
Under review as a conference paper at ICLR 2024

LETI: LEARNING TO GENERATE FROM TEXTUAL IN-
TERACTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Finetuning pre-trained language models (LMs) is essential for enhancing their
capabilities and is a crucial phase in their lifecycles. Existing techniques commonly
fine-tune on input-output pairs (e.g., instruction fine-tuning Wei et al., 2022a) or
with numerical rewards that gauge the output quality (e.g., reinforcement learning
from human feedback Ouyang et al., 2022). We explore LMs’ potential to learn
from textual interactions (LETI) that not only check their correctness with binary
labels but also pinpoint and explain errors in their outputs through textual feedback.
Our focus is the code generation task, where the model produces code based on
natural language instructions. This setting invites a natural and scalable way to
acquire textual feedback: the error messages and stack traces from code execution
using a Python interpreter. LETI iteratively fine-tunes the model, using the LM
objective, on a concatenation of natural language instructions, LM-generated pro-
grams, and textual feedback, which is only provided when the generated program
fails to solve the task. Prepended to this fine-tuning text, a binary reward token
is used to differentiate correct and buggy solutions. LETI requires no ground-
truth outputs for training and even outperforms a fine-tuned baseline that does.
LETI not only improves the performance of two base LMs of different scales on a
code generation dataset MBPP, but also generalizes to other datasets. Trained on
MBPP, it achieves comparable or better performance than the base LMs on unseen
problems in HumanEval. Furthermore, compared to binary feedback, we observe
that textual feedback leads to improved generation quality and sample efficiency,
achieving the same performance with fewer than half of the gradient steps. LETI is
equally applicable in natural language tasks when they can be formulated as code
generation, which we empirically verified on event argument extraction.1

1 INTRODUCTION

Large-scale language models have fundamentally shifted the paradigms of natural language processing
(NLP). Based on LMs pre-trained on raw text, subsequent fine-tuning stages have proven crucial to
enhance their capabilities in solving benchmark NLP tasks and generating texts that align with human
preferences. Success has been achieved by fine-tuning with direct training signals that measure
whether the model, e.g., classifies the input into the right category Devlin et al. (2019), answers a
question correctly Li et al. (2017); Ramamurthy et al. (2022), summarizes documents well Stiennon
et al. (2020); Wu et al. (2021), and generates outputs that align with human preferences Ouyang et al.
(2022); Korbak et al. (2023). We hypothesize that LMs can harness the much richer training signals
from textual interactions with the environment (e.g., a human or a Python interpreter) that not only
check the correctness of LM’s outputs but also pinpoint the errors and explain why.

We propose LETI, a new LM fine-tuning paradigm that aims to explore LMs’ potential to learn from
nuanced textual interactions. We evaluate LETI on code generation tasks, where the LM is supposed
to generate code pieces to solve tasks described in natural language. This setting invites a natural and
scalable way to acquire automatic interactive textual feedback: the stack traces and error message
outputs by established programming language (PL) tools such as a Python interpreter. LETI’s
improvement process naturally mirrors a typical software development cycle: a human developer
writes an initial program, executes it, and improves the program based on feedback obtained from

1Our code will be available at <anonymized>.

1

Under review as a conference paper at ICLR 2024

Figure 1: Qualitative example of LETI improving an LM on code generation by leveraging feedback
from a solution evaluator (e.g., a Python interpreter). At each LETI iteration, the LM is first asked to
generate candidate solutions. As a case study, we obtain binary and textual feedback by executing the
solution against test cases using a Python interpreter. Feedback and the generated solutions are used
to improve the LM generator for the next LETI iteration through feedback-conditioned fine-tuning
(§2.3). This is a code generation (MBPP; Austin et al., 2021) test set example generated by a 2B
model optimized with LETI. We omit a few iterations and repetitive code for clarity.

the programming environment until a satisfying solution is found (e.g., successfully executed with
no error); Furthermore, the human developer learns from mistakes in this process and becomes a
(slightly) better developer who can avoid similar mistakes in the future. Similarly to the human
development process, we provide empirical evidence that LETI can learn from past mistakes and
avoid similar errors in §3.2.

In LETI, a base LM pre-trained on both natural language and code2 is asked to generate a piece
of program conditioning on the natural language instruction, which is then tested on a suite of test
cases. LETI fine-tunes the model on a concatenation of natural language instruction, LM-generated
program, and the textual feedback (e.g., stack traces and error messages) that pinpoints the bug,
which is only provided when the generated program fails to solve the task. In addition to textual
feedback, we prepend the fine-tuning sequences with a reward token (i.e., binary feedback), which
differs for correct (<|good|>) and buggy solutions (<|bad|>), to encourage the LM to generate
correct solutions when conditioning on <|good|>. LETI repeats this procedure for multiple rounds.
During this iterative process, LETI assumes no instruction-code paired data.

We find that LETI improves LM’s performance on code generation tasks in MBPP (Austin et al., 2021)
without using any ground-truth code. Specifically, it generates 63.2% more syntactically correct and
executable code (on the 2B LM) compared to the pre-trained model without any commonly employed
post-processing heuristics3. When post-processing is applied, LETI (2B) improves performance and
eliminates most NameError issues that occur when a variable or function is not defined (from 10%
to 1%, on the 2B LM) in two iterations. The optimized LM also shows generalized performance

2Almost all modern large language models train on both natural language and code (Brown et al., 2020;
OpenAI, 2023; Chowdhery et al., 2022; Touvron et al., 2023a).

3Stop-word-based post-processing heuristics (Fig. A.11) are commonly used by Code-LM (Chen et al.,
2021b) to remove irrelevant code (e.g., only keep the first block of generated code).

2

Under review as a conference paper at ICLR 2024

improvement on another code generation dataset HumanEval (Chen et al., 2021b) (§3.2). Such
improvement in in-domain tasks does not come at the cost of the capability of the original LM (e.g.,
reasoning and chain-of-thought capability Wei et al. 2022b) due to LETI’s auxiliary objective that
continuing pre-train along with fine-tuning (§3.4).

We observe that textual feedback is advantageous in terms of improving the LM compared to baselines
that only use binary feedback, as it offers enhanced performance and greater sample efficiency that
only requires about half of the gradient steps to reach the same performance for the 2B-scale model
(§3.3). Furthermore, we find LETI is equally applicable to NLP tasks (e.g., event argument extraction
Wang et al. 2023a) when they can be formulated into a code generation problem (§3.5).

2 LETI: LEARNING FROM TEXTUAL INTERACTIONS

Each iteration, LETI prompts the LM (§2.1) with the natural language problem description to
generate a set of n solutions. The solutions are then evaluated on a suite of test cases by a Solution
Evaluator (§2.2) to generate textual feedback (i.e., stack traces and error messages). This work uses
a Python interpreter as the solution evaluator to assess LM-generated solutions. The textual feedback
is used to fine-tune the LM with Feedback-Conditioned Fine-Tuning (FCFT, §2.3).

We assume no ground-truth solutions while fine-tuning the LM, as LETI directly learns from
solution evaluator’s feedback. Intuitively, FCFT leverages textual feedback to associate various
types of errors (e.g., SyntaxError) and solutions that commit them. Furthermore, with binary
feedback, FCFT aligns correct or wrong solutions with corresponding pre-pended reward tokens
<|good|> or <|bad|>, so that better solutions can be sampled from a trained LM by conditioning
it on <|good|>. The workflow (one iteration) is described in Algorithm 1 and Fig. A.6.

2.1 LANGUAGE MODEL

The base LM can be any generative language model pθ, pre-trained on both natural and programming
languages. For a given problem xi ∈ P , we sample n solutions Si = {ŷi,1, . . . , ŷi,n} from pθ(· | xi)
(conditioned on reward token <|good|> when pθ is fine-tuned for at least one iteration using FCFT),
where each solution ŷi,j is a sequence of tokens. We analyze the importance of problem set size |P|
and the number of sampled solutions n in §B.2 and §B.1. Since pθ is trained on code, we assume
that it can generate programs reasonably well in the training problem set, and at least some of the
n solutions are correct when an arbitrarily large n is chosen. We use n = 128 for code generation
experiments on MBPP (§3.2) and n = 64 for event argument extraction (§3.5).

2.2 SOLUTION EVALUATOR

Given a problem xi, its test cases Ti, and any generated solution ŷi,j , the Solution Evaluator ϕ (a
Python interpreter) provides feedback Fi,j , which consists of binary fbinary and textual feedback
ftext (i.e., fbinary, ftext = ϕ(xi, ŷi,j , Ti)). fbinary ∈ {0, 1} reflects the correctness of a solution, where
fbinary = 1 means the given solution ŷi,j can successfully solve the given problem xi, and vice versa.
ftext is a concatenation of stack traces and a textual error message provided by the Python interpreter
only when the generated solution commits an error on a test case. Examples of ftext can be found in
Fig. 1 and A.6. Generally speaking, we can implement ϕ differently for different types of problems;
In §3.5, we show that it is possible to implement a ϕ that works for an NLP task.

2.3 FEEDBACK-CONDITIONED FINE-TUNING (FCFT)

Each LETI iteration samples solutions from LM pθ, evaluates generated solutions to obtain feedback
using ϕ, and improves the generator LM with feedback-conditioned fine-tuning (FCFT). FCFT fine-
tunes pθ on each problem xi and generated solution ŷi,j conditioned on feedback Fi,j (a sequence of
tokens comprised of binary fbinary and textual feedback ftext). This resembles on-policy reinforcement
learning, where pθ is the policy and the solution evaluator ϕ plays the role of a reward function.

Feedback Fi,j concatenates one initial reward token that denotes the binary feedback fbinary indicating
whether the solution is correct, and textual feedback ftext, if provided. If the solution evaluator ϕ
finds solution ŷi,j correct, we use a reward token <|good|>, and <|bad|> otherwise. Follow-

3

Under review as a conference paper at ICLR 2024

ing the initial reward token, we include the textual feedback ftext, if provided, enclosed by two
special tokens denoting the beginning and end of textual feedback (i.e., <|text_feedback|>,
<|/text_feedback|>). That is, both feedback for the problem xi and solution ŷi,j are a concate-
nated sequence of tokens: Fi,j = fbinary ⊕ <|text_feedback|>⊕ ftext ⊕ <|/text_feedback|>.
In the case when ftext is not provided (e.g., when fbinary = 1), only the initial reward token is included
as feedback: Fi,j = fbinary. We expand the vocabulary of the initial pre-trained LM pθ to include
these additional tokens.

LETI optimizes pθ with the language modeling objective on sequence s = Fi,j ⊕ xi ⊕ ŷi,j (i.e., a
concatenation of instruction and generated solution conditioned on the feedback) as shown in part (1)
of equation 1. A concrete example of a data instance can be found in Fig. A.6.

2.4 REGULARIZATION WITH CONTINUED PRE-TRAINING

To alleviate distribution shifts that may be caused by fine-tuning on generated solutions, we interleave
FCFT optimization (§2.3) with LM objective optimization on the pre-training data. equation 1 puts
the entire LETI’s training loss together. Our ablation study shows that the regularization by continued
pre-training is essential to maintain LM’s original capability on tasks that it was not trained on (§3.4).

L(θ) = 1

|DFCFT|
∑

s=F⊕x⊕ŷ∈DFCFT

LLM(s, θ) +
1

|Dpre-train|
∑

s′∈Dpre-train

LLM(s′, θ) (1)

(1) Feedback-conditioned Fine-tuning (FCFT) (2) Regularization with pre-training dataset

LLM (x, θ) = −
∑

t log pθ (xt | x<t)

Algorithm 1 One iteration of LETI Improvement using Feedback-conditioned Fine-tuning (FCFT).

Require: Dpre-train ▷ Pre-training Dataset
DFCFT ← {} ▷ Dataset for FCFT
for each problem xi ∈ P and its test cases Ti do

for j = 1 to n do
Sample a solution ŷi,j from pθ(· | xi), conditioned on <|good|> for fine-tuned pθ (§2.1)
fbinary, ftext ← ϕ(xi, ŷi,j , Ti) ▷ Generate feedback using evaluator ϕ (§2.2)
Fi,j = fbinary ⊕ <|text_feedback|>⊕ ftext ⊕ <|/text_feedback|>
DFCFT ← DFCFT ∪ {Fi,j ⊕ xi ⊕ ŷi,j} ▷ Construct the feedback-conditioned dataset

end for
end for
Fine-tune the LM pθ for a fixed epochs on DFCFT and Dpre-train (equation 1)

3 EXPERIMENTAL RESULTS

3.1 EXPERIMENT SETUP

Base model. We experiment with CodeGen-mono LMs (Nijkamp et al., 2022), a series of open-
sourced LMs pre-trained with both natural language and code with a range of model sizes. The NL
and PL mixture of pre-training data makes it possible to evaluate LETI on both NL and PL tasks.
Due to limited computational resources, we choose to experiment with 350M and 2B sized models.

Dataset for continued pre-training. We use the Python subset of TheStack v1.1 dataset
(Kocetkov et al., 2022) as the continued pre-training dataset for the mixture pre-train objective (§2.4)4.

3.2 LETI MAKES LMS BETTER CODE GENERATORS

3.2.1 MOSTLY BASIC PYTHON PROBLEMS (MBPP)

Setup. We use the Mostly Basic Python Problems (MBPP) dataset (Austin et al., 2021) for training
and evaluation. It contains 974 short Python problems described in natural language targeting entry-
level programmers. LETI requires no ground-truth code but assumes a test suite for each problem

4The pre-training dataset BIGPYTHON of CodeGen-mono is not publicly available at the time of writing.

4

Under review as a conference paper at ICLR 2024

that MBPP provides to check solutions’ correctness. Additional details (e.g., hyper-parameters) can
be found in §C. We allow the model to generate 512 tokens at max for each problem and evaluate the
generated solutions by executing them against a test suite.

Post-Processing. Stop-word-based post-processing heuristics (Fig. A.11) are commonly employed by
Code-LM (Chen et al., 2021b) to remove irrelevant code (e.g., only keep the first block of generated
code) and improve performance. However, such post-processing heuristics require manual effort and
are less scalable to extend to different tasks. Whether or not LMs can improve code generation without
postprocessing is a great testbed to evaluate their capabilities of learning from textual feedback and
is central to answering our research question. Therefore, we test the general applicability of LETI
both with and without postprocessing. Unless otherwise noted, we default to without post-processing
setting in the following experiments.

Evaluation metrics. We use the pass@k metric. The model generates k solutions for each problem;
it is considered successfully solving the problem if at least one of the k solutions passes all test cases.
With higher k values, the chance of observing a correct output for a problem increases. To reduce
variances, we sample more than k solutions to estimate pass@k, see §C.1 for details.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration

5

10

15

20

Tr
ai

n
Pr

ob
le

m
 P

as
s @

 1
 (%

)

Train Problem Pass @ 1 (%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration

5

10

15

20

25

Te
st

 P
ro

bl
em

 P
as

s @
 1

 (%
)

finetuned (350M)
finetuned (2B)

Test Problem Pass @ 1 (%)

LETI (350M) LETI (350M) w/o textual feedback LETI (2B) LETI (2B) w/o textual feedback

Figure 2: LETI (w/o post-processing) improves the base LMs performance on a code generation
dataset MBPP. (left) LETI can iteratively improve the success rate of the LMs’ generated solutions on
training set problems; (right) LETI reaches performance close to (350M) or surpasses (2B) fine-tuned
performance on the test set after a few iterations, despite not using any ground truth solutions.

Results. As shown in Fig. 2, LETI (w/o post-processing) learns from interactions with MBPP
training set problems (i.e., iteratively generate, evaluate solutions, and learn from textual feedback) to
generate better solutions for both training and testing problems. Despite not being fine-tuned on any
ground truth solutions, LETI improves test set Pass@1 with increasing iterations and outperforms a
supervised fine-tuned baseline (for the 2B model). LETI is also helpful when the post-processing
heuristic is applied to the LM’s output: 2B LM improves from 26.89% to 29.53% within two iterations
(Tab. 1). We include a qualitative example for the 2B model in Fig. 1.

Error analysis. On MBPP test set with 8,000 instances (500 test examples, 16 generations per exam-
ple), we show how the distribution of error types changes for LETI (2B) in Tab. 1. These error types
are concrete exceptions5 of Python3 programming language. On LETI (2B, w/o post-processing), we
initially observed that most errors are SyntaxError (5179, 64.7%) due to no post-processing. We find
that LETI can gradually reduce the proportion of generated code that causes SyntaxError by 56.5%
(5179→ 652) and produce 63.2% more executable code (pass test + AssertionError). Most of the
remaining errors (54.5% out of 71.8%) are due to the generated code being functionally incorrect
as validated by the test suite (AssertionError), which can be hard to fix using the error message and
stack traces alone (Jones et al., 2002), even for humans. Similarly, on LETI (2B, w/ post-processing),
we observe NameError, which can be fixed using the error message alone, is mostly eliminated
(810→ 94) within two iterations, demonstrating the effectiveness of LETI. These results also expose
the limitation of automated textual feedback from Python interpreter, which can be mitigated by (1)
increasing exploration in the hope of finding better code by sampling more per problem (§B.1, Li
et al. 2022), (2) leveraging more powerful sources of feedback (Wang et al., 2023b), or (3) keeping
pre-training base LM on more relevant solutions.

5https://docs.python.org/3/library/exceptions.html#concrete-exceptions

5

https://docs.python.org/3/library/exceptions.html#concrete-exceptions

Under review as a conference paper at ICLR 2024

Table 1: Count of top-3 error
types on MBPP test set before
and after LETI fine-tuning.

LETI (2B) w/o post-processing
Pre-trained Fine-tuned

of AssertionError 1189 4356
of SyntaxError 5179 652
of IndentationError 467 165
of Other Errors 799 572
of Pass Test 366 2255
Pass@1 (%) 4.50 28.00

LETI (2B) w/ post-processing
Pre-trained Fine-tuned

of AssertionError 3835 4376
of SyntaxError 437 458
of NameError 810 94
of Other Errors 652 657
of Pass Test 2266 2415
Pass@1 (%) 26.89 29.53

Table 2: HumanEval performance of LMs finetuned on MBPP using
LETI. We observe consistent Pass@10 and Pass@100 improvement
across different model sizes. The top-ranked results are presented in
bold, while the second-ranked results are underlined.

HumanEval
Pass@1 Pass@10 Pass@100

Pre-trained (350M) 12.56 23.11 35.19
LETI (350M) w/o textual feedback 12.19 21.69 35.62
LETI (350M) 13.19 23.36 36.95
Pre-trained (2B) 23.70 36.64 57.01
LETI (2B) w/o textual feedback 19.90 35.62 58.48
LETI (2B) 21.60 37.03 58.28
LETI (2B, trained w/ post-processing) 21.60 39.51 61.46

3.2.2 HUMANEVAL

Setup. We evaluate LM trained on MBPP on another code generation dataset HumanEval (Chen et al.,
2021b), which contains 164 handwritten problems to assess language comprehension, reasoning,
algorithms, and simple math capabilities. We use the same pass@k metric as described in §3.2.1
and apply post-processing for the generated solution.

Results. Despite being trained on a problem set MBPP that contains the most basic Python problems,
as shown in Tab. 2, LETI can improve LM’s capability in other code generation problems in the
HumanEval dataset. Compared to pre-trained LM, we observe consistent Pass@10 and Pass@100
improvement across both 350M and 2B LMs, while the 2B LM has a degraded Pass@1 performance.
We observe larger improvements for LETI (2B) trained with post-processing as it allows LETI to
focus on improving common error (e.g., NameError) in evaluation that applies post-processing.

3.3 LEARNING FROM TEXTUAL FEEDBACK IS MORE SAMPLE-EFFICIENT

To study the effect of learning from textual feedback, Fig. 2 compares LETI against a baseline that
only uses binary feedback. Regardless of model sizes, LMs trained with textual feedback obtain
better final performance and improve faster (up to 2.2x for 2B; Tab. 3).

LM’s ability to leverage textual feedback increases with scale. A larger model is more effective
in learning from textual feedback and can obtain a larger (average) improvement per iteration than
a baseline that only uses binary feedback (Tab. 3): 2B model that uses textual feedback improves
2.24x faster than binary feedback, while 350M is only 1.57x faster. Similar to Kaplan et al. (2020),
we also find that a larger LM (2B) optimized using LETI obtains larger improvements per iteration
(approx. 8x more compared to 350M LM) for both training and testing problems when both are given
textual feedback. In other words, a larger model requires fewer gradient updates to achieve similar
performance in a smaller model. These observations suggest that we might see more significant gains
by applying LETI on LMs of a larger scale (e.g., 6B, 16B), which we leave for future work.

LMs trained with textual feedback can use samples more efficiently. As shown in Fig. 3, compared
to a baseline that only uses binary feedback, LETI (2B) yields better accuracy and sample efficiency:
2.74x and 2.24x higher improvement rate for |P| = 128 and |P| = 374 (Tab. 4). Interestingly,
we observe a different trend for the smaller LM (350M). When decreasing the number of training
problems from 374 to 128, LETI actually underperforms the baseline that only uses binary feedback.
We conjecture that this is because (1) a smaller LM may lack the capacity to learn from textural
feedback, and (2) LMs can benefit from a larger |P| by seeing a more diverse set of problems.

3.4 LETI RETAINS REASONING AND CHAIN-OF-THOUGHT PERFORMANCE

Setup. We evaluate LETI-optimized LM (w/o post-processing) on additional reasoning tasks,
including GSM8K (Grade School Math) Cobbe et al. (2021), a mathematical reasoning dataset
that includes grade school math problems, and Big-Bench-Hard (BBH) Suzgun et al. (2022) that
includes 26 challenging and diverse tasks (e.g., date understanding, sport understanding) testing

6

Under review as a conference paper at ICLR 2024

0 2 4 6 8 10 12 14
Iteration

4

6

8

10

12

14

Te
st

 P
ro

bl
em

 P
as

s @
 1

 (%
)

350M Test Problem Pass @ 1 (%)

0 1 2 3 4 5 6 7 8
Iteration

5

10

15

20

25

2B Test Problem Pass @ 1 (%)

LETI , |P|=374 (full dataset) LETI w/o textual feedback , |P|=374 (full dataset) LETI , |P|=128 LETI w/o textual feedback , |P|=128

Figure 3: LETI performance with different numbers of training problems |P| ∈ {128, 374}. LETI
(2B) with textual feedback can use samples more efficiently than a baseline that does not leverage
textual feedback by always achieving higher performance and improvement rate (Tab. 4).

Table 3: On MBPP, LETI improves the LMs’ code gen-
eration performance by up to 2.24x more per iteration
when textual feedback is provided.

Test Problem Pass@1 (%)
Model Textual Initial Max #Iter Avg. improvement
Size Feedback Pass@1 Pass@1 to Max per iteration

2B ✓ 4.50 28.00 6 3.92 (2.24x)
× 4.50 18.54 8 1.75

350M ✓ 7.40 13.96 14 0.47 (1.57x)
× 7.40 10.75 11 0.30

Table 4: LETI’s average improvement per
iterations for different numbers of training
problems |P| ∈ {128, 374}.

Avg. improvement per iteration
Model Textual # Train Problems |P|
Size Feedback 128 374 (full dataset)

2B ✓ 2.60 (2.74x) 3.92 (2.24x)
× 0.95 1.75

350M ✓ 0.17 (0.63x) 0.47 (1.57x)
× 0.27 0.30

model’s generic reasoning capability. For GSM8K, we evaluate on PaL-style prompting (Gao et al.,
2022) settings that ask LM to generate code and execute them to solve the given reasoning problem.
Solutions for these reasoning tasks are generated without being conditioned on any reward token
(e.g., <|good|>). We evaluate Big-Bench-Hard on two prompt settings: direct prompting that
asks the model to generate an answer directly and chain-of-thought (CoT) prompting (Wei et al.,
2022b) that elicits a series of intermediate reasoning steps from the LM before generating the answer.
We calculate the performance gain ∆CoT−direct from doing chain-of-thought by calculating the
performance difference between CoT and direct prompting.

Results. As shown in Tab. 5, we observe no significant degradation in out-of-domain reasoning
performance (i.e., GSM8K and BBH) after LETI fine-tuning. Moreover, as shown on BBH, applying
LETI on a 2B LM improves its chain-of-thought capability compared to its pre-trained checkpoint
(i.e., higher CoT and ∆CoT−direct). In a smaller 350M model, we observe some degradation in
BBH’s CoT performance despite also applying regularization via continued pre-training (§2.4).

Removing regularization degrades performance outside MBPP. We compare LMs (350M) trained
with and without the continued pre-training regularization (§2.4). We observe no significant difference
between in-domain task performance (MBPP) shown in Fig. A.9. However, as shown in Tab. 5,
removing regularization significantly degrades LM’s capability on PaL-prompted GSM-8K, similar
to findings from Fu et al. (2023), it also degrades BBH’s chain-of-thought performance.

Table 5: Performance on additional reasoning tasks, including math reasoning benchmark GSM8K
Cobbe et al. (2021) and Big-Bench-Hard (i.e., BBH) Suzgun et al. (2022). *250 out of 6,511 BBHCoT

prompts have more than 2048 tokens, which exceed CodeGen models’ context window. Scores are
set to 0 for these prompts.

GSM8K Big-Bench-Hard
PaL direct CoT* ∆CoT−direct

Pre-trained (2B) 40.03 29.67 36.81 7.14
LETI (2B) 38.97 29.41 37.46 8.05
LETI (2B, w/ post-processing) 42.99 29.81 36.72 6.91
LETI (2B) w/o textual feedback 41.93 29.23 36.71 7.48
LETI (2B) w/o regularization 32.15 30.06 35.82 5.76
Pre-trained (350M) 13.04 29.10 30.53 1.43
LETI (350M) 16.68 28.89 28.86 -0.03
LETI (350M) w/o textual feedback 16.07 28.81 28.72 -0.09
LETI (350M) w/o regularization 7.88 28.00 28.31 0.31

7

Under review as a conference paper at ICLR 2024

3.5 LETI IS APPLICABLE TO NLP TASKS LIKE EVENT ARGUMENT EXTRACTION (EAE)

When an NLP task can be formulated into a code generation problem, LETI is equally applicable.
We experiment with event argument extraction (EAE), cast as a code generation problem by Wang
et al. (2023a). Given an event ontology (Fig. 4 upper left) and a natural language sentence (Fig. 4
bottom left), we ask the LM to generate code to instantiate an event class using correct argument
roles extracted from the sentence. Then we can check and examine the instantiated event object to
validate the correctness of the solution (Fig. 4, right).

Solution evaluator implementation. We build a rule-based solution evaluator for the EAE task
that checks the instantiated event object in Python (Fig. 4). Specifically, we first check whether the
generation satisfies argument constraints by providing a list of Entity objects for each event argument
role (1, 2 in Fig. 4); Then we check whether all the predicted arguments match any of the ground
truths (3, Fig. 4) and whether all the correctly identified arguments are classified to the correct event
role (4, Fig. 4); Finally, we check if the prediction is complete by identifying all arguments in the
ground truth solution (5, Fig. 4). We say the solution is correct with fbinary = 1 when the it meets
all of the above criteria. Note that the design decision of the solution evaluator (e.g., which error to
check first) can influence what type of error LETI-optimized LM will prioritize to avoid.

Figure 4: Rule-based Solution Evaluator for Event Argument Extraction (EAE) formulated as code
generation task Wang et al. (2023a). Content enclosed by {...} in ftext is automatically populated
by a Python implementation of Evaluator for any given solution.

Results. LETI’s performance on EAE task is summarized in Fig. 5. In Fig. 5 (left), We find that LETI
is capable of improving the train and test pass rate of generated solutions (i.e., a larger proportion
of fbinary = 1 for both training and testing test). We also observe increased test performance on
task-specific metrics: Argument Identification (Arg-I) F1 increases by 12.3% (21.2% → 33.5%),
and Argument Classification (Arg-C) F1 increases 2.6% (8%→ 10.6%) with three iterations.

Implementation of solution verifier could influence the target metric of optimization. Interest-
ingly, we find that improving fbinary using our solution evaluator results in better performance in some
task-specific metrics (e.g., Arg-I and Arg-C precision) but not others (e.g., Arg-I and Arg-C F1).
As shown in Fig. 5, Arg-I and Arg-C precision, among other task-specific metrics, has the highest
Pearson correlation of 0.93 and 0.73 with test Pass@1, while Arg-I F1 and Arg-C F1 only moderately
(0.51) or weakly (0.29) correlate with test Pass@1. One possible reason is that LETI forces the model
to be correct on every argument it identified in the evaluator implementation (Fig. 4 step 3). This

8

Under review as a conference paper at ICLR 2024

could inhibit the model from generating arguments very close to the ground truth solutions, reflected
in the degrading recall (correlation with Test Pass@1 of -0.08 and -0.24 for Arg-I and Arg-C recall)
and improved precision in Fig. 5. This is similar to the reward-shaping problem in reinforcement
learning. One can implement solution evaluators that suit better certain metrics.

0 1 2 3 4 5
iteration

200

400

600

800

1000

1200

Training / Testing Performance

Train Pass@1
Test Pass@1

0 1 2 3 4 5
iteration

20

25

30

35

40

45
Argument Identification (Arg-I)

Precision (P)
Recall (R)
F1

0 1 2 3 4 5
iteration

6

8

10

12

14

16
Argument Classification (Arg-C)

Precision (P)
Recall (R)
F1

Test Pass@1

Arg-I P

Arg-I R

Arg-I F1

Arg-C P

Arg-C R

Arg-C F1

0.93

-0.08

0.51

0.73

-0.24

0.29

Correlation

Figure 5: Event Argument Extraction performance and their correlation with Test Pass@1 when
using LETI to optimize towards success rate. We found that the rule-based solution evaluator (Fig. 4)
can be designed to biased towards optimizing precision as discussed in §3.5.

4 RELATED WORK

Using feedback to improve code generation. Leveraging non-textual feedback from an interpreter,
prior work can generate solutions following natural language instructions by sampling and filtering
large amounts of programs (Li et al., 2022; Chen et al., 2022), training a model to rank generated
solutions (Inala et al., 2022), fine-tuning a Code-LM on generated solutions verified by test cases
(Haluptzok et al., 2022), or training a reward model and using reinforcement learning (RL) to improve
Code-LMs (Le et al., 2022). Recent work has explored textual feedback (e.g., error messages,
human language feedback) to improve LM for code-related problems. Chen et al. (2023a) improves
code generation by fine-tuning the original LM on code refinement generated by conditioning on
human language feedback; Different from our work, their fine-tuned LM uses more expensive human
feedback and is not trained directly on the provided textual feedback. Chen et al. (2023b); Madaan
et al. (2023) improve code generation by allowing LM to look at self-generated (and/or interpreter)
feedback; however, the generator LM was frozen and couldn’t generate better code on the original
problem without these methods, while LETI improves the underlying LM directly.

Improving LMs with reinforcement learning. Using PPO, Stiennon et al. (2020); Ouyang et al.
(2022) align LMs with human preferences. CodeRL (Le et al., 2022) follows REINFORCE (Williams,
1992) and policy gradient (Sutton et al., 1999) to improve Code-LMs with a scalar reward from the
interpreter. Different from LETI that directly leverages textual feedback, these algorithms require
either manually crafting (Le et al., 2022) or training (Stiennon et al., 2020; Ouyang et al., 2022)
reward/value functions, which could be less scalable for various tasks. Another strand of work
leverages Transformer architecture Vaswani et al. (2017) to perform RL with sequence modeling
(Janner et al., 2021; Chen et al., 2021a). Lu et al. (2022); Korbak et al. (2023); Zhang et al. (2023);
Liu et al. (2023) improve LM by performing condition training, similar to conditioning LM on binary
feedback fbinary in LETI. LETI goes beyond the aforementioned work conditioning on the coarse-
grained label: we are asking the LM to comprehend and improve directly based on textual feedback
(e.g., error messages) that generally contains richer information compared to binary feedback.

5 CONCLUSION

We proposed LETI, a new LM fine-tuning paradigm that explores LM’s potential to learn from
textual interactions. We focused on code generation tasks and showed that one can effectively
leverage automatic textual feedback from a Python interpreter to improve LMs. Textual feedback
outperforms baselines that only use binary feedback in both generation quality and sample efficiency.
Furthermore, LETI is equally applicable in NLP tasks that can be formulated as code generation,
which we empirically verified on Event Argument Extraction. We refer to §A for a discussion of
limitations and future work.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program synthesis with
large language models. ArXiv, abs/2108.07732, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Angelica Chen, Jérémy Scheurer, Tomasz Korbak, Jon Ander Campos, Jun Shern Chan, Samuel R
Bowman, Kyunghyun Cho, and Ethan Perez. Improving code generation by training with natural
language feedback. arXiv preprint arXiv:2303.16749, 2023a.

Bei Chen, Fengji Zhang, A. Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. ArXiv, abs/2207.10397, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. ArXiv, abs/2304.05128, 2023b.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems. ArXiv, abs/2110.14168,
2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. pp. 4171–4186, 2019.

Yao Fu, Hao-Chun Peng, Litu Ou, Ashish Sabharwal, and Tushar Khot. Specializing smaller language
models towards multi-step reasoning. ArXiv, abs/2301.12726, 2023.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. ArXiv, abs/2211.10435, 2022.

Patrick M. Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language models can teach
themselves to program better. ArXiv, abs/2207.14502, 2022.

Jeevana Priya Inala, Chenglong Wang, Mei Yang, Andres Codas, Mark Encarnación, Shuvendu
Lahiri, Madanlal Musuvathi, and Jianfeng Gao. Fault-aware neural code rankers. Advances in
Neural Information Processing Systems, 35:13419–13432, 2022.

Michael Janner, Qiyang Li, and Sergey Levine. Reinforcement learning as one big sequence modeling
problem. In Neural Information Processing Systems, 2021.

James A Jones, Mary Jean Harrold, and John Stasko. Visualization of test information to assist fault
localization. In Proceedings of the 24th international conference on Software engineering, pp.
467–477, 2002.

Jared Kaplan, Sam McCandlish, T. J. Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models. ArXiv,
abs/2001.08361, 2020.

10

Under review as a conference paper at ICLR 2024

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis,
Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, et al. The stack: 3 tb of permissively
licensed source code. arXiv preprint arXiv:2211.15533, 2022.

Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Bhalerao, Christopher L. Buckley, Jason Phang,
Sam Bowman, and Ethan Perez. Pretraining language models with human preferences. ArXiv,
abs/2302.08582, 2023.

Hung Le, Yue Wang, Akhilesh Deepak Gotmare, Silvio Savarese, and Steven Hoi. CodeRL: Mastering
code generation through pretrained models and deep reinforcement learning. In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=WaGvb7OzySA.

Jiwei Li, Alexander H. Miller, Sumit Chopra, Marc’Aurelio Ranzato, and Jason Weston. Dialogue
learning with human-in-the-loop. In International Conference on Learning Representations, 2017.
URL https://openreview.net/forum?id=HJgXCV9xx.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom,
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de, Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey, Cherepanov, James Molloy, Daniel Jaymin Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de, Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378:1092 – 1097, 2022.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. Chain of hindsight aligns language models with
feedback. CoRR, abs/2302.02676, 2023. doi: 10.48550/arXiv.2302.02676. URL https:
//doi.org/10.48550/arXiv.2302.02676.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Am-
manabrolu, and Yejin Choi. Quark: Controllable text generation with reinforced unlearning.
Advances in neural information processing systems, 35:27591–27609, 2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter Clark. Self-refine: Iterative refinement with
self-feedback. ArXiv, abs/2303.17651, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. A conversational paradigm for program synthesis. arXiv preprint, 2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing?: Benchmarks, baselines, and building blocks for natural language policy
optimization. ArXiv, abs/2210.01241, 2022.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

Richard S. Sutton, David A. McAllester, Satinder Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In NIPS, 1999.

11

https://openreview.net/forum?id=WaGvb7OzySA
https://openreview.net/forum?id=HJgXCV9xx
https://doi.org/10.48550/arXiv.2302.02676
https://doi.org/10.48550/arXiv.2302.02676

Under review as a conference paper at ICLR 2024

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Huai hsin Chi, Denny Zhou, and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. ArXiv, abs/2210.09261, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aur’elien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. ArXiv, abs/2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Xingyao Wang, Sha Li, and Heng Ji. Code4struct: Code generation for few-shot event structure
prediction. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 3640–3663. Association for Computational
Linguistics, 2023a. doi: 10.18653/v1/2023.acl-long.202. URL https://doi.org/10.186
53/v1/2023.acl-long.202.

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, Lifan Yuan, Hao Peng, and Heng Ji. Mint:
Evaluating llms in multi-turn interaction with tools and language feedback, 2023b.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022a. URL https://openreview.net/forum
?id=gEZrGCozdqR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022b. URL https://openreview.net/for
um?id=_VjQlMeSB_J.

Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nissan Stiennon, Ryan Lowe, Jan Leike, and Paul Francis
Christiano. Recursively summarizing books with human feedback. ArXiv, abs/2109.10862, 2021.

Tianjun Zhang, Fangchen Liu, Justin Wong, Pieter Abbeel, and Joseph E. Gonzalez. The wisdom
of hindsight makes language models better instruction followers. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
International Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 41414–41428. PMLR, 2023.
URL https://proceedings.mlr.press/v202/zhang23ab.html.

12

https://doi.org/10.18653/v1/2023.acl-long.202
https://doi.org/10.18653/v1/2023.acl-long.202
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://proceedings.mlr.press/v202/zhang23ab.html

Under review as a conference paper at ICLR 2024

A LIMITATIONS AND FUTURE WORK

In this study, we only explored the automatic textual feedback from a Python interpreter and did not
get the chance to investigate real-world human language feedback which may have higher linguistic
diversity and helpfulness. Automatic textual feedback from a Python interpreter can be limited as
they are not always useful: as shown in §3.2.1 that they are helpful in improving error types like
SyntaxError and NameError. Generally, the stack trace for AssertError (functional correctness) is
equivalent to binary feedback telling LM it is wrong but does not provide any additional information.
A natural follow-up of LETI would be exploring ways to combine Python interpreter feedback with
more helpful feedback (e.g., LLM-simulated feedback Wang et al., 2023b; Madaan et al., 2023),
applying to stronger and larger backbone LM (Li et al., 2023; Touvron et al., 2023b), as well as
extending to multi-turn setting (Nijkamp et al., 2022).

Figure A.6: An LETI Iteration. (1) An actor LM pθ generates n solutions for every given problem
(§2.1); (2) Each solution ŷi,j for each problem xi and corresponding test cases Ti is given to the
solution evaluator to obtain binary and textual feedback Fi,j on the correctness of ŷi,j on problem xi

(§2.2); (3) The binary and textual feedback Fi,j is used to perform feedback-conditioned fine-tuning
to improve the actor LM pθ (§2.3, equation 1).

B ANALYSIS AND ABLATION STUDY

B.1 DOES THE NUMBER OF SOLUTIONS GENERATED PER PROBLEM MATTER?

We generate different number n = {16, 64, 128} of solutions for each given problem. We use
n = 128 for all other experiments in this paper. In Fig. A.7, we observe that LETI consistently
benefits from larger n for each problem (i.e., more exploration).

B.2 DOES THE NUMBER OF TRAINING PROBLEMS |P| MATTERS?

In Fig. A.8, we compare an LM trained on a complete MBPP dataset of problems |P| = 374 with
LMs trained to iteratively improve on |P| = {16, 64, 128} problems, which corresponds to the first
|P| problems on the MBPP training set.

We observe that the number of training problems impacts the performance of LMs on test sets: larger
|P| generally leads to faster and more significant improvements. LETI can generally improve the 2B
model, with a smaller rate of improvement for smaller |P|. However, for the smaller 350M model, we
observe net positive improvements on the test set only after the number of training problems exceeds
a threshold of |P| ≥ 128.

B.3 HOW DO REWARD TOKENS IMPACT PERFORMANCE?

The LM is fine-tuned on two different reward tokens <|good|> and <|bad|>, which correspond to
correct and incorrect solutions (§2.3). In Tab. A.6, we quantify the effect of reward tokens on solution

13

Under review as a conference paper at ICLR 2024

0 2 4 6 8 10 12 14
Iteration

2

4

6

8

10

12

14

35
0M

 Te
st

 P
ro

bl
em

 P
as

s @
 1

 (%
)

350M Test Problem Pass @ 1 (%)

0 1 2 3 4 5 6
Iteration

5

10

15

20

25

2B
 Te

st
 P

ro
bl

em
 P

as
s @

 1
 (%

)

2B Test Problem Pass @ 1 (%)

LETI , n=128 LETI , n=64 LETI , n=16

Figure A.7: Comparison of LETI (w/o post-processing) performance when given different numbers
n of candidate solutions generated per problem. LETI consistently benefits from larger n for each
problem (i.e., more exploration).

0 2 4 6 8 10 12 14
Iteration

0

200

400

600

800

1000

1200

1400

35
0M

 Te
st

 P
ro

bl
em

 P
as

s @
 1

 (%
)

350M Test Problem Pass @ 1 (%)

0 1 2 3 4 5 6 7 8
Iteration

500

1000

1500

2000

2500

2B
 Te

st
 P

ro
bl

em
 P

as
s @

 1
 (%

)
2B Test Problem Pass @ 1 (%)

LETI , |P|=374 (full dataset) LETI , |P|=128 LETI , |P|=64 LETI , |P|=16

Figure A.8: Comparison of LETI (w/o post-processing) performance when given different numbers
|P| of training problems. Larger |P| leads to faster and more significant improvements.

quality by calculating the pairwise performance difference between <|good|>, <|bad|> and
none (i.e., not conditioned on any reward token). We perform this analysis on two code synthesis
datasets MBPP and HumanEval, as well as the math reasoning dataset GSM8K and Big-Bench-Hard,
which measures generic reasoning capability.

We find that <|good|> generally outperforms <|bad|> (i.e., positive ∆<|good|>− <|bad|>)
and both reward tokens outperform none on in-domain dataset MBPP. In LETI, the LM is optimized
to partition its probability space to put good solutions as sequences that start with <|good|> and
bad solutions to be sequences starting with <|bad|>. This naturally moves solutions that are related
to the code synthesis problems away from none sequences (i.e., sequences that do not condition on
any reward token) towards the space of sequences that start with either <|good|> or <|bad|>,
which could cause the sequences that start with any reward tokens to be better than none sequences
as we observed.

On the HumanEval code synthesis dataset, we find that conditioning on both reward tokens does
not improve performance. Instead, we observe a large gap between none and any of the reward
tokens, while the performance difference between two reward tokens is minimal. This hints that
the solutions for the HumanEval dataset are different compared to in-domain solutions for MBPP,
therefore only sequences drawn from the original none sequences distribution (i.e., code that an LM
has seen during its pre-training) achieves good performance.

14

Under review as a conference paper at ICLR 2024

We generally observe minimal differences between different reward tokens and none on GSM8K
and Big-Bench-Hard. That is, performance is similar regardless of whether we are conditioned on any
reward token. One notable exception is the PaL prompt on GSM8K which performs math reasoning
through code generation, where it exhibits a similar pattern of condition on <|good|> is better
than <|bad|> as seen in in-domain dataset MBPP. In fact, somes solutions to GSM8K with PaL
prompt are very similar to solutions that solve MBPP problems. This suggests that the performance
difference between reward tokens could be a way to measure the similarity between two different
problems.

Table A.6: Reward Token Analysis. We quantify the effect of reward tokens on solution quality by
calculating the pairwise performance difference between <|good|>, <|bad|> and none (i.e., not
conditioned on any reward token).

MBPP HumanEval GSM8K Big-Bench-Hard
pass@1 pass@1 pass@10 pass@100 PaL direct CoT

∆<|good|>− <|bad|>
LETI (2B) 1.00 -1.11 -0.39 -0.13 0.91 0.05 -0.14
LETI (350M) 0.00 -0.23 0.01 -0.14 0.22 -0.17 0.28

∆<|good|>− none
LETI (2B) 16.16 -17.45 -29.40 -48.25 1.74 -0.11 0.14
LETI (350M) 3.54 -9.85 -17.24 -28.44 -0.61 0.02 0.09

<|bad|>− none
LETI (2B) 15.16 -16.35 -29.01 -48.12 0.83 -0.15 0.28
LETI (350M) 3.54 -9.62 -17.25 -28.31 -0.83 0.18 -0.18

B.4 DOES THE PERFORMANCE GAIN COME FROM MORE PRE-TRAINING STEPS?

When training LETI, as described in §2.4, we regularize the model by alternating a batch of FCFT
(§2.3) with a batch from a continued pre-training batch (§3.1). A natural question arises: Do all the
improvements come from FCFT? Is it possible that additional pre-training steps from regularization
contribute to the improvements?

We perform an experiment to validate this claim on a 350M model. As shown in Fig. A.10, MBPP test
performance cannot improve when only training the LM with more steps of pre-training data; That is,
we can attribute LETI’s performance improvements to FCFT instead of pre-training regularization.

C LETI TRAINING DETAILS

For each LETI iteration, we are doing feedback-conditioned fine-tuning for k = 3 epochs. We train
the 350M model with a learning rate of 1e-5, weight decay of 0.01, and batch size of 128. For the 2B
model, we use the same hyperparameter except we change the learning rate to 5e-6 due to instability
during training (i.e., spiking loss). Training for 350M and 2B were completed on TPU-v3-8 VM
instances. Each iteration (with k = 3 epochs) takes approximately 22 hours for 2B model and 4 hours
for 350M model.

Applying LETI to MBPP Out of 974 total problems in MBPP, it contains 374 training problems,
500 testing problems, and the rest being validation set which we did not use. In every LETI iteration,
we generate n = 128 solutions for each of the 374 training problems with a sampling temperature
of 1.0 to construct our training data for FCFT (§2.3). For test set evaluation, we sample n = 16
solutions for each test problem with a sampling temperature of 0.1.

Applying LETI to Event Argument Extraction (EAE) (§3.5) We use the ACE-05 dataset
following pre-processing as described in Wang et al. (2023a). For each training example, we sample
n = 64 solutions due to computation capacity limitation. We did not do continued pre-training
regularization as described in Fig. 2.4 for more efficient computation since regularization mainly
helps maintain out-of-domain performance, which is not the main focus of the EAE experiment.

15

Under review as a conference paper at ICLR 2024

Figure A.9: Ablation of pre-training data regu-
larization on in-domain task MBPP (§2.4). No
significant difference exists in the MBPP test
performance for LMs trained with or without
pre-training data regularization.

0 2 4 6 8 10 12
Iteration

5

10

15

20

25

Te
st

 P
ro

bl
em

 P
as

s @
 1

 (%
)

Test Problem Pass @ 1 (%)

LETI (350M)
LETI (350M) w/o regularization

LETI (2B)
LETI (2B) w/o regularization

Figure A.10: Ablation of Feedback-conditioned
Fine-tuning (FCFT) on in-domain task MBPP
(2.3). Doing pre-training data regularization
without FCFT does not lead to any improve-
ments.

0 5 10 15
Iteration

4

6

8

10

12

14

Te
st

 P
ro

bl
em

 P
as

s @
 1

 (%
)

Test Problem Pass @ 1 (%)

LETI (350M)
Pre-training data regularization only (350M)

Table A.7: Iteration number of reported LETI-optimized performance in the main paper.

i-th Iteration

LETI (350M) 14
LETI (2B) 6
LETI (2B, w/ post-processing) 3

C.1 METRICS DETAILS

Pass@k We follow the unbiased estimator from Chen et al. (2021b) to estimate pass@k that
samples n solutions (n > k) to more accurately estimate pass@k.

C.2 EVALUATION DETAILS

We do not condition the generation on any reward token (e.g., <|good|>, <|bad|>) when gener-
ating solutions for the following evaluation datasets.

GSM-8K Following Gao et al. (2022), we use a sampling temperature of 0.7, top-p of 0.95, and
the number of samples n = 40. We generate up to 1,536 tokens for each problem.

Big-Bench-Hard We sample n = 1 example for each prompt using a top-p of 1 and sampling
temperature of 0.0 (deterministic). We generate up to 1,536 tokens for direct prompts and 2,048
tokens for chain-of-thought (CoT) prompts6. 250 out of 6,511 CoT prompts have more than 2048
tokens, exceeding the context window of the CodeGen models. Scores are set to 0 for these prompts.

HumanEval We follow Nijkamp et al. (2022) to sample n = 256 solutions for each problem using
top-p of 0.95, and temperature of {0.2, 0.6, 0.8}. The final performance is obtained by taking the
max across different temperatures. We generate up to 768 tokens for each problem, which is large
enough to include all prompts along with their ground truth solutions.

6https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/cot-prompts

16

https://github.com/suzgunmirac/BIG-Bench-Hard/tree/main/cot-prompts

Under review as a conference paper at ICLR 2024

Figure A.11: Examples of code that requires post-processing, generated by pre-trained 2B
CodeGen-mono on MBPP test set. The LM is asked to generate a fixed number of tokens (up to 512
tokens). It generates a function frequency, followed by a print statement. Then it begins to repeat
the same prompt and code repeatedly for the rest number of the tokens. Existing implementation
typically uses a post-processing heuristic that only keeps the first block of the code (i.e., green block
in this figure) for the execution and evaluation. (https://github.com/bigcode-project
/bigcode-evaluation-harness/blob/3ad3b8de11605e74db369450a7ee6704
874a4aa7/lm_eval/tasks/mbpp.py#L68)

C.3 FINE-TUNED BASELINE DETAILS

MBPP Fine-tuned Baseline (in Fig. 2) We fine-tune 350M and 2B CodeGen-Mono LM on
MBPP training set with 374 examples7 for 30 epochs with AdamW optimizer of learning rate of 1e-4
and weight decay of 0.01. We evaluate checkpoints (every 6 epochs) on the MBPP test set and report
the best pass@1 performance without post-processing. Note that we append <eos> token to the
end of each ground truth solution for fine-tuning, which encourages the use of <eos> to stop the
generation when deemed necessary by the LM. The fine-tuned performance is reported in Tab. A.8.

7https://huggingface.co/datasets/mbpp

17

https://github.com/bigcode-project/bigcode-evaluation-harness/blob/3ad3b8de11605e74db369450a7ee6704874a4aa7/lm_eval/tasks/mbpp.py#L68
https://github.com/bigcode-project/bigcode-evaluation-harness/blob/3ad3b8de11605e74db369450a7ee6704874a4aa7/lm_eval/tasks/mbpp.py#L68
https://github.com/bigcode-project/bigcode-evaluation-harness/blob/3ad3b8de11605e74db369450a7ee6704874a4aa7/lm_eval/tasks/mbpp.py#L68
https://huggingface.co/datasets/mbpp

Under review as a conference paper at ICLR 2024

Table A.8: MBPP Fine-tuned performance. See §C.3 for details.

pass@1

Fine-tuned (CodeGen-Mono, 350M) 16.9
Fine-tuned (CodeGen-Mono, 2B) 20.5

18

	Introduction
	LETI: Learning from Textual Interactions
	Language Model
	Solution Evaluator
	Feedback-conditioned Fine-tuning (FCFT)
	Regularization with Continued Pre-training

	Experimental Results
	Experiment Setup
	LETI Makes LMs Better Code Generators
	Mostly Basic Python Problems (MBPP)
	HumanEval

	Learning from Textual Feedback is More Sample-efficient
	LETI Retains Reasoning and Chain-of-Thought Performance
	LETI is applicable to NLP tasks like Event Argument Extraction (EAE)

	Related Work
	Conclusion
	Limitations and Future Work
	Analysis and Ablation Study
	Does the number of solutions generated per problem matter?
	Does the number of training problems |P| matters?
	How do reward tokens impact performance?
	Does the performance gain come from more pre-training steps?

	LETI Training Details
	Metrics Details
	Evaluation Details
	Fine-tuned Baseline Details

