

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VISUAL OBJECT-CENTRIC COUNTERFACTUAL EXPLANATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Generating visually coherent and realistic counterfactual explanations is essential for understanding discriminative visual models. Existing methods often modify images at the pixel-level or within holistic latent spaces, leading to entangled changes that obscure the precise factors influencing model decisions. To address this, we introduce a novel object-centric method for visual counterfactual explanations. Our approach decomposes input images into distinct object-centric latent slots and leverages model’s gradients to guide a reverse diffusion process conditioned on these slots. To maintain realism, we propose a Gaussian Mixture Model (GMM)-based regularizer that constrains counterfactuals to remain within the distribution of plausible object states, preventing unrealistic generations. Experiments on three datasets and a user study demonstrate that our object-centric approach yields significantly more interpretable and realistic counterfactuals compared to state-of-the-art baselines. Moreover, our approach shows strong generalization: when trained solely on FFHQ dataset, it successfully generates coherent counterfactual explanations on unseen CelebA-HQ data. Overall, our approach substantially advances visual counterfactual explanations by offering explicit object-level interpretability and improved quality of generation.

1 INTRODUCTION

The pursuit of explainability and interpretability in machine learning has become essential as complex models increasingly permeate critical decision-making processes (Goodman & Flaxman, 2017; Doshi-Velez & Kim, 2017; Rudin, 2019; Alufaisan et al., 2021; Pedreschi et al., 2019). Among various methods developed to enhance model transparency, counterfactual explanations have gained particular prominence due to their intuitive appeal and actionable insights (Wachter et al., 2017; Goyal et al., 2019). A counterfactual explanation provides a minimally altered version of an input instance that shifts the model’s prediction toward a specified outcome, thereby clarifying the causal relationship between input attributes and model decisions. For example, subtly modifying visual attributes of an object to alter a classification outcome from “cat” to “dog” offers human-interpretable evidence of features driving the model’s behavior (Goyal et al., 2019; Chang et al., 2018; Kim et al., 2021). Crucially, effective visual counterfactuals require targeted and semantically meaningful modifications—such as changing object-specific characteristics rather than background details—thus enabling users to verify whether model decisions align with human intuition (Hendricks et al., 2018). By emphasizing localized and interpretable alterations, counterfactual explanations not only enhance model transparency but also facilitate rigorous evaluation of the semantic grounding and generalizability of visual classifiers (Smyth & Keane, 2022).

Despite the notable progress, generating high-quality visual counterfactual explanations remains challenging. Classical counterfactual techniques predominantly focus on tabular data, where individual features (e.g. age, income) are inherently interpretable and straightforward to manipulate (Wachter et al., 2017; Molnar, 2020; Romashov et al., 2022). In contrast, visual data, represented at the pixel level, lacks direct interpretability due to the high dimensionality and entangled semantics inherent in raw image space (Goyal et al., 2019; Hendricks et al., 2018). Recent work addresses this limitation by generating counterfactuals in learned latent feature spaces, where abstract representations better isolate semantically meaningful changes (Rodriguez et al., 2021; Lang et al., 2021; Kirilenko et al., 2024). Building upon this insight, we propose to further enhance interpretability by generating visual counterfactuals within an explicitly object-centric latent space, represented by

slot-based decompositions (Locatello et al., 2020). Slot-based representations naturally disentangle object-level semantics, enabling highly targeted and intuitive modifications for counterfactual generation (Greff et al., 2020).

Building upon a legacy of object-centric visual cognition (Fukushima, 1980; Greff et al., 2020), we address a question left open by prior counterfactual work: *Can a semantically grounded, unsupervised object-centric generative model produce better counterfactual explanations than pixel-level or holistic latent approaches?*

Existing methods typically entangle foreground and background features, leading to counterfactuals that flip the prediction but also alter irrelevant parts of the image, making it unclear which change was causally responsible. We close this gap by introducing a novel object-centric framework for visual counterfactual explanations.

Our contributions are:

- **Object-centric counterfactual framework:** Our approach operates on *slot-based representations*, where each slot encodes a distinct object. These representations are learned in an unsupervised manner and provide a structured, interpretable foundation for semantic counterfactual intervention.
- **Classifier-guided slot diffusion with GMM realism prior:** We modify standard classifier-guided diffusion, introducing a Gaussian Mixture Model (GMM) prior that constrains edits to remain within the distribution of plausible object states. This yields a *targeted and semantically grounded generator* of counterfactual explanations.
- **Comprehensive evaluation:** On ClevrTex, FFHQ, and CelebA-HQ datasets, our method outperforms state-of-the-art approaches for visual counterfactual explanations.
- **User study and ablations:** Human evaluations show our explanations are rated as more *meaningful, subtle, and realistic*. Ablation studies confirm the contribution of key architectural components to overall performance.
- **Cross-dataset generalization:** Despite training only on FFHQ, our model generates high-quality counterfactuals on unseen CelebA-HQ images substantially outperforming non-slot-based baselines.

2 BACKGROUND AND RELATED WORKS

2.1 COUNTERFACTUAL EXPLANATIONS

Counterfactual explanations aim to answer: “*What is the smallest meaningful change to a given input that would cause a specified model to predict a desired outcome?*” (Wachter et al., 2017; Goyal et al., 2019; Poyiadzi et al., 2020; Kenny & Keane, 2021). Formally, for a predictor $f : \mathcal{X} \rightarrow \mathcal{Y}$, a query \mathbf{x} with prediction $y = f(\mathbf{x})$, and a target label y^* , a counterfactual \mathbf{x}_{cf} is often defined as

$$\mathbf{x}_{cf} = \arg \min_{\mathbf{x}'} d(\mathbf{x}, \mathbf{x}') \quad \text{s.t.} \quad f(\mathbf{x}') = y^*, \quad (1)$$

where $d(\cdot, \cdot)$ is a distance metric. Three desiderata are typically enforced: (i) **validity** ($f(\mathbf{x}_{cf}) = y^*$), (ii) **minimality/closeness** (minimal distance $d(\mathbf{x}, \mathbf{x}_{cf})$), and (iii) **plausibility/realism** (the change should live on or near the data manifold and be semantically meaningful) (Rudin, 2019; Molnar, 2020).

Not just conditional generation. Sampling from a conditional generator $p(\mathbf{x} | y^*)$ solves a different problem: it produces *any* plausible sample with attribute y^* , irrespective of the specific \mathbf{x} or the behavior of f . Counterfactuals are *instance-specific* (they stay close to \mathbf{x}) and *model-specific* (success is defined by f , not by the generator). Merely drawing a realistic face with glasses does not explain why f misclassified *this* face without glasses, nor what minimal edit would flip f ’s decision. Equation 1 captures this distinction, i.e., it is an optimization process anchored at \mathbf{x} and constrained by f , not a draw from $p(\mathbf{x} | y^*)$.

Visual counterfactuals. While Eq.1 mirrors the optimization used in adversarial attacks, adversarial examples are agnostic to human meaning and realism (Freiesleben, 2022; Pawelczyk et al., 2022); counterfactuals, in contrast, must produce interpretable, plausible edits, this extra burden becomes

acute for images. Pixel space is high-dimensional and semantically entangled, so naive perturbations either create implausible edits or spill them across foreground and background, obscuring causal factors and often drifting off-manifold. This makes realism and locality constraints substantially harder than in tabular settings (Goyal et al., 2019; Hendricks et al., 2018).

Prior works address this by performing constrained manipulations in the learned latent space to carve out semantically meaningful directions (Rodriguez et al., 2021; Lang et al., 2021; Kirilenko et al., 2024) or they limit targeted regions using saliency maps (Samadi et al., 2023; 2024) or use information about scene composition either through semantic segmentation (Jacob et al., 2022) or object parameters (Zemni et al., 2023). We follow the same direction: instead of holistic latents, we operate on an explicitly object-centric compositional representations, improving locality and overall quality of counterfactual edits.

119

120 2.2 DIFFUSION MODELS

121

122 Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021)
 123 learn to generate data by reversing a noising process. The forward diffusion process adds Gaussian
 124 noise

$$q(\mathbf{x}_t \mid \mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1 - \beta_t} \mathbf{x}_{t-1}, \beta_t \mathbf{I}), \quad (2)$$

125

126 which implies the closed form

$$q(\mathbf{x}_t \mid \mathbf{x}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t} \mathbf{x}_0, (1 - \bar{\alpha}_t) \mathbf{I}), \quad (3)$$

127

128 with $\bar{\alpha}_t = \prod_{j=1}^t (1 - \beta_j)$. A U-Net ϵ_θ is trained to predict the injected noise via the usual objective

$$\mathcal{L} = \mathbb{E}_{\mathbf{x}_0, t, \epsilon} \left[\left\| \epsilon - \epsilon_\theta(\mathbf{x}_t, t) \right\|^2 \right], \quad (4)$$

129

130 which enables the reverse diffusion process $p_\theta(\mathbf{x}_{t-1}, \mathbf{x}_t)$.

131

132 In this framework it is possible to incorporate external classifier signal $p_\phi(y \mid \mathbf{x})$ into $p_{\theta, \phi}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y)$
 133 (Dhariwal & Nichol, 2021). Classifier-guided diffusion modifies the reverse transition probabilities
 134 as follows:

$$p_{\theta, \phi}(\mathbf{x}_{t-1} \mid \mathbf{x}_t, y) \propto p_\theta(\mathbf{x}_{t-1} \mid \mathbf{x}_t) p_\phi(y \mid \mathbf{x}_{t-1}). \quad (5)$$

135

136 This feature made diffusion models popular for producing visual counterfactuals. DVCE (Augustin
 137 et al., 2022) and DiME (Jeanneret et al., 2022) apply classifier guidance with additional regularizers
 138 to steer edits toward counterfactuals, while ACE (Jeanneret et al., 2023) integrates an inpainting
 139 stage to refine adversarial perturbations into more realistic image changes. Beyond these, DiG-
 140 IN (Augustin et al., 2024) leverages diffusion counterfactuals to widely explore classifier failure
 141 modes, and ECED (Luu et al., 2025) incorporates latent diffusion with saliency maps to localize
 142 edits to semantically relevant regions.

143

144 2.3 OBJECT-CENTRIC LEARNING

145

146 The field of object-centric learning draws inspiration from the object-oriented nature of human vi-
 147 sual perception, where our visual system instinctively decomposes scenes into discrete entities and
 148 familiar structures Spelke (1990); Grill-Spector (2003). Motivated by this cognitive ability, object-
 149 centric models typically learn to map an input image $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$ into an unordered set of latent
 150 vectors, commonly referred to as slots $\mathbf{s} = \{\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_K\}$, in an unsupervised manner, where each
 151 slot $\mathbf{s}_k \in \mathbb{R}^d$ encodes the properties of a distinct object or entity observed in the original input \mathbf{x} .

152

153 Recent advancements in object-centric learning have led to numerous influential approaches Eslami
 154 et al. (2016); Greff et al. (2017); Burgess et al. (2019); Engelcke et al. (2019) demonstrating signifi-
 155 cant potential in decomposing complex visual scenes into interpretable components. Slot Attention
 156 (SA) (Locatello et al., 2020) has emerged as the most prominent method in object-centric learning,
 157 widely adopted for its simplicity and effectiveness (Lee et al., 2024; Li et al., 2021; Kipf et al.,
 158 2021; Elsayed et al., 2022; Singh et al., 2021; Yoon et al., 2023). SA iteratively maps a flattened
 159 distributed feature representation $\mathbf{z} \in \mathbb{R}^{N \times D}$ from input images \mathbf{x} into a set of randomly initialized
 160 slots \mathbf{s} . These slots compete through dot-product attention, assigning portions of the input to spe-
 161 cific slots in a manner reminiscent of soft K-means clustering combined with Gated Recurrent Unit
 (GRU) (Cho et al., 2014) and Multi-Layer Perceptron (MLP) (Rumelhart et al., 1986) updates.

162

3 METHOD

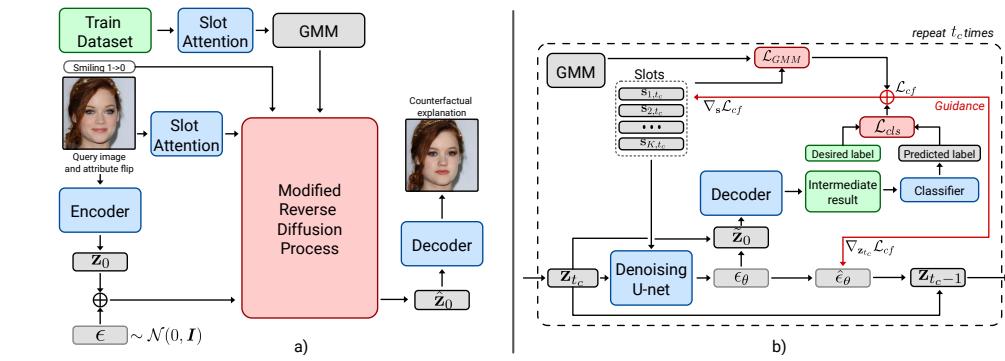


Figure 1: Illustration of the proposed approach. (a) *High-level pipeline*. A query image \mathbf{x} is encoded into a latent vector \mathbf{z}_0 , while Slot-Attention extracts slots \mathbf{s} . We perform a t_c forward diffusion step using $q(\mathbf{z}_{t_c} | \mathbf{z}_0)$, and then invoke a slot-conditioned reverse-diffusion process that is further guided by a GMM fitted to training-set slots and a desired attribute flip. The refined latent $\tilde{\mathbf{z}}_0$ is decoded, yielding the counterfactual. (b) *Single reverse-diffusion step*. The noisy latent \mathbf{z}_{t_c} is passed through a denoising U-Net to predict ϵ_θ and an intermediate latent $\tilde{\mathbf{z}}_0$. A classifier provides \mathcal{L}_{cls} , and the GMM supplies a plausibility term \mathcal{L}_{GMM} . The combined guidance adjusts the slots \mathbf{s}_{t_c} and the noise estimate from ϵ_θ to $\hat{\epsilon}_\theta$, which is then used to compute the next \mathbf{z}_{t_c-1} .

In this section, we introduce *Visual Object-Centric Counterfactual Explanations (VOCCE)*, our proposed approach for generating object-centric visual counterfactuals. VOCCE operates by modifying latent slot representations within a diffusion-based generative framework, enabling the creation of targeted, semantically rich counterfactual examples. Our method comprises four key components:

1. **Latent Slot Diffusion**, a state-of-the-art object-centric generative model.
2. **Classifier Guidance**, which steers the diffusion process toward desired label by adjusting the noise prediction.
3. **Gradient-Based Slot Updates**, where classifier gradients modify slot representations.
4. **GMM-Based Regularization**, which ensures updated slots remain within the distribution of plausible states.

197

3.1 LATENT SLOT DIFFUSION

199 We adopt LSD as the core backbone of our counterfactual generation pipeline. Given a query sample
200 $\mathbf{x}_q \in \mathbb{R}^{H \times W \times C}$ and a target discriminative model $f : \mathbb{R}^{H \times W \times C} \rightarrow \mathbb{R}^L$, our goal is to produce a
201 counterfactual for a desired label $\mathbf{y}^* \in \mathbb{R}^L$, $\mathbf{y}^* \neq f(\mathbf{x}_q)$. We begin by encoding \mathbf{x}_q into the latent
202 space, $\mathbf{z}_0 = \text{Enc}(\mathbf{x}_q)$, and extracting slot representations, $\mathbf{s} = \text{SA}(\mathbf{x}_q)$. Next, we partially noise \mathbf{z}_0
203 to obtain $\mathbf{z}_{t_c} \sim q(\mathbf{z}_{t_c} | \mathbf{z}_0)$ at a chosen timestep $t_c < T$.

204 We then perform reverse diffusion using the trained denoising model $\epsilon_\theta(\mathbf{z}_t, t, \mathbf{s})$. During this reverse
205 process, we leverage gradients from the target model f to update both the predicted noise $\hat{\epsilon}_\theta$ and
206 the slot representations \mathbf{s} , thus steering the diffusion towards the desired label \mathbf{y}^* . Once the process
207 reaches $\tilde{\mathbf{z}}_0$, we decode it to the image space, yielding the final counterfactual $\mathbf{x}_{cf} = \text{Dec}(\tilde{\mathbf{z}}_0)$.

209

3.2 CLASSIFIER GUIDANCE

211 Following state-of-the-art diffusion-based methods for visual counterfactual explanations (Augustin
212 et al., 2022; Jeanneret et al., 2022; 2023), we incorporate classifier guidance by leveraging the
213 gradient of a classifier loss $\nabla_{\mathbf{z}_t} \mathcal{L}_{cls}(\mathbf{y}^*, f(\tilde{\mathbf{x}}))$, where $\tilde{\mathbf{x}} = \text{Dec}(\tilde{\mathbf{z}}_0)$. The term $\tilde{\mathbf{z}}_0$ is an approximate
214 reconstruction of \mathbf{z}_0 from the noisy sample \mathbf{z}_t , derived from Eq.3 via

$$215 \tilde{\mathbf{z}}_0 = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(\mathbf{z}_t - \epsilon_\theta(\mathbf{z}_t, t, \mathbf{s}) \sqrt{1 - \bar{\alpha}_t} \right). \quad (6)$$

To guide the diffusion process towards \mathbf{y}^* , we modify the predicted noise ϵ_θ using the classifier gradient. Specifically, the guided noise approximation $\hat{\epsilon}_\theta$ becomes

$$\hat{\epsilon}_\theta = \epsilon_\theta - \sqrt{1 - \bar{\alpha}_t} \nabla_{\mathbf{z}_t} \mathcal{L}_{\text{cls}}(\mathbf{y}^*, f(\tilde{\mathbf{x}})). \quad (7)$$

By backpropagating through the approximate reconstruction $\tilde{\mathbf{z}}_0$ and the decoder $\text{Dec}(\cdot)$, the classifier's gradient encourages the generated sample to align with the target label \mathbf{y}^* .

3.3 GMM-BASED REGULARIZATION

To prevent slot modifications from drifting into out-of-distribution regions and to ensure that the resulting counterfactuals remain plausible, we introduce a **GMM-based regularization**. Prior to counterfactual generation, we collect slot representations from the training data samples and fit a Gaussian Mixture Model (GMM) with M components:

$$p(\mathbf{s}) = \sum_{m=1}^M \pi_m \mathcal{N}(\mathbf{s}; \boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m). \quad (8)$$

Previous works have shown that clustering in the slot space yields a semantically meaningful grouping (Singh et al., 2021; Jiang et al., 2023; Kirilenko et al., 2023).

By modeling the distribution of slots, we can better constrain the counterfactual generation process. During inference, we use the learned GMM parameters $\{\boldsymbol{\mu}_m, \boldsymbol{\Sigma}_m\}$ to enforce a high likelihood under this prior. Specifically, we introduce a penalty term:

$$\mathcal{L}_{\text{GMM}} = - \sum_{i=1}^K \log p(\mathbf{s}_i), \quad \mathcal{L}_{\text{cf}} = \mathcal{L}_{\text{cls}} + \gamma \mathcal{L}_{\text{GMM}}, \quad (9)$$

where γ balances classifier-driven modifications and realism constraints. \mathcal{L}_{GMM} penalizes slot configurations that deviate significantly from the training distribution. In our experiments, we set $\gamma = 0.1$, finding this value effective in preserving the plausibility of the generated counterfactuals while encouraging them to correspond to the desired label.

3.4 GRADIENT-BASED SLOT UPDATES

Beyond the typical classifier-guided noise adjustments in diffusion models, we note that the approximate reconstruction $\tilde{\mathbf{x}}$ also depends on the slot representations \mathbf{s} . Since

$$\tilde{\mathbf{x}} = \text{Dec}(\tilde{\mathbf{z}}_0(\mathbf{z}_t, \epsilon_\theta(\mathbf{z}_t, t, \mathbf{s}))), \quad (10)$$

we can backpropagate through both the decoder $\text{Dec}(\cdot)$ and the denoising network ϵ_θ to update \mathbf{s} itself. This additional gradient pathway enables more direct manipulation of the latent factors responsible for object- or region-level changes in the generated counterfactual.

In each reverse diffusion step, we update \mathbf{s} by descending its gradient:

$$\mathbf{s}_{t-1} \leftarrow \mathbf{s}_t - \eta_s \nabla_{\mathbf{s}} \mathcal{L}_{\text{cf}}(\mathbf{y}^*, f(\tilde{\mathbf{x}})), \quad (11)$$

where η_s is a step size for the slot update.

Empirically, we observe that slot-level guidance alone already outperforms classifier-guidance-based baselines, producing more localized better counterfactuals; when combined with classifier-based noise adjustments, it yields further improvements.

4 EXPERIMENTAL SETUP

4.1 DATA

In our experiments we use three datasets: **ClevrTex** (30k images of simple scenes with various objects), **FFHQ** (70k images of human faces), and **CelebA-HQ** (30k high-resolution face images). ClevrTex provides detailed object-level annotations (shape, size, texture) for each object in a scene;

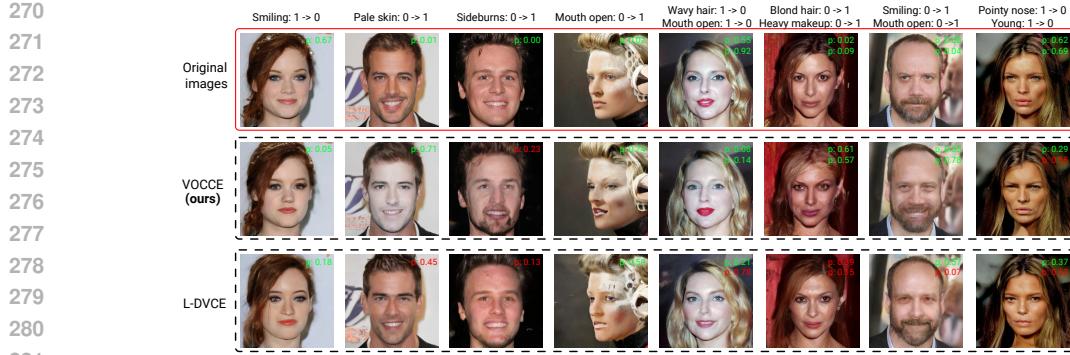


Figure 2: Random examples of attribute manipulations on CelebA-HQ using our proposed VOCCE approach and L-DVCE at $t_c = 250$. First four columns represents a distinct binary attribute shift (e.g., ‘‘Smiling: 1 → 0’’), and the others represent two binary attributes shifts. The text ‘‘p: ...’’ corresponds to a classifier’s predicted probability of the attribute; green indicates the prediction matches the target attribute, while red indicates a mismatch. VOCCE consistently demonstrates higher fidelity to the desired attribute modification and better preservation of other facial features compared to L-DVCE.

we create counterfactual targets by randomly selecting an object and flipping one of its attributes (e.g., shape, size, or texture). CelebA-HQ contains 40 binary facial attributes (*Smiling*, *Glasses*, *Young*, etc.), and we generate counterfactual labels by randomly choosing an attribute to invert. Since FFHQ does not include labels, we use it solely to augment training for models that are then tested on CelebA-HQ. All datasets are split into 80% training, 10% validation, and 10% test sets, we use 256×256 resolution images for both training and inference.

4.2 MODELS

Backbone generative model. We adopt LSD as our primary backbone and replicate the U-Net architecture along with all training hyperparameters from (Jiang et al., 2023). All generative models are trained for 300,000 iterations using the Adam optimizer with learning rate 3×10^{-4} and a batch size of 64. Detailed model configs are included in the code appendix for reproducibility.

To regularize slot updates, we fit a GMM to the training-set slots. Following prior work (Jiang et al., 2023; Kirilenko et al., 2023), we use $M=18$ components for FFHQ and CelebA-HQ, and $M=5$ for ClevrTex, as these values have been shown to yield semantically coherent slot clusters.

For CelebA attribute classification, we fine-tune a ResNet-18 pretrained on ImageNet using binary cross-entropy loss across the 40 attributes. For ClevrTex, we train a ResNet-18 with three separate heads (for shape, size, and texture), applying the Hungarian algorithm for object matching following (Locatello et al., 2020). The resulting classifiers achieve mean average precision (mAP) scores of 0.87 on CelebA and 0.82 on ClevrTex.

Baselines. Two diffusion-based methods closely related to our approach are Diffusion Visual Counterfactual Explanations (DVCE) (Augustin et al., 2022) and Diffusion Models for Counterfactual Explanations (DiME) (Jeanneret et al., 2022). Both rely on reverse diffusion, but differ in how classifier evaluations are handled during denoising. DiME performs multiple unconditional denoising steps per conditional iteration, introducing significant computational overhead. In contrast, DVCE, like our method, uses a single-step approximation (see Eq. 6), making it more efficient and more comparable to our VOCCE method.

We adopt DVCE as a baseline and adapt its modification for a fair comparison. The original DVCE operates in pixel space, while we use a pretrained VAE (Esser et al., 2021; Rombach et al., 2022). We refer to this adapted version as *Latent-DVCE* (*L-DVCE*). We also compare to FastDiME Weng et al. (2024), a modified version of DiME with single step denoising from Eq. 6 and self-optimized masking, in our experiments we find FastDiME to perform better than original DiME and use FastDiME as a baseline. All diffusion-base approaches share the same U-Net backbone, differing only in

Table 1: Performance of visual counterfactual-explanation methods on ClevrTex and CelebA-HQ (mean \pm std for 3 seeds). Best values highlighted with **bold**, second best are underlined. Proposed **VOCCE** achieves the best closeness, locality, and realism.

DATASET	METHOD	CLOSENESS		VALIDITY		LOCALITY	REALISM
		$l_2 \downarrow$	LPIPS \downarrow	Succ. (%) \uparrow	Fail. (%) \downarrow		
ClevrTex	VOCCE $_{t_c=250}$	19±1.3	0.15±0.01	85.3 ± 1.0	11.9±0.8	82.4±1.1	25.5±1.4
	DVCE $_{t_c=250}$	24±1.8	0.20±0.01	82.0 ± 1.3	14.2 ± 0.9	63.0 ± 1.4	31.0 ± 1.7
	L-DVCE $_{t_c=250}$	<u>21±1.5</u>	<u>0.16±0.01</u>	84.8 ± 1.2	<u>13.3±0.9</u>	68.1 ± 1.3	<u>27.6±1.5</u>
	FastDiME $_{t_c=250}$	23±1.7	0.19±0.01	81.5 ± 1.3	14.6 ± 0.9	<u>72.7±1.4</u>	31.8 ± 1.8
	OCTET	41±2.0	0.21±0.02	79.2 ± 1.3	16.6 ± 1.1	62.0 ± 1.8	48.0 ± 2.6
	DiVE	82±4.2	0.50±0.04	90.2±1.1	15.8 ± 0.9	38.7 ± 1.9	124.9 ± 6.0
CelebA-HQ	VOCCE $_{t_c=250}$	44±2.5	0.22±0.01	86.8 ± 1.1	15.6 ± 1.0	71.2±1.6	35.4±1.7
	DVCE $_{t_c=250}$	52±3.0	0.30±0.02	67.1 ± 1.6	16.0 ± 1.1	52.4 ± 1.7	40.3 ± 2.1
	L-DVCE $_{t_c=250}$	<u>49±2.8</u>	<u>0.28±0.02</u>	69.0 ± 1.5	14.2±1.0	56.8 ± 1.6	<u>39.7±2.1</u>
	FastDiME $_{t_c=250}$	51±2.9	0.31±0.02	66.8 ± 1.5	16.3 ± 1.0	<u>60.5±1.7</u>	<u>41.1±2.2</u>
	OCTET	60±3.4	0.36±0.03	74.0 ± 1.6	15.7 ± 1.1	54.0 ± 2.0	60.0 ± 3.0
	DiVE	79±4.0	0.62±0.05	95.1±0.9	16.9 ± 1.0	34.3 ± 1.8	159.0 ± 8.0

that VOCCE conditions on slot representations s via Cross-Attention, while L-DVCE and FastDiME replaces this with Self-Attention (Vaswani et al., 2017). We use DDIM sampling (Song et al., 2020) for counterfactual generation, using 200 total denoising steps. Given $t_c = 250$, this corresponds to 50 effective denoising steps.

To benchmark against non-diffusion approaches, we include DiVE (Rodriguez et al., 2021), a strong VAE-based counterfactual method, and OCTET (Zemni et al., 2023), an approach that leverages a GAN backbone developed for compositional scene generation. We scale all models hyperparameter to match the trainable parameter count of our diffusion-based models.

5 EXPERIMENTS

In this section, we evaluate our proposed VOCCE on both synthetic (ClevrTex) and real-world (CelebA-HQ) datasets, comparing against the baselines. We then examine generalization when training exclusively on FFHQ and testing on CelebA-HQ, and conduct ablations on the influence of the guidance signals and GMM regularization.

5.1 QUANTITATIVE METRICS

We measure the *closeness* of counterfactuals to corresponding queries using l_2 norm in the latent space produced by pretrained VAE from (Rombach et al., 2022), and the perceptual LPIPS metric (Zhang et al., 2018) computed from the actual images using the AlexNet model (Krizhevsky et al., 2012). We report *validity* with success and failure rates, where success rate is a fraction of successful target attribute flips, and failure rate is a fraction of unintentionally changed attributes (ignoring entangled CelebA-HQ attributes, e.g. *Black hair* and *Blond hair*). Failure rate can also be considered as another measure of *closeness*, as we want our methods to flip target attributes exclusively. *Realism* is measured with sFID (Jeanneret et al., 2023), computed as the Fréchet Inception Distance (Seitzer, 2020) between counterfactuals of one image set and an independent set of real images from the same dataset.

We also quantify whether edits are localized correctly with an *Edit Localization Score* (ELS) that measures the fraction of change localized in the semantically relevant region and aligned with the classifier. Given the original image \mathbf{x} and the counterfactual \mathbf{x}_{cf} , we compute a per-pixel change map $\Delta = \text{Gauss}(|\mathbf{x} - \mathbf{x}_{cf}|_1)$ using ℓ_1 difference followed by a small Gaussian blur to suppress pixel noise. \mathcal{R} denote the target semantic region (e.g., the ground-truth object mask on ClevrTex or a part mask such as *mouth* or *hair* for corresponding target attributes from CelebA-HQ). We also intersect \mathcal{R} with the top-20% support of Grad-CAM (Selvaraju et al., 2017) saliency maps \mathbf{S} for the

378
 379 Table 2: Ablation of slot-level guidance on CelebA-HQ at $t_c = 250$. We vary the slot guidance
 380 step size η_s and the optional GMM regularization. The first row is a *reference* (full VOCCE with
 381 slot+noise guidance); all others are use *slot-only* updates to produce counterfactuals.

METHOD	CLOSENESS		VALIDITY		LOCALITY REALISM	
	$l_2 \downarrow$	LPIPS \downarrow	Succ. (%) \uparrow	Fail. (%) \downarrow	ELS (%) \uparrow	sFID \downarrow
VOCCE (slot+noise)	44	0.22	86.8	15.6	71.2	35.4
Slot-only + GMM, $\eta_s=1.0$	<u>45</u>	0.24	<u>86.1</u>	14.1	70.6	36.1
Slot-only + GMM, $\eta_s=0.3$	46	<u>0.23</u>	86.0	14.0	<u>70.9</u>	<u>36.0</u>
Slot-only - GMM, $\eta_s=1.0$	56	0.33	75.4	17.0	54.2	46.0
Slot-only - GMM, $\eta_s=0.3$	49	0.28	78.5	16.5	60.1	44.7

391 target class. The score is computed as
 393

$$394 \quad \text{ELS} = 100 \times \frac{\sum_{i \in \mathcal{R} \cap \Omega_\tau(\mathbf{s})} \Delta_i}{\sum_i \Delta_i}, \quad (12)$$

396 so higher values indicate edits that are both spatially localized and classifier-relevant.
 397

398 Table 1 summarizes the performance of VOCCE and baselines on ClevrTex and CelebA-HQ. For
 399 each row we take the same 1k test images and randomly create 5 shared target counterfactual labels,
 400 which results in 5k counterfactuals per row. VOCCE consistently outperforms all baselines in terms
 401 of *closeness* (measured by l_2 and LPIPS), *locality*, and *realism*, establishing itself as the strongest
 402 method overall. Although DiVE achieves higher *validity*, it does so at the cost of significantly worse
 403 closeness, introducing greater distortions to the images, as expected from a non-diffusion-based
 404 baseline, and substantially higher sFID scores, indicating lower visual fidelity.
 405

406 5.2 QUALITATIVE ANALYSIS

407 Figure 2 illustrates examples of counterfactual explanations on CelebA-HQ for both VOCCE and L-
 408 DVCE. First four columns displays a single binary attribute shift (e.g., “Smiling: 1 \rightarrow 0”) while the
 409 others 4 depict double attribute shift. VOCCE not only meets the target attribute more consistently
 410 (green probabilities) but also better preserves other facial details. In contrast, L-DVCE occasionally
 411 struggles with maintaining non-targeted features, which results in the noticeably lower closeness
 412 scores.
 413

414 5.3 ABLATION ON SLOT GUIDANCE AND GMM REGULARIZATION

416 We ablate the influence of the *slot* guidance component $\nabla_s \mathcal{L}_{\text{cf}}$, by turning off noise guidance (not
 417 updating ϵ_θ to $\hat{\epsilon}_\theta$, see Eq 7 and varying the presence of the GMM regularizer and the slot update
 418 step size $\eta_s \in \{1.0, 0.3\}$. The first row in Table 2 reports the full model (slot+noise) for reference.
 419 *Slot-only + GMM* is robust to η_s and remains close to the full model on all metrics. Crucially, local-
 420 ity remains high ($\text{ELS} \approx 71\%$), indicating that the slot signal is doing most of the heavy lifting for
 421 targeted edits. Removing the GMM regularizer degrades performance across the board and makes
 422 the method sensitive to η_s , consistent with off-manifold drift when slot updates are unconstrained.
 423 Against diffusion baselines, *slot-only + GMM* still outperforms L-DVCE, underscoring the impor-
 424 tance of slot-level guidance. Adding noise guidance $\hat{\epsilon}_\theta$ provides a small but consistent boost to
 425 performance.
 426

427 5.4 USER STUDY

428 Following DVCE (Augustin et al., 2022), we conducted a small user study with 20 participants. Each
 429 participant completed 8 tasks, where each task included 3 images (a query image alongside VOCCE
 430 and L-DVCE counterfactuals) and a textual description of the target modification. The participants
 431 were asked whether each counterfactual (1) had *meaningful changes*, (2) had *subtle changes*, and
 (3) had a *realistic appearance*. The aggregated results (for VOCCE / L-DVCE) are as follows:

432
 433 Table 3: FFHQ-trained models on CelebA-HQ (means and relative change vs. multi-dataset training).
 434 Relative change in parentheses compares to models trained on *FFHQ+CelebA-HQ*. Bold per-
 435 centages mark the best (least degradation or largest improvement) per metric.

METHOD	CLOSENESS		VALIDITY		LOCALITY	REALISM
	$l_2 \downarrow$	LPIPS \downarrow	Succ. (%) \uparrow	Fail. (%) \downarrow	ELS (%) \uparrow	sFID \downarrow
VOCCE $_{t_c=250}$	52 (+18%)	0.25 (+15%)	86.5 (0%)	16.1 (+3%)	68.4 (-4%)	42.5 (+20%)
L-DVCE $_{t_c=250}$	61 (+25%)	0.34 (+23%)	68.6 (0%)	15.1 (+6%)	51.7 (-9%)	47.3 (+20%)

441
 442

- **Meaningful:** 131/160 (82%) vs. 109/160 (68%)
- **Subtle:** 126/160 (79%) vs. 88/160 (55%)
- **Realistic:** 61/160 (38%) vs. 54/160 (34%)

 443
 444
 445

446 These findings indicate that VOCCE generates more meaningful and subtle modifications compared
 447 to L-DVCE. While the realism scores are somewhat lower for both methods, the results suggest that
 448 future improvements could focus on preserving realism while maintaining the meaningfulness and
 449 subtlety of the edits.

450
 451 **5.5 GENERALIZATION ACROSS DATASETS**

452 One of the main promises of object-centric learning is a better capacity for generalization (Greff
 453 et al., 2020). To evaluate this, we train both diffusion models on FFHQ exclusively and test them
 454 on CelebA-HQ. Table 3 reports both the absolute performance and relative change compared to
 455 the same models trained on both FFHQ and CelebA-HQ. VOCCE retains higher performance with
 456 smaller degradation in closeness (LPIPS) and realism (sFID), demonstrating its stronger ability to
 457 generalize to a new facial dataset. While L-DVCE also remains viable, it suffers more pronounced
 458 drops in closeness and realism, indicating less robust cross-dataset adaptation. These findings
 459 underscore the advantage of our object-centric diffusion approach in generating visual counterfactual
 460 explanations that transfer effectively across related datasets.

461
 462 **6 LIMITATIONS AND FUTURE WORK**

463 As our approach is built on DDPMs and Slot Attention, it inherits all the limitations of these back-
 464 bone models. A notable one is computation time: generating 64 counterfactuals using NVIDIA
 465 RTX A6000 GPU takes 29 seconds against 24 seconds for L-DVCE. Another major limitation is the
 466 challenge of applying modern object-centric learning methods to large and diverse datasets such as
 467 ImageNet (Deng et al., 2009), where the concept of discrete objectness becomes less clear. In future
 468 work, we plan to investigate ways to extend VOCCE to more complex image datasets and to other
 469 visual modalities like videos and 3D-scenes.

470
 471 **7 CONCLUSION**

472 We proposed VOCCE – the first object-centric framework for generating visual counterfactual expla-
 473 nations that target meaningful, slot-level changes while preserving realism. By leveraging classifier
 474 guidance, gradient-based slot updates, and a GMM regularizer within a diffusion-based model, our
 475 approach achieves state-of-the-art performance on CelebA-HQ and synthetic ClevrTex, especially in
 476 terms of locality, closeness, and plausibility. Notably, VOCCE demonstrates stronger generalization
 477 than purely pixel-level diffusion baselines, exhibiting less performance degradation when trained
 478 on FFHQ and evaluated on CelebA-HQ. A user study further confirms the advantages of VOCCE:
 479 participants rated its explanations as more meaningful (82% vs. 68%), more subtle (79% vs. 55%),
 480 and more realistic (38% vs. 34%) compared to L-DVCE. Collectively, these findings highlight how
 481 object-centric diffusion enables more interpretable, realistic, and targeted visual counterfactuals,
 482 marking a significant step toward actionable explainability for complex vision models.

486 REFERENCES
487

488 Yasmeen Alufaisan, Laura R Marusich, Jonathan Z Bakdash, Yan Zhou, and Murat Kantarcioglu.
489 Does explainable artificial intelligence improve human decision-making? In *Proceedings of the
490 AAAI Conference on Artificial Intelligence*, volume 35, pp. 6618–6626, 2021.

491 Maximilian Augustin, Valentyn Boreiko, Francesco Croce, and Matthias Hein. Diffusion visual
492 counterfactual explanations. *Advances in Neural Information Processing Systems*, 35:364–377,
493 2022.

494 Maximilian Augustin, Yannic Neuhaus, and Matthias Hein. Dig-in: Diffusion guidance for inves-
495 tigating networks-uncovering classifier differences neuron visualisations and visual counterfac-
496 tual explanations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
497 Recognition*, pp. 11093–11103, 2024.

498 Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
499 Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and represen-
500 tation. *arXiv preprint arXiv:1901.11390*, 2019.

502 Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image clas-
503 sifiers by counterfactual generation. *arXiv preprint arXiv:1807.08024*, 2018.

505 Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
506 ger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder
507 for statistical machine translation. *arXiv preprint arXiv:1406.1078*, 2014.

508 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
509 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
510 pp. 248–255. Ieee, 2009.

512 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
513 in neural information processing systems*, 34:8780–8794, 2021.

515 Finale Doshi-Velez and Been Kim. Towards a rigorous science of interpretable machine learning.
516 *arXiv preprint arXiv:1702.08608*, 2017.

517 Gamaleldin Elsayed, Aravindh Mahendran, Sjoerd Van Steenkiste, Klaus Greff, Michael C Mozer,
518 and Thomas Kipf. Savi++: Towards end-to-end object-centric learning from real-world videos.
519 *Advances in Neural Information Processing Systems*, 35:28940–28954, 2022.

521 Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Gener-
522 ative scene inference and sampling with object-centric latent representations. *arXiv preprint
523 arXiv:1907.13052*, 2019.

524 SM Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E Hinton,
525 et al. Attend, infer, repeat: Fast scene understanding with generative models. *Advances in neural
526 information processing systems*, 29, 2016.

528 Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
529 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
530 tion*, pp. 12873–12883, 2021.

531 Timo Freiesleben. The intriguing relation between counterfactual explanations and adversarial ex-
532 amples. *Minds and Machines*, 32(1):77–109, 2022.

534 Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
535 pattern recognition unaffected by shift in position. *Biological cybernetics*, 36(4):193–202, 1980.

536 Bryce Goodman and Seth Flaxman. European union regulations on algorithmic decision-making
537 and a “right to explanation”. *AI magazine*, 38(3):50–57, 2017.

539 Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual visual
540 explanations. In *International Conference on Machine Learning*, pp. 2376–2384. PMLR, 2019.

540 Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. Neural expectation maximization.
 541 *Advances in neural information processing systems*, 30, 2017.
 542

543 Klaus Greff, Sjoerd Van Steenkiste, and Jürgen Schmidhuber. On the binding problem in artificial
 544 neural networks. *arXiv preprint arXiv:2012.05208*, 2020.

545 Kalanit Grill-Spector. The neural basis of object perception. *Current opinion in neurobiology*, 13
 546 (2):159–166, 2003.
 547

548 Lisa Anne Hendricks, Ronghang Hu, Trevor Darrell, and Zeynep Akata. Grounding visual expla-
 549 nations. In *Proceedings of the European conference on computer vision (ECCV)*, pp. 264–279,
 550 2018.

551 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 552 *neural information processing systems*, 33:6840–6851, 2020.
 553

554 Paul Jacob, Éloi Zablocki, Hedi Ben-Younes, Mickaël Chen, Patrick Pérez, and Matthieu Cord.
 555 Steex: steering counterfactual explanations with semantics. In *European Conference on Computer*
 556 *Vision*, pp. 387–403. Springer, 2022.

557 Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Diffusion models for counterfactual expla-
 558 nations. In *Proceedings of the Asian conference on computer vision*, pp. 858–876, 2022.
 559

560 Guillaume Jeanneret, Loïc Simon, and Frédéric Jurie. Adversarial counterfactual visual expla-
 561 nations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
 562 pp. 16425–16435, 2023.

563 Jindong Jiang, Fei Deng, Gautam Singh, and Sungjin Ahn. Object-centric slot diffusion. *arXiv*
 564 *preprint arXiv:2303.10834*, 2023.
 565

566 Eoin M Kenny and Mark T Keane. On generating plausible counterfactual and semi-factual ex-
 567 planations for deep learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 568 volume 35, pp. 11575–11585, 2021.

569 Hyemi Kim, Seungjae Shin, JoonHo Jang, Kyungwoo Song, Weonyoung Joo, Wanmo Kang, and
 570 Il-Chul Moon. Counterfactual fairness with disentangled causal effect variational autoencoder. In
 571 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 8128–8136, 2021.
 572

573 Thomas Kipf, Gamaleldin F Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour, Georg
 574 Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-centric
 575 learning from video. *arXiv preprint arXiv:2111.12594*, 2021.

576 Daniil Kirilenko, Vitaliy Vorobyov, Alexey K Kovalev, and Aleksandr I Panov. Object-centric learn-
 577 ing with slot mixture module. *arXiv preprint arXiv:2311.04640*, 2023.
 578

579 Daniil Kirilenko, Pietro Barbiero, Martin Gjoreski, Mitja Luštrek, and Marc Langheinrich. Genera-
 580 tive models for counterfactual explanations. *View Article*, 2024.

581 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 582 lutional neural networks. *Advances in neural information processing systems*, 25, 2012.
 583

584 Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Wald, Gal Elidan, Avinatan Hassidim,
 585 William T Freeman, Phillip Isola, Amir Globerson, Michal Irani, et al. Explaining in style:
 586 training a gan to explain a classifier in stylespace. In *Proceedings of the IEEE/CVF International*
 587 *Conference on Computer Vision*, pp. 693–702, 2021.

588 Minhyeok Lee, Suhwan Cho, Dogyoon Lee, Chaewon Park, Jungho Lee, and Sangyoun Lee. Guided
 589 slot attention for unsupervised video object segmentation. In *Proceedings of the IEEE/CVF Con-*
 590 *ference on Computer Vision and Pattern Recognition*, pp. 3807–3816, 2024.
 591

592 Liangzhi Li, Bowen Wang, Manisha Verma, Yuta Nakashima, Ryo Kawasaki, and Hajime Nagahara.
 593 Scouter: Slot attention-based classifier for explainable image recognition. In *Proceedings of the*
 594 *IEEE/CVF international conference on computer vision*, pp. 1046–1055, 2021.

594 Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg Heigold,
 595 Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with slot attention.
 596 *Advances in neural information processing systems*, 33:11525–11538, 2020.

597

598 Tung Luu, Nam Le, Duc Le, and Bac Le. From visual explanations to counterfactual explanations
 599 with latent diffusion. In *2025 IEEE/CVF Winter Conference on Applications of Computer Vision*
 600 (WACV), pp. 420–429. IEEE, 2025.

601

602 Christoph Molnar. *Interpretable machine learning*. Lulu. com, 2020.

603

604 Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
 605 In *International conference on machine learning*, pp. 8162–8171. PMLR, 2021.

606

607 Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju.
 608 Exploring counterfactual explanations through the lens of adversarial examples: A theoretical
 609 and empirical analysis. In *International Conference on Artificial Intelligence and Statistics*, pp.
 610 4574–4594. PMLR, 2022.

611

612 Dino Pedreschi, Fosca Giannotti, Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, and
 613 Franco Turini. Meaningful explanations of black box ai decision systems. In *Proceedings of the*
 614 *the AAAI conference on artificial intelligence*, volume 33, pp. 9780–9784, 2019.

615

616 Rafael Poyiadzi, Kacper Sokol, Raul Santos-Rodriguez, Tijl De Bie, and Peter Flach. Face: feasible
 617 and actionable counterfactual explanations. In *Proceedings of the AAAI/ACM Conference on AI,*
 618 *Ethics, and Society*, pp. 344–350, 2020.

619

620 Pau Rodriguez, Massimo Caccia, Alexandre Lacoste, Lee Zamparo, Issam Laradji, Laurent Char-
 621 lin, and David Vazquez. Beyond trivial counterfactual explanations with diverse valuable ex-
 622 planations. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 623 1056–1065, 2021.

624

625 Piotr Romashov, Martin Gjoreski, Kacper Sokol, Maria Vanina Martinez, and Marc Langheinrich.
 626 Baycon: Model-agnostic bayesian counterfactual generator. In *IJCAI*, pp. 740–746, 2022.

627

628 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 629 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 630 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

631

632 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 633 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.

634

635 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
 636 propagating errors. *nature*, 323(6088):533–536, 1986.

637

638 Amir Samadi, Amir Shirian, Konstantinos Koufos, Kurt Debattista, and Mehrdad Dianati. Safe:
 639 Saliency-aware counterfactual explanations for dnn-based automated driving systems. In *2023*
640 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), pp. 5655–
 641 5662. IEEE, 2023.

642

643 Amir Samadi, Konstantinos Koufos, Kurt Debattista, and Mehrdad Dianati. Safe-rl: Saliency-aware
 644 counterfactual explainer for deep reinforcement learning policies. *IEEE Robotics and Automation*
 645 *Letters*, 9(11):9994–10001, 2024.

646

647 Maximilian Seitzer. pytorch-fid: A Library for the Fréchet Inception Distance. <https://github.com/mseitzer/pytorch-fid>, 2020.

648

649 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 650 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 651 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 652 2017.

653

654 Gautam Singh, Fei Deng, and Sungjin Ahn. Illiterate dall-e learns to compose. *arXiv preprint*
 655 *arXiv:2110.11405*, 2021.

648 Barry Smyth and Mark T Keane. A few good counterfactuals: generating interpretable, plausible
 649 and diverse counterfactual explanations. In *International Conference on Case-Based Reasoning*,
 650 pp. 18–32. Springer, 2022.

651

652 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv
 653 preprint arXiv:2010.02502*, 2020.

654 Elizabeth S Spelke. Principles of object perception. *Cognitive science*, 14(1):29–56, 1990.

655

656 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 657 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 658 tion processing systems*, 30, 2017.

659 Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
 660 the black box: Automated decisions and the gdpr. *Harv. JL & Tech.*, 31:841, 2017.

661

662 Nina Weng, Paraskevas Pegios, Eike Petersen, Aasa Feragen, and Siavash Bigdeli. Fast diffusion-
 663 based counterfactuals for shortcut removal and generation. In *European Conference on Computer
 664 Vision*, pp. 338–357. Springer, 2024.

665 Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training object-
 666 centric representations for reinforcement learning. *arXiv preprint arXiv:2302.04419*, 2023.

667

668 Mehdi Zemni, Mickaël Chen, Éloi Zablocki, Hédi Ben-Younes, Patrick Pérez, and Matthieu Cord.
 669 Octet: Object-aware counterfactual explanations. In *Proceedings of the IEEE/CVF conference on
 670 computer vision and pattern recognition*, pp. 15062–15071, 2023.

671 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 672 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on
 673 computer vision and pattern recognition*, pp. 586–595, 2018.

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701