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ABSTRACT

Generating visually coherent and realistic counterfactual explanations is essen-
tial for understanding discriminative visual models. Existing methods often mod-
ify images at the pixel-level or within holistic latent spaces, leading to entan-
gled changes that obscure the precise factors influencing model decisions. To
address this, we introduce a novel object-centric method for visual counterfac-
tual explanations. Our approach decomposes input images into distinct object-
centric latent slots and leverages model’s gradients to guide a reverse diffusion
process conditioned on these slots. To maintain realism, we propose a Gaussian
Mixture Model (GMM)-based regularizer that constrains counterfactuals to re-
main within the distribution of plausible object states, preventing unrealistic gen-
erations. Experiments on three datasets and a user study demonstrate that our
object-centric approach yields significantly more interpretable and realistic coun-
terfactuals compared to state-of-the-art baselines. Moreover, our approach shows
strong generalization: when trained solely on FFHQ dataset, it successfully gen-
erates coherent counterfactual explanations on unseen CelebA-HQ data. Overall,
our approach substantially advances visual counterfactual explanations by offer-
ing explicit object-level interpretability and improved quality of generation.

1 INTRODUCTION

The pursuit of explainability and interpretability in machine learning has become essential as com-
plex models increasingly permeate critical decision-making processes (Goodman & Flaxman, 2017;
Doshi-Velez & Kim, 2017; Rudin, 2019; Alufaisan et al., 2021; Pedreschi et al., 2019). Among
various methods developed to enhance model transparency, counterfactual explanations have gained
particular prominence due to their intuitive appeal and actionable insights (Wachter et al., 2017;
Goyal et al., 2019). A counterfactual explanation provides a minimally altered version of an in-
put instance that shifts the model’s prediction toward a specified outcome, thereby clarifying the
causal relationship between input attributes and model decisions. For example, subtly modifying
visual attributes of an object to alter a classification outcome from ”cat” to ”dog” offers human-
interpretable evidence of features driving the model’s behavior (Goyal et al., 2019; Chang et al.,
2018; Kim et al., 2021). Crucially, effective visual counterfactuals require targeted and semantically
meaningful modifications—such as changing object-specific characteristics rather than background
details—thus enabling users to verify whether model decisions align with human intuition (Hen-
dricks et al., 2018). By emphasizing localized and interpretable alterations, counterfactual expla-
nations not only enhance model transparency but also facilitate rigorous evaluation of the semantic
grounding and generalizability of visual classifiers (Smyth & Keane, 2022).

Despite the notable progress, generating high-quality visual counterfactual explanations remains
challenging. Classical counterfactual techniques predominantly focus on tabular data, where in-
dividual features (e.g. age, income) are inherently interpretable and straightforward to manipulate
(Wachter et al., 2017; Molnar, 2020; Romashov et al., 2022). In contrast, visual data, represented at
the pixel level, lacks direct interpretability due to the high dimensionality and entangled semantics
inherent in raw image space (Goyal et al., 2019; Hendricks et al., 2018). Recent work addresses
this limitation by generating counterfactuals in learned latent feature spaces, where abstract repre-
sentations better isolate semantically meaningful changes (Rodriguez et al., 2021; Lang et al., 2021;
Kirilenko et al., 2024). Building upon this insight, we propose to further enhance interpretability
by generating visual counterfactuals within an explicitly object-centric latent space, represented by
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slot-based decompositions (Locatello et al., 2020). Slot-based representations naturally disentan-
gle object-level semantics, enabling highly targeted and intuitive modifications for counterfactual
generation (Greff et al., 2020).

Building upon a legacy of object-centric visual cognition (Fukushima, 1980; Greff et al., 2020), we
address a question left open by prior counterfactual work: Can a semantically grounded, unsuper-
vised object-centric generative model produce better counterfactual explanations than pixel-level or
holistic latent approaches?

Existing methods typically entangle foreground and background features, leading to counterfactuals
that flip the prediction but also alter irrelevant parts of the image, making it unclear which change
was causally responsible. We close this gap by introducing a novel object-centric framework for
visual counterfactual explanations.

Our contributions are:

• Object-centric counterfactual framework: Our approach operates on slot-based repre-
sentations, where each slot encodes a distinct object. These representations are learned
in an unsupervised manner and provide a structured, interpretable foundation for semantic
counterfactual intervention.

• Classifier-guided slot diffusion with GMM realism prior: We modify standard
classifier-guided diffusion, introducing a Gaussian Mixture Model (GMM) prior that con-
strains edits to remain within the distribution of plausible object states. This yields a tar-
geted and semantically grounded generator of counterfactual explanations.

• Comprehensive evaluation: On ClevrTex, FFHQ, and CelebA-HQ datasets, our method
outperforms state-of-the-art approaches for visual counterfactual explanations.

• User study and ablations: Human evaluations show our explanations are rated as more
meaningful, subtle, and realistic. Ablation studies confirm the contribution of key architec-
tural components to overall performance.

• Cross-dataset generalization: Despite training only on FFHQ, our model generates high-
quality counterfactuals on unseen CelebA-HQ images substantially outperforming non-
slot-based baselines.

2 BACKGROUND AND RELATED WORKS

2.1 COUNTERFACTUAL EXPLANATIONS

Counterfactual explanations aim to answer: “What is the smallest meaningful change to a given
input that would cause a specified model to predict a desired outcome?” (Wachter et al., 2017; Goyal
et al., 2019; Poyiadzi et al., 2020; Kenny & Keane, 2021). Formally, for a predictor f : X →Y , a
query x with prediction y = f(x), and a target label y∗, a counterfactual xcf is often defined as

xcf = argmin
x′

d(x,x′) s.t. f(x′) = y∗, (1)

where d(·, ·) is a distance metric. Three desiderata are typically enforced: (i) validity (f(xcf ) = y∗),
(ii) minimality/closeness (minimal distance d(x,xcf )), and (iii) plausibility/realism (the change
should live on or near the data manifold and be semantically meaningful) (Rudin, 2019; Molnar,
2020).

Not just conditional generation. Sampling from a conditional generator p(x | y∗) solves a dif-
ferent problem: it produces any plausible sample with attribute y∗, irrespective of the specific x or
the behavior of f . Counterfactuals are instance-specific (they stay close to x) and model-specific
(success is defined by f , not by the generator). Merely drawing a realistic face with glasses does not
explain why f misclassified this face without glasses, nor what minimal edit would flip f ’s decision.
Equation 1 captures this distinction, i.e., it is an optimization process anchored at x and constrained
by f , not a draw from p(x | y∗).
Visual counterfactuals. While Eq.1 mirrors the optimization used in adversarial attacks, adversarial
examples are agnostic to human meaning and realism (Freiesleben, 2022; Pawelczyk et al., 2022);
counterfactuals, in contrast, must produce interpretable, plausible edits, this extra burden becomes
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acute for images. Pixel space is high-dimensional and semantically entangled, so naive perturbations
either create implausible edits or spill them across foreground and background, obscuring causal
factors and often drifting off-manifold. This makes realism and locality constraints substantially
harder than in tabular settings (Goyal et al., 2019; Hendricks et al., 2018).

Prior works address this by performing constrained manipulations in the learned latent space to
carve out semantically meaningful directions (Rodriguez et al., 2021; Lang et al., 2021; Kirilenko
et al., 2024) or they limit targeted regions using saliency maps (Samadi et al., 2023; 2024) or use
information about scene composition either through semantic segmentation (Jacob et al., 2022) or
object parameters (Zemni et al., 2023). We follow the same direction: instead of holistic latents, we
operate on an explicitly object-centric compositional representations, improving locality and overall
quality of counterfactual edits.

2.2 DIFFUSION MODELS

Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021)
learn to generate data by reversing a noising process. The forward diffusion process adds Gaussian
noise

q(xt | xt−1) = N
(√

1− βt xt−1, βtI
)
, (2)

which implies the closed form

q(xt | x0) = N
(√

ᾱt x0, (1− ᾱt)I
)
, (3)

with ᾱt =
∏t

j=1(1− βj). A U-Net ϵθ is trained to predict the injected noise via the usual objective

L = Ex0,t,ϵ

[∥∥ϵ− ϵθ(xt, t)
∥∥2] , (4)

which enables the reverse diffusion process pθ(xt−1,xt).

In this framework it is possible to incorporate external classifier signal pϕ(y|x) into pθ,ϕ(xt−1|xt, y)
(Dhariwal & Nichol, 2021). Classifier-guided diffusion modifies the reverse transition probabilities
as follows:

pθ,ϕ(xt−1|xt, y) ∝ pθ(xt−1|xt) pϕ(y|xt−1). (5)

This feature made diffusion models popular for producing visual counterfactuals. DVCE (Augustin
et al., 2022) and DiME (Jeanneret et al., 2022) apply classifier guidance with additional regularizers
to steer edits toward counterfactuals, while ACE (Jeanneret et al., 2023) integrates an inpainting
stage to refine adversarial perturbations into more realistic image changes. Beyond these, DiG-
IN (Augustin et al., 2024) leverages diffusion counterfactuals to widely explore classifier failure
modes, and ECED (Luu et al., 2025) incorporates latent diffusion with saliency maps to localize
edits to semantically relevant regions.

2.3 OBJECT-CENTRIC LEARNING

The field of object-centric learning draws inspiration from the object-oriented nature of human vi-
sual perception, where our visual system instinctively decomposes scenes into discrete entities and
familiar structures Spelke (1990); Grill-Spector (2003). Motivated by this cognitive ability, object-
centric models typically learn to map an input image x ∈ RH×W×C into an unordered set of latent
vectors, commonly referred to as slots s = {s1, s2, . . . , sK}, in an unsupervised manner, where each
slot sk ∈ Rd encodes the properties of a distinct object or entity observed in the original input x.

Recent advancements in object-centric learning have led to numerous influential approaches Eslami
et al. (2016); Greff et al. (2017); Burgess et al. (2019); Engelcke et al. (2019) demonstrating signifi-
cant potential in decomposing complex visual scenes into interpretable components. Slot Attention
(SA) (Locatello et al., 2020) has emerged as the most prominent method in object-centric learning,
widely adopted for its simplicity and effectiveness (Lee et al., 2024; Li et al., 2021; Kipf et al.,
2021; Elsayed et al., 2022; Singh et al., 2021; Yoon et al., 2023). SA iteratively maps a flattened
distributed feature representation z ∈ RN×D from input images x into a set of randomly initialized
slots s. These slots compete through dot-product attention, assigning portions of the input to spe-
cific slots in a manner reminiscent of soft K-means clustering combined with Gated Recurrent Unit
(GRU) (Cho et al., 2014) and Multi-Layer Perceptron (MLP) (Rumelhart et al., 1986) updates.
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3 METHOD
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Figure 1: Illustration of the proposed approach. (a) High-level pipeline. A query image x is encoded
into a latent vector z0, while Slot-Attention extracts slots s. We perform a tc forward diffusion step
using q(ztc | z0), and then invoke a slot-conditioned reverse-diffusion process that is further guided
by a GMM fitted to training-set slots and a desired attribute flip. The refined latent z̃0 is decoded,
yielding the counterfactual. (b) Single reverse-diffusion step. The noisy latent ztc is passed through
a denoising U-Net to predict ϵ0 and an intermediate latent ẑ0. A classifier provides Lcls, and the
GMM supplies a plausibility term LGMM. The combined guidance adjusts the slots stc and the noise
estimate from ϵθ to ϵ̂θ, which is then used to compute the next ztc−1.

In this section, we introduce Visual Object-Centric Counterfactual Explanations (VOCCE), our pro-
posed approach for generating object-centric visual counterfactuals. VOCCE operates by modifying
latent slot representations within a diffusion-based generative framework, enabling the creation of
targeted, semantically rich counterfactual examples. Our method comprises four key components:

1. Latent Slot Diffusion, a state-of-the-art object-centric generative model.
2. Classifier Guidance, which steers the diffusion process toward desired label by adjusting

the noise prediction.
3. Gradient-Based Slot Updates, where classifier gradients modify slot representations.
4. GMM-Based Regularization, which ensures updated slots remain within the distribution

of plausible states.

3.1 LATENT SLOT DIFFUSION

We adopt LSD as the core backbone of our counterfactual generation pipeline. Given a query sample
xq ∈ RH×W×C and a target discriminative model f : RH×W×C → RL, our goal is to produce a
counterfactual for a desired label y∗ ∈ RL, y∗ ̸= f(xq). We begin by encoding xq into the latent
space, z0 = Enc(xq), and extracting slot representations, s = SA(xq). Next, we partially noise z0
to obtain ztc ∼ q(ztc | z0) at a chosen timestep tc < T .

We then perform reverse diffusion using the trained denoising model ϵθ(zt, t, s). During this reverse
process, we leverage gradients from the target model f to update both the predicted noise ϵ̂θ and
the slot representations s, thus steering the diffusion towards the desired label y∗. Once the process
reaches ẑ0, we decode it to the image space, yielding the final counterfactual xcf = Dec(ẑ0).

3.2 CLASSIFIER GUIDANCE

Following state-of-the-art diffusion-based methods for visual counterfactual explanations (Augustin
et al., 2022; Jeanneret et al., 2022; 2023), we incorporate classifier guidance by leveraging the gra-
dient of a classifier loss ∇zt

Lcls

(
y∗, f

(
x̃
))

, where x̃ = Dec(z̃0). The term z̃0 is an approximate
reconstruction of z0 from the noisy sample zt, derived from Eq.3 via

z̃0 =
1√
ᾱt

(
zt − ϵθ

(
zt, t, s

)√
1− ᾱt

)
. (6)
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To guide the diffusion process towards y∗, we modify the predicted noise ϵθ using the classifier
gradient. Specifically, the guided noise approximation ϵ̂θ becomes

ϵ̂θ = ϵθ −
√
1− ᾱt∇zt

Lcls

(
y∗, f

(
x̃
))

. (7)

By backpropagating through the approximate reconstruction z̃0 and the decoder Dec(·), the classi-
fier’s gradient encourages the generated sample to align with the target label y∗.

3.3 GMM-BASED REGULARIZATION

To prevent slot modifications from drifting into out-of-distribution regions and to ensure that the
resulting counterfactuals remain plausuible, we introduce a GMM-based regularization. Prior to
counterfactual generation, we collect slot representations from the training data samples and fit a
Gaussian Mixture Model (GMM) with M components:

p(s) =

M∑
m=1

πmN
(
s; µm, Σm

)
. (8)

Previous works have shown that clustering in the slot space yields a semantically meaningful group-
ing (Singh et al., 2021; Jiang et al., 2023; Kirilenko et al., 2023).

By modeling the distribution of slots, we can better constrain the counterfactual generation process.
During inference, we use the learned GMM parameters {µm,Σm} to enforce a high likelihood
under this prior. Specifically, we introduce a penalty term:

LGMM = −
K∑
i=1

log p(si), Lcf = Lcls + γ LGMM, (9)

where γ balances classifier-driven modifications and realism constraints. LGMM penalizes slot con-
figurations that deviate significantly from the training distribution. In our experiments, we set
γ = 0.1, finding this value effective in preserving the plausibility of the generated counterfactu-
als while encouraging them to correspond to the desired label.

3.4 GRADIENT-BASED SLOT UPDATES

Beyond the typical classifier-guided noise adjustments in diffusion models, we note that the approx-
imate reconstruction x̃ also depends on the slot representations s. Since

x̃ = Dec
(
z̃0(zt, ϵθ(zt, t, s))

)
, (10)

we can backpropagate through both the decoder Dec(·) and the denoising network ϵθ to update
s itself. This additional gradient pathway enables more direct manipulation of the latent factors
responsible for object- or region-level changes in the generated counterfactual.

In each reverse diffusion step, we update s by descending its gradient:

st−1 ← st − ηs∇sLcf

(
y∗, f

(
x̃
))

, (11)

where ηs is a step size for the slot update.

Empirically, we observe that slot-level guidance alone already outperforms classifier-
guidance–based baselines, producing more localized better counterfactuals; when combined with
classifier-based noise adjustments, it yields further improvements.

4 EXPERIMENTAL SETUP

4.1 DATA

In our experiments we use three datasets: ClevrTex (30k images of simple scenes with various
objects), FFHQ (70k images of human faces), and CelebA-HQ (30k high-resolution face images).
ClevrTex provides detailed object-level annotations (shape, size, texture) for each object in a scene;
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Figure 2: Random examples of attribute manipulations on CelebA-HQ using our proposed VOCCE
approach and L-DVCE at tc = 250. First four columns represents a distinct binary attribute shift
(e.g., “Smiling: 1 → 0”), and the others represent two binary attributes shifts. The text “p: . . . ”
corresponds to a classifier’s predicted probability of the attribute; green indicates the prediction
matches the target attribute, while red indicates a mismatch. VOCCE consistently demonstrates
higher fidelity to the desired attribute modification and better preservation of other facial features
compared to L-DVCE.

we create counterfactual targets by randomly selecting an object and flipping one of its attributes
(e.g., shape, size, or texture). CelebA-HQ contains 40 binary facial attributes (Smiling, Glasses,
Young, etc.), and we generate counterfactual labels by randomly choosing an attribute to invert.
Since FFHQ does not include labels, we use it solely to augment training for models that are then
tested on CelebA-HQ. All datasets are split into 80% training, 10% validation, and 10% test sets,
we use 256×256 resolution images for both training and inference.

4.2 MODELS

Backbone generative model. We adopt LSD as our primary backbone and replicate the U-Net
architecture along with all training hyperparameters from (Jiang et al., 2023). All generative models
are trained for 300,000 iterations using the Adam optimizer with learning rate 3× 10−4 and a batch
size of 64. Detailed model configs are included in the code appendix for reproducibility.

To regularize slot updates, we fit a GMM to the training-set slots. Following prior work (Jiang et al.,
2023; Kirilenko et al., 2023), we use M=18 components for FFHQ and CelebA-HQ, and M=5 for
ClevrTex, as these values have been shown to yield semantically coherent slot clusters.

For CelebA attribute classification, we fine-tune a ResNet-18 pretrained on ImageNet using binary
cross-entropy loss across the 40 attributes. For ClevrTex, we train a ResNet-18 with three separate
heads (for shape, size, and texture), applying the Hungarian algorithm for object matching following
(Locatello et al., 2020). The resulting classifiers achieve mean average precision (mAP) scores of
0.87 on CelebA and 0.82 on ClevrTex.

Baselines. Two diffusion-based methods closely related to our approach are Diffusion Visual
Counterfactual Explanations (DVCE) (Augustin et al., 2022) and Diffusion Models for Counter-
factual Explanations (DiME) (Jeanneret et al., 2022). Both rely on reverse diffusion, but differ in
how classifier evaluations are handled during denoising. DiME performs multiple unconditional de-
noising steps per conditional iteration, introducing significant computational overhead. In contrast,
DVCE, like our method, uses a single-step approximation (see Eq. 6), making it more efficient and
more comparable to our VOCCE method.

We adopt DVCE as a baseline and adapt its modification for a fair comparison. The original DVCE
operates in pixel space, while we use a pretrained VAE (Esser et al., 2021; Rombach et al., 2022).
We refer to this adapted version as Latent-DVCE (L-DVCE). We also compare to FastDiME Weng
et al. (2024), a modified version of DiME with single step denoising from Eq. 6 and self-optimized
masking, in out experiments we find FastDiME to perform better than original DiME and use Fast-
DiME as a baseline. All diffusion-base approaches share the same U-Net backbone, differing only in
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Table 1: Performance of visual counterfactual-explanation methods on ClevrTex and CelebA-HQ
(mean±std for 3 seeds). Best values highlighted with bold, second best are underscored. Proposed
VOCCE achieves the best closeness, locality, and realism.

DATASET METHOD CLOSENESS VALIDITY LOCALITY REALISM

l2 ↓ LPIPS ↓ Succ. (%) ↑ Fail. (%) ↓ ELS (%) ↑ sFID ↓

ClevrTex

VOCCEtc=250 19±1.3 0.15±0.01 85.3± 1.0 11.9±0.8 82.4±1.1 25.5±1.4
DVCEtc=250 24±1.8 0.20±0.01 82.0±1.3 14.2±0.9 63.0±1.4 31.0±1.7
L-DVCEtc=250 21±1.5 0.16±0.01 84.8±1.2 13.3±0.9 68.1±1.3 27.6±1.5
FastDiMEtc=250 23±1.7 0.19±0.01 81.5±1.3 14.6±0.9 72.7±1.4 31.8±1.8
OCTET 41±2.0 0.21±0.02 79.2±1.3 16.6±1.1 62.0±1.8 48.0±2.6
DiVE 82±4.2 0.50±0.04 90.2±1.1 15.8±0.9 38.7±1.9 124.9±6.0

CelebA-HQ

VOCCEtc=250 44±2.5 0.22±0.01 86.8±1.1 15.6±1.0 71.2±1.6 35.4±1.7
DVCEtc=250 52±3.0 0.30±0.02 67.1±1.6 16.0±1.1 52.4±1.7 40.3±2.1
L-DVCEtc=250 49±2.8 0.28±0.02 69.0±1.5 14.2±1.0 56.8±1.6 39.7±2.1
FastDiMEtc=250 51±2.9 0.31±0.02 66.8±1.5 16.3±1.0 60.5±1.7 41.1±2.2
OCTET 60±3.4 0.36±0.03 74.0±1.6 15.7±1.1 54.0±2.0 60.0±3.0
DiVE 79±4.0 0.62±0.05 95.1±0.9 16.9±1.0 34.3±1.8 159.0±8.0

that VOCCE conditions on slot representations s via Cross-Attention, while L-DVCE and FastDiME
replaces this with Self-Attention (Vaswani et al., 2017). We use DDIM sampling (Song et al., 2020)
for counterfactual generation, using 200 total denoising steps. Given tc = 250, this corresponds to
50 effective denoising steps.

To benchmark against non-diffusion approaches, we include DiVE (Rodriguez et al., 2021), a strong
VAE-based counterfactual method, and OCTET (Zemni et al., 2023), an approach that leverages a
GAN backbone developed for compositional scene generation. We scale all models hyperparameter
to match the trainable parameter count of our diffusion-based models.

5 EXPERIMENTS

In this section, we evaluate our proposed VOCCE on both synthetic (ClevrTex) and real-world
(CelebA-HQ) datasets, comparing against the baselines. We then examine generalization when
training exclusively on FFHQ and testing on CelebA-HQ, and conduct ablations on the influence of
the guidance signals and GMM regularization.

5.1 QUANTITATIVE METRICS

We measure the closeness of counterfactuals to corresponding queries using l2 norm in the latent
space produced by pretrained VAE from (Rombach et al., 2022), and the perceptual LPIPS metric
(Zhang et al., 2018) computed from the actual images using the AlexNet model (Krizhevsky et al.,
2012). We report validity with success and failure rates, where success rate is a fraction of successful
target attribute flips, and failure rate is a fraction of unintentionally changed attributes (ignoring
entangled CelebA-HQ attributes, e.g. Black hair and Blond hair). Failure rate can also be considered
as another measure of closeness, as we want our methods to flip target attributes exclusively. Realism
is measured with sFID (Jeanneret et al., 2023), computed as the Fréchet Inception Distance (?Seitzer,
2020) between counterfactuals of one image set and an independent set of real images from the same
dataset.

We also quantify whether edits are localized correctly with an Edit Localization Score (ELS) that
measures the fraction of change localized in the semantically relevant region and aligned with the
classifier. Given the original image x and the counterfactual xcf , we compute a per-pixel change
map ∆ = Gauss(|x− xcf |1) using ℓ1 difference followed by a small Gaussian blur to suppress
pixel noise. R denote the target semantic region (e.g., the ground-truth object mask on ClevrTex or
a part mask such as mouth or hair for corresponding target attributes from CelebA-HQ). We also
intersectR with the top-20% support of Grad-CAM (Selvaraju et al., 2017) saliency maps S for the
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Table 2: Ablation of slot-level guidance on CelebA-HQ at tc = 250. We vary the slot guidance
step size ηs and the optional GMM regularization. The first row is a reference (full VOCCE with
slot+noise guidance); all others are use slot-only updates to produce counterfactuals.

METHOD CLOSENESS VALIDITY LOCALITY REALISM

l2 ↓ LPIPS ↓ Succ. (%) ↑ Fail. (%) ↓ ELS (%) ↑ sFID ↓

VOCCE (slot+noise) 44 0.22 86.8 15.6 71.2 35.4

Slot-only + GMMηs=1.0 45 0.24 86.1 14.1 70.6 36.1
Slot-only + GMMηs=0.3 46 0.23 86.0 14.0 70.9 36.0
Slot-only − GMMηs=1.0 56 0.33 75.4 17.0 54.2 46.0
Slot-only − GMMηs=0.3 49 0.28 78.5 16.5 60.1 44.7

target class. The score is computed as

ELS = 100×
∑

i∈R∩Ωτ (S)
∆i∑

i ∆i
, (12)

so higher values indicate edits that are both spatially localized and classifier-relevant.

Table 1 summarizes the performance of VOCCE and baselines on ClevrTex and CelebA-HQ. For
each row we take the same 1k test images and randomly create 5 shared target counterfactual labels,
which results in 5k counterfactuals per row. VOCCE consistently outperforms all baselines in terms
of closeness (measured by l2 and LPIPS), locality, and realism, establishing itself as the strongest
method overall. Although DiVE achieves higher validity, it does so at the cost of significantly worse
closeness, introducing greater distortions to the images, as expected from a non-diffusion-based
baseline, and substantially higher sFID scores, indicating lower visual fidelity.

5.2 QUALITATIVE ANALYSIS

Figure 2 illustrates examples of counterfactual explanations on CelebA-HQ for both VOCCE and L-
DVCE. First four columns displays a single binary attribute shift (e.g., “Smiling: 1→ 0”) while the
others 4 depict double attribute shift. VOCCE not only meets the target attribute more consistently
(green probabilities) but also better preserves other facial details. In contrast, L-DVCE occasionally
struggles with maintaining non-targeted features, which results in the noticeably lower closeness
scores.

5.3 ABLATION ON SLOT GUIDANCE AND GMM REGULARIZATION

We ablate the influence of the slot guidance component ∇sLcf , by turning off noise guidance (not
updating ϵθ to ϵ̂θ, see Eq 7 and varying the presence of the GMM regularizer and the slot update
step size ηs ∈ {1.0, 0.3}. The first row in Table 2 reports the full model (slot+noise) for reference.
Slot-only + GMM is robust to ηs and remains close to the full model on all metrics. Crucially, local-
ity remains high (ELS ≈ 71%), indicating that the slot signal is doing most of the heavy lifting for
targeted edits. Removing the GMM regularizer degrades performance across the board and makes
the method sensitive to ηs, consistent with off-manifold drift when slot updates are unconstrained.
Against diffusion baselines, slot-only + GMM still outperforms L-DVCE, underscoring the impor-
tance of slot-level guidance. Adding noise guidance ϵ̂θ provides a small but consistent boost to
performance.

5.4 USER STUDY

Following DVCE (Augustin et al., 2022), we conducted a small user study with 20 participants. Each
participant completed 8 tasks, where each task included 3 images (a query image alongside VOCCE
and L-DVCE counterfactuals) and a textual description of the target modification. The participants
were asked whether each counterfactual (1) had meaningful changes, (2) had subtle changes, and
(3) had a realistic appearance. The aggregated results (for VOCCE / L-DVCE) are as follows:
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Table 3: FFHQ-trained models on CelebA-HQ (means and relative change vs. multi-dataset train-
ing). Relative change in parentheses compares to models trained on FFHQ+CelebA-HQ. Bold per-
centages mark the best (least degradation or largest improvement) per metric.

METHOD CLOSENESS VALIDITY LOCALITY REALISM

l2 ↓ LPIPS ↓ Succ. (%) ↑ Fail. (%) ↓ ELS (%) ↑ sFID ↓

VOCCEtc=250 52 (+18%) 0.25 (+15%) 86.5 ( 0%) 16.1 (+3%) 68.4 (-4%) 42.5 (+20%)
L-DVCEtc=250 61 (+25%) 0.34 (+23%) 68.6 ( 0%) 15.1 (+6%) 51.7 (−9%) 47.3 (+20%)

• Meaningful: 131/160 (82%) vs. 109/160 (68%)

• Subtle: 126/160 (79%) vs. 88/160 (55%)

• Realistic: 61/160 (38%) vs. 54/160 (34%)

These findings indicate that VOCCE generates more meaningful and subtle modifications compared
to L-DVCE. While the realism scores are somewhat lower for both methods, the results suggest that
future improvements could focus on preserving realism while maintaining the meaningfulness and
subtlety of the edits.

5.5 GENERALIZATION ACROSS DATASETS

One of the main promises of object-centric learning is a better capacity for generalization (Greff
et al., 2020). To evaluate this, we train both diffusion models on FFHQ exclusively and test them
on CelebA-HQ. Table 3 reports both the absolute performance and relative change compared to
the same models trained on both FFHQ and CelebA-HQ. VOCCE retains higher performance with
smaller degradation in closeness (LPIPS) and realism (sFID), demonstrating its stronger ability to
generalize to a new facial dataset. While L-DVCE also remains viable, it suffers more pronounced
drops in closeness and realism, indicating less robust cross-dataset adaptation. These findings un-
derscore the advantage of our object-centric diffusion approach in generating visual counterfactual
explanations that transfer effectively across related datasets.

6 LIMITATIONS AND FUTURE WORK

As our approach is built on DDPMs and Slot Attention, it inherits all the limitations of these back-
bone models. A notable one is computation time: generating 64 counterfactuals using NVIDIA
RTX A6000 GPU takes 29 seconds against 24 seconds for L-DVCE. Another major limitation is the
challenge of applying modern object-centric learning methods to large and diverse datasets such as
ImageNet (Deng et al., 2009), where the concept of discrete objectness becomes less clear. In future
work, we plan to investigate ways to extend VOCCE to more complex image datasets and to other
visual modalities like videos and 3D-scenes.

7 CONCLUSION

We proposed VOCCE – the first object-centric framework for generating visual counterfactual expla-
nations that target meaningful, slot-level changes while preserving realism. By leveraging classifier
guidance, gradient-based slot updates, and a GMM regularizer within a diffusion-based model, our
approach achieves state-of-the-art performance on CelebA-HQ and synthetic ClevrTex, especially in
terms of locality, closeness, and plausibility. Notably, VOCCE demonstrates stronger generalization
than purely pixel-level diffusion baselines, exhibiting less performance degradation when trained
on FFHQ and evaluated on CelebA-HQ. A user study further confirms the advantages of VOCCE:
participants rated its explanations as more meaningful (82% vs. 68%), more subtle (79% vs. 55%),
and more realistic (38% vs. 34%) compared to L-DVCE. Collectively, these findings highlight how
object-centric diffusion enables more interpretable, realistic, and targeted visual counterfactuals,
marking a significant step toward actionable explainability for complex vision models.
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Octet: Object-aware counterfactual explanations. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 15062–15071, 2023.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

13


	Introduction
	Background and related works
	Counterfactual explanations
	Diffusion models
	Object-centric learning

	Method
	Latent Slot Diffusion
	Classifier guidance
	GMM-based regularization
	Gradient-based slot updates

	Experimental setup
	Data
	Models

	Experiments
	Quantitative metrics
	Qualitative analysis
	Ablation on slot guidance and GMM regularization
	User study
	Generalization across datasets

	Limitations and future work
	Conclusion

