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Abstract

Diffusion-based language models are emerg-001
ing as a promising alternative to autoregressive002
LMs: they approach the competence of autore-003
gressive LMs while offering nuanced controlla-004
bility at inference time. While autoregressive005
LMs have benefited immensely from scaling006
and instruction-based learning, existing stud-007
ies of diffusion LMs have been conducted on008
a smaller scale. Starting with a recently pro-009
posed diffusion model SSD-LM, in this work010
we first explore methods to scale it from 0.4B011
to 13B parameters, proposing techniques to im-012
prove its training and inference efficiency, and013
to finetune the model to follow instructions.014
Armed with a more powerful, general purpose015
diffusion LM, we introduce the primary con-016
tribution of this work – SSD-2 – an approach017
to easily ensemble at inference time a large018
general-purpose diffusion LM with smaller, but019
specialized and contextualized diffusion LMs.020
We show that SSD-2 facilitates novel ensem-021
bles with 100x smaller models that can be cus-022
tomized and deployed by individual users. We023
find that compared to autoregressive models,024
the collaboration between diffusion LMs is025
more effective, leading to higher-quality model026
responses due to their ability to dynamically027
incorporate bi-directional contexts.028

1 Introduction029

Following the footsteps of diffusion-based gener-030

ative models for continuously valued data such as031

images, audio, and video (Ho et al., 2020; Kong032

et al., 2021; Ho et al., 2022), recent works have at-033

tempted to replicate these successes on discrete text034

data (Austin et al., 2021; Li et al., 2022c; Han et al.,035

2022; Strudel et al., 2022; Dieleman et al., 2022).036

Several studies have shown that diffusion-based037

language models (LMs) perform competitively to038

their autoregressive counterparts, and even surpass039

them at post-hoc controllable text generation (Li040

et al., 2022c; Han et al., 2022).041

Figure 1: Inference-time collaboration between a large
general model and a small user model that incorpo-
rates user-specified knowledge. The collaboration be-
tween autoregressive models performs decoding token-
by-token, while the collaboration between diffusion
models refines a block of generated tokens iteratively
with bi-directional contexts (§3).

Meanwhile, autoregressive language models 042

(Brown et al., 2020; Touvron et al., 2023) have 043

emerged as general-purpose solutions capable of 044

holding conversations with humans and solving 045

tasks by following instructions (Ouyang et al., 046

2022; Wang et al., 2022; Longpre et al., 2023; Taori 047

et al., 2023; Chiang et al., 2023; Xu et al., 2023). 048

Their abilities are primarily due to two factors: scal- 049

ing the model parameters as well as pretraining 050

datasets, and instruction finetuning with carefully 051

curated datasets (Ouyang et al., 2022). 052

However, as the models become increasingly im- 053

mense and proprietary, it is difficult for individual 054

users to customize the system with their own data 055

(e.g., specialized knowledge) due to cost or privacy 056

reasons (§3). A primary contribution of this work is 057

to illustrate a novel setup of inference-time collabo- 058

ration between LMs and show a unique advantage 059

of diffusion LMs compared to autoregressive mod- 060

els in this scenario. With diffusion models’ itera- 061
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tive generation design over a span of bi-directional062

contexts, multiple diffusion LMs with different ca-063

pabilities can be easily ensembled at the sequence064

level at test time, leveraging advantages of each065

LM in the ensemble.066

As a preliminary to our experiments, we first067

present an exploratory study to scale and incorpo-068

rate instruction-following and conversational ca-069

pabilities in diffusion-based LMs. We introduce070

SSD-2, an improved version of recently introduced071

simplex-based diffusion LM SSD-LM (Han et al.,072

2022) proposing several modifications to its train-073

ing and inference procedures. We incorporate these074

improvements in scaling SSD-2 to 13B parameters,075

up from 0.4B in SSD-LM. We show that similarly076

to autoregressive LMs, by finetuning with curated077

instruction datasets, SSD-2 is well-suited to follow078

chat-style instructions.079

We then present our main case study highlight-080

ing the setup of inference-time collaboration: we081

augment a general-purpose large SSD-2 model082

with 13B parameters with a 100x smaller, user-083

accessible model. This setup allows incorporat-084

ing user-provided knowledge into the generation085

process without directly inputting it into the large086

model (which can be undesirable due to cost or pri-087

vacy reasons). We show that SSD-2’s instruction088

finetuned model is substantially more effective at089

this collaboration than the autoregressive baselines,090

leveraging bi-directional contexts in the ensemble.1091

2 Background092

Semi-autoregressive simplex-based diffusion LM093

(SSD-LM) is trained to generate text in blocks of to-094

kens by performing diffusion in the simplex space095

of the model vocabulary (Han et al., 2022). For096

text continuation tasks, it has shown competitive097

performance against autoregressive models (e.g.,098

GPT-2; Radford et al., 2019) when trained with a099

similar number of model parameters and pretrain-100

ing data. Furthermore, it naturally enables post-hoc101

control in generated text using off-the-shelf classi-102

fiers, outperforming prior approaches to controlling103

autoregressive models. Below we briefly overview104

the training and decoding algorithm of SSD-LM.105

Training The core idea behind the training of106

diffusion models (Ho et al., 2020) is to add a se-107

ries of progressive noise to the input data repre-108

sentations and learn a model to reverse this pro-109

1We will release code and models at ANONYMIZED.

cess, reconstructing the original data at different 110

noise levels. Assume we have a sequence of tokens 111

{w0, . . . , wc−1, wc, . . . , wc+B−1}, where we con- 112

dition on a context of length c, {w0, . . . , wc−1} (or 113

w<c), and learn to generate the subsequent block 114

of text {wc, . . . , wc+B−1} (or wc:c+B) containing 115

B tokens. In SSD-LM, a progressive Gaussian 116

noise is added to the block of text wc:c+B . 117

w̃c:c+B
0 = logits-initialization(wc:c+B) 118

w̃c:c+B
t =

√
ᾱtw̃

c:c+B
0 +

√
1− ᾱtϵ 119

where logits-initialization(·) maps each discrete 120

token to a base, almost-one-hot logits repre- 121

sentation in the model’s vocabulary space V , 122

{−K,+K}|V |. A noise schedule ᾱt controls the 123

level of noise added to the base representation, 124

where timestep t ∼ U(1, T ) and larger t means a 125

noisier representation. 126

SSD-LM’s training loss on wc:c+B is condi- 127

tioned both on the noisy representation w̃c:c+B
t 128

and the prior context w<c to the block. 129

Et[− log pθ(w
c:c+B | w̃c:c+B

t ,w<c)] 130

= Et

j<c+B∑
j=c

− log pθ(w
j | w̃c:c+B

t ,w<c)

 131

The model has access to a locally bi-directional 132

context through the noisy representation. In con- 133

trast, the canonical autoregressive training loss for 134

wc:c+B would be
∑j<c+B

j=c − log pθ(w
j | w<j), 135

conditioned on the uni-directional left context only. 136

Decoding At inference time, given a context 137

w<c, SSD-LM generates a block wc:c+B through 138

an iterative denoising algorithm, backtracking the 139

noise timesteps from t = T to 1. Each iteration 140

t consists of three main steps: (1) predict logits 141

representation wc:c+B
logits,t for the decoding text block 142

using the learned model, (2) project the logits to an 143

almost-one-hot representation ŵc:c+B
t in the base 144

space {−K,+K}|V | (with optional modifications), 145

(3) add a Gaussian noise corresponding to timestep 146

t− 1 to the projected representation and proceed 147

to the next iteration. 148

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c) 149

ŵc:c+B
t = logits-projection(wc:c+B

logits,t) 150

w̃c:c+B
t−1 =

√
ᾱt−1ŵ

c:c+B
t +

√
1− ᾱt−1z 151

where θ is the trained diffusion model and w̃c:c+B
T 152

is initialized with a Gaussian noise. 153
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Algorithm 1 Training (at a given c)

1: w̃c:c+B
0 = logits-initialization(wc:c+B)

2: t ∼ Uniform({1, . . . , T})
3: ϵ ∼ N (0,K2I)

4: w̃c:c+B
t =

√
ᾱtw̃

c:c+B
0 +

√
1− ᾱtϵ

5: r ∼ Bernoulli(0.5)
6: if r = 0 then
7: Take a gradient descent step on

∇θ[
∑j<c+B

j=c − log pθ(w
j | w̃c:c+B

t ,w<c)]
8: else
9: With gradient calculation disabled, calculate

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,w<c)

10: Take a gradient descent step on
∇θ [

∑j<c+B
j=c − log pθ(w

j | w̃c:c+B
t ,wc:c+B

logits,t ,w<c)]

11: end if

Algorithm 2 Decoding (at a given c)

1: w̃c:c+B
T ∼ N (0,K2I)

2: for t = T, . . . , 1 do
3: if t = T then
4: wc:c+B

logits,t = logitsθ(w
c:c+B | w̃c:c+B

t ,w<c)
5: else
6: wc:c+B

logits,t = logitsθ(w
c:c+B | w̃c:c+B

t ,wc:c+B
logits,t+1,w

<c)

7: end if
8: Ensemble with other models if applicable,

all-reduceΘ,λ(w
c:c+B
logits,t )

9: ŵc:c+B = logits-projection(wc:c+B
logits,t )

10: z ∼ N (0,K2I)

11: w̃c:c+B
t−1 =

√
ᾱt−1ŵ

c:c+B +
√
1− ᾱt−1z

12: end for
13: return argmax w̃c:c+B

0

Figure 2: Training and decoding algorithms for SSD-2. The training algorithm describes the training objective at an
arbitrary context length c. The decoding algorithm can be applied multiple rounds by appending the generation
from one round to the context for the next. The decoding may stop after a fixed number of rounds or until a special
end-of-sequence token is encountered.

3 SSD-2154

In the age of LLMs, individual users of NLP mod-155

els may often face a dilemma when they wish to156

customize the system with their own data. On one157

hand, it is difficult for user-owned devices to fit158

very large models and smaller models are usually159

not powerful enough. On the other hand, upload-160

ing their data to a commercial host of large mod-161

els for finetuning or long in-context learning is162

expensive and also may not be desirable due to pri-163

vacy risks. We aim to address this dilemma in this164

work by proposing a collaborative inference-time165

algorithm between two diffusion models: a large166

general-purpose model (such as ones only acces-167

sible through an API) and a small model which a168

user can customize (§3.2).169

We first present SSD-2 building on top of SSD-170

LM with several modifications to improve its train-171

ing and decoding efficiency (§3.1). We train SSD-172

2 with a larger pretraining corpus and more pa-173

rameters (ranging from 0.1B to 13B) than SSD-174

LM and fine-tune it to follow instructions (§4).175

Next, we present how different versions of SSD-2176

(general-purpose large models and user-enhanced177

small models) can be effectively interpolated at in-178

ference time, outperforming their autoregressive179

counterparts (§5).180

3.1 Algorithmic improvements over SSD-LM181

Figure 2 describes the training and decoding al-182

gorithms of SSD-2. We highlight the changes in183

SSD-2 over SSD-LM below.184

Self-conditioning The core idea behind self- 185

conditioning (Chen et al., 2022) is that at iteration t, 186

the model takes as input not just the noised sample 187

w̃c:c+B
t , but also a clean output from the previous 188

timestep t+ 1, wc:c+B
logits,t+1. This allows the model 189

to reuse useful information in the previous predic- 190

tion and focus on refining it in the current timestep, 191

allowing convergence in fewer iterations. That is, 192

for T > t ≥ 1: 193

wc:c+B
logits,t = logitsθ(w

c:c+B | w̃c:c+B
t ,wc:c+B

logits,t+1,w
<c) 194

More specifically, the noisy representation w̃c:c+B
t 195

and the previous timestep prediction wc:c+B
logits,t+1 are 196

combined before the transformer blocks of θ, along 197

with the positional embeddings and timestep em- 198

beddings as follows:2 199

h̃ = Wdiff[sm(w̃t)] +Wpred[sm(wlogits,t+1)] 200

+ Embpos(c : c+B) + Embdiff-time(t/T ) 201

h<c = Embctx(w
<c) + Embpos(< c) 202

+ Embctx-time(t/T ) 203

wc:c+B
logits,t = Transformer[concat(h<c, h̃)]c:c+B 204

To train the model to learn to reuse the predicted 205

logits, we add an additional forward pass during 206

the training phase, activated with a probability p = 207

0.5. We predict wc:c+B
logits,t disabling gradient back- 208

propagation, and use it in the new cross entropy 209

loss − log pθ(w
j | w̃c:c+B

t ,wc:c+B
logits,t,w

<c). 210

2As a shorthand, we dropped the superscript for token po-
sitions c to c+B, and use sm for softmax, Emb for the em-
bedding layer, and Wdiff and Wpred for the embedding matrix
for the noisy representation and self-conditioning prediction.
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Removing context length sampling for efficiency211

The original training algorithm of SSD-LM first212

samples a context length c ∼ U(1, |w| − B) for213

each example, encodes the context bi-directionally214

and computes the diffusion loss for a block of B215

tokens following that context. The bi-directional216

encoding of the context w<c cannot be shared217

across different context sizes c for the same ex-218

ample. Moreover, when the sequence length |w|219

is large, a high variance in the sampled c across220

devices in distributed training reduces the effective221

batch size, slowing down the training considerably.222

Therefore, in the pretraining and finetuning of SSD-223

2, we eliminate sampling different c’s while equiv-224

alently modeling the same training loss as shown225

in Figure 2 for all |w|
B blocks in one data, by using226

a special attention mask. The transformer modules227

of SSD-2 encode the context w<c uni-directionally228

while preserving the bi-directional attention for the229

diffusion generation block wc:c+B . This leads to a230

2x speedup in our pilot pretraining. More details231

can be found in §B.232

Sharded models across time-ranges and early233

stopping in decoding We observe that at test234

time SSD-2 often shows distinct behaviors at dif-235

ferent timestep ranges. We empirically divide the236

number of iterations into five ranges of equal sizes.237

In the beginning of decoding (t ∈ (0.8T, T ]), when238

the noise level is very high, there is no discernable239

pattern in which the model’s intermediate predic-240

tions (argmaxwc:c+B
logits,t) in different iterations differ241

from each other. Larger changes often happen at242

t ∈ (0.6T, 0.8T ] after which the majority of the243

content is in place, and for t ∈ (0.4T, 0.6T ] only244

minor changes happen sparsely to make a grammat-245

ical correction or settle down on an uncertain word246

choice. Finally, for t ∈ (0, 0.4T ], the sequence247

does not update at all in most cases. We hence hy-248

pothesize that the first three timestep ranges require249

different capabilities from the model. In SSD-2,250

we propose to optionally train three separate mod-251

els θ(0.4,0.6), θ(0.6,0.8), and θ(0.8,1.0) for the three252

ranges.3 We still train a single model at pretraining253

to save resources and only perform this step during254

a final finetuning as described in §4.4 We start the255

3A similar setup has also been explored in image diffusion
as expert denoisers (Feng et al., 2022; Balaji et al., 2022).

4This setup could further be improved by considering mod-
els of different sizes for the three ranges where θ(0.4,0.6) and
θ(0.8,1.0) could contain fewer parameters as they arguably per-
form simpler tasks to reduce the effective inference time. We
leave it as future work.

decoding at t = T and stop at t = 0.4T , saving 256

40% of the inference computation.5 257

3.2 Inference-time collaboration 258

As shown in SSD-LM (Han et al., 2022) and 259

prior work in other domains (Dhariwal and Nichol, 260

2021), diffusion models are naturally suited to al- 261

low for controlling the properties of the model 262

outputs by interpolating the model outputs with 263

gradients from a control function such as a clas- 264

sifier. Follow-up studies have extended this idea 265

to classifier-free guidance where diffusion models 266

with and without controlling attributes can be in- 267

terpolated contrastively using a weighted sum of 268

their outputs (Ho and Salimans, 2021). We explore 269

a new setup of the latter idea for enabling collab- 270

oration between two versions of SSD-2 where we 271

interpolate the output logits of the models. Intrin- 272

sic to the diffusion paradigm, this interpolation is 273

sequence-level and through many iterations it lever- 274

ages benefits of the bi-directional context. 275

Setup We first define a core model θcore which is 276

computationally expensive to train or deploy (e.g., 277

a large model which can only be loaded on mutiple 278

GPUs). We assume the model is good at general- 279

domain instruction following. We then define a 280

user model θuser which is computationally friendly 281

for a typical user to run on their personal device or 282

a cloud device to their control. It allows incorporat- 283

ing data of their specific interest which they may 284

not prefer to input to the large model. For both the 285

core and user models, we also assume they do not 286

have access to each others’ model parameters. 287

We also assume a prompting instruction winst 288

which both the models have access to, and expert 289

data Duser that only the user model and not the 290

core model has access to (see Figure 1). During 291

inference, 292

• θcore only takes in the prompt winst, 293

fθcore(winst). 294

• θuser can be finetuned with Duser, or use Duser 295

in in-context learning. In this work, we ex- 296

periment with the latter setup, where the user 297

model takes in both the user expert data and 298

the instruction as input, fθuser(Duser,winst). 299

• Additionally, we assume the model size 300

|θcore| ≫ |θuser| (the size difference is 100x in 301

our experiments). 302

5We report a comparison between the decoding speed of
SSD-2 and the original SSD-LM in §E
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We will discuss the specific instantiation of the303

setup in §5. In the section below, we first intro-304

duce a prominent collaboration algorithm when305

θcore and θuser are autoregressive, and then propose306

a novel algorithm when the models are diffusion-307

based SSD-2.308

Method The collaboration between θcore and309

θuser is essentially an ensemble of the model out-310

puts. One prominent way of approaching it is311

through a weighted average of the models’ logits at312

inference time.6 For autoregressive LMs, this aver-313

aging can be performed at the token level where the314

logits are first combined and then transformed into315

probability distribution like a product-of-experts316

ensemble (e.g., Liu et al. (2021)).317

wc ∼ pcollab(w
c | Duser,winst,w

<c)318

= softmax[(1− λuser) logitsθcore
(wc | winst,w

<c)319

+ λuser logitsθuser
(wc | Duser,winst,w

<c)]320

We also consider an extension of this setup where321

we add a contrastive term to θuser without the input322

Duser, to promote the pointwise mutual information323

between the expert data and the generation condi-324

tioned on the instruction (Malkin et al., 2021).7325

wc ∼ softmax[(1− λuser) logitsθcore
(wc | winst,w

<c)326

+ λuser(1 + α) logitsθuser
(wc | Duser,winst,w

<c)327

− λuserα logitsθuser
(wc | winst,w

<c)]328

For SSD-2, the process of generating tokens is329

intrinsically different from autoregressive models.330

However, since it preserves the notion of logits331

in its iterative decoding procedure (wc:c+B
logits,t), we332

propose a similar logits-averaging method for a333

diffusion θcore and θuser, performing an ensemble334

for a block of tokens at each diffusion timestep.335

wc:c+B
core-logits,t = logitsθcore

(wc:c+B | winst,w
<c, w̃c:c+B

t )336

wc:c+B
user-logits,t = logitsθuser

(wc:c+B | Duser,winst,w
<c, w̃c:c+B

t )337

wc:c+B
¬user-logits,t = logitsθuser

(wc:c+B | winst,w
<c, w̃c:c+B

t )338

wc:c+B
logits,t = (1− λuser)w

c:c+B
core-logits,t339

+ λuser(1 + α)wc:c+B
user-logits,t − λuserαw

c:c+B
¬user-logits,t340

6Training-time ensemble can be achieved through methods
like parameter-averaging (Li et al., 2022a). However, it is
not the focus of this work since our models have drastically
different shapes and we do not assume the models have access
to the parameters of other models.

7We set the contrastive hyperparameter α = 1.0 through-
out the evalution, though the results with α = 0.0 follow a
similar trend.

The above procedure is instantiated through the 341

operation all-reduceΘ,λ(w
c:c+B
logits,t) in Figure 2. Fig- 342

ure 1 describes both the autoregressive and dif- 343

fusion collaboration in our setup illustratively. It 344

is noteworthy that for diffusion models, this man- 345

ner of collaboration is only straightforward in a 346

simplex-based model such as SSD-2. Diffusion 347

variants proposed in the literature operating on to- 348

ken embeddings (§6) are not trivially suitable for it 349

due to a mismatch in the models’ embedding space. 350

4 Experimental Setup 351

Pretraining Existing work on diffusion LMs is 352

limited to modest model sizes below the order of 353

1B parameters (Li et al., 2022c; Han et al., 2022; 354

Dieleman et al., 2022). For example, SSD-LM 355

has the same size as RoBERTA-large (Liu et al., 356

2019) with 0.4B parameters. It is unclear whether 357

diffusions LMs have the ability to scale like au- 358

toregressive LMs.8 To answer this question, we 359

pretrain three versions of SSD-2 with 0.1B, 2.7B, 360

and 13B parameters, on a subset of a large corpus 361

C4 (Raffel et al., 2020). Instead of pretraining from 362

scratch, we initialize these models using publicly 363

available OPT models (Zhang et al., 2022).9 We 364

consider a maximum sequence length of 500 (up 365

from 200 in SSD-LM), with a diffusion block size 366

B = 25. On the 13B SSD-2 model for our main 367

evaluation, we first do 50K warmup steps with- 368

out self-conditioning and then start a 100K-step 369

pretraining with the full algorithm. It uses approxi- 370

mately 38B tokens from the C4 data in total. Other 371

pretraining hyperparameters can be found in §C. 372

We show the pretraining losses of SSD-2 over time 373

in §D. Based on the trend of pretraining losses and 374

the scale of our pretraining data compared to recent 375

work,10 we conjecture that our SSD-2 models are 376

still considerably undertrained. Due to our com- 377

puting budget, we leave to future work a potential 378

continued pretraining over current SSD-2 models 379

on larger and better curated data. 380

Instruction finetuning While Han et al. (2022) 381

show the effectiveness of pretrained SSD-LM in 382

8In fact, Strudel et al. (2022) show for embedding-based
diffusion models, scaling up the embedding dimensions may
hurt the performance in certain cases.

9Han et al. (2022) find initializing from pretrained non-
diffusion models help the convergence of diffusion losses in
SSD-LM.

10For example, the LLaMA 13B model (Touvron et al.,
2023) uses 1T tokens from multiple corpora including C4,
whereas we use 38B tokens from C4 only.
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general-domain text continuation, in this work, we383

primarily investigate the use of SSD-2 in down-384

stream fine-tuning tasks, particularly on chat-style385

instruction following.11 We finetune the models386

with the DOLLY dataset12 containing 15K human-387

collected instructions and responses (Databricks,388

2023). DOLLY covers categories like open/closed-389

QA, brainstorming, and creative writing, though390

it may still be less powerful than the distillation-391

based data in terms of size and quality.13 We392

finetune on 95% of the DOLLY data and use the393

rest for held-out evaluation. We finetune with a394

batch size of 384 and for 500 or 1000 steps for the395

0.1B/2.7B/13B models. As a baseline, we finetune396

the autoregressive model OPT (0.1B/2.7B/13B) on397

DOLLY with the same setup.398

5 Experiments399

5.1 Inference-time collaboration400

As introduced in §3.2, a main focus of this work is401

to explore the advantages of a diffusion-based LM402

SSD-2 in a collaboration setup: interpolating the403

outputs of a large, general model θcore and a small404

model θuser enhanced by user expert data Duser.405

We use the 13B-parameter SSD-2 finetuned with406

DOLLY as θcore and the 0.1B finetuned SSD-2 as407

θuser. We use OPT 13B and 0.1B finetuned with408

DOLLY under the same collaboration setup as the409

autoregressive baseline. DOLLY’s held-out test410

prompts are used as winst. A subset of DOLLY411

test examples is annotated with loosely related412

Wikipedia passages to support the output answers;413

11We make an additional change while finetuning SSD-2
to address end of sequence (EOS) issues in variable length
sequences in the downstream datasets. Since a sequence could
terminate in the middle of a diffusion block, while training, we
pad the sequence with the EOS token to the nearest boundary
of a diffusion block of size B. We do not mask this padding
while computing the loss. We use the standard padding token
after the last diffusion block boundary. At inference, if the
generated text block argmax w̃c:c+B

0 in the final iteration
contains an EOS token, we prune the trailing tokens after the
first EOS token in the block.

12https://huggingface.co/datasets/databricks/
databricks-dolly-15k. We deliberately choose to finetune
with DOLLY because as opposed to other similar datasets (e.g.
the ones used to train models like Alpaca (Taori et al., 2023)
and Vicuna (Chiang et al., 2023)), DOLLY has an open-source
license and does not depend on distillations from OpenAI
models.

13We did not explore other earlier instruction tuning data
like Wang et al. (2022) and Longpre et al. (2023) since they
align less with the chat scenario of our interest. Furthermore,
such data can contain a considerable amount of questions that
have a very short answer (e.g., multiple choice). We leave for
future work to explore the applicability of diffusion on these
datasets.

we use these passages as a proxy for Duser. To 414

avoid prompts with trivial answers, we addition- 415

ally constrain the test instructions to those with an 416

original annotated response of at least 50 tokens. 417

Inference-time collaboration is effective if the 418

core model θcore generates better responses af- 419

ter collaborating with the 100x smaller but user- 420

enhanced θuser. We investigate a range of weights 421

λuser, starting from 0 where the output of the col- 422

laboration solely depends on the large θcore, and 423

gradually increasing λuser to incorporate more θuser. 424

Automatic evaluation We first conduct an auto- 425

matic evaluation, using state-of-the-art, production- 426

level LMs to evaluate the quality of our models’ 427

generations, which have been shown to correlate 428

highly with human judgments and are easier to 429

scale (Liu et al., 2023). We use GPT-3.5-turbo to 430

rate our models’ responses to the test instructions 431

on a scale of 10, towards the aspects of relevance, 432

factuality, informativeness, coherence, and under- 433

standability. The specific prompting template we 434

used is detailed in §H. 435

Table 1 summarizes the automatic evaluation 436

results. We observe that when λuser = 0 (θcore 437

only, no Duser incorporated), the OPT model fine- 438

tuned with DOLLY consistently outperforms our 439

finetuned SSD-2.14 However, for OPT, collaborat- 440

ing with the small user model does not improve 441

the core model’s performance any further across 442

all considered weights. Within the experimented 443

weighting factors, λuser of 0.1 to 0.3 is relatively 444

optimal, though still leading to lower scores than 445

without collaboration. 446

In contrast, the small user model θuser improves 447

the core model’s performance in all tested at- 448

tributes in SSD-2. With appropriate weight factors 449

(λuser = 0.2, 0.3), the collaborated SSD-2 system 450

surpasses the best OPT performance in four of the 451

five metrics and matches the fifth. We highlight in 452

Table 1 the best absolute performance and the best 453

performance gain due to the collaboration. We ad- 454

ditionally show that when λuser = 1, the small user 455

model θuser alone performs worse in SSD-2 than 456

in OPT. This further indicates that the observed 457

performance gain comes from an effective collabo- 458

ration rather than a significantly better θuser. 459

14We conjecture the reason is that SSD-2 is undertrained as
discussed in §4 and can have a larger domain gap w.r.t. the
DOLLY data. In §5.2, we compare the intrinsic instruction
following ability of SSD-2 and OPT using one-shot in-context
learning instead of finetuning.
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λuser = 0 λuser = 0.1 λuser = 0.2 λuser = 0.3 λuser = 0.4 λuser = 0.5 λuser = 1.0

Relevance
OPT{core,user} 9.76 9.59 9.61 9.65 9.65 9.39 8.23
SSD-2{core,user} 9.72 9.65 9.91 9.85 9.64 9.52 7.16
∆collab OPT -0.17 -0.15 -0.11 -0.11 -0.37 -1.53
∆collab SSD-2 -0.07 +0.19 +0.13 -0.08 -0.20 -2.56
Factuality
OPT{core,user} 9.64 9.57 9.51 9.55 9.57 9.27 8.15
SSD-2{core,user} 9.34 9.49 9.63 9.64 9.56 9.48 7.26
∆collab OPT -0.06 -0.12 -0.08 -0.05 -0.29 -1.44
∆collab SSD-2 +0.14 +0.30 +0.31 +0.26 +0.15 -2.03
Informativeness
OPT{core,user} 9.30 9.20 9.12 9.27 9.06 8.95 7.41
SSD-2{core,user} 8.97 9.02 9.33 9.36 9.06 8.97 6.38
∆collab OPT -0.10 -0.18 -0.03 -0.24 -0.35 -1.89
∆collab SSD-2 +0.05 +0.36 +0.39 +0.09 0.00 -2.59
Coherence
OPT{core,user} 9.61 9.47 9.37 9.44 9.41 9.13 7.70
SSD-2{core,user} 9.41 9.35 9.65 9.59 9.25 9.17 5.84
∆collab OPT -0.14 -0.24 -0.17 -0.20 -0.48 -1.91
∆collab SSD-2 -0.06 +0.24 +0.18 -0.16 -0.24 -3.57
Understandability
OPT{core,user} 9.66 9.54 9.53 9.54 9.51 9.30 8.10
SSD-2{core,user} 9.53 9.56 9.72 9.67 9.42 9.34 6.21
∆collab OPT -0.12 -0.13 -0.12 -0.15 -0.36 -1.56
∆collab SSD-2 +0.03 +0.19 +0.14 -0.11 -0.19 -3.32

Table 1: Evaluation of the inference-time collaboration between the large core model θcore and the small user model
θuser. A negative impact led by θuser to θcore is marked in red, and a positive impact in blue. SSD-2 is substantially
more collaborative than the autoregressive OPT baseline.

Human evaluation To corroborate our findings,460

we further perform a human evaluation comparing461

the outputs from SSD-2 and OPT under a collabo-462

rative setup. For each test prompt, we show SSD-2463

and OPT responses with λuser of 0.2 to the human464

annotators as a randomized pair. We asked the465

annotators to choose the preferred response while466

allowing for annotating equally good responses467

or equally bad responses. A total of 9 annotators468

(graduate and undergraduate researchers in NLP,469

not authoring this work) made 259 human prefer-470

ence annotations over 94 test prompts, with each471

response pair receiving 1-4 annotations. We show472

in Table 2 that the collaboration between SSD-2473

θcore and θuser is overall more preferred by humans474

to the OPT models under the same setup. SSD-2475

wins in 43 cases (45.7%) while loses only in 25476

cases (26.6%). We additionally measure an aver-477

age Cohen’s kappa coefficient between all pairs of478

annotators who annotated the same subset of in-479

stances. We observe κ=0.31 indicating a fair agree- 480

ment, especially that the task is highly subjective 481

by nature. 482

Overall, through automatic and human evalua- 483

tions, we show that SSD-2 offers unique benefits in 484

an interesting case of inference-time collaboration, 485

effectively fusing a general-purpose large model 486

and a small model enhanced by some expert data. 487

5.2 Ablation study: SSD-2 as a standalone 488

diffusion chat model 489

In this section, we divert from our main inference- 490

time collaboration setup and investigate the capabil- 491

ities of SSD-2 as a standalone language model. We 492

are interested in the instruction following ability in- 493

trinsic to the vanilla SSD-2 without inference-time 494

collaboration or any finetuning (like with DOLLY). 495

We compare original SSD-2 and OPT 13B in re- 496

sponding to the prompts from the Vicuna test set 497

(Chiang et al., 2023), which include problems of 498
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SSD-2collab
win

Draw OPTcollab
win

43 (45.7%) 26 (27.7%) 25 (26.6%)

Table 2: Human preference of the outputs from the
inference-time collaboration experiments, comparing
the diffusion-based SSD-2 and the autoregressive OPT.

open-ended question answering, creative writing,499

etc.15 We formulate the setup as a one-shot in-500

context learning problem. Before each Vicuna test501

prompt, we add one fixed, handcrafted in-context502

example from Zhou et al. (2023a) to help the mod-503

els capture the format of the answers without chang-504

ing the model parameters.505

The main metric we report is the win rate from506

an automatic evaluation based on GPT-4 (OpenAI,507

2023). We follow the original evaluation template508

as introduced in Chiang et al. (2023), prompting509

GPT-4 to rate SSD-2 and OPT responses along with510

explanations. As additional metrics, we also com-511

pute the conditional perplexity of the responses512

using external language models GPT-Neo-1.3B513

(Black et al., 2021) and GPT-2-large (Radford et al.,514

2019). While there are no gold answers to the Vi-515

cuna test prompts, we use GPT-3.5’s responses516

as reference answers and subsequently compute a517

BERTScore w.r.t. them for the responses from SSD-518

2 and OPT. As shown in Table 3, we overall ob-519

serve a higher win rate, lower perplexity, and higher520

BERTScore for our diffusion language model SSD-521

2 compared to the autoregressive OPT. We addi-522

tionally evaluate SSD-2 finetuned with DOLLY and523

report results in §F. We show some qualitative ex-524

amples of SSD-2’s generations in §G.525

6 Related work526

Diffusion-based language models have been receiv-527

ing increasing attention as a potential alternative to528

autoregressive language models. We identify three529

main categories of diffusion language models based530

on how they represent discrete data like text. Dis-531

crete diffusion language models represent language532

naturally as categorical data, while the diffusion533

or noising steps are often formulated as transition534

matrices (Hoogeboom et al., 2021; Austin et al.,535

2021; He et al., 2022; Reid et al., 2022; Zheng536

15Out of the 80 Vicuna test prompts, we empirically find
both models constantly fail on prompts from the math and
coding categories. We therefore filter them out and keep the
rest 70 test cases for our experiments.

Win rate PPL
(GPT-Neo/GPT2)

BERTScore
(Precision/F1)

SSD-213B 52.3% 7.58 / 9.62 85.9 / 85.2

OPT13B 47.7% 8.44 / 10.08 85.3 / 84.9

Table 3: Original SSD-2 responding to Vicuna test in-
structions in an one-shot in-context learning setup. The
win rate is computed between SSD-2 and OPT mod-
els using the original GPT-4 evaluation introduced in
Chiang et al. (2023). BERTScore is computed for the
model responses w.r.t. the generations from GPT-3.5.

et al., 2023; Zhou et al., 2023b). Embedding-based 537

diffusion language models often learn a mapping 538

between the discrete language tokens and an em- 539

bedding latent space, and the diffusion process is 540

on the embedding space via a series of Gaussian 541

noise (Li et al., 2022c; Gong et al., 2022; Diele- 542

man et al., 2022; Gao et al., 2022; Lovelace et al., 543

2022; Yuan et al., 2022; Lin et al., 2022; Ye et al., 544

2023; Chen et al., 2023; Tang et al., 2023; Balagan- 545

sky and Gavrilov, 2023). In this work, we focus 546

on simplex-based diffusion language models that 547

project discrete tokens to a simplex space and per- 548

form the diffusion process with a simple Gaussian 549

noise (Han et al., 2022; Mahabadi et al., 2023). 550

Our proposed inference-time collaboration setup 551

is most straightforward to apply to simplex-based 552

diffusion language models, since models with dif- 553

ferent sizes share the same simplex (vocabulary) 554

space. Embedding-based models over different la- 555

tent representation spaces are not suitable for a 556

direct representation interpolation. Furthermore, to 557

the best of our knowledge, SSD-2 is the first of this 558

line of literature to pretrain and finetune a diffusion 559

language model as a chat model, encouraging fu- 560

ture work to compare and improve over our work. 561

We detail additional related work in §A. 562

7 Conclusion 563

We present an exploratory step towards pretraining 564

a large simplex-based diffusion language model 565

SSD-2 and finetuning it with an open-source chat- 566

style instruction dataset. In a motivated setup 567

where large general models and small user models 568

are to collaborate with each other at inference time, 569

we find SSD-2 substantially more collaborative 570

than its autoregressive counterparts. These findings 571

show the promise of diffusion language models as 572

an instruction-following chat model and a worthy 573

alternative to autoregressive language models. 574
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Limitations575

In this work, we explore a novel setup of fusing576

large general diffusion language models and small577

customizable models enhanced with user expert578

data. One limitation of the proposed fusion algo-579

rithm is that it requires a search through a range of580

candidate balancing factors λuser. Furthermore, a581

selected balancing factor remains the same across582

different diffusion timesteps, which is not neces-583

sarily optimal. Future work can explore and learn584

an optimal, dynamic schedule of the balancing fac-585

tors. Another limitation of diffusion language mod-586

els in general is a slow decoding speed compared587

to autoregressive models. Though our proposed588

SSD-2 model already includes improvements over589

the original SSD-LM leading to faster decoding590

speed (more details in §E), future work may fur-591

ther adapt methods from image diffusion models592

targeting specifically for efficient decoding (Song593

et al., 2021; Nichol and Dhariwal, 2021; Rombach594

et al., 2022; Meng et al., 2022).595
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A Additional related work 864

With autoregressive language models, various ef- 865

forts have been made towards building chat-style 866

instruction following models based on open source 867

language models (Touvron et al., 2023; Biderman 868

et al., 2023) to replicate strong production-level 869

closed source counterparts (Ouyang et al., 2022; 870

OpenAI, 2023). Many of such work are concur- 871

rent to ours and collect high-quality finetuning 872

datasets by distilling prompts and responses from 873

OpenAI models (Taori et al., 2023; Chiang et al., 874

2023; Xu et al., 2023). In this work, we delib- 875

erately seek fully open source data not depend- 876

ing on OpenAI models and adopt the DOLLY data 877

(Databricks, 2023). We expect our models can be 878

further improved with future releases of more cu- 879

rated chat-style instruction tuning datasets (Zhou 880

et al., 2023a). 881

One novel setup we explored in this work is 882

the inference-time collaboration between a large, 883

general-purpose diffusion chat model and small, 884

user-specific models. Inference-time collaboration 885

has been generally explored in autoregressive mod- 886

els via ensembles of logits, either in an interpola- 887

tion or contrastive manner (Liu et al., 2021; Malkin 888

et al., 2021; Li et al., 2022a; Peng et al., 2022; 889

Li et al., 2022b). In diffusion models, classifier- 890

free guidance in image generation (Ho and Sali- 891
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mans, 2021) contrastively reconstruct representa-892

tions with and without a controlling attribute using893

a single model, whereas our work collaboratively894

decode with models with different sizes and inputs.895

We show an unique advantage of simplex-based896

diffusion language models in such inference-time897

collaboration compared to autoregressive language898

models.899

B Eliminating the sampling of context900

size c in training901

In the original training algorithm of SSD-LM (Han902

et al., 2022), they first sample a context length c ∼903

U(1, |w|−B), and then compute the diffusion loss904

for reconstructing a block of length B following905

that context. When the sequence length |w| is large,906

this can lead to a drastic variance in the values of907

c. Implemented naively in a distribution training908

setup, this setup wastes computations, and reduces909

the effective batch size considerably slowing down910

training. We eliminate the sampling of the context911

length c in SSD-2 by processing multiple c’s in912

parallel. To facilitate this, we encode the context913

w<c uni-directionally while preserving the locally914

bi-directional attention for the diffusion generation915

block wc:c+B .916

More specifically, assume we have a prompt917

w<c0 and want to form the same training ob-918

jective as in Figure 2 on all of the following n919

text blocks wc0:c0+nB . We prepare a context se-920

quence w<c0+(n−1)B and obtain h<c0+(n−1)B as921

described previously in §3.1. We prepare a diffu-922

sion sequence w̃c0:c0+nB and obtain h̃
c0:c0+nB

as923

described previously. Then a forward pass of θ924

works as below.925

o<c0+(2n−1)B = Transformer[926

concat(h<c0+(n−1)B, h̃
c0:c0+nB

); δ(c0, n,B)]927

wc0:c0+nB
logits,t = oc0+(n−1)B:c0+(2n−1)B928

where δ(c0, n,B) is a special attention mask for929

the transformer model, allowing a reuse of the en-930

coded contexts while preserving the original train-931

ing loss:932

δi,j =


1j≤i if i < c0 + (n− 1)B.
1j≤c0+kB or c0+(n−1+k)B<j<c0+(n+k)B

if c0 + (n− 1 + k)B < i < c0 + (n+ k)B,
for 0 ≤ k < n.

933

Row i of δ indicates the attention-accessible po-934

sitions for the i-th input token of the transformer.935

For example, assume the original context is [a] 936

and the target generation is in two blocks [b, c] and 937

[d, e]. The input sequence to the SSD-2 transformer 938

model is [a, b, c, b̃, c̃, d̃, ẽ], and the attention mask 939

is: 940

δ(1, 2, 2) =



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 1 1 0 0
1 1 1 0 0 1 1
1 1 1 0 0 1 1


941

Comparing to regular language models, SSD-2 has 942

a uni-directional encoder and locally bi-directional 943

decoder. In a pilot pretraining session, we ob- 944

serve this change leads to a twice as fast training 945

speed compared to the original SSD-LM on a same 946

amount of training tokens. 947

C Pretraining hyperparameters 948

For the SSD-2 model of each size (13B/2.7B/0.1B), 949

we conduct two phases of training, a warmup phase 950

without self-conditioning and a formal phase with 951

self-conditioning using the complete algorithm 952

shown in Figure 2. Throughout all pretraining 953

setups, we use a max sequence length of 500, a 954

learning rate of 1e-4, and a weight decay of 0.01. 955

For the 13B SSD-2, we train with a warmup batch 956

size of 768 for 50,000 steps (19B tokens) and a 957

formal batch size of 384 for 100,000 steps (19B to- 958

kens). For the 2.7B SSD-2, we train with a warmup 959

batch size of 256 for 100,000 steps (13B tokens) 960

and a formal batch size of 1024 for 100,000 steps 961

(51B tokens). For the 0.1B SSD-2, we train with 962

a warmup batch size of 2,048 for 200,000 steps 963

(205B tokens) and a formal batch size of 2,048 964

for 100,000 steps (102B tokens). We use Nvidia 965

V100 GPUs in distributed training, and the differ- 966

ent batch size and number of warmup steps across 967

different models are due to the models’ memory 968

footprint and the relative cluster traffic during our 969

pilot pretraining. Future work with a dedicated 970

group of computing resources can explore pretrain- 971

ing for longer to mitigate the undertraining issue 972

mentioned in §4. 973

D Pretraining losses 974

Figure 3 shows the pretraining losses of SSD-2 975

over time. We report the losses after the warmup 976
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stage and average them across batches with a self-977

conditioning p = 0.5 as described in Figure 2. We978

see a sign of undertraining from the loss curves.979

Due to our computing budget, we leave to future980

work a potential continued pretraining over current981

SSD-2 models on larger and better curated data.982

Figure 3: Pretraining losses across training steps (with
self-conditioning, after the warmup stage). We con-
jecture that the models can benefit from more training
given more resources.

E Decoding speed983

Though the decoding of SSD-2 is still significantly984

slower than an autoregressive language model, it985

achieves a great speedup compared to the original986

SSD-LM. We use a same setup as the reported SSD-987

LM decoding in Han et al. (2022). Conditioning988

on 50 prompting tokens, we record the speed of989

generating the next 25 tokens with timestep T =990

1000 on a Nvidia V100 GPU.991

The 0.4B SSD-LM takes 25 seconds. By con-992

trast, though our 2.7B SSD-2 and 13B SSD-2 are993

7x and 33x larger than SSD-LM, they only take 22994

seconds and 48 seconds respectively, indicating a995

significant speedup.16996

F Standalone SSD-2 finetuned with997

DOLLY998

Following §5.2, we evaluate the outputs from the999

finetuned models, SSD-2-DOLLY and OPT-DOLLY,1000

on both DOLLY’s held-out test set and Vicuna’s test1001

set. As shown in Table 4, we find that against very1002

strong baselines pretrained on much larger datasets,1003

16It is worth noting that we add a timestep embedding when
encoding the context in SSD-2 (§3.1). During inference across
timesteps, to reuse the encoded states of the context, we quan-
tize the input timestep t to the context timestep embedding
layer, tquantized = t−(t mod Q). We use Q = 50 throughout
the work and do not find the quantization to negatively impact
the generation quality empirically.

our model still wins on a moderate percentage of 1004

test examples. Compared to LLaMA (which is 1005

trained on 1T tokens for much longer but not fine- 1006

tuned for chat), SSD-2 performs marginally better. 1007

It is overall mildly less preferred than the OPT- 1008

DOLLY model on both DOLLY’s and Vicuna’s test 1009

sets, and significantly less than the Alpaca model. 1010

We emphasize that compared to OPT and LLaMA- 1011

based models, SSD-2 is currently pretrained with a 1012

relatively small, single-corpus dataset,17 and fine- 1013

tuned on an open-source dataset much smaller com- 1014

pared to its non-open-source licensed counterparts 1015

that Alpaca relies on. We believe if trained on simi- 1016

lar datasets, SSD-2 can fill the current performance 1017

gap considerably. 1018

Comparing against Win Draw Lose

On Dolly’s test set
OPT-Dolly-13B 41.4% 0% 58.6%

On Vicuna’s test set
LLaMa-13B 51.4% 0% 48.6%
OPT-Dolly-13B 37.1% 0% 62.9%
Alpaca-13B 20.0% 1.4% 78.6%

Table 4: Quantitative evaluation of the finetuned SSD-
2’s outputs against those of autogressive baselines based
on ratings of GPT-4. We report the percentage our SSD-
2 wins / draws / loses to the baseline models.

G Qualitative examples 1019

In Table 5, we show some qualitative examples 1020

of our finetuned diffusion language model, SSD- 1021

2-DOLLY’s outputs. The outputs are generated by 1022

the 13B model to the queries from the Vicuna test 1023

set (Chiang et al., 2023), on open-ended question 1024

answering, creative writing, etc. We empirically 1025

find that the generations have an overall reasonable 1026

format and content. 1027

H Evaluation templates 1028

We show in Table 6 the templates we used to evalu- 1029

ate model responses via GPT-4 or GPT-3.5-turbo. 1030

For the inference-time collaboration results, apart 1031

from the five evaluated attributes described in §5, 1032

in the template we additionally queried for a rating 1033

of conciseness and human preference. However, 1034

17Despite that we initialize SSD-2 with the OPT weights at
the beginning of pretraining, the diffusion objective is funda-
mentally different from a causal language modeling objective,
and the encoded knowledge of OPT may not transfer well.
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Prompt: How can I improve my time management skills?

Time management is in short, an important skill to develop. A person needs to learn how to manage
their time more effectively. Here are a few techniques that can help you do that:

1. Prioritizing: One of the first things that you should try in order to improve your time
management skills is to identify which tasks have high priority and need to be given immediate
attention, and those that have low priority but can be postponed until a later date.
2. Multi-tasking: Although it might feel productive to handle more than one task at the same time
, it's actually less efficient at managing our time. It's better to focus on one thing at a time,
and fully dedicate 100% of our efforts to it.

3. Delegating: It's perfectly fine to say no to some tasks or even ask for help when needed. It's
sometimes considered a sign of weakness, but delegation will allow us to free up our time so

that we can work on the things that really matter.
4. Being organized: Making a list will not only help us keep track of tasks that need to get done
each day, but it will also help us avoid feeling overwhelmed by all the ideas and thoughts

running through our heads at any given moment.
By following these tips, you'll be able to significantly improve your time management skills!

Prompt: Write a symphony concert review, discussing the orchestra’s performance and overall
audience experience.

It was a magical night at Symphony Hall on Saturday, as the Boston Symphony Orchestra, under the
baton of Andin Mehta, performed Tchaikovsky's Symphonies No. 5 and No. 6. Tchaikovsky has always
been one of my favorite composers, and these two symphonies are among his most beautiful. They
are full of sweeping melodies, lyrical string writing, and lush orchestral textures that
transport you to a different world each time you listen.
And Mehta did an incredible job in leading the BSO through these masterpieces. He brought out
every nuance in the music - from the quiet tenderness of the first movement to the pulsing energy
of the Allegroagio to the breathtaking crescendo of the Finale.

The entire experience was absolutely magical: I couldn't have asked for a better way to spend a
Saturday night! And I would highly recommend this performance for anyone who is a fan of
Tchaikovsky or classical music in general.

Table 5: Qualitative examples of SSD-2-DOLLY’s responses to instructions. We show the first and last prompt from
the Vicuna test set. The outputs of our diffusion chat model have an overall reasonable format and content, though
being inaccurate in details like the conductor’s name and the tempo terminology.

we consider conciseness a less relevant attribute1035

compared to the other attributes and GPT-3.5-turbo1036

less qualified to give ratings of human preference.1037

We filtered them out in our main results but they1038

hold a similar trend as the results of the other five1039

attributes.1040
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Evaluation template used to compare SSD-2’s re-
sponses with baseline models’ responses (§5.2),
following Chiang et al. (2023).

[Question]
{test instruction}

[The Start of Assistant 1's Answer]
{baseline model's response}

[The End of Assistant 1's Answer]

[The Start of Assistant 2's Answer]
{SSD-2's response}

[The End of Assistant 2's Answer]

[System]
We would like to request your feedback on the
performance of two AI assistants in response to
the user question displayed above.
Please rate the helpfulness, relevance, accuracy,
level of details of their responses. Each
assistant receives an overall score on a scale
of 1 to 10, where a higher score indicates
better overall performance.
Please first output a single line containing
only two values indicating the scores for
Assistant 1 and 2, respectively. The two scores
are separated by a space. In the subsequent line,
please provide a comprehensive explanation of
your evaluation, avoiding any potential bias and
ensuring that the order in which the responses
were presented does not affect your judgment.

Evaluation template used to rate responses from
either the baseline models or SSD-2 w.r.t. different
attributes (§5).

Rate the response below to an instruction, from
the aspects of relevance, factuality,
informativeness, conciseness, coherence,
understandability, and overall human preference,
each on a scale of 10 (format: x/10).

========

Instruction: {test instruction}

Response: {model response}

========

Please give the ratings now.

Table 6: Evaluation templates used in §5.2 and §5.
The first template was used with GPT-4 (tempera-
ture=0.2), whereas the second was used with GPT-3.5-
turbo (greedy) since we need significantly more queries
across different λuser’s. In the comparative evaluation
using the first template, flipping the order of the base-
line model’s response and SSD-2’s response leads to a
similar result.
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