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ABSTRACT

Combining multiple object detection datasets offers a promising path to improved
model generalisation. However, inconsistencies in class semantics and bounding
box annotations present significant challenges. Most existing approaches either
assume shared label taxonomies, address only spatial inconsistencies, or require
manual relabeling, limiting their scalability and flexibility. We propose Label-
Aligned Transfer (LAT), a framework that systematically projects annotations from
diverse source datasets into the label space of a target dataset. LAT begins by
training dataset-specific detectors to generate pseudo-labels. These pseudo-labels
are then fused with ground-truth annotations via a Privileged Proposal Generator
(PPG), which replaces the region proposal network in two-stage detectors to build
shared proposals across datasets. To refine region features and mitigate pseudo-
label noise, a Semantic Feature Fusion (SFF) module applies class-aware attention,
aligning features while filtering unreliable signals. Unlike ontology harmonisation
or embedding-based unification, LAT operates directly at the region and feature
levels, avoiding semantic drift and preserving fine-grained dataset-specific granular-
ity. It supports many-to-one label projection without requiring shared label spaces
or manual reannotation, enabling effective training over heterogeneous corpora.
Empirical evaluations across multiple benchmark combinations show consistent
performance gains, with improvements of up to +8.4 AP over competitive baselines.

1 INTRODUCTION

Combining multiple datasets has become an increasingly practical strategy for improving object
detection performance, particularly in domains where annotated data is scarce or expensive. However,
naively merging datasets with differing label spaces introduces inconsistencies in class semantics,
annotation granularity, background definitions, and bounding box styles (Chen et al., 2023; Wang
et al., 2019), as illustrated in Figure 1. These inconsistencies reduce downstream performance,
especially when high accuracy on a specific target dataset is required (Liao et al., 2024). Manual
relabelling is often infeasible at scale and, when label definitions diverge significantly, may be as
costly as annotating from scratch.

Limitations of Existing Approaches Model-centric solutions attempt to unify datasets via shared
label spaces or embedding-based representations. Such methods rely on vision-language align-
ment (Radford et al., 2021; Ilharco et al., 2021; Shi et al., 2024; Chen et al., 2023; Zhou et al.,
2023; Meng et al., 2023) or graph-based ontology construction (Xu et al., 2020; Ma et al., 2024) to
harmonise labels. While effective for average-case generalisation, they do not prioritise fidelity to a
specific target label space, limiting their utility in deployment scenarios that require strict semantic
consistency.

Data-centric approaches instead project annotations from source datasets into a designated target
label space (Liao et al., 2024; Lambert et al., 2020). However, they often rely on manual remap-
ping (Lambert et al., 2020), support only one-to-one dataset transfers, or align bounding boxes
without addressing semantic mismatches (Liao et al., 2024). Such limitations hinder scalability and
applicability in real-world multi-dataset settings where both semantic (label definitions) and spatial
(bounding box styles) inconsistencies are present.
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Figure 1: Annotation discrepancies between three road-based object detection datasets: Cityscapes,
Waymo, and nuImages. The top row highlights differences in cyclist-related annotations: Waymo
and nuImages treat the cyclist and bicycle as a single entity but assign different class labels, whereas
Cityscapes annotates them separately. The bottom row illustrates differences in label granularity,
with nuImages exhibiting the most fine-grained annotations and Waymo the least.

Our Solution We propose a data-centric framework called Label-Aligned Transfer (LAT) for
multi-dataset object detection. Rather than enforcing a unified label space, LAT projects annotations
from multiple source datasets into the label space of a fixed target dataset. This enables practitioners
to improve performance on a small, task-specific dataset by leveraging larger external datasets,
without modifying model architectures or compromising the semantic integrity of the target label
space. Crucially, LAT handles both class-level (semantic) and box-level (spatial) inconsistencies,
allowing integration of heterogeneous datasets.

Our approach begins by training a separate detection model for each dataset, allowing specialisation
in each dataset’s native annotation style. These models generate cross-dataset pseudo-labels by
predicting annotations in the label spaces of the other N−1 datasets, resulting in N(N−1) pseudo-
label projections. These projections act as implicit bridges between datasets. Using ground-truth
annotations as supervision, we treat pseudo-labels as noisy alignment hints and learn semantic and
spatial correspondences via multi-source training. This mitigates dataset-specific noise and leverages
complementary supervision.

To enable effective transfer, LAT introduces two architectural modules: (1) a Privileged Proposal
Generator (PPG) that replaces the traditional region proposal network by injecting fused proposals
from both ground-truth and pseudo-labels, and (2) a Semantic Feature Fusion (SFF) module
that refines region-level features using class-aware, overlap-sensitive attention to suppress noisy
predictions and enhance feature alignment.

Our Novelty Unlike conventional pseudo-labeling (Lee, 2013) or semi-supervised learning meth-
ods (Liu et al., 2021; Kennerley et al., 2023; 2024; Li et al., 2022; Hoffman et al., 2018), which
often discard source-specific semantics, our approach preserves and aligns the information content of
source labels to the target conventions. Rather than assuming shared label taxonomies or relying on
manual mapping, LAT fuses pseudo-labels and ground-truth boxes to support direct semantic and
spatial transfer.

Our PPG module enables joint proposal-level alignment, while SFF enhances feature consistency
across datasets. In contrast to ontology-based (Xu et al., 2020; Ma et al., 2024) or embedding-
based (Shi et al., 2024; Zhou et al., 2023; Radford et al., 2021) approaches, LAT avoids semantic
drift and maintains dataset-specific granularity. To our knowledge, LAT is the first framework to
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jointly resolve semantic and spatial inconsistencies in a multi-source, fixed-target detection setting
without requiring unified taxonomies or manual relabeling.

In summary, our main contributions are:

• We propose Label-Aligned Transfer (LAT), a novel data-centric framework that enables
many-to-one label projection across heterogeneous detection datasets, without requiring
shared taxonomies or manual remapping. Unlike existing methods, LAT jointly resolves
class-level and spatial inconsistencies via integrated proposal and feature alignment.

• We design two novel architectural modules: the Privileged Proposal Generator (PPG)
replaces the standard RPN by injecting both ground-truth and pseudo-labels, and the Se-
mantic Feature Fusion (SFF) refines region features through class-aware attention over
overlapping proposals. Together, they mitigate noise and enable cross-dataset supervision.

• LAT outperforms strong semi-supervised and label-transfer baselines across diverse class-
divergent and scale-divergent settings, achieving up to +4.9 AP and +8.4 AP improvements.
We further validate our architectural design through detailed ablation studies.

2 RELATED WORK

Dataset Alignment Integrating datasets for object detection presents challenges beyond visual
domain shifts, including semantic misalignment and inconsistent annotation protocols. Early work in-
cluded domain adaptation which focused on aligning image distributions via model-level adjustments
such as Maximum Mean Discrepancy (MMD) (Yan et al., 2017), domain-adversarial training (Hoff-
man et al., 2018), and self-training (Kennerley et al., 2024; 2023; Li et al., 2022). Other approaches
adopt a data-centric view, employing image translation to harmonise low-level appearance features
across domains (Zheng et al., 2020; Chattopadhyay* et al., 2023). However, these methods primarily
address distributional image-level variance and do not resolve inconsistencies in annotation semantics
or structure. Annotation mismatches have been more extensively studied in classification (Recht
et al., 2019; Beyer et al., 2020; Yun et al., 2021) and semantic segmentation (Bevandic and Segvic,
2022; Bevandić et al., 2022; Rottmann and Reese, 2023; Ma et al., 2024), while object detection
remains underexplored (Liao et al., 2024). Our framework addresses this gap by jointly correcting
semantic and spatial inconsistencies via direct label transfer into a designated target label space,
without requiring manual taxonomies or repeated re-labelling.

Multi-Dataset Object Detection Multi-dataset training is commonly used to improve robustness and
expand object category coverage (Chen et al., 2023; Ma et al., 2024; Meng et al., 2023). Approaches
can be grouped into three broad categories: (1) partitioned detectors with dataset-specific heads (Zhou
et al., 2022; Shi et al., 2024), (2) unified detectors trained on merged label spaces (Wang et al., 2019;
Chen et al., 2023), and (3) hybrid models that incorporate pseudo-labelling across datasets (Liao
et al., 2024). To unify label semantics, early work relied on manual class mapping and taxonomy
construction (Lambert et al., 2020), while more recent approaches use vision-language models (Rad-
ford et al., 2021; Ilharco et al., 2021) to build shared embedding spaces, enabling prompt-based
alignment across datasets (Shi et al., 2024; Chen et al., 2023; Zhou et al., 2023; Meng et al., 2023).
While effective at harmonising class names, these methods often overlook differences in annotation
coverage or bounding box conventions, and typically generate generalised label spaces rather than
adapting to a task-specific target label space. In contrast, LAT transfers annotations directly into a
fixed target label space, eliminating the need for dataset-specific heads or handcrafted taxonomies.
Unlike previous methods that aim to optimise average performance across datasets, our approach is
designed to maximise target-domain performance critical for real-world deployments with specific
annotation requirements.

3 PROPOSED METHOD

We propose Label-Aligned Transfer (LAT) to address the challenges of merging object detection
datasets with inconsistent label definitions. Our data-centric framework transfers annotations from
multiple source datasets into the label space of a designated target dataset, without relying on a
unified label taxonomy. This is achieved through a process of collaborative pseudo-labeling, where
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each dataset-specific model generates predictions in other label spaces. These predictions, along with
the ground-truth annotations, are used to learn correspondences at both the class and bounding box
levels. In this way, LAT enables the transfer of both semantic and spatial information across datasets,
effectively bridging inter-dataset discrepancies without requiring manual relabeling.

3.1 PRELIMINARIES

We begin by formalizing the problem setup and outlining the procedure for generating initial pseudo-
labels across datasets with divergent label spaces. To ensure clarity, we define the key terminology
used throughout this paper:

• Label Space: The annotation style of a dataset, encompassing both semantic definitions (class
labels) and spatial conventions (bounding boxes).

• Ground-truth: Human-annotated labels provided within a dataset, expressed in the dataset’s native
label space.

• Upstream Model: Object detection models trained independently on each dataset, used to generate
pseudo-labels for images from other datasets.

• Downstream Model: The final object detection model trained using pseudo-labels that have been
aligned to the target label space via LAT.

Problem Formulation Given N datasets {D1, D2, . . . , DN}, with respective label spaces
{L1, L2, . . . , LN}, our goal is to transfer annotations from all datasets into the label space of a
target dataset, formalised as L−N → LN . We assume that the datasets differ not only in bounding
box conventions but also in class semantics. This substantially increases the difficulty of label transfer
compared to prior approaches, which assume a shared class labels across datasets (Liao et al., 2024).

Our label transfer framework operates on a triplet {In, PLn
−n, GTn}, where, In represents the images

from the n-th dataset; PLn
−n represents pseudo-labels of the images in the label space of all other

datasets, L−n; and GTn is the corresponding ground-truth labels of dataset n. After training, LAT
outputs a refined set of pseudo-labels aligned to a designated target label space. Ultimately, our
objective is to generate target-aligned annotations for all datasets, enabling downstream training of
object detectors within a consistent label space.

The primary challenge lies in the absence of paired supervision: ground-truth annotations are never
observed in both source and target label spaces for the same image. This precludes any direct mapping
between class definitions or bounding box conventions. In addition, datasets may exhibit class label
sparsity, semantic overlaps, and inconsistent naming conventions. To address these challenges, LAT
performs many-to-one label space transfer, allowing pseudo-labels from different datasets to reinforce
each other in a collaborative, ensemble-like training process. This collaborative supervision also
helps mitigate the noise inherent in individual pseudo-labels.

Generating Initial Pseudo-labels For each dataset Dn, we train a corresponding upstream detec-
tion model Mn, optimized on its native label space Ln. Using these trained upstream models, we
generate pseudo-labels for each dataset under every other dataset’s label space. As a result, each
dataset yields N − 1 sets of pseudo-labels, corresponding to the annotation formats of the remaining
datasets, denoted by L−n. These pseudo-labels are accompanied by classification confidence scores,
which are retained for upstream model training. To enhance reliability, we apply non-maximum
suppression and score thresholding to discard low-confidence predictions.

These initial pseudo-labels serve as cross-space predictions for each dataset. However, they are
generated independently by each upstream model and do not benefit from additional contextual
signals that could improve their quality. We refer to such signals as privileged information, which
is typically unavailable in standard supervised training. In our framework, privileged information
provided to LAT includes ground-truth annotations (classes and bounding boxes) of the current
images as well as pseudo-labels from other label spaces.

3.2 LABEL-ALIGNED TRANSFER

Our Label-Aligned Transfer (LAT) framework, Figure 2, extends a standard two-stage object detector
to incorporate privileged information during both training and inference. A typical two-stage detector
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Figure 2: Overview of the LAT architecture. Dataset-specific pseudo-labels and ground-truth annota-
tions are combined via the Privileged Proposal Generator (PPG), which replaces the region proposal
network. A frozen Vision Foundation Model (VFM) extracts shared image features. The Semantic
Feature Fusion (SFF) module then refines region features by injecting class-aware information using
attention over overlapping proposals. We filter the classification output to compute loss on only the
current datasets label space.

(Ren et al., 2015) consists of three main components: a feature extractor fimg, a region proposal
network (RPN), and a region-of-interest (RoI) pooling layer. The RPN generates class-agnostic
bounding box proposals from the feature maps, while the RoI layer extracts fixed-size region features
that are passed to the classification and regression heads.

In LAT, we replace the conventional feature extractor with a frozen Vision Foundation Model (VFM),
such as DINOv2 (Oquab et al., 2024). We further substitute the RPN with our Privileged Proposal
Generator (PPG), which provides privileged information-based proposals derived from both ground-
truth and pseudo-label sources. These proposals are passed to the RoI layer and also serve as input
to the Semantic Feature Fusion (SFF) module, which refines region features using class-aware
attention.

3.2.1 PRIVILEGED PROPOSAL GENERATOR (PPG)

Our Privileged Proposal Generator (PPG) replaces the outputs of a RPN with pseudo-labels generated
as described in Section 3.1, alongside the ground-truth labels for each image in the training batch. We
apply light augmentations to the ground-truth labels, such as random jittering and selective removal of
bounding boxes. These augmented labels are then used by the RoI layer to crop region features from
the shared feature map. Since these labels are derived from multiple label spaces, they often contain
overlapping objects across datasets, regardless of naming convention. For example, the concept of
a car may appear across datasets but be labeled as vehicle in Waymo and car in Cityscapes. Such
overlaps provide a rich supervisory signal and are critical to the effectiveness of our Semantic Feature
Fusion (SFF) module.

In addition to supplying bounding box proposals to the RoI layer, PPG also outputs the associated
class labels for each region to the SFF module. To maintain label discreteness, we concatenate
the label sets from all datasets instead of merging classes with identical names. This ensures that
semantically divergent classes, despite having the same label name, are not erroneously unified.

By leveraging both ground-truth and cross-space pseudo-labels, PPG exposes LAT to diverse annota-
tion styles. In turn, this provides essential information for learning semantic and spatial correspon-
dences across label spaces.

3.2.2 SEMANTIC FEATURE FUSION (SFF)

To improve cross-dataset feature consistency, we introduce the Semantic Feature Fusion (SFF) module
(Figure 3). SFF enhances region features by attending over overlapping proposals and injecting
class-aware information from both pseudo-labels and ground-truth annotations. This allows the
model to learn semantic relationships between related but differently labelled classes.
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Figure 3: Our Semantic Feature Fusion
(SFF) module leverages an attention mech-
anism to fuse and inject information from
overlapping proposals. This enhances the
capacity of the classification and regression
heads to model relationships between class
labels from distinct label spaces.

Figure 4: LAT addresses noisy pseudo-labels by lever-
aging ground-truth supervision and multi-source con-
sensus. Ground-truth labels (Waymo) are shown along-
side pseudo-labels and LAT predictions (Cityscapes
label space). LAT correctly separates the cyclist and
bicycle into distinct classes and boxes, resolving se-
mantic conflation. Ground-truth anchoring also enables
recovery of small objects missed by pseudo-labels.

Let A ∈ RM×M denote the attention matrix computed using scaled dot-product attention over RoI
features:

A =
QKT

√
d

,

where Q,K ∈ RM×d are learned projections of the RoI features. Let Vc ∈ RM×d be the value
matrix derived from classification scores after linear projection, and Vr ∈ RM×d be the value matrix
derived from region features after linear projection. We define a confidence vector Sc ∈ RM , where
each entry is set to 1 for ground-truth proposals, or max(Cm) for pseudo-label proposals, where Cm

is the classification score vector of the m-th proposal. Sc is applied to the attention matrix of the
feature branch to prioritise more confident pseudo-labels.

To mitigate noisy pseudo-labels across datasets, we apply a row-wise scaling mechanism to the
attention matrix used in the classification branch. Specifically, each row of the attention matrix A is
scaled such that its maximum value is capped at a threshold T = 1/

√
N , where N is the number

of datasets. This promotes the aggregation of information from overlapping pseudo-labels while
suppressing those that occur independently and are more likely to be erroneous.

The final fused feature representation is computed as:

SA = clamp (softmax(A))Vc + softmax(Sc ◦A)Vr,

where ◦ denotes element-wise multiplication. Softmax is applied row-wise, and clamping ensures
that each row’s maximum value does not exceed T . This fused output provides the downstream
classifier with enriched semantic and visual features, improving cross-dataset generalisation.

SFF enables the classification and regression heads of LAT to leverage enriched visual features
and semantic context from overlapping label spaces. During training, we mask the classification
logits, prior to loss calculation, to include only the classes present in the current batch, ensuring that
intra-dataset supervision remains dominant while still benefiting from inter-dataset relationships. At
inference, logits are masked to the designated target label space. By learning cross-dataset semantic
correspondences, LAT can generate robust predictions even for datasets not originally labelled under
the target space. We demonstrate the effectiveness of this approach in Section 4.
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Due to the collaborative nature of SFF, our method is able to mitigate the impact of noisy pseudo-
labels. SFF learns to identify and reinforce consistent object predictions when multiple pseudo-labels
corroborate the presence of an object shared across label spaces. This alignment is further anchored
by the ground-truth annotations when the object is also labelled in the target dataset. An example of
pseudo-label refinement is shown in Figure 4, with additional results included in the supplementary
materials.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the effectiveness of our proposed Label-Aligned
Transfer (LAT) framework in realistic multi-dataset object detection scenarios. Our evaluations
focus on two primary challenges: (1) semantic inconsistencies due to divergent class taxonomies
across datasets, and (2) performance degradation in small datasets when augmented with larger ones.
These benchmarks simulate practical conditions where direct dataset merging would be ineffective or
harmful.

4.1 BENCHMARKS

Cityscapes ↔ nuImages ↔ Waymo. This benchmark targets the challenge of class divergence
across datasets. Cityscapes (Cordts et al., 2016), nuImages (Caesar et al., 2019), and Waymo (Sun
et al., 2020) contain 8, 24, and 3 annotated classes, respectively, with varying levels of granularity.
To isolate the effects of class variability, we subsample 3,000 images from each dataset.

Cityscapes ↔ ACDC ↔ BDD100K ↔ SHIFT. This benchmark evaluates performance under
a small-versus-large dataset setting Cityscapes (Cordts et al., 2016) and ACDC (Sakaridis et al.,
2021) represent small-scale datasets, each comprising of 2,965 and 1,571 samples, respectively. In
contrast, BDD100K (Yu et al., 2020) and SHIFT (Sun et al., 2022) are large-scale datasets, each
containing 69,852 and 141,052 images.

Further details of benchmark selection and datasets are available in the supplementary materials.

4.2 EXPERIMENTAL SET-UP

We implement LAT using the FRCNN (Ren et al., 2015) framework built on Detectron2 (Wu et al.,
2019). DINOv2 (Oquab et al., 2024) is employed as a frozen feature extractor with pre-trained
weights. For downstream training, we employ FRCNN and RT-DETR (Zhao et al., 2024) detection
models. All downstream models are trained using four NVIDIA RTX 3090 GPUs. Further training
details can be found in the supplementary materials.

Baselines. We compare LAT against several methods, including a baseline without label transfer,
two semi-supervised approaches: student-teacher supervision and pseudo-labelling, and a label
unification approach.

• Baseline: A model trained solely on the target dataset using its native label space.
• Student-Teacher (Liu et al., 2021): Trained with full supervision on the target dataset and semi-

supervised loss on unlabelled samples from other datasets.
• Pseudo-Label (Lee, 2013): A model is first trained on the target dataset and then used to generate

pseudo-labels on other datasets. These labels are filtered using non-maximum suppression and
confidence thresholding before being used in continued training.

• Plain-DET (Shi et al., 2024): A label unification approach build on the Deformable DETR (Zhu
et al., 2020) framework for object detection datasets.

All baseline models adopt exponential moving average (EMA) updates for fair comparison.

4.3 RESULTS

LAT improves performance across benchmark scenarios. As shown in Table 1, LAT significantly
outperforms the baseline in scenarios involving datasets with differing class granularity. It also yields
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Table 1: Performance on the Class Divergence Benchmark. Downstream detector trained on LATs
pseudo-labels outperforms all baselines (FRCNN and RT-DETR) in datasets with differing class
granularities. Cityscapes, despite moderate class count, sees the largest gain (+4.9 AP).

DATASET

METHOD MODEL METHOD Cityscapes nuImages Waymo

Baseline FRCNN - 55.2 39.2 44.6
Student-Teacher FRCNN Semi-Supervised 55.1 40.1 44.2
Pseudo-Label FRCNN Label Transfer 56.9 40.6 45.6
LAT FRCNN Label Transfer 60.1 41.7 48.5

Baseline RT-DETR - 56.8 37.0 45.3
Plain-DET Def-DETR Label Unification 52.2 22.0 43.6
LAT RT-DETR Label Transfer 60.6 39.5 49.6

Table 2: Performance on the Small-to-Large Dataset Benchmark. LAT improves small datasets and
scales with training. LAT shows large gains on ACDC (+8.4 AP), while large datasets experience
minor drops without longer training. Longer training recovers performance.

DATASET

METHOD MODEL METHOD Cityscapes ACDC BDD100K SHIFT

Baseline FRCNN - 55.2 45.0 57.2 69.9
Student-Teacher FRCNN Semi-Supervised 55.4 48.2 56.2 68.6
Pseudo-Label FRCNN Label Transfer 58.5 50.7 56.1 68.9
LAT FRCNN Label Transfer 60.0 53.4 56.1 69.3
LAT (Long Train) FRCNN Label Transfer 60.2 53.3 57.8 71.4

Baseline RT-DETR - 56.8 43.6 57.3 69.5
Plain-DET Def-DETR Label Unification 55.5 49.0 50.5 58.5
LAT RT-DETR Label Transfer 61.2 49.0 53.1 65.7
LAT (Long Train) RT-DETR Label Transfer 59.8 47.9 58.1 69.9

substantial gains for smaller datasets when combined with much larger ones, as illustrated in Table 2.
While we observe a slight performance drop for large datasets, which may be attributed to under
fitting, this is easily address by increasing the training iterations.

Domain gap limits student-teacher performance. When compared to other models that use
exponential moving average (EMA) without full semi-supervised training, student-teacher approaches
consistently underperform, even falling below the baseline. One likely explanation is that domain
gaps between datasets cause pseudo-label errors to propagate through the teacher model during
training (Li et al., 2022; Kennerley et al., 2023). In contrast, LAT avoids this issue by retaining
ground-truth labels during label transfer, which serve as reliable anchors for supervising pseudo-label
refinement.

Label Transfer improves robustness to noisy supervision. We observe that detectors trained on
LAT-generated labels consistently outperform those trained on standard pseudo-labels. This high-
lighting LAT’s ability to mitigate noise introduced during pseudo-label generation. This robustness
stems from LAT’s integration of ground-truth annotations and multi-source pseudo-labels, allowing
the model to resolve both semantic and spatial inconsistencies. In our supplementary material, we
provide qualitative examples where LAT corrects various forms of pseudo-label noise, including
missing annotations, misclassified or misaligned boxes, and false positives.

Fine-tuning remains most effective. We evaluate several strategies for training the downstream
detector in Table 3. These strategies vary the composition of source and target datasets within training
batches: 50/50 Batch refers to batches containing an equal number of samples from each domain,
while Mixed Batch denotes random mixing of source and target samples. Fine-Tuning modifies the
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Table 3: Training strategy comparison for down-
stream detectors. Fine-tuning after mixed pre-
training yields the highest gains, confirming the
value of domain-specialized adaptation.

DATASET

Training Cityscapes nuImages Waymo

50/50 Batch 57.5 40.5 46.8
Mixed Batch 58.9 40.0 47.1
Fine-Tuning 60.1 41.7 48.5

Table 4: Ablation of attention mechanism in SFF.
SFF with class-aware attention clearly outper-
forms no attention or standard attention across all
datasets.

DATASET

Cityscapes nuImages Waymo

No Attn. 57.5 39.8 46.1
Standard Attn. 58.1 40.4 47.0
SFF 60.1 41.7 48.5

Mixed Batch regime by replacing the final 10,000 training iterations with batches containing only
source dataset samples. While all strategies outperform the baseline, we observe that pretraining on a
mixed dataset followed by fine-tuning leads to the most consistent gains, highlighting the benefit of
learning generaliable features before domain-specific adaptation.

Injecting class information improves performance. Table 4 compares three variants of the
attention mechanism used within LAT: no attention, standard attention, and our proposed Semantic
Feature Fusion (SFF), which incorporates class-aware weighting. We observe consistent gains across
all datasets when class information is injected into the attention computation. This highlights the value
of injecting class-level context during feature fusion, particularly in scenarios where semantically
similar objects, such as ‘car’ and ‘vehicle’, are annotated under distinct labels across datasets, despite
representing the same underlying object.

Table 5: Scaling attention in SFF: Class vs. Fea-
ture. Applying scaling to the class branch gives
better performance than feature branch or no scal-
ing.

DATASET

Cityscapes nuImages Waymo

No Scaling 57.8 40.9 47.3
Feature Scaling 59.6 41.5 47.9
Class Scaling 60.1 41.7 48.5

Class scaling outperforms feature scaling. In
Table 5, we compare different scaling strategies
for the softmax attention weights in our Semantic
Feature Fusion module. Specifically, we evaluate
whether scaling is more effective when applied to
the feature branch or the class branch. While fea-
ture scaling yields improvements over no scaling,
applying the scaling to the class branch consis-
tently performs best. One possible explanation
is that the feature branch already incorporates
confidence-based weighting through the Sc term,

making additional scaling less beneficial.

Additional experiments are presented in the supplementary materials.

5 CONCLUSION

Label-Aligned Transfer (LAT) addresses the challenge of integrating object detection datasets with
heterogeneous label spaces. LAT modifies the standard two-stage detector by replacing the region
proposal network with a Privileged Proposal Generator (PPG), which incorporates both ground-truth
and pseudo-label proposals from multiple source label spaces. A Semantic Feature Fusion (SFF)
module further refines region features by injecting privileged, class-aware context via attention over
overlapping proposals. Our experiments demonstrate that LAT consistently improves target-domain
performance, with gains of +4.9AP and +8.4AP on benchmarks evaluating class-divergent and scale-
divergent dataset transfer settings, respectively. In addition to achieving state-of-the-art results in
complex multi-dataset scenarios, LAT effectively mitigates pseudo-label noise and generalises well
across diverse detector architectures.

Limitations. Our method assumes annotations are required solely in a fixed target label space.
Merging multiple label spaces or extending the target ontology is not yet supported, though future
work may explore more flexible transfer. While LAT introduces no inference-time cost, scaling to
many datasets incurs pre-processing overhead during initial pseudo-label generation.

9
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Figure 5: Illustration of class granularity divergence for vehicle-related labels across Waymo,
Cityscapes, and nuImages. Waymo uses broad classes, while nuImages is the most fine-grained.

A APPENDIX

A.1 SCALING LABEL-ALIGNED TRANSFER

LAT adopts a modular multi-stage pipeline designed for flexible dataset integration. In the first stage,
an object detector is trained independently for each of the N datasets, scaling linearly with N and
enabling parallel training. In the second stage, pseudo-labels are generated by running each model on
the remaining N-1 datasets, resulting in N(N-1) inference passes. While this introduces quadratic
scaling in pre-processing, the computation is parallel and easily distributed.

This design provides two key benefits: (1) it preserves dataset-specific annotation conventions before
unification. (2) it allows components to be updated independently without retraining the entire system.
We view this overhead as a strategic trade-off for high-fidelity label transfer, particularly suited for
scenarios involving an intermediate number of datasets. While scaling beyond this range may pose
challenges, these are confined to the training phase. A key advantage of LAT is that it introduces no
additional overhead at inference time, once trained, the downstream detector operates with standard
runtime efficiency.

A.2 ADDITIONAL EXPERIMENTAL DETAILS & EXPERIMENTS

A.2.1 ADDITIONAL DETAILS ON BENCHMARKS

Cityscapes ↔ nuImages ↔ Waymo. This benchmark targets the challenge of label granularity
divergence across datasets, i.e., when datasets refer to the same object category using semantically
or structurally distinct label taxonomies. Cityscapes (Cordts et al., 2016), nuImages (Caesar et al.,
2019), and Waymo (Sun et al., 2020) offer a compelling testbed due to their highly mismatched
annotation conventions, containing 8, 24, and 3 annotated classes, respectively. Waymo provides
broad semantic categories like vehicle, which subsumes finer-grained classes from other datasets. For
instance, its vehicle label covers five distinct Cityscapes classes (e.g., car, bus, truck) and nine from
nuImages (e.g., trailer, construction vehicle). In contrast, nuImages is highly discrete in its class
definitions—even annotating compound labels like police vehicle, which would be split into car and
motorcycle in Cityscapes. Figure 5 illustrates an example of vehicle super-class. These semantic
discrepancies are further exacerbated by visual overlap in the object regions, making alignment
particularly challenging. To ensure controlled evaluation, we subsample 3,000 images from each
dataset and hold the label mapping fixed throughout all runs. This allows us to isolate the effects of
semantic transfer without confounding factors from sample size.

Cityscapes ↔ ACDC ↔ BDD100K ↔ SHIFT. This benchmark investigates the impact of dataset
size disparity, a frequent scenario in practice, where a small, curated target dataset is augmented
with large-scale external sources. Cityscapes (Cordts et al., 2016) and ACDC (Sakaridis et al.,
2021) represent small but high-quality datasets with strong label fidelity, comprising 2,965 and
1,571 images, respectively. In contrast, BDD100K (Yu et al., 2020) and SHIFT (Sun et al., 2022)
serve as large-scale sources with 69,852 and 141,052 images, respectively. SHIFT is a synthetic
dataset, providing domain diversity without additional labelling cost, a common practice in modern
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data-centric pipelines. Importantly, all four datasets share consistent class definitions, making this
benchmark well-suited to isolate the impact of spatial annotation differences and sample imbalance,
rather than semantic divergence.

From a deployment perspective, it is common to begin with a small, task-specific dataset that reflects
the intended deployment domain, e.g., Cityscapes for urban driving or ACDC for adverse conditions,
and then enhance performance by incorporating publicly available data such as BDD100K or SHIFT.
Thus, the performance of Cityscapes and ACDC under label transfer is particularly relevant, as
it simulates the realistic case of training a downstream model with limited annotations without
modifying the target label space. This benchmark allows us to assess how well LAT supports such
transfer without sacrificing annotation fidelity or overfitting to larger source domains.

A.2.2 EXPERIMENTAL SET-UP

We implement LAT using the FRCNN (Ren et al., 2015) framework built on Detectron2 (Wu et al.,
2019). DINOv2 (Oquab et al., 2024) is employed as a frozen feature extractor with pre-trained
weights. In our PPG module, random jittering and ground-truth label removal are applied at rates
of 0.5 and 0.05, respectively. LAT is trained for 30,000 iterations using a learning rate of 0.2 and a
batch size of 4 on a single RTX 3090 GPU.

For downstream training, we use a FRCNN model with a modified weighted cross-entropy loss,
where the weight is derived from the confidence score of the pseudo-label. This model, as well as the
initial pseudo-label generation model, is trained for 50,000 iterations with a fixed learning rate of 0.2
and a batch size of 16. In addition, we train RT-DETR and YOLOv11 models as our downstream
detector for comparisons to more modern detectors as compared to FRCNN. These detectors are
trained for 300,000 iterations with a batch size of 64. AdamW is used as the optimizer with a learning
rate of 0.001 and momentum of 0.9. All downstream models are trained using four NVIDIA RTX
3090 GPUs.

A.2.3 RESULTS

Table 6: YOLO-based downstream detectors in class-divergent setting. LAT consistently improves
performance even with a single-stage detector like YOLO.

DATASET

METHOD MODEL METHOD Cityscapes nuImages Waymo

Baseline YOLO - 53.9 37.1 45.6
LAT YOLO Label Transfer 59.1 37.6 47.2

Table 7: YOLO-based downstream detectors in small–large dataset setting. ACDC sees large gains
under LAT, replicating trends seen with FRCNN and RT-DETR.

DATASET

METHOD MODEL METHOD Cityscapes ACDC BDD100K SHIFT

Baseline YOLO - 53.9 41.4 56.0 64.2
LAT YOLO Label Transfer 57.9 42.1 50.1 60.1
LAT (Long Train) YOLO Label Transfer 58.2 43.7 56.4 64.2

Consistent performance on YOLOv11. We conduct additional experiments using
YOLOv11 (Jocher et al., 2023) to verify that the performance gains from LAT’s refined
pseudo-labels are not tied to a specific model architecture. As shown in Table 6 and Figure 7,
LAT-trained labels consistently improve performance on YOLOv11, complementing the results
already demonstrated with FRCNN and RT-DETR in the main paper. This confirms that the benefits
of LAT generalise across detectors, demonstrating its effectiveness as a model-agnostic label transfer
framework.
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Table 8: Performance on Synscapes → Cityscapes (1:1 transfer). LAT matches the performance of
state-of-the-art LGPL despite the simpler one-to-one transfer setup.

Model Def-DETR Faster RCNN

Baseline 32.9 38.7
Pseudo-Label 30.7 36.9
Pseudo-Label + Filtering 33.0 39.1
LGPL (Liao et al., 2024) 34.5 39.7
LAT 34.7 39.6

Performance on simpler transfer protocols. We compare our method to LGPL (Liao et al., 2024)
in Table 8, using the synthetic-to-real transfer setting from Synscapes (Wrenninge and Unger, 2018)
to Cityscapes (Cordts et al., 2016). We consider this a simpler transfer scenario, as both datasets
share identical class labels and exhibit similar semantic structures. Moreover, the setup involves a
one-to-one label space transfer, reducing the need for LAT’s full design capabilities, such as many-to-
one label alignment and the performance gains that emerge from integrating multiple source datasets.
Nevertheless, LAT matches the performance of the state-of-the-art LGPL method, demonstrating
its effectiveness even under minimal transfer complexity. We note that LGPL results are reported
directly from the original paper using mAP@[.5:.95] as a metric, as public code was not available at
the time of writing.

Qualitative results: LAT mitigates pseudo-label noise. We illustrate LAT’s effectiveness in
addressing pseudo-label noise in Figures 6,7, and8. Each figure presents three columns: the first
shows initial pseudo-labels from the upstream detector in the target label space; the second shows
LAT-refined pseudo-labels in the same label space; and the third displays the ground-truth annotations
in the original source label space. Note that class names may differ between the pseudo-labels and
ground-truth columns due to label space discrepancies.
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Figure 6: Qualitative results of Cityscapes target label space in class-divergent setting with nuImages
dataset. Row 1: LAT recovers truck instances missing from initial pseudo-labels. Row 2: LAT
refines truck bounding boxes and detects small objects. Row 3: LAT recovers heavily obscured
cars. Row 4: LAT detects pedestrians omitted by upstream pseudo-labels. Row 5: LAT identifies
foreground and background trucks. Row 6: LAT recovers vehicles under adverse weather conditions
(rain).
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Figure 7: Qualitative results of nuImages target label space in class-divergent setting with Cityscapes
dataset. Row 1: LAT detects an occluded pedestrian missed by initial pseudo-labels. Row 2: LAT
corrects noisy human-annotated ground-truth. Row 3: LAT removes an erroneously predicted car
from initial pseudo-labels. Row 4: LAT recovers a bus instance omitted by the upstream model.
Row 5: LAT refines pedestrian bounding box and corrects its class label. Row 6: LAT recovers
small-scale pedestrian and bicycle instances.
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Figure 8: Qualitative results of nuImages target label space in class-divergent setting with Waymo
dataset. Row 1: LAT detects background pedestrians and vehicles under adverse nighttime conditions.
Row 2: LAT detects both foreground pedestrians and background vehicles at night. Row 3: LAT
recovers multiple vehicles in rainy nighttime scenes. Row 4: LAT detects vehicles and pedestrians in
rainy conditions. Row 5: LAT recovers multiple vehicle instances in rain. Row 6: LAT detects a
pedestrian in an uncommon pose.
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