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ABSTRACT

A hallmark of human vision is to recognize objects in complex naturalistic scenes.
However, the exact mechanism behind the representations of a three-dimensional
scene remains obscure. This study proposes a tool to investigate human perception
by using a computer graphics approach. We use three-dimensional object meshes
to render synthetic scenes and try to study how these scenes will be represented in
the brain. We render a collection of datasets with different appearance and pose
variations by changing exactly one property at a time. A model is trained on each
of these datasets for a classification task and is then evaluated using alignment
metrics; deviations in metrics such as Centered Kernel Alignment (CKA) and
Representational Similarity Analysis (RSA) indicate the importance of a particular
brain region in representing a particular property. In conclusion, we propose a
promising method to study the brain using computer graphics to provide valuable
insights into human vision.

1 INTRODUCTION

Human vision can easily process complex scenes and perform object recognition, allowing us to
perform day-to-day tasks such as scene understanding and spatial navigation (Wardle & Baker, 2020).
Getting an idea about the neural underpinnings of these mechanisms is of interest to a variety of
disciplines such as computational neuroscience and artificial intelligence. In this work, we propose a
tool for studying the mechanism of scene representation in the brain by using a computer graphics
approach.

As humans, we can recognize objects in three dimensions from two-dimensional images; there are
several important components of 3D perception, including shape and depth cues. For example, we
can estimate shape from shading (Bruckstein, 1988), specularities (Savarese, 2014), and texture
(Todd & Thaler, 2010) variations. As depicted in Figure 1, subtle variations in appearance change
the perception of objects in 3D. This highlights the complex interaction between visual cues and
cognitive processes that allow us to infer depth and shape (Spröte et al., 2016). Another interesting
phenomenon in human vision is the change in the perception of depth due to viewpoint changes (Deng
et al., 2024). Figures 1e to 1h highlight the sampling of camera angles along different perspectives
or viewpoints. Hence, for the scientific community, it is interesting to study the factors that affect
human visual perception by making viewpoint changes.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 1: (a) a sphere with no shading (b) a sphere with shading (c) a sphere with specular reflection
(d) a textured sphere (e) camera viewpoints with views sampled along the sphere (f) camera viewpoints
sampled along the upper hemisphere (g) camera viewpoints along the z-axis (h) constant camera
viewpoint
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Figure 2: Visualization of the main pipeline of our work. The process begins with three-dimensional
meshes of objects, which are rendered by varying the camera position and appearance. Using each of
these configurations we train a zoo of models. Variations in input datasets lead to changes in how
brain regions are represented within the model. After this, we use alignment metrics to evaluate the
alignment of neural network models to the brain. Finally, we evaluate the alignment of the models
trained based on these datasets for comparison.

The traditional way to understand the nuances of human vision is through experimental studies
involving neuroimaging or behavioral data. Many studies such as Majaj et al. (2015) and Rajalingham
et al. (2018) have attempted to understand the brain using methods such as electrode arrays and
behavioral experiments. Most of these studies are limited by the amount of scanning time and the
number of images that can be shown to subjects. Furthermore, stimuli are tailored to a specific
hypothesis and are not designed for tasks such as ours where we want to use computer graphics to
understand human vision. We cannot decompose brain activations from ImageNet-like images into
activations from shadows, shading, textures, or other appearance components. To understand how
each of these properties is individually processed, we propose the following pipeline in Figure 2.

In the first step of our pipeline, we adopt a data-centric approach. We generate synthetic data by
controlling the appearance and rotation factors in the scene using Blender (Community, 2018) as
our rendering engine. At first, we generate a dataset with maximal variation of appearance and
rotation effects and name it the Base dataset. After this, we vary one factor (such as shadows, shading,
textures, and rotation variation) at a time to generate a set of modified datasets. We hypothesize that
we can individually study factors that affect perception in human vision at different stages of the
visual ventral stream using synthetically rendered datasets.

In the second step (as depicted in Figure 2), we expose deep learning models to a variety of synthetic
datasets to ensure that each model instance learns different types of representations. For this, we take
inspiration from previous work such as Dwivedi et al. (2020); Yildirim et al. (2020) which point
out that there are three ways to accomplish this task. Namely, changing the architecture, changing
the loss function, or changing the training data. We choose to change the training data because by
modifying the training data we can directly influence the features that the model learns. We use
this technique following the lines of contrastive learning and domain adversarial training used in
computer vision with reference from (Adhikarla et al., 2023).

After we have trained the neural networks, we need a good model of the human visual system. We
consider Convolutional Neural Networks (CNNs) as such and hypothesize that they learn representa-
tions similar to the human brain. To compare the neural network activations to brain responses, we
make use of alignment metrics such as RSA (Kriegeskorte, 2015) and Centered Kernel Alignment
(CKA) (Murphy et al., 2024) which have shown to be successful in cross-domain comparisons
(Cui et al., 2022). Each of these metrics is then used to evaluate the difference between the set of
synthetic datasets we have rendered. The direction, significance, and magnitude of these differences
can highlight the importance of a particular brain region in representing a particular property. Figure
3 highlights these trends and provides a way to interpret the direction magnitude and difference. We
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take the scores from the Base and subtract the scores of the modified from it. Then we try to evaluate
the trend of these scores down the visual hierarchy.

Figure 3: This figure illustrates the various types of trends observed in the differences of the metrics
for the modified and Base datasets. Different types of trends can be seen over the visual hierarchy.
First, the score difference is increasing, which means that the feature we removed from the Base
dataset to create the modified dataset has a representation in the later visual areas. Second, the score
difference does not change. This means that this feature is less represented in the visual areas. Third,
the score difference decreases down the visual hierarchy, this means that the removed feature is more
represented in the early visual areas as compared to the later visual areas. A higher score means that
the match to the brain is worse for the modified dataset as compared to the Base dataset and hence
the feature that was removed in the modified dataset will be represented in that brain region.

In summary, our work proposes a tool for studying the processing of scene intrinsics in human
vision. By utilizing CNNs and synthetic data, we can discover and offer insights into the complex
relationships between scene attributes and neural responses. This research could contribute to
cognitive neuroscience and the development of more advanced computer vision models.

2 RELATED WORK

In recent years, the study of alignment between human and neural network representations has gained
widespread attention. Particularly, studies such as Sucholutsky et al. (2023) provide the framework to
study the relationships between representations in the human brain and neural networks. Additionally,
studies such as Güçlü & Van Gerven (2015) show that shallow representations of CNNs are similar
to early visual areas, while deep layers are similar to those of higher-level visual areas. Furthermore,
the study from Ratan Murty et al. (2021) shows that Artificial Neural Networks (ANNs) can be used
to predict responses in areas such as PPA and FFA effectively while Guclu & van Gerven (2015)
have shown high accuracy in predicting responses in the IT cortex.

It is well known that the representations that a model can learn depend mainly on three factors,
namely training data, network architecture, and loss function (Yildirim et al., 2020). For example, in
the taskonomy dataset (Zamir et al., 2018) which is widely used in computer vision, the architecture
remains constant, but the loss function is changed to perform different tasks. This ensures that
the differences in the model representations arise due to the difference in task and not due to the
difference in model architecture. Another widely used computer vision data set is the ModelNet data
set (Qi et al., 2017) where the architecture is changed and the loss function remains constant. This
helps evaluate the type of layers that help in achieving performance on a particular task. It shows a
way how variation in the architecture leads to variation in representations keeping the cross-entropy
loss constant. We chose to change the training data so that we could control the representations
learned using the features in the image training set after being inspired by previous work by Dobs
et al. (2022).

In addition to understanding how these factors influence model representations, it is important to
evaluate how closely the model’s visual representations align with the brain. This has been called
for in the field of NeuroAI. There are a couple of methods that have been widely used for aligning
human and neural network representations. RSA is one of the traditional methods to measure the
similarity of these representations. The description of RSA is mentioned in Section 3.3.1. It has been
used in various Neuroimaging studies involving fMRI, MEG, and EEG modalities to study alignment
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of computational models to brain measurements (Dimsdale-Zucker & Ranganath, 2018) (Kaneshiro
et al., 2015). New metrics such as CKA and Linear Shape Metrics have also been introduced. Mostly,
these metrics are not correlated with each other, as shown in Soni et al. (2024a).

3 METHODOLOGY

In summary, our approach is as follows: first, we generate different synthetic datasets by controlling
the parameters (appearance and pose variation) of the synthetic scene (Section 3.1). Second, we used
these synthetic datasets to train a variety of DNNs (Section 3.2). Third, as described in Section 3.3,
we benchmark each of these networks on a subset of publicly available benchmarks of Coggan &
Tong (2024) in BrainScore (Schrimpf et al., 2020), RSA, and CKA. Once we have a goodness of
fit from each of these settings, we evaluate the significance of the differences in scores (using an
independent samples t-test) to make inferences about where a particular scene property is represented
in the brain.

3.1 DATASET GENERATION

The first step of our pipeline is to use a computer graphics approach to generate synthetic datasets.
We make use of the Blender (Community, 2018) rendering engine to simulate a three-dimensional
scene while having full control over all parameters of the scene whereas such control is not available
when using most real-world datasets.

To generate our data set, we use meshes from the Objaverse 1.0 (Deitke et al., 2023) dataset. This
dataset was chosen because it is one of the biggest repositories of three-dimensional meshes available
publicly. It comes with three-dimensional meshes, annotations, and captions of the images. This
dataset (version 1.0) contains around 800K+ objects out of which only 80K have LVIS annotations
(Gupta et al., 2019), which partitions the dataset into 1156 common categories instead of partitioning
the dataset into a larger number of categories with less number of instances per class. Using LVIS only
80K meshes were suitable for our task, which is still a comparatively large number for multiclass
recognition tasks. The main focus of our work is to evaluate downstream effects on brain predictivity
based on changing the training data.

We select classes which have n number of objects where n ∈ [20, 120] and from the Objaverse dataset
and then render five images per configuration (see Figure 2). We generated multiple data sets to train
our models. The first variation of our dataset is referred to as the Base dataset. It contains all possible
appearance and pose variations. Figure 4 shows one view per object to highlight illumination changes
on the same object. Figure 5 shows five views per object to highlight the rotational differences. The
Base dataset is rendered in the following manner by modifying the script at 1 :

(a) (b) (c) (d) (e) (f)

Figure 4: A teapot rendered under different illumination effects: (a) Base dataset with all the scene
properties intact (b) random textures (c) ambient illumination where a white environment map is
used to lighten the scene (d) without shading (e) without shadows and (f) without specular reflections.
A plane is rendered at the bottom of the objects to visually show what happens when we remove
shadows from the scene.

1GitHub: https://github.com/allenai/objaverse-rendering/blob/main/
scripts/blender_script.py
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(a)

(b)

(c)

(d)

Figure 5: Datasets with rotation effects. (a) Base dataset with the variation of the camera angle along
a full sphere, (b) Variation along a hemisphere, (c) Variation along the Z-axis only, (d) No variation
of the camera angle.

As defined above, this results in a selection of k = 775 classes and 37K objects in total. To create
a synthetic scene, a random environment map is taken from a set of 1673 spherical HDRI maps
introduced in the training set by Gardner et al. (2022) that controls the background image and the
illumination of the scene. The original properties of the scene such as shadows, shading, specularities,
and textures remain intact. The camera viewpoint is varied along a sphere (see Figure 5) to get
different viewpoints of the object. Five images per object are then rendered.

We then generated eight different versions of this dataset, leading to nine synthetic datasets in total;
for each version, we changed exactly one scene parameter at a time. To do so, we group the scene
parameters into two sets (which we call paths): the appearance path and the pose variation path. For
the appearance path, the settings of the scene are changed using Blender (see Figure 4). The datasets
generated using the appearance path are:

• Random texture: depicted in Figure 4b: a new random texture sampled from the describable
textures dataset (dtd) (Cimpoi et al., 2014) and is added on top of the object. This changes
the surface properties of the object such as the color, reflectivity, and transparency. The
color is set according to the new image while the other properties are set to default values in
blender.

• Ambient illumination: depicted in Figure 4c uses an ambient white environment map for
lightning the scene and a random environment map sampled from Gardner et al. (2022)

5



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

dataset as a background image. This results in all parts of the image being illuminated
uniformly and remove any shading or sharp illumination effects.

• Shading removal: depicted in Figure 4d. We remove all the shading (local and global
illumination effects) from the material. When we remove the shading, it means we are now
using only the material texture to model how the light interacts with the surface of the object.
Particularly, in Blender it means that we are no longer using the principled bsdf shader
which combines multiple shaders into one.

• Shadow removal: depicted in Figure 4e removes shadows such as cast shadows and self-
shadows. The cast shadow can be seen with the help of the plane at the bottom of this
object.

• Specularity removal: depicted in Figure 4f removes properties such as shininess, glossiness,
and metallic properties from the image (Fleming et al., 2004).

For the rotation path, we vary the position of the camera (see Figures 1e-1h & 5 for the distribution
of camera angles). Five images per object are rendered by sampling camera positions. We make the
use of polar coordinates to define the position, (x, y, z). The general equation for the camera point is:

x = r sin(ϕ) cos(θ), y = r sin(ϕ) sin(θ), z = r cos(ϕ) (1)

where θ is the azimuthal and ϕ the polar angle and r is the camera distance, we use r = 1.2.

• Base Dataset: depicted in Figure 5a. The angles vary as θ ∈ [0, 2π] and ϕ ∈ [0, π].
• Less Variation: depicted in Figure 5b vary in the upper hemisphere ϕ ∈ [0, π/2] and

constant θ = π/4

• Z-Axis: depicted in Figure 5c, rotation around the z-axis with θ ∈ [0, 2π] and ϕ = π/2.
• No Variation: depicted in Figure 5d with constant angles θ = π/4 and ϕ = π/2.

3.2 MODEL TRAINING

Once the data was generated, a neural network zoo was trained for subsequent analysis. We chose to
train Convolutional Neural Networks (CNNs) due to their widespread use in the field of NeuroAI.
The CNNs were implemented using PyTorch (Paszke et al., 2017).

In particular, the models AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan & Zisserman,
2015), and ResNet50 (He et al., 2016) were trained. These models were used to perform multiclass
classification tasks on each of the synthetic datasets derived from (Deitke et al., 2023). This task
aims to classify the object based on synthetic images with n = 775 classes. As portrayed in Figure 2,
we train 3 models on each of the 9 datasets and perform 5 iterations of the same (five different train
and test splits). This means that in total we train m = 135 model instances. We modified the number
of neurons in the last layer of each model to match n and then trained the networks.

The hyperparameters used to train the models are mentioned in Table 1. We make sure that for each
type of model, the architecture and the loss function remain constant due to the reasons mentioned in
section 2. The model weights were initialized using Xavier initialization (Glorot & Bengio, 2010).
The instances of these models were trained until convergence if the model loss did not decrease after
15 epochs (early stopping). This convergence criterion ensures stability in the model training and
prevents unnecessary training time and resource expenditure (Prechelt, 1998). We were able to
achieve reasonable accuracy, as presented in Table 2 on almost all pairwise combinations of models
and datasets. The models were trained from scratch with a set of parameters similar to the ones used
for training such models on the ImageNet (Deng et al., 2009) dataset.

3.3 ALIGNING NEURAL NETWORKS TO THE BRAIN

To evaluate the hypothesis of our study, it is important to study the alignment of representations in
the neural networks to representations in the human brain. For this, we take inspiration from studies
like Sucholutsky et al. (2023) that aim to measure the alignment between any two systems and show
a general framework to compute a metric of alignment between two systems. In this section, we
highlight the metrics used in this work to measure the alignment between networks trained on our
synthetic datasets and the data from a variety of neuroimaging studies.
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3.3.1 REPRESENTATIONAL SIMILARITY ANALYSIS

RSA (Kriegeskorte, 2015), as mentioned in Section 1 is one of the popular methods to compute
the similarity of representations in the brain and neural networks. In general, the mechanism is to
compute pairwise correlations between the representational dissimilarity matrices (RDMs) of the
neural networks and RDMs of the brain regions. We use the python Net2brain1 toolbox and an
offline instance of BrainScore (Schrimpf et al., 2020).

Using the Net2brain (Bersch et al., 2022) toolbox we get an average RDM (from the brain activity of
8 subjects in the NSD (Allen et al., 2022) dataset) for each brain region and one RDM for each NN
layer and compute correlations (Pearson’s r) as mentioned above. On the other hand, we used the
publicly available benchmarks from (Coggan & Tong, 2024) available on BrainScore (Schrimpf
et al., 2020) to benchmark our models. For each of the networks, instead of letting BrainScore choose
the layers, we assigned the layers to each brain region according to recommendations on BrainScore
website, to see only the effects of changing the training data. The layers were chosen according to
Table 3 in the Appendix.

3.3.2 CENTERED KERNEL ALIGNMENT

Centered kernel alignment has become a widely used metric for comparing activations between
neural networks and the brain (Murphy et al., 2024). For our use case, it serves as an effective tool
for comparing the representations in brain RDMs to neural network RDMs. We use the formulation
mentioned in (Kornblith et al., 2019) to compare the matrices (obtained from the Net2brain (Bersch
et al., 2022) package) in a pairwise manner. This means each brain region RDM is compared against
each neural network layer RDM. The combination with the highest value of CKA is reported i.e. the
layer which is most aligned to a particular brain region is reported in Figures 7 and 6.

3.3.3 ENCODING MODELS

Encoding models are a class of models used to directly predict brain activity in response to stimuli.
Wang et al. (2019) is one of the established sets of models used to predict localized brain responses.
In our study, we make use of ROI-based feature-weighted receptive field model (fwrf-model from
(Gifford AT), (Gifford et al., 2024)) to synthesize neural responses for images of our own choice.
This approach provides a quick way to map how features of an image contribute to the activation
patterns observed in the brain. This encoding model can be trained for each ROI has an explained
variance score of 65.94% for V1, 59.71% for V2, 52.02% for V3 and 44.45% for V4 (Gifford et al.,
2024). The encoding model uses Allen et al. (2022) as the base and comes with EEG and fMRI
responses for 150,000 naturalistic images coming from multiple publicly available datasets such as
ImageNet (Deng et al., 2009). This fact ensures that the synthetic responses are generated from an
underlying distribution, allowing for a more accurate simulation of the neural responses and providing
an alternative for conducting large-scale in vivo experiments.

We began by generating synthetic responses to a set of 500 images (5 images for each of the 100
objects) (see Figure 5). Next, we generated synthetic responses for each of the proposed dataset
modifications in the same manner. We chose these objects visually so that they include more
appearance effects as compared to the average object in the dataset. These responses are visualized
using NiLearn 3. We used an encoding model for each subject and each ROI. Using the MNI template
(Collins et al., 1994), we averaged the subject-level responses for each ROI to create a group-level
prediction for a particular ROI. The predictions at the group level were compared based on the
dataset used to synthesize the neural responses. We then calculated the difference in the NIfTI
images obtained from synthetic responses and finally visualized these differences using the Human
Connectome Atlas (Van Essen et al., 2013) to enhance the visual interpretation of the results. With
this set of experiments, our goal is to depict the sensitivity of encoding models to changes in the data
used for synthesizing a response. In this way, we can compare it to the experiments from CKA and
RSA.
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Figure 6: We highlight how variations in scene appearance affect the corresponding alignment metrics.
Specifically, we compute the difference between the alignment score of each modified dataset and
that of the base dataset, i.e., Base – Modified, and normalize this difference by the score of the Base
dataset. Each line in the graph represents the normalized difference in alignment metrics between the
modified and Base datasets. The Representational Similarity Analysis (RSA) and Centered Kernel
Alignment (CKA) scores are computed on the dataset from Allen et al. (2022) using Bersch et al.
(2022), while the BrainScore differences are calculated for a subset of benchmarks introduced in
Coggan & Tong (2024).

Figure 7: Differences in alignment metrics due to rotation variations. The plot shows normalized
differences between the Base and Modified datasets.
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Figure 8: Encoding model (from Gifford AT) is used to predict the intensity in the brain regions
highlighted on the x-axis. Each point on this plot shows the difference in average activity (mean of
intensities) of the Base dataset as compared to that of the modified dataset. Using these line plots we
can see a trend along the visual hierarchy.

4 EXPERIMENTS AND RESULTS

Figures 7 and 6 highlight differences in alignment metrics of the modified datasets compared to the
Base dataset across brain regions and different networks. It can be seen that for the same network,
for example, AlexNet the three metrics RSA, CKA, and BrainScore do not always show the same
trend. This phenomenon is expected and has been reported in previous literature such as (Soni et al.,
2024b) which mentions that different alignment metrics might not be perfectly correlated to each
other for the same set of measurements, but are nevertheless useful since we get to see the patterns
innate in the data using different comparison metrics.

After computing the alignment metrics for each of the pairwise combinations of dataset and models,
we compute an independent samples t-test between the metrics of five iterations of the Base dataset
and modified datasets. The p-values of this analysis are represented in the Appendix in Tables 4, 5 and
6. Furthermore, we highlight all the p-values (p < 0.05) to highlight the significance of the results.
Analyzing these results, we see that CKA is one metric that significantly differs for different datasets
across networks for a large chunk of combinations. RSA and BrainScore also show significant results
but with a comparatively smaller number of observations having p < 0.05. Hence, we suggest that
CKA is a more favorable metric as compared to RSA and BrainScore for our use case. Furthermore, a
proof of concept is that ImageNet-trained networks and untrained networks are significantly different
as compared to the Base dataset. The difference for ImageNet-trained networks is always negative
since they are trained on more realistic scenes and match the brain better as compared to our Base
dataset. The difference for the untrained networks is almost always more positive as compared to
ImageNet-trained and our modified networks since the untrained networks are randomly initialized
and match the brain worse as compared to the base dataset i.e. ((base− untrained)/base) > 0. For
the rotational datasets, it can be seen in general that the difference (along the visual hierarchy) as
compared to the Base dataset is more on the positive side as the rotation in the dataset decreases, in
general. This means that probably complex rotation could be represented in higher visual areas. Such
observations are in agreement with prior literature e.g. from Roe et al. (2012).

Using Figure 6 (alongside Tables 4, 5 and 6 in the Appendix) we can conclude that for the textured
dataset, the difference is negative (but higher in magnitude) in the early visual areas and moves
towards zero for V3 and V4. Both the RSA and CKA analyses are significant (p-values of score
differences < 0.05) for VGG16 and AlexNet according to Table 4. Additionally, CKA is significant
across networks for the textured dataset (as highlighted by Table 4 to Table 6). This could suggest
that there is a representation of texture in the early visual system that follows along the lines of
Hucka & Kaplan (1995). The textured dataset has more variations in its feature space as compared to
the Base dataset, as a result of this we cannot take the generalized interpretations from Figure 3. In
this case, we are not removing a feature from the Base dataset but adding a new feature (texture).

The datasets without shadows, shading, and ambient illumination seem to have RSA and CKA scores
significantly different from the Base dataset. This is highlighted by Table 4, Table 6 and Table 5 with
early visual layers having p-values, (p < 0.05) in most brain regions for all the three networks. This

2GitHub: https://github.com/cvai-roig-lab/Net2Brain.git
3GitHub: https://nilearn.github.io/stable/index.html
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suggests that illumination effects are being represented more in the early visual areas as compared to
the later visual areas. This is in agreement with prior literature (Chen & Tarczy-Hornoch, 2006) that
highlights the role of V1 in the processing of shadows. Our results are consistent with the literature,
Murray et al. (2006) confirms this effect and has found the presence of brightness and transparency in
cells V1 and V2. The paper Lamme et al. (1999) shows the role of V1 in depth perception which can
be supported by appearance cues.

We conducted encoding model experiments for the appearance dataset only as it was hypothesized
that there would be few effects for the rotational dataset since the response to a large number of
images would be needed to see an effect (and this could not be determined how large of an effect
would be needed). Figure 10 shows an example of results from the encoding model. The full-length
results are presented in the Appendix with Figures 10 - 14, shows the visualizations as well as the
direction of the differences, we can see the difference and direction using Figure 8. We can see which
regions show higher or lower differences. However, these results are not all conclusive but provide a
method to rank the regions for particular datasets. These can be checked for agreement with other
alignment metrics such as CKA and RSA. In general, we can conclude that we can see a variety of
trends for different effects.

5 CONCLUSION AND DISCUSSION

We demonstrate a novel technique that uses computer graphics as a tool to approximately study
human vision. Generating different controlled training datasets by rendering synthetic scenes can
potentially be useful in understanding the brain. Our experiments try to predict the trends of human
perceptual responses to various synthetically controlled image features. Using different alignment
metrics, we can rank the importance of a particular brain region in the representation of a particular
feature. Even though not all alignment metrics agree with each other, a general trend along the ventral
visual stream can be observed.

An important point to note in the results is that for the NSD (Allen et al., 2022) dataset, RDMs in
Figures 7 and 6 are extracted for the regions V1, V2, V3 and V4. The NSD dataset contains masks
for regions lhV4 and rhV4 (left and right hemisphere V4) which are relevant to studying the IT
cortex but as such are not named as IT. Using a subset (from Coggan & Tong (2024)) of benchmarks
BrainScore, we were able to benchmark in regions V1, V2, V4, and IT. Another point to note is that
the NSD (Allen et al., 2022) dataset is not perfectly suited for the task of RSA. Hence, we have used
encoding models to add another layer of confidence to our experimental results. The encoding model
does show trends in differences along the visual hierarchy, which can be compared against the three
metrics proposed before.

In summary, we provide a pipeline that encompasses a tool to study the brain using computer graphics.
Using different alignment metrics, we evaluate how different scene intrinsics are represented in the
brain. Even though this method is approximate, it still gives a starting point before trying to study the
brain by designing specialized fMRI experiments and it might guide studies into novel directions.
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Alessandro T. Gifford, Maya A. Jastrzębowska, Johannes J. D. Singer, and Radoslaw M. Cichy.
In silico discovery of representational relationships across visual cortex, 2024. URL https:
//arxiv.org/abs/2411.10872.

Cichy RM. 2024 Gifford AT. URL https://github.com/gifale95/NED.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington (eds.), Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pp. 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010.
PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html.

U. Guclu and M. A. J. van Gerven. Deep neural networks reveal a gradient in the complexity of
neural representations across the ventral stream. Journal of Neuroscience, 35(27):10005–10014,
July 2015. ISSN 1529-2401. doi: 10.1523/jneurosci.5023-14.2015. URL http://dx.doi.
org/10.1523/JNEUROSCI.5023-14.2015.

Umut Güçlü and Marcel AJ Van Gerven. Deep neural networks reveal a gradient in the complexity
of neural representations across the ventral stream. Journal of Neuroscience, 35(27):10005–10014,
2015.

Agrim Gupta, Piotr Dollár, and Ross Girshick. Lvis: A dataset for large vocabulary instance
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 5356–5364, 2019. doi: 10.1109/CVPR.2019.00549. URL
https://openaccess.thecvf.com/content_CVPR_2019/papers/Gupta_
LVIS_A_Dataset_for_Large_Vocabulary_Instance_Segmentation_CVPR_
2019_paper.pdf.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Michael Hucka and Stephen Kaplan. Texture-based processing in early vision and a pro-
posed role for coarse-scale segmentation. Technical report, University of Michigan,
1995. URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=
pdf&doi=2d3beb2505bdb61d1620a0a393b8214828cfda98.

Blair Kaneshiro, Marcos Guimaraes, Hyungsuk Kim, Anthony Norcia, and Patrick Suppes. A
representational similarity analysis of the dynamics of object processing using single-trial eeg
classification. PloS one, 10:e0135697, 08 2015. doi: 10.1371/journal.pone.0135697.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

Nikolaus Kriegeskorte. Deep neural networks: a new framework for modeling biological vision and
brain information processing. Annual review of vision science, 1(1):417–446, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Victor A. F. Lamme, Hans Supèr, Rogier Landman, Pieter R. Roelfsema, and Henk Spekreijse. The
role of primary visual cortex (v1) in visual awareness. Vision Research, 39(10):1435–1448, 1999.
doi: 10.1016/S0042-6989(99)00243-6.

12

https://doi.org/10.1167/4.9.5
https://doi.org/10.1167/4.9.5
https://arxiv.org/abs/2411.10872
https://arxiv.org/abs/2411.10872
https://github.com/gifale95/NED
https://proceedings.mlr.press/v9/glorot10a.html
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
https://openaccess.thecvf.com/content_CVPR_2019/papers/Gupta_LVIS_A_Dataset_for_Large_Vocabulary_Instance_Segmentation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Gupta_LVIS_A_Dataset_for_Large_Vocabulary_Instance_Segmentation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Gupta_LVIS_A_Dataset_for_Large_Vocabulary_Instance_Segmentation_CVPR_2019_paper.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2d3beb2505bdb61d1620a0a393b8214828cfda98
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2d3beb2505bdb61d1620a0a393b8214828cfda98
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf


To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Najib J. Majaj, Ha Hong, Ethan A. Solomon, and James J. DiCarlo. Simple learned weighted
sums of inferior temporal neuronal firing rates accurately predict human core object recognition
performance. Journal of Neuroscience, 35(39):13402–13418, 2015. ISSN 0270-6474. doi:
10.1523/JNEUROSCI.5181-14.2015. URL https://www.jneurosci.org/content/
35/39/13402.

Alex Murphy, Joel Zylberberg, and Alona Fyshe. Correcting biased centered kernel alignment
measures in biological and artificial neural networks, 2024. URL https://arxiv.org/abs/
2405.01012.

S. O. Murray, S. He, K. Wray, R. Sekuler, and G. Mather. Brightness and transparency in the early
visual cortex. Journal of Vision, 6(6):1064–1074, 2006. doi: 10.1167/6.6.1064.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Lutz Prechelt. Early stopping – but when? In C. J. C. Burges B. Schölkopf and A. J. Smola (eds.),
Neural Networks: Tricks of the Trade, pp. 55–69. Springer, 1998.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. In Advances in Neural Information Processing Systems,
volume 30, pp. 5099–5108, 2017. URL https://proceedings.neurips.cc/paper/
2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf.

Rishi Rajalingham, Elias B. Issa, Pouya Bashivan, Kohitij Kar, Kailyn Schmidt, and James J.
DiCarlo. Large-scale, high-resolution comparison of the core visual object recognition behavior of
humans, monkeys, and state-of-the-art deep artificial neural networks. Journal of Neuroscience,
38(33):7255–7269, 2018. doi: 10.1523/JNEUROSCI.0388-18.2018. URL https://www.
jneurosci.org/content/38/33/7255.

N. A. Ratan Murty, P. Bashivan, A. Abate, et al. Computational models of category-selective brain
regions enable high-throughput tests of selectivity. Nature Communications, 12:5540, 2021. doi: 10.
1038/s41467-021-25409-6. URL https://doi.org/10.1038/s41467-021-25409-6.

Anna W. Roe, Leonardo Chelazzi, Charles E. Connor, Bevil R. Conway, Ichiro Fujita, Jack L. Gallant,
Haidong Lu, and Wim Vanduffel. Toward a unified theory of visual area v4. Neuron, 74(1):12–
29, 2012. doi: 10.1016/j.neuron.2012.03.011. URL https://pmc.ncbi.nlm.nih.gov/
articles/PMC4912377/.

Silvio Savarese. Shape from Specularities, pp. 726–729. Springer US, Boston, MA, 2014. ISBN
978-0-387-31439-6. doi: 10.1007/978-0-387-31439-6_261. URL https://doi.org/10.
1007/978-0-387-31439-6_261.

Martin Schrimpf, Jonas Kubilius, Ha Hong, Najib J. Majaj, Rishi Rajalingham, Elias B. Issa, Kohitij
Kar, Pouya Bashivan, Jonathan Prescott-Roy, Franziska Geiger, Kailyn Schmidt, Daniel L. K.
Yamins, and James J. DiCarlo. Brain-score: Which artificial neural network for object recognition
is most brain-like? bioRxiv, 2020. doi: 10.1101/407007. URL https://www.biorxiv.
org/content/early/2020/01/02/407007.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Proceedings of the International Conference on Machine Learning (ICML), pp.
1–9, 2015.

Ansh Soni, Sudhanshu Srivastava, Konrad Kording, and Meenakshi Khosla. Conclusions about
neural network to brain alignment are profoundly impacted by the similarity measure. bioRxiv,
2024a. doi: 10.1101/2024.08.07.607035. URL https://www.biorxiv.org/content/
early/2024/08/09/2024.08.07.607035.

Ansh Soni et al. Conclusions about neural network to brain alignment are profoundly impacted by
the similarity measure, 2024b.

13

https://www.jneurosci.org/content/35/39/13402
https://www.jneurosci.org/content/35/39/13402
https://arxiv.org/abs/2405.01012
https://arxiv.org/abs/2405.01012
https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d8bf84be3800d12f74d8b05e9b89836f-Paper.pdf
https://www.jneurosci.org/content/38/33/7255
https://www.jneurosci.org/content/38/33/7255
https://doi.org/10.1038/s41467-021-25409-6
https://pmc.ncbi.nlm.nih.gov/articles/PMC4912377/
https://pmc.ncbi.nlm.nih.gov/articles/PMC4912377/
https://doi.org/10.1007/978-0-387-31439-6_261
https://doi.org/10.1007/978-0-387-31439-6_261
https://www.biorxiv.org/content/early/2020/01/02/407007
https://www.biorxiv.org/content/early/2020/01/02/407007
https://www.biorxiv.org/content/early/2024/08/09/2024.08.07.607035
https://www.biorxiv.org/content/early/2024/08/09/2024.08.07.607035


To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

Pascal Spröte, Filipp Schmidt, and Roland Fleming. Visual perception of shape altered by inferred
causal history. Scientific Reports, 6:36245, 2016. doi: 10.1038/srep36245. URL https:
//doi.org/10.1038/srep36245.

Ilia Sucholutsky, Lukas Muttenthaler, Adrian Weller, Andi Peng, Andreea Bobu, Been
Kim, Bradley C. Love, Erin Grant, Iris Groen, Jascha Achterberg, Joshua B. Tenen-
baum, Katherine M. Collins, Katherine L. Hermann, Kerem Oktar, Klaus Greff, Martin N.
Hebart, Nori Jacoby, Qiuyi Zhang, Raja Marjieh, Robert Geirhos, Sherol Chen, Simon
Kornblith, Sunayana Rane, Talia Konkle, Thomas P. O’Connell, Thomas Unterthiner,
Andrew K. Lampinen, Klaus-Robert Müller, Mariya Toneva, and Thomas L. Griffiths.
Getting aligned on representational alignment, 2023. URL https://www.bifold.
berlin/impact-transfer/publications/view/publication-detail/
getting-aligned-on-representational-alignment.

James T. Todd and Lore Thaler. The perception of 3d shape from texture based on directional width
gradients. Journal of Vision, 10(5):17–17, 05 2010. ISSN 1534-7362. doi: 10.1167/10.5.17. URL
https://doi.org/10.1167/10.5.17.

David C Van Essen, Steven M Smith, Deanna M Barch, Timothy E J Behrens, Esmaeel Yacoub, and
Kamil Ugurbil. The human connectome project: A data acquisition perspective. NeuroImage, 62
(4):2222–2231, 2013. doi: 10.1016/j.neuroimage.2012.02.018.

Aria Wang, Michael Tarr, and Leila Wehbe. Neural taskonomy: Inferring the similarity of task-derived
representations from brain activity. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/f490c742cd8318b8ee6dca10af2a163f-Paper.pdf.

Susan G Wardle and Chris Baker. Recent advances in understanding object recognition in the human
brain: deep neural networks, temporal dynamics, and context. F1000Research, 9:F1000 Faculty
Rev–590, Jun 11 2020. doi: 10.12688/f1000research.22296.1. URL https://doi.org/10.
12688/f1000research.22296.1.

I. Yildirim, M. Belledonne, W. Freiwald, and J. Tenenbaum. Efficient inverse graphics in biological
face processing. Science Advances, 6(10):eaax5979, 2020. doi: 10.1126/sciadv.aax5979. URL
https://doi.org/10.1126/sciadv.aax5979.

Amir R. Zamir, Alexander Sax, William B. Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio
Savarese. Taskonomy: Disentangling task transfer learning. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, 2018.

14

https://doi.org/10.1038/srep36245
https://doi.org/10.1038/srep36245
https://www.bifold.berlin/impact-transfer/publications/view/publication-detail/getting-aligned-on-representational-alignment
https://www.bifold.berlin/impact-transfer/publications/view/publication-detail/getting-aligned-on-representational-alignment
https://www.bifold.berlin/impact-transfer/publications/view/publication-detail/getting-aligned-on-representational-alignment
https://doi.org/10.1167/10.5.17
https://proceedings.neurips.cc/paper_files/paper/2019/file/f490c742cd8318b8ee6dca10af2a163f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/f490c742cd8318b8ee6dca10af2a163f-Paper.pdf
https://doi.org/10.12688/f1000research.22296.1
https://doi.org/10.12688/f1000research.22296.1
https://doi.org/10.1126/sciadv.aax5979


To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

7 APPENDIX

Model Optimizer Momentum Weight Decay Learning Rate Scheduler Factor Patience Initialization
AlexNet Adam 0.9 5e-4 0.01 Reduce LR on Plateau 0.1 10 Xavier
VGG16 SGD 0.9 5e-4 0.01 Step LR 0.1 30 Xavier
ResNet50 SGD 0.9 8e-4 0.1 Step LR 0.1 30 Xavier

Table 1: Model training hyperparameters, one of the special cases was that for training ResNet50 on
the textured dataset we used a learning rate of 0.01.

Model
Name

Keyword Training Ac-
curacy

Validation
Accuracy

Training
Loss

Validation
Loss

AlexNet

Ambient 0.81 ± 0.10 0.59 ± 0.03 0.65 ± 0.43 2.37 ± 0.02
Less Variation 0.76 ± 0.11 0.58 ± 0.02 0.89 ± 0.44 2.27 ± 0.03
Z axis 0.90 ± 0.04 0.68 ± 0.01 0.39 ± 0.24 1.72 ± 0.04
No Variation 0.81 ± 0.11 0.89 ± 0.04 0.69 ± 0.45 0.43 ± 0.19
Base 0.66 ± 0.24 0.52 ± 0.08 1.32 ± 0.89 2.72 ± 0.22
Textures 0.63 ± 0.10 0.47 ± 0.03 1.58 ± 0.49 3.11 ± 0.01
Without Shad-
ows

0.83 ± 0.03 0.56 ± 0.00 0.63 ± 0.05 2.61 ± 0.05

Without Shad-
ing

0.81 ± 0.03 0.53 ± 0.00 0.74 ± 0.12 2.78 ± 0.02

No Speculari-
ties

0.80 ± 0.04 0.58 ± 0.05 0.72 ± 0.16 2.54 ± 0.01

ResNet50

Ambient 0.80 ± 0.24 0.57 ± 0.18 1.03 ± 0.75 2.03 ± 0.92
Less Variation 0.70 ± 0.28 0.50 ± 0.18 1.48 ± 1.11 2.26 ± 0.81
Z axis 0.96 ± 0.06 0.74 ± 0.04 0.39 ± 0.41 1.18 ± 0.18
No Variation 0.90 ± 0.08 0.79 ± 0.16 0.60 ± 0.35 0.91 ± 0.66
Base 0.83 ± 0.19 0.59 ± 0.06 0.67 ± 0.73 1.95 ± 0.26
Textures 0.93 ± 0.07 0.55 ± 0.01 0.42 ± 0.35 2.31 ± 0.04
Without Shad-
ows

0.99 ± 0.03 0.65 ± 0.03 0.08 ± 0.05 1.61 ± 0.01

Without Shad-
ing

0.93 ± 0.15 0.60 ± 0.05 0.32 ± 0.60 1.86 ± 0.17

No Speculari-
ties

0.74 ± 0.05 0.56 ± 0.01 1.08 ± 0.17 1.92 ± 0.04

VGG16

Ambient 0.78 ± 0.08 0.60 ± 0.01 0.93 ± 0.42 2.08 ± 0.01
Less Variation 0.83 ± 0.06 0.62 ± 0.01 0.73 ± 0.10 2.00 ± 0.02
Z axis 0.80 ± 0.04 0.73 ± 0.01 0.82 ± 0.15 1.33 ± 0.05
No Variation 0.94 ± 0.03 0.97 ± 0.01 0.25 ± 0.14 0.10 ± 0.03
Base 0.72 ± 0.08 0.57 ± 0.01 1.09 ± 0.34 2.30 ± 0.02
Textures 0.66 ± 0.20 0.50 ± 0.07 1.50 ± 1.01 2.81 ± 0.28
Without Shad-
ing

0.85 ± 0.14 0.18 ± 0.01 0.60 ± 0.14 4.50 ± 0.08

Without Shad-
ows

0.68 ± 0.13 0.20 ± 0.30 1.35 ± 0.65 4.40 ± 0.06

No Speculari-
ties

0.75 ± 0.08 0.56 ± 0.01 0.99 ± 0.31 2.45 ± 0.02

Table 2: Performance metrics for different models and conditions

Model Layer Identifiers
ResNet50 V1:layer1.0.conv1, V2:layer3.5.bn3, V4:layer3.0.conv1, IT:layer4.0.relu 4

AlexNet V1:features.2, V2:features.5, V4:features.7, IT:features.12 5

VGG16 V1: features.16, V2: features.16, V4: features.16, IT: features.23 6

Table 3: Layer identifiers assigned to different regions of the neural network for each model during
benchmarking on BrainScore.
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Network Keyword Region p-value (RSA) p-value (CKA) p-value (BrainScore)

AlexNet
ImageNet Trained

V1 5.11× 10−09 1.30× 10−06 6.13× 10−04

V2 2.11× 10−09 6.98× 10−08 1.52× 10−03

V3/IT 5.95× 10−12 3.11× 10−09 6.88× 10−03

V4 2.65× 10−12 3.74× 10−06 2.56× 10−05

Textures

V1 1.80× 10−05 4.69× 10−04 2.91× 10−01

V2 3.55× 10−05 2.36× 10−04 2.04× 10−01

V3/IT 8.70× 10−05 2.40× 10−04 3.41× 10−01

V4 1.40× 10−01 2.39× 10−01 2.69× 10−03

Ambient

V1 4.86× 10−02 2.90× 10−01 8.93× 10−01

V2 5.65× 10−02 4.98× 10−02 1.35× 10−02

V3/IT 6.51× 10−01 1.90× 10−02 3.92× 10−02

V4 7.08× 10−01 9.72× 10−01 1.17× 10−02

Without shadows

V1 3.67× 10−03 8.22× 10−01 6.81× 10−01

V2 2.75× 10−03 4.30× 10−03 9.70× 10−02

V3/IT 1.99× 10−04 2.19× 10−02 6.90× 10−01

V4 3.55× 10−03 7.82× 10−01 2.95× 10−02

Without Shading

V1 9.12× 10−01 8.38× 10−01 9.05× 10−01

V2 5.40× 10−01 9.79× 10−01 2.33× 10−01

V3/IT 1.01× 10−01 6.00× 10−01 5.90× 10−01

V4 3.53× 10−03 1.62× 10−01 3.72× 10−03

No specularities

V1 1.52× 10−01 9.62× 10−01 2.74× 10−01

V2 8.73× 10−02 1.24× 10−01 1.63× 10−01

V3/IT 3.58× 10−02 2.53× 10−01 3.73× 10−01

V4 6.94× 10−02 8.78× 10−01 3.95× 10−02

Less Variation

V1 7.99× 10−01 2.64× 10−02 2.02× 10−01

V2 5.07× 10−01 8.30× 10−01 3.72× 10−01

V3/IT 1.51× 10−01 3.33× 10−01 4.11× 10−01

V4 1.12× 10−01 3.26× 10−01 5.78× 10−01

Z-axis

V1 8.50× 10−02 3.33× 10−01 3.92× 10−02

V2 5.52× 10−02 8.64× 10−01 8.26× 10−01

V3 2.04× 10−03 2.76× 10−02 3.62× 10−02

V4 1.65× 10−02 6.21× 10−01 1.16× 10−03

No variation

V1 3.20× 10−01 1.39× 10−01 3.40× 10−01

V2 3.96× 10−01 8.43× 10−01 3.83× 10−01

V3/IT 4.09× 10−01 8.39× 10−01 2.53× 10−01

V4 7.31× 10−01 6.35× 10−02 6.39× 10−01

No training

V1 2.42× 10−06 2.71× 10−04 6.18× 10−04

V2 4.27× 10−07 9.03× 10−06 2.08× 10−03

V3/IT 3.79× 10−07 2.09× 10−07 7.24× 10−03

V4 1.47× 10−06 2.11× 10−04 4.81× 10−05

Table 4: P-values on independent samples t-test conducted on the alignment metrics computed on
the Base dataset as well as the modified datasets for the model AlexNet. All significant values i.e.
p < 0.05 are displayed in bold. The V3/IT marking shows that we have used V3 region for RSA and
CKA but used the IT region for V4.

4GitHub: link
5GitHub: link
6GitHub: link
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Network Keyword Region p-value (RSA) p-value (CKA) p-value (BrainScore)

VGG16

ImageNet Trained

V1 2.90× 10−13 2.10× 10−10 3.75× 10−01

V2 2.38× 10−09 1.17× 10−08 9.26× 10−01

V3/IT 5.11× 10−08 3.24× 10−06 6.28× 10−01

V4 2.61× 10−09 1.95× 10−07 4.50× 10−01

Textures

V1 1.06× 10−01 1.49× 10−01 3.54× 10−01

V2 4.42× 10−02 1.01× 10−01 1.14× 10−02

V3/IT 3.90× 10−02 1.79× 10−01 1.86× 10−01

V4 1.55× 10−03 1.85× 10−02 7.79× 10−01

Ambient

V1 8.51× 10−07 6.50× 10−03 5.89× 10−01

V2 2.82× 10−03 7.13× 10−03 2.58× 10−03

V3/IT 1.83× 10−01 4.18× 10−02 3.51× 10−01

V4 1.26× 10−01 2.67× 10−03 1.98× 10−04

Without Shadows

V1 1.44× 10−05 4.37× 10−03 3.56× 10−01

V2 2.95× 10−03 1.89× 10−02 2.20× 10−02

V3 1.17× 10−01 1.74× 10−02 2.20× 10−02

V4 2.90× 10−02 1.28× 10−04 1.64× 10−01

Without Shading

V1 1.45× 10−03 4.58× 10−03 4.64× 10−02

V2 1.67× 10−01 4.01× 10−02 4.95× 10−02

V3 8.10× 10−01 4.96× 10−01 2.03× 10−05

V4 2.14× 10−01 4.06× 10−04 4.59× 10−02

No Specular
V1 7.36× 10−01 5.72× 10−01 6.85× 10−01

V2 4.03× 10−01 3.16× 10−01 8.96× 10−03

V3 1.91× 10−01 2.78× 10−01 1.70× 10−02

Less Variation

V1 8.39× 10−01 4.70× 10−01 5.90× 10−01

V2 8.55× 10−01 2.27× 10−01 6.29× 10−01

V3/IT 8.30× 10−01 8.33× 10−01 6.92× 10−01

V4 7.19× 10−01 8.56× 10−02 2.38× 10−01

Z axis

V1 1.82× 10−02 1.41× 10−01 5.08× 10−01

V2 4.35× 10−02 6.42× 10−01 3.42× 10−03

V3/IT 1.32× 10−01 6.69× 10−01 1.00× 10+00

V4 7.66× 10−02 9.55× 10−01 8.02× 10−01

No Variation

V1 3.39× 10−02 4.97× 10−06 6.24× 10−01

V2 3.42× 10−01 7.49× 10−04 1.41× 10−01

V3/IT 3.09× 10−01 3.90× 10−01 6.85× 10−02

V4 2.48× 10−02 5.44× 10−03 7.87× 10−01

No Training

V1 9.60× 10−04 6.94× 10−04 9.51× 10−01

V2 1.19× 10−04 7.82× 10−05 4.81× 10−01

V3/IT 8.81× 10−04 3.73× 10−04 1.74× 10−03

V4 6.96× 10−05 2.25× 10−06 1.15× 10−01

Table 5: P-values on independent samples t-test conducted on the alignment metrics computed on
the Base dataset as well as the modified datasets for the model VGG16.All significant values i.e.
p < 0.05 are displayed in bold. The V3/IT marking shows that we have used the V3 region for RSA
and CKA but used the IT region for V4.
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Network Keyword Region p-value (RSA) p-value (CKA) p-value (BrainScore)

ResNet50
ImageNet Trained

V1 7.80× 10−01 7.60× 10−47 6.68× 10−01

V2 4.07× 10−01 5.87× 10−48 2.92× 10−01

V3/IT 8.87× 10−04 3.70× 10−39 6.54× 10−01

V4 2.99× 10−07 5.38× 10−47 6.47× 10−01

Textures

V1 8.24× 10−01 0.00× 10+00 2.93× 10−01

V2 4.26× 10−01 0.00× 10+00 3.38× 10−01

V3/IT 8.84× 10−01 2.52× 10−117 3.72× 10−01

V4 9.56× 10−02 0.00× 10+00 5.80× 10−01

Ambient

V1 1.23× 10−01 0.00× 10+00 9.54× 10−03

V2 4.01× 10−01 0.00× 10+00 1.97× 10−02

V3/IT 4.03× 10−01 0.00× 10+00 6.70× 10−02

V4 4.92× 10−01 0.00× 10+00 7.15× 10−01

Without Shadows

V1 8.47× 10−01 1.69× 10−03 3.81× 10−01

V2 8.66× 10−01 2.59× 10−03 3.02× 10−01

V3/IT 3.86× 10−01 2.95× 10−03 9.44× 10−01

V4 4.45× 10−02 2.76× 10−07 8.27× 10−01

Without shading

V1 1.54× 10−01 4.85× 10−04 8.81× 10−01

V2 1.79× 10−01 8.86× 10−05 4.96× 10−01

V3/IT 8.85× 10−02 1.84× 10−02 9.18× 10−01

V4 1.10× 10−01 1.52× 10−04 6.64× 10−02

No specularities

V1 1.11× 10−01 1.79× 10−05 1.10× 10−01

V2 4.06× 10−01 7.33× 10−10 1.50× 10−01

V3/IT 7.68× 10−01 4.73× 10−06 9.75× 10−02

V4 9.13× 10−01 2.51× 10−05 5.25× 10−01

Less Variation

V1 5.05× 10−01 2.45× 10−01 4.88× 10−01

V2 4.25× 10−01 9.60× 10−01 9.25× 10−01

V3/IT 6.80× 10−01 4.84× 10−01 7.09× 10−01

V4 9.07× 10−01 3.71× 10−03 2.44× 10−01

Z axis

V1 7.00× 10−01 1.58× 10−03 4.25× 10−01

V2 5.80× 10−01 2.07× 10−02 2.74× 10−01

V3/IT 3.67× 10−02 1.20× 10−03 4.54× 10−01

V4 5.71× 10−03 3.52× 10−07 6.40× 10−02

No Variation

V1 8.65× 10−01 8.64× 10−04 6.68× 10−01

V2 1.80× 10−01 8.56× 10−03 2.92× 10−01

V3/IT 8.43× 10−03 3.14× 10−03 6.54× 10−01

V4 3.85× 10−03 6.10× 10−03 6.47× 10−01

No training

V1 4.42× 10−05 1.33× 10−08 7.43× 10−01

V2 1.38× 10−06 9.52× 10−12 3.52× 10−02

V3/IT 6.70× 10−07 5.47× 10−12 9.67× 10−02

V4 1.70× 10−07 1.23× 10−10 1.49× 10−01

Table 6: P-values on independent samples t-test conducted on the alignment metrics computed on
the Base dataset as well as the modified datasets for the model ResNet50. All significant values i.e.
p < 0.05 are displayed in bold. The V3/IT marking shows that we have used the V3 region for RSA
and CKA but used the IT region for V4.
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Textures

Figure 9: Visualization of responses to the encoding model specified in Regions of Interest(ROIs).
The model’s predictions on the synthetic dataset are shown using Nilearn’s plot_glass_brain
function. The Base dataset responses are visualized next, followed by a difference map computed
from the two datasets. The difference is rendered using a hot colormap to highlight both the direction
and intensity of changes across brain regions.
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No Specularities

Figure 10: Visualization of responses to the encoding model specified in Regions of Interest (ROIs).
The model’s predictions on the synthetic dataset are shown using Nilearn’s plot_glass_brain
function. The Base dataset responses are visualized next, followed by a difference map computed
from the two datasets. The difference is rendered using a hot colormap to highlight both the direction
and intensity of changes across brain regions.
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Base

Figure 11: Visualization of responses to the encoding model specified in Regions of Interest (ROIs).
The model’s predictions on the synthetic dataset are shown using Nilearn’s plot_glass_brain
function. The Base dataset responses are visualized next, followed by a difference map computed
from the two datasets. The difference is rendered using a hot colormap to highlight both the direction
and intensity of changes across brain regions.
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Base

Figure 12: Visualization of responses to the encoding model specified in Regions of Interest (ROIs).
The model’s predictions on the synthetic dataset are shown using Nilearn’s plot_glass_brain
function. The Base dataset responses are visualized next, followed by a difference map computed
from the two datasets. The difference is rendered using a hot colormap to highlight both the direction
and intensity of changes across brain regions.
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Ambient

Figure 13: Visualization of responses to the encoding model specified in Regions of Interest (ROIs).
The model’s predictions on the synthetic dataset are shown using Nilearn’s plot_glass_brain
function. The Base dataset responses are visualized next, followed by a difference map computed
from the two datasets. The difference is rendered using a hot colormap to highlight both the direction
and intensity of changes across brain regions.
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No Shading

Figure 14: Visualization of responses to the encoding model specified in Regions of Interest (ROIs).
The model’s predictions on the synthetic dataset are shown using Nilearn’s plot_glass_brain
function. The Base dataset responses are visualized next, followed by a difference map computed
from the two datasets. The difference is rendered using a hot colormap to highlight both the direction
and intensity of changes across brain regions.
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