
ManeuverVLM: A Novel Multimodal Fusion of Scene Images and Temporal
Signals for Maneuver Prediction

Roksana Yahyaabadi1 , Soodeh Nikan1 ,
1Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada,

{ryahyaab, snikan}@uwo.ca

Abstract
Maneuver prediction in modern vehicles enhances1

safety by anticipating driver actions, enabling ad-2

vanced driver assistance systems (ADAS) to pro-3

vide proactive support and accident prevention.4

This research presents ‘ManeuverVLM’, a vision-5

language model (VLM) that integrates scene im-6

ages and dynamic signals for maneuver predic-7

tion. The model employs a vision encoder to8

extract spatial-visual embeddings, a temporal en-9

coder for dynamic signals, and a large language10

model (LLM) for maneuver classification. We eval-11

uated the proposed model on our collected dataset12

that covers five maneuvers: straight, left/right13

turn, and left/right lane change. Experimental re-14

sults demonstrate that ManeuverVLM with T5-15

mini achieves superior performance with micro-16

and macro-accuracy (99%, 98%) and a macro F1-17

score of 97% on our collected driving dataset.18

Notably, ManeuverVLM effectively handles chal-19

lenging minority maneuvers, such as turning and20

lane changing, outperforming both Temporal-Only21

and Spatial-Temporal models that do not inte-22

grate LLM. The proposed model, with 36.5 mil-23

lion parameters, 61.2 Giga floating point operations24

(GFLOPs), and requiring only 163 MB of memory,25

is deployable on compact embedded processors on26

the vehicle.27

1 Introduction28

According to the World Health Organization, traffic accidents29

worldwide result in more than 1.35 million fatalities annu-30

ally [Dahl et al., 2023]. As vehicle manufacturers continue to31

ADAS technology, their goal is to enhance driver safety and32

traffic efficiency [Murtaza et al., 2023]. A key part of im-33

proving ADAS is accurately predicting driving maneuvers,34

such as turning, changing lanes, and straight driving, allow-35

ing the system to respond effectively and assist the driver in36

real-time [Khairdoost et al., 2020]. Accurate perception of37

the environment is crucial for predicting maneuvers in in-38

telligent vehicles, as it enables the system to understand the39

surrounding conditions and make informed driving decisions40

[Liu et al., 2021]. Although traditional models primarily rely41

on kinematic and dynamic features [Khairdoost et al., 2020] 42

[Jiang et al., 2022], [Li et al., 2024], [Zhang et al., 2022], 43

scene images, despite their complexity, provide critical con- 44

textual information about road structures, traffic conditions, 45

and obstacles. In modern autonomous vehicles, which cam- 46

eras are widely used [Wang et al., 2022], integrating scene 47

images’ information with dynamic signals enhances maneu- 48

ver prediction accuracy by providing a richer environmental 49

context [Gao et al., 2022]. 50

This study proposes ManeuverVLM, a multimodal strategy 51

in which a vision language model (VLM) integrates dynamic 52

signals and scene images for maneuver prediction. The ar- 53

chitecture includes a vision encoder to extract spatial-visual 54

embeddings from scene images and a temporal encoder for 55

dynamic embeddings. These embeddings are fused into a 56

shared latent space using a vision language adapter, with a 57

large language model (LLM) acting as the classifier. This 58

unified approach enables robust and effective prediction of 59

driving maneuvers using both spatial and temporal character- 60

istics. The paper is organized as follows. In Section 2, the 61

related works are reviewed. Sections 3 and 4 present the col- 62

lected dataset and methodology, while Section 5 evaluates the 63

model performance and discusses the results. The paper con- 64

cludes in Section 6. 65

2 Related Works 66

In the recent literature, several deep learning models have 67

been proposed for maneuver prediction, each using different 68

approaches, data sources, and features. Gao et al. [Gao et 69

al., 2022] introduced an attention-based deep neural network 70

that combines spatial features of road scene images with tem- 71

poral patterns from driver physiological signals. However, 72

their model is highly computationally complex and demands 73

resources due to the integration of Global Context blocks, 74

Channel-wise Attention, and dual attention-based LSTM. 75

Khairdoost et al. [Khairdoost et al., 2020] proposed a long 76

short-term memory (LSTM) model for predicting five maneu- 77

vers (left turn, right turn, left lane change, right lane change, 78

and straight driving) using vehicle dynamics and driver be- 79

havior without incorporating scene context. Jiang et al. [Jiang 80

et al., 2022] proposed a dynamic Bayesian network trajec- 81

tory prediction algorithm that models driver intention, ma- 82

neuvering behavior, and vehicle dynamics for lane keeping 83

and lane change prediction, but does not incorporate scene 84



information. In another study, Li et al. [Li et al., 2024]85

proposed a Transformer encoder model with a multi-head at-86

tention mechanism to integrate spatio-temporal gaze attention87

inputs from drivers with vehicle dynamics for lane changing88

maneuver prediction. However, their model does not incor-89

porate scene images and predicts only three maneuvers: lane90

keeping and left/right lane change.91

To address these gaps, we proposed the ManeuverVLM92

which uses both scene images and dynamic signals to inte-93

grate spatial-visual and temporal features for maneuver pre-94

diction, covering five maneuvers: straight, left/right turn, and95

left/right lane change.96

3 Description of the Data97

The data set was collected by the Automotive and Surface98

Transportation team at the National Research Council of99

Canada (NRC). Data collection was carried out in London,100

Ontario, Canada using a 2021 RAV4 hybrid vehicle as shown101

in Fig. 1. The vehicle was equipped with a ZED stereo102

camera, a FLIR thermal camera, a Velodyne LiDAR with 32103

channels, and an onboard Inertial Measurement Unit (IMU),104

all mounted on the roof. Data from all the mentioned sen-105

sors were collected using the Robot Operating System (ROS)106

framework and stored in bag-file format.107

Figure 1: Equipped vehicle and sensors in data collection.

The dataset collected from four drivers (two females and108

two males), with approximately 30 minutes of driving data109

per driver. To ensure synchronization across sensors (LiDAR,110

cameras, and IMU), the LiDAR’s frame rate of 10 Hz was111

chosen as the reference. Dynamic signals include 3D GNSS112

(global navigation satellite system) coordinates (latitude, lon-113

gitude, altitude), 3D linear and angular velocity, and 3D linear114

and angular acceleration, totaling 15 features. These signals115

were recorded using an IMU with an embedded GNSS. The116

dataset comprises 81,190 samples labeled manually into five117

maneuver classes: ‘straight’, ‘left turn’, ‘right turn’, ‘left lane118

change’ and ‘right lane change’. In addition, 85% of the sam-119

ples belong to the straight class, the left and right turn classes120

account for 6% and 5% of the samples, respectively, and each121

lane change class comprises 2% of the samples.122

4 Methodology123

We proposed ManeuverVLM takes advantage of both spatial-124

visual and temporal features for maneuver prediction. To as-125

Figure 2: Overview of synchronization process of our dataset.

sess the impact of scene images and then the benefit of in- 126

tegrating an LLM, we also implemented two Temporal-Only 127

model and a Non-VLM Spatial-Temporal model, as detailed 128

in the following subsections. 129

4.1 ManeuverVLM 130

As shown in Fig. 3, in the proposed architecture, MobileViT- 131

small was selected as the vision encoder due to its efficiency 132

in capturing both local and global scene information by com- 133

bining lightweight convolutional and transformer models. 134

Temporal features were modeled using a TCN consisting of 135

two 1D convolution layers with ReLU activations, followed 136

by adaptive average pooling and a linear projection to capture 137

temporal patterns. The TCN model efficiently captures long- 138

range temporal dependencies using a combination of causal 139

and dilated convolutions, where causal convolutions ensure 140

each time step depends only on past data, preserving temporal 141

order, while dilated convolutions expand the receptive field 142

without increasing parameters. The model architecture con- 143

sists of two 1D convolutional layers with 64 and 128 filters, 144

kernel size 3, padding 1, ReLU activation, adaptive average 145

pooling, and a fully connected layer with 128 units. To fuse 146

the extracted visual and temporal embeddings, a vision lan- 147

guage adapter concatenates and passes them through a linear 148

layer followed by LayerNorm and ReLU activation, mapping 149

them into a joint multimodal embedding space. To balance 150

efficiency and accuracy, our ManeuverVLM was evaluated 151

using three T5 variants: T5-small, T5-mini, and T5-tiny. 152

4.2 Temporal-Only model 153

The Temporal-Only models in this study include a TCN and 154

an LSTM network to capture the temporal patterns within the 155

sequential dynamic signals. The TCN model uses two 1D 156



Figure 3: Overview of ManeuverVLM.

convolutional layers with 64 and 128 filters, kernel size 3,157

padding 1, ReLU activation, adaptive average pooling, and a158

fully connected layer with 128 units. Also, the LSTM model159

consists of three stacked LSTM layers with 128 hidden units,160

followed by a fully connected layer.161

4.3 Non-VLM Spatial-Temporal model162

The Non-VLM Spatial-Temporal model evaluates the impact163

of scene image context and visual features on maneuver pre-164

diction by combining spatial and temporal characteristics. It165

uses MobileViT-small for visual feature extraction and two166

temporal architectures: TCN and LSTM. The TCN model in-167

cludes two 1D convolutional layers, ReLU, adaptive pooling,168

and a fully connected layer, while the LSTM model has three169

layers with a hidden size of 128. Visual and temporal embed-170

dings are concatenated into a 256-dimensional feature vector,171

followed by a final fully connected layer for classification.172

An overview of the Non-VLM Spatial-Temporal model im-173

plemented is shown in Fig. 4.174

5 Experimental Results175

Our implementations were carried out on a 12th Gen Intel®176

Core™ i7-12700 processor, 2.10 GHz, supported by 32.0 GB177

Figure 4: Overview of the Non-VLM Spatial-Temporal model.

RAM and a 12.0 GB NVIDIA GeForce RTX 3060 GPU. 178

5.1 Evaluation protocol 179

To ensure a comprehensive evaluation process, we followed 180

a leave-one-driver-out cross-validation protocol. In this ap- 181

proach, for each fold, one driver’s data is considered as the 182

validation set, while the data from the remaining three drivers 183

is treated as the training set. 184

5.2 Implementation Details 185

The Temporal-Only model was tested using two architec- 186

tures: TCN and LSTM, both designed to process dynamic 187

features for maneuver prediction. The models take dynamic 188

signals with 15 features as input. All models were trained 189

with the AdamW optimizer, a learning rate of 3 × 10−4, a 190

batch size of 32, and CrossEntropy loss for 40 epochs. For 191

all models, evaluation was performed using micro and macro 192

accuracy, and macro F1 score. 193

5.3 Results and Discussions 194

Table 1 presents a comparative analysis of the implemented 195

models, including ManeuverVLM with different LLM vari- 196

ants, focusing on accuracy, F1-score, inference time, and 197

resource requirements. The results highlight that integrat- 198

ing spatial-visual features from scene images in Non-VLM 199

Spatial-Temporal models slightly enhances model perfor- 200

mance compared to Only-Temporal, but significantly in- 201

creases the number of parameters, GFLOPs, inference time, 202

and inference memory. Among the evaluated LLM vari- 203

ants, the ManeuverVLM with T5-mini demonstrates the best 204

overall performance, achieving 99% micro accuracy, 98% 205

macro accuracy, and a 97% F1-score. These values are 3%, 206

1%, and 3% higher, respectively, compared to the Maneu- 207

verVLM with T5-tiny. Moreover, ManeuverVLM with T5- 208

mini outperforms the T5-small variant by 3% in macro accu- 209

racy and 2% in macro F1-score, despite having fewer param- 210

eters. This indicates that for our dataset, the ManeuverVLM 211

with T5-mini not only offers excellent performance but also 212

strikes a balanced trade-off between efficiency and accuracy. 213

It achieves results comparable to the T5-small variant while 214

maintaining a lower parameter count, making it a practical 215

and efficient choice for real-world applications. 216

Although the dataset is highly imbalanced, the Maneu- 217

verVLM perform exceptionally well in predicting minority 218



Model Micro
Accuracy

Macro
Accuracy

Macro
F1-score

Number of
Parameters

Inference
Time GFLOPs Required

Memory
Temporal-Only (TCN) 0.92 0.56 0.54 29 K 2.86 ms 0.001 0.12 MB
Temporal-Only (LSTM) 0.90 0.48 0.48 342 K 0.28 ms 0.011 1.31 MB
Non-VLM Visual-Temporal (TCN) 0.93 0.75 0.61 5.1 M 21.81 ms 60.16 43.3 MB
Non-VLM Visual-Temporal (LSTM) 0.91 0.52 0.52 5.38 M 20.63 ms 60.17 44.5 MB
ManeuverVLM (T5-tiny) 0.96 0.97 0.94 20.8 M 10.45 ms 60.44 103 MB
ManeuverVLM (T5-mini) 0.99 0.98 0.97 36.5 M 10.88 ms 61.20 163 MB
ManeuverVLM (T5-small) 0.99 0.95 0.95 65.9 M 15.69 ms 62.10 275 MB

Table 1: Comparison between various implemented models and ManeuverVLM with different LLMs in terms of accuracy and resource
requirements.

Figure 5: Confusion matrices for five maneuver classes across four-
fold cross-validation using ManeuverVLM with T5-mini: (a) driver
1 as validation, (b) driver 2 as validation, (c) driver 3 as validation,
and (d) driver 4 as validation.

classes (turning and lane changing), significantly outperform-219

ing both Temporal-Only and Non-VLM Spatial-Temporal220

models, as evidenced by higher Macro accuracy and Macro221

F1-score. Although Temporal-Only models (TCN and222

LSTM) are lightweight in terms of parameters and resource223

usage, ManeuverVLMs demonstrate superior handling of im-224

balanced classification tasks. The increased parameter count225

and memory footprint in ManeuverVLMs stem from the226

dense embedding and attention mechanisms of transformer-227

based architectures. However, the optimized T5 models and228

GPU acceleration ensure comparable GFLOP and inference229

time with ManeuverVLMs, making them suitable for real-230

time performance. ManeuverVLM with T5-mini, compris-231

ing 36.5 million parameters, 61.2 GFLOPs, and 163 MB of232

inference memory, is efficient for deployment on resource-233

constrained embedded platforms such as Jetson Nano [Tailor234

et al., 2023].235

Figure 5 presents the confusion matrices for the 4-fold236

cross-validations, where each fold uses one driver as the val-237

Figure 6: Examples of attention heatmaps extracted from the vi-
sual encoder (MobileViT-small) corresponding to: (a) Left turn, (b)
Right turn, (c) Left lane change, and (d) Right lane change.

idation subject and the others for training. The straight class 238

shows nearly 100% accuracy, while minority classes (turn- 239

ing and lane changing) have higher error rates. Notably, Left 240

maneuvers (turning and lane changing) are predicted more 241

accurately than right maneuvers, due to the sharper dynamics 242

and more distinct features associated with left turns and lane 243

changes. 244

Figure 6 illustrates the heatmaps for the average attention 245

weights, extracted from MobileViT-small component of Ma- 246

neuverVLM with T5-mini, across all samples of driver 1. The 247

heatmaps show that in turning maneuvers, the model mainly 248

focuses on the surroundings, particularly on the correspond- 249

ing left or right sides. Also, for lane changing maneuvers, 250

the attention is distributed across both sides, with a particular 251

focus on the lane markings and approaching objects (such as 252

cars). 253

6 Conclusion 254

In this work, ManeuverVLM was proposed for driving ma- 255

neuver prediction on our collected dataset. ManeuverVLM 256

utilizes both scene image and dynamic signals for extracting 257

spatial-visual and also temporal features. The results indicate 258

that ManeuverVLM with T5-mini not only achieves the best 259

performance, but also offers high efficiency, making it suit- 260

able for vehicle deployment and real-time applications. 261
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