learned representation space.

Learning Selective and Balanced Representation. Firstly, we adopt a deep feature selection model
that enables variable selection in one deep neural network, i.e., g,,, : X — R, where X denotes the
original covariate space, R denotes the representation space, and w; are the learnable parameters in
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function g. The elastic net regularization term (Zou & Hastie, 2005)) is adopted in our model, i.e.,
Ly, = |lw1]|3 + ||w1]|1. Elastic net throughout the fully connected representation layers assigns
larger weights to important features. This strategy can effectively filter out the irrelevant variables
and highlight the important variables.

Due to the selection bias between treatment and control groups and among the sequential different
data sources, the magnitudes of confounders may be significantly different. To effectively eliminate
the imbalance caused by the significant difference in magnitudes between treatment and control
groups and among different data sources, we propose to use cosine normalization in the last repre-
sentation layer. In the multi-layer neural networks, we traditionally use dot products between the
output vector of the previous layer and the incoming weight vector, and then input the products to
the activation function. The result of dot product is unbounded. Cosine normalization uses cosine
similarity instead of simple dot products in neural networks, which can bound the pre-activation
between —1 and 1. The result could be even smaller when the dimension is high. As a result, the
variance can be controlled within a very narrow range (Luo et al.,|2018]). Cosine normalization is de-
fined as r = o (Thorm) = O’( cos(w, :v)) = 0(%), where 7,0, 18 the normalized pre-activation,
w is the incoming weight vector, x is the input vector, and o is nonlinear activation function.

Motivated by |Shalit et al.| (2017), we adopt integral probability metrics (IPM) when learning the
representation space to balance the treatment and control groups. The IPM measures the diver-
gence between the representation distributions of treatment and control groups, so we want to min-
imize the IPM to make two distributions more similar. Let P(g(x)[t = 1) and Q(g(z)|t = 0)
denote the empirical distributions of the representation vectors for the treatment and control groups,
respectively. We adopt the IPM defined in the family of 1-Lipschitz functions, which leads to
IPM being the Wasserstein distance (Sriperumbudur et al., 2012} Shalit et al., [2017)). In particu-
lar, the IPM term with Wasserstein distance is defined as Wass(P, Q) = infrex fg(z)Hk(g(I)) -

g(x)||P(g9(x))d(g(x)), where v denotes the hyper-parameter controlling the trade-off between
Wass(P, Q) and other terms in the final objective function. X = {k|Q(k(g(x))) = P(g(z))} de-
fines the set of push-forward functions that transform the representation distribution of the treatment
distribution P to that of the control @ and g(z) € {g(x); }i:t;=1.

Inferring Potential Outcomes. We aim to learn a function hy, : R x T — Y that maps the rep-
resentation vectors and treatment assignment to the corresponding observed outcomes, and it can
be parameterized by deep neural networks. To overcome the risk of losing the influence of 7" on
R, ho, (guw, (x),t) is partitioned into two separate tasks for treatment and control groups, respec-
tively. Each unit is only updated in the task corresponding to its observed treatment. Let §; =
ho, (9w, (z),t) denote the inferred observed outcome of unit 7 corresponding to factual treatment ;.

We minimize the mean squared error in predicting factual outcomes: Ly = n% 7211 (9: — yi)%.

Putting all the above together, the objective function of our baseline causal effect learning model
is: L = Ly + aWass(P, Q) + AL, , where o and A denote the hyper-parameters controlling the
trade-off among Wass(P, @), L., and Ly in the objective function.

3.1.2 THE SUSTAINABILITY OF MODEL LEARNING

By far, we have built the baseline model for causal effect estimation with observational data from
a single source. To avoid catastrophic forgetting when learning new data, we propose to preserve a
subset of lower-dimensional feature representations rather than all original covariates. We also can
adjust the number of preserved feature representations according to the memory constraint.

After the completion of baseline model training, we store a subset of feature representations
Ry = {gw,(x)|xz € D1} and the corresponding {Y, T} € D; as memory M;. The size of stored
representation vectors can be reduced to satisfy the pre-specified memory constraint by a herding
algorithm (Welling), |2009; Rebutfi et al.,|2017). The herding algorithm can create a representative
set of samples from distribution and requires fewer samples to achieve a high approximation quality
than random subsampling. We run the herding algorithm separately for treatment and control groups
to store the same number of feature representations from treatment and control groups. At this point,
we only store the memory set M/, and model g, , without the original data (D;).
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3.1.3 THE CONTINUAL CAUSAL EFFECT LEARNING MODEL

For now, we have stored memory M, and baseline model. To continually estimate the causal effect
for incrementally available observational data, we incorporate feature representation distillation and
feature representation transformation to estimate causal effect for all seen data based on balanced
global feature representation space. The framework of CERL is shown in Fig.[T]

Feature Representation Distillation. For next available dataset Dy = {(z,y,t)|lz € X,y €
Y,t € T} collected from second domain, we adopt the same selective representation learning
Jw, : X — Ry with elastic net regularization (L,,,) on new parameters wy. Because we expect
our model can estimate causal effect for both previous and new data, we want the new model to
inherit some knowledge from previous model. In continual learning, knowledge distillation (Hin-
ton et al.| [2015; |[L1 & Hoiem, 2017) is commonly adopted to alleviate the catastrophic forgetting,
where knowledge is transferred from one network to another network by encouraging the outputs
of the original and new network to be similar. However, for the continual causal effect estima-
tion problem, we focus more on the feature representations, which are required to be balanced
between treatment and control, and among different data domains. Inspired by |Hou et al.| (2019);
Dhar et al.| (2019); Iscen et al.| (2020), we propose feature representation distillation to encourage
the representation vector {g,, (z)|z € Dy} based on baseline model to be similar to the repre-
sentation vector {gy, (x)|x € Dy} based on new model by Euclidean distance. This feature dis-
tillation can help prevent the learned representations from drifting too much in the new feature
representation space. Because we apply the cosine normalization to feature representations and
|A=B|* = (A-B)"(A - B) = |A|* + | B|" — 24TB = 2(1 — cos(A, B)), the feature
representation distillation is defined as Lrp(x) = 1 — cos (gw1 (), G, (I)) ,where z € Ds.

L] o
ﬁi:g ‘\ H Herding
Figure 1: The blue part is baseline causal effect learning model for the first observational data. After

IPM
baseline model training, store a subset of feature representations R; into M; by herding algorithm.

The green part helps to map R; to transformed feature representations R; compatible with new
feature representations space Ry. Then the red part is used for continual causal effect estimation

based on feature distillation and balanced global feature representation learning for R1 and R».

1PM R, |tz R

Feature Representation Transformation. We have previous feature representations R, stored in
M; and new feature representations 2o extracted from newly available data. R; and Rs lie in
different feature representation space and they are not compatible with each other because they are
learned from different models. In addition, we cannot learn the feature representations of previous
data from the new model g,,,, as we no longer have access to previous data. Therefore, to balance the
global feature representation space including previous and new representations between treatment
and control groups, a feature transformation function is needed from previous feature representations
R; to transformed feature representations R; compatible with new feature representations space
R5. We define a feature transformation function as ¢1_,o : Ry — Rl. We also input the feature
representations of new data D5 learned from old model, i.e., g,,, (), to get the transformed feature
representations of new data, i.e., ¢1-,2(gw, (x)). To keep the transformed space compatible with
the new feature representation space, we train the transformation function ¢;_,o by making the
$1-2(gw, (x)) and gy, (x) similar, where © € D,. The loss function is defined as Lpp(z) =
1 — cos(¢1-2(gur (2)), guw, (@), which is used to train the function ¢, to transform feature
representations between different feature spaces. Then, we can attain the transformed old feature
representations Ry = ¢1_,2(R1), which is in the same space as Ro.

Balancing Global Feature Representation Space. We have obtained a global feature representa-
tion space including the transformed representations of stored old data and new representations of
new available data. We adopt the same integral probability metrics as baseline model to make sure
that the representation distributions are balanced for treatment and control groups in the global fea-
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ture representation space. In addition, we define a potential outcome function hy, : (Rl, Ro) xT —
Y. Let g = ho, (¢1-2(r:),t), where r; € My, and §P = hag, (guw, (;),t), where x; € D denote
the inferred observed outcomes. We aim to minimize the mean squared error in predicting factual
outcomes for global feature representations including transformed old feature representations and

"M "2 (GF — yP)?, where 7 is the

new feature representations: Lg = ﬁ% M —yM)? 4 n% >t

number of units stored in M; by herding algorithm, y € M, and ij € D,.
In summary, the objective function of our continual causal effect learning model is L = Lg +

aWass(P,Q) + ALy, + SLrp + 6 Lpr, where o, A, 8, and 0 denote the hyper-parameters con-
trolling the trade-off among Wass(P, Q), Ly,, Lrp, Lrr, and L in the final objective function.

3.2 OVERVIEW OF CERL

In the above sections, we have provided the baseline and continual causal effect learning models.
When the continual causal effect learning model for the second data is trained, we can extract the
Ry = {gu,(x)|z € Dy} and Ry = {¢12(r)|r € M;}. We define a new memory set as My =
{R2,Y2, T2} U ¢1_,2(M7), where ¢1_,2(M;) includes Ry and the corresponding {Y, T} stored in
M. Similarly, to satisfy the pre-specified memory constraint, M5 can be reduced by conducting the
herding algorithm to store the same number of feature representations from treatment and control
groups. We only store the new memory set My and new model g,,,, which are used to train the
following model and balance the global feature representation space. It is unnecessary to store the
original data (D; and D-) any longer.

We follow the same procedure for the subsequently available observational data. When we obtain
the new observational data D4, we can train hg,(gy,) and ¢g_14 : Rg—1 — Rd_l based on
the continual causal effect learning model. Besides, the new memory set is defined as: My =
{R4,Yq, Ty} U pg—1-a(Mg—1). So far, our model hg, (g.,) can estimate causal effect for all seen
observational data regardless of the data source and it doesn’t require access to previous data. The
detailed procedures of our CERL method are summarized in Algorithm 1 in Section B of Appendix.

4 EXPERIMENTS

We adapt the traditional benchmarks, i.e., News (Johansson et al} [2016}; [Schwab et al 2018)) and
BlogCatalog to continual causal effect estimation. Specifically, we consider three
scenarios to represent the different degrees of domain shifts among the incrementally available ob-
servational data, including the substantial shift, moderate shift, and no shift. Besides, we generate a
series of synthetic datasets and also conduct ablation studies to demonstrate the effectiveness of our
model on multiple sequential datasets. The model performance with different numbers of preserved
feature representations, and the robustness to hyperparameters are also evaluated.

4.1 DATASET DESCRIPTION

We utilize two semi-synthetic benchmarks for the task of continual causal effect estimation, which
are based on real-world features, synthesized treatments and outcomes.

News. The News dataset consists of 5000 randomly sampled news articles from the NY Times
corpusﬂ It simulates the opinions of media consumers on news items. The units are different
news items represented by word counts x; € NV and outcome y(z;) € R is the news item. The
intervention ¢ € {0, 1} represents the viewing device, desktop (t = 0) or mobile (t = 1). We
extend the original dataset specification in [Johansson et al.|(2016); [Schwab et al|(2018)) to enable
the simulation of incrementally available observational data with different degrees of domain shifts.
Assuming consumers prefer to read certain media items on specific viewing devices, we train a
topic model on a large set of documents and define z(x) as the topic distribution of news item
x. We define one topic distribution of a randomly sampled document as centroid z{ for mobile
and the average topic representation of all document as centroid z§ for desktop. Therefore, the
reader’s opinion of news item « on device ¢ is determined by the similarity between z(z) and z{,
ie., y(x;) = Clz(x)T2§ + t; - z(x)Tz5) + €, where C' = 60 is a scaling factor and € ~ N (0, 1).

'https://archive.ics.uci.edu/ml/datasets/bag+of+words
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Table 1: Performance on two sequential data and M=500. We present the mean value of ./epgHE
and exrg on test sets from two datasets. The standard deviations are tiny. Lower is better. Under
no domain shift scenario, the three strategies and CERL have the similar performance, because
the previous and new data are from the same distribution. Under substantial shift and moderate
shift scenarios, CFR-A performs well on previous data, but significantly declines on new dataset;
straxtegy CFR-B shows the catastrophic forgetting problem; CERL has a similar performance to
strategy CFR-C, while CERL does not require access to previous data. Besides, the larger domain
shift leads to worse performance of CFR-A and CFR-B. CERL has remained stable against shift.

News BlogCatalog

Previous data New data Previous data New data

Strategy  \/€PEHE  €ATE VEPEHE  €ATE V€EPEHE  €ATE \/ €EPEHE  €ATE

Substantial CFR-A  2.49 0.80 3.62 118 1 9.92 4.25 13.65 6.21
shift CFR-B 3.23 1.06 1T 271 0.91 14.21 698 1 9.77 4.11
CFR-C  2.51 0.82 2.70 0.92 9.93 4.24 9.77 4.12

CERL 2.55 0.84 2.71 0.91 9.96 4.25 9.78 4.12

Moderate CFR-A  2.58 0.85 3.06 1.02 1 9.89 422 11.26 5.03
shift CFR-B 2.98 099 1 2.65 0.92 12.35 5.67 1 9.83 4.18
CFR-C  2.56 0.85 2.63 0.90 9.88 421 9.81 4.16

CERL 2.59 0.86 2.66 0.92 9.90 4.24 9.82 4.17

No CFR-A  2.58 0.87 2.62 0.88 9.86 4.20 9.85 4.19
shift CFR-B 2.60 0.88 2.60 0.87 9.85 4.18 9.83 4.18
CFR-C  2.58 0.87 2.59 0.87 9.84 4.18 9.83 4.18

CERL 2.59 0.87 2.60 0.87 9.85 4.19 9.83 4.18

. . . . kez(@)T 2§ .
Besides, the intervention ¢ is defined by p(¢t = 1|x) = k-z(f>6726+ k-,.i<x)ng , where k& = 10 indicates
€ €

an expected selection bias. In the experiments, 50 LDA topics are learned from the training corpus
and 3477 bag-of-words features are in the dataset. To generate two sequential datasets with different
domain shifts, we combine the news items belonging to LDA topics from 1 to 25 into first dataset
and the news items belonging to LDA topics from 26 to 50 into second dataset. There is no overlap
of the LDA topics between the first dataset and second dataset, which is considered as substantial
domain shift. In addition, the news items belonging to LDA topics from 1 to 35 and items belonging
to from 16 to 50 are used to construct the first dataset and second dataset, respectively, which is
regarded as moderate domain shift. Finally, randomly sampled items from 50 LDA topics compose
the first and second dataset, resulting in no domain shift, because they are from the same distribution.
Under each domain shift scenario and each dataset, we randomly sample 60% and 20% of the units
as the training set and validation set and let the remaining be the test set.

BlogCatalog. BlogCatalog (Guo et al| [2020) is a blog directory that manages the bloggers and
their blogs. In this semi-synthetic dataset, each unit is a blogger and the features are bag-of-words

representations of keywords in bloggers’ descriptions collected from real-world source. We adopt
the same settings and assumptions to simulate the treatment options and outcomes as we do for the
News dataset. 50 LDA topics are learned from the training corpus. 5196 units and 2160 bag-of-
words features are in the dataset. Similar to the generation procedure of News datasets with domain
shifts, we create two datasets for each of the three domain shift scenarios. Under each domain shift
scenario and each dataset, we randomly sample 60% and 20% of the units as the training set and
validation set and let the remaining be the test set.

4.2 RESULTS AND ANALYSIS

Evaluation Metrics. We adopt two commonly used evaluation metrics. The first one is the error of
ATE estimation, which is defined as earg = |ATE — ATE|, where ATE is the true value and ATE is
an estimated ATE. The second one is the error of expected precision in estimation of heterogeneous

effect (PEHE) [Hill| (2011), which is defined as epgug = - 37| (ITE; — ITE,)?, where ITE; is the
true ITE for unit ¢ and ITE; is an estimated ITE for unit <.
We employ three strategies to adapt traditional causal effect estimation models to incrementally

available observational data: (A) directly apply the model previously trained based on original data
to new observational data; (B) utilize newly available data to fine-tune the previously learned model;
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Figure 2: The types of variables. Figure 3: The work flow of task.

Table 2: Performance on two sequential data and M = 10000. We present the mean value of /epggg
and earg on test sets from two datasets. The standard deviations are tiny. Lower is better.

Previous data New data
Strategy VEPEHE  €ATE V/€PEHE  €ATE
CFR-A 1.47 0.35 2.51 073 1
CFR-B 1.82 047 1 1.63 0.45
CFR-C 1.49 0.36 1.62 0.44
CERL 1.49 0.37 1.63 0.44
CERL (w/o FRT) 1.71 043 1 1.63 0.44
CERL (w/o0 herding) 1.57 040 1 1.63 0.44
CERL (w/o cosine norm) 1.51 038 1 1.65 0.44

(C) store all previous data and combine with new data to re-train the model from scratch. Among
these three strategies, (C) is expected to be the best performer and get the ideal performance with
respect to ATE and PEHE, although it needs to take up the most resources (all the data from previous
and new dataset). We implement the three strategies based on the counterfactual regression model
(CFR) [2017)), which is a representative causal effect estimation method.

As shown in Table m under no domain shift scenario, the three strategies and our model have the
similar performance on the News and BlogCatalog datasets, because the previous and new data are
from the same distribution. CFR-A, CFR-B, and CERL need less resources than CFR-C. Under
substantial shift and moderate shift scenarios, we find strategy CFR-A performs well on previous
data, but significantly declines on new dataset; strategy CFR-B shows the catastrophic forgetting
problem where the performance on previous dataset is poor; strategy CFR-C performs well on both
previous and new data, but it re-trains the whole model using both previous and new data. However,
if there is a memory constraint or a barrier to accessing previous data, the strategy CFR-C cannot be
conducted. Our CERL has a similar performance to strategy CFR-C, while CERL does not require
access to previous data. Besides, by comparing the performance under substantial and moderate
shift scenarios, the larger domain shift leads to worse performance of CFR-A and CFR-B. However,
no matter what the domain shift is, the performance of our model CERL is consistent with the ideal
strategy CFR-C.

4.3 MODEL EVALUATION

Synthetic Dataset. Our synthetic data include confounders, instrumental, adjustment, and irrele-
vant variables. The interrelations among these variables, treatments, and outcomes are illustrated
in Figure 2] We totally simulate five different data sources with five different multivariate normal
distributions to represent the incrementally available observational data. In each data source, we ran-
domly draw 10000 samples including treatment units and control units. Therefore, for five datasets,
they have different selection bias, magnitude of covariates, covariance matrices for variables, and
number of treatment and control units. To ensure a robust estimation of model performance, for
each data source, we repeat the simulation procedure 10 times and obtain 10 synthetic datasets. The
details of data simulation are provided in Section A of Appendix.

Results. Similar to the experiments for News and BlogCatalog benchmarks, we still utilize two
sequential datasets to compare our model with CFR under three strategies on the more complex
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synthetic data. As shown in Table[2] the result is consistent with the conclusions on News and Blog-
Catalog. Our model’s performance demonstrates its superiority over CFR-A and CFR-B. CERL is
comparable with CFR-C, while it does not need to have access to the raw data from previous dataset.
Besides, we also conduct three ablation studies to test the effectiveness of the important components
in CERL, i.e., CERL (w/o FRT), CERL (w/o herding), and CERL (w/o cosine norm). CERL (w/o
FRT) is the simplified CERL without the feature representation transformation, which is based on
traditional continual learning with knowledge distillation and integral probability metrics. In CERL
(w/o FRT), we do not store and transform the previous feature representation into new feature space,
and only utilize the knowledge distillation to realize the continual learning task and balance the bias
between treatment and control groups with each new data. CERL (w/o herding) adopts random
subsampling strategy to select samples into memory, instead of herding algorithm. CERL (w/o co-
sine norm) removes the cosine normalization in the last representation layer. Table 2] shows that
the performance becomes poor after removing anyone in the feature representation transformation,
herding, or cosine normalization modules compared to the original CERL. More specifically, after
removing the feature representation transformation, ,/epeng and earg increase dramatically, which
demonstrates that the knowledge distillation always used in continual learning task is not enough for
the continual causal effect estimation. Also, using herding to select a representative set of samples
from treatment and control distributions is crucial for the feature representation transformation.

CERL Performance Evaluation. As illustrated in Figure [3] the five observational data are incre-
mentally available in sequence, and the model will continue to estimate the causal effect without
having access to previous data. We further evaluate the performance of CERL from three perspec-
tives, i.e., the impact of memory constraint, effeteness of cosine normalization, and its robustness
to hyper-parameters. As shown in Figure F_fl (a) and (b), as the model continually learns a new
dataset, every time when finishing training one new dataset, we report the /epeng and earg on test
sets composed of previous data and new data. Our model with memory constraints has a simi-
lar performance to the ideal situation, where all data are available to train the model from scratch.
However, our model can effectively save memory space, e.g., when facing the fifth dataset, our
model only stores 1000, 5000, or 10000 feature representations, but the ideal situation needs to store
5 x 10000 = 50000 observations with all covariates. For the cosine normalization, we perform an
ablation study of CERL (M=5000, 5 datasets), where we remove cosine normalization in the repre-
sentation learning procedure. We find the ,/epgppg increases from 1.80 and 1.92 and earg from 0.55
to 0.61. Next, we explore the model’s sensitivity to the most important parameter v and §, which
controls the representation balance and representation transformation. From Fig. E (¢) and (d), we
observe that the performance is stable over a large parameter range. In addition, the parameter 3 for

feature representation distillation is set to 1 (Rebuffi et al} 2017 [Iscen et al.} 2020).
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Figure 4: Performance of CERL under different settings.

5 CONCLUSION

It is the first time to propose the continual lifelong causal effect inference problem and the cor-
responding evaluation criteria. As the real world evidence is becoming more prominent, how to
integrate and utilize these powerful data for causal effect estimation becomes a new research chal-
lenge. To address this challenge, we propose the Continual Causal Effect Representation Learning
method for estimating causal effect with observational data, which are incrementally available from
non-stationary data distributions. Extensive experiments demonstrate the superiority of our method
over baselines for continual causal effect estimation.
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A  SIMULATION PROCEDURE

Our synthetic data include confounders, instrumental, adjustment, and irrelevant variables. The in-
terrelations among these variables, treatments, and outcomes are illustrated in Figure[2] The number
of observed variables in the vector X = (CT,Z7,IT, AT)T is set to 100, including 35 confounders
in C, 35 adjustment variables in A, 10 instrumental variables in Z, and 20 irrelevant variables in
I. The model used to generate the continuous outcome variable Y in this simulation is the partially
linear regression model, extending the ideas described in |[Robinson| (1988)); Jacob et al.| (2019));|Chu
et al.[(2020):

Y =7((CT,AT))T +g((CT, AT)T) + ¢, (D

where € are unobserved covariates, which follow a standard normal distribution N(0,1) and

Ele|C,A,T] =0. T oad- Bernoulli(eg((CT, ZT)T)) and eq((CT, ZT)T) is the propensity score,
which represents the treatment selection bias based on their own confounders C' and instrumental
variables Z. Because we aim to simulate multiple data sources {Dy;d = 1,..., D}, the vector of
all observed covariates X = (CT, ZT,IT, AT)T is sampled from different multivariate normal dis-
tribution with mean vector u, u%, u¢,and p¢ and different random positive definite covariance
matrices ¥.%.

For each data source, except for the different magnitude of mean vector and structure of covariance
matrix, the simulation procedure is the same. Let D be the diagonal matrix with the square roots of
the diagonal entries of ¥ on its diagonal, i.e., D = +/diag(c), then the correlation matrix is given
as:

R=D"'vxD™ ! )

We use algorithm 3 in |Hardin et al.| (2013) to simulate positive definite correlation matrices consist-
ing of different types of variables. Our correlation matrices are based on the hub correlation structure
which has a known correlation between a hub variable and each of the remaining variables (Zhang
& Horvathl 2005} |[Langfelder et al.,|2008). Each variable in one type of variables is correlated to the
hub-variable with decreasing strength from specified maximum correlation to minimum correlation,
and different types of variables are generated independently or with weaker correlation among vari-
able types. Defining the first variable as the hub, for the ith variable (i = 2, 3, ..., n), the correlation
between it and the hub-variable in one type of variables is given as:

i—2\"
Ri,l = Pmax — <d_2> (pmax - pmin)7 (3)

where pmax and ppi, are specified maximum and minimum correlations, and the rate ~ controls rate
at which correlations decay.

After specifying the relationship between the hub variable and the remaining variables in the same
type of variables, we use Toeplitz structure to fill out the remainder of the hub correlation matrix
and get the hub-Toeplitz correlation matrix R;,,. for other type of variables. Here, R is the n X n
matrix having the blocks Rz, Rc, R4, and R; along the diagonal and zeros at off-diagonal elements.
This yields a correlation matrix with nonzero correlations within the same type and zero correlation
among other types. The amount of correlations among types which can be added to the positive-
definite correlation matrix R is determined by its smallest eigenvalue.

The function 7((CT, AT)T) describes the true treatment effect as a function of the values of adjust-
ment variables A and confounders C’; namely 7((CT, AT)T) = (sin ((CT, AT)T x b,))? where b,
represents weights for every covariate in the function, which is generated by uniform(0, 1). The
variable treatment effect implies that its strength differs among the units and is therefore condi-
tioned on C' and A. The function g((CT, AT)T) can have an influence on outcome regardless of
treatment assignment. It is calculated via a trigonometric function to make the covariates non-
linear, which is defined as g((CT, AT)T) = (cos ((CT, AT)T x b,))?. Here, b, represents a weight
for each covariate in this function, which is generated by uniform(0, 1). The bias is attributed to
unobserved covariates which follow a random normal distribution N (0, 1). The treatment assign-

ment T follows the Bernoulli distribution, i.e., T ‘A" Bernoulli(eg ((CT, ZT)T)) with probability

12
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eo((CT,ZT)T) = @(a;é;()a)), where eo((CT, ZT)T) represents the propensity score, which is the

cumulative distribution function for a standard normal random variable based on confounders C' and
instrumental variables Z, i.e., a = sin ((C7, ZT)T x b, ), where b, is generated by uniform(0, 1).

We totally simulate five different data sources with five different multivariate normal distributions
to represent the incrementally available observational data. In each data source, we randomly draw
10000 samples including treatment units and control units. Therefore, for five datasets, they have
different selection bias, magnitude of covariates, covariance matrices for variables, and number of
treatment and control units. To ensure a robust estimation of model performance, for each data
source, we repeat the simulation procedure 10 times and obtain 10 synthetic datasets.

B ALGORITHM 1

Algorithm 1 Continual Causal Effect Representation Learning

Data: Given d incrementally available observational data from D, to Dy
if {x,y,t} € D; then
*#% Train baseline causal effect model hg, (g, ) ***
wy, 01 = OPTIMIZE(Ly + aWass(P, Q) + ALy, )
Ry = {guw, (z)|lz € D1}
M; = HERDING{R;,Y1,T1}
else
for {z,y,t} € Ds,..., Dy do
% Train continual causal effect model hg, (gy,,) ***
wq, 04, da—1—4 = OPTIMIZE(L¢g + aWass(P, Q) + ALy, + BLrp + OLpr)
Rg1 = ¢pa—1-a(Rq-1)
Rq = {guw,(2)|z € Dy} )
My = HERDING({Rd, Ya, Td} U {Rdfl, Yo1€ Mg, T; 1 € Mdfl})

end
end
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