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ABSTRACT

Feature attributions explain model predictions by assigning importance scores to
input features. In high-dimensional data such as images, these scores are often
assigned to groups of features. There are various strategies for creating these
groups, ranging from simple patches to deep-learning-based algorithms. Which
group should be used for explanation? We formally define three key criteria for
interpretable groups of features: consistency, contiguity, and stability. We find that
patch-based groups outperform groups created via modern segmentation tools. 1

1 THE IMPORTANCE OF GROUPS FOR EXPLANATIONS

When explaining high-dimensional data, feature attributions often assign importance scores to
groups of features rather than individual features. In images, groups are typically collections of
neighboring pixels from the same object. For example, the number of groups in an ImageNet image
is much smaller than 50k, the number of pixels. By reducing mental overhead, scores for grouped
features can be more accessible for humans to understand than scores for individual features.

Existing strategies for creating groups of features range from simple patches to classic or deep-
learning-based segmentation algorithms. In this work, we study four techniques for dividing images
into groups: classic computer vision approaches (patches (Dosovitskiy et al., 2021) and superpixels
(Levner & Zhang, 2007)) as well as modern deep-learning approaches (Segment Anything Model
(SAM) (Kirillov et al., 2023) and Archipelago (Tsang et al., 2020)). While groups from different
approaches can be quite diverse in shape, size, and content, there is no standard benchmark for
comparing groups and measuring their qualities.

To better understand groups for explanations, we propose three criteria that a group should satisfy
to improve the quality of feature attributions. These criteria encourage more consistent, contiguous,
and stable attributions. In the following analysis, we find evidence that despite advancements in
modern segmentation tools, patch-based groups are more suitable for feature attributions.

2 DESIDERATA OF GROUPS FOR FEATURE ATTRIBUTIONS

We first discuss the desiderata of groups for feature attributions. We posit that an ideal group should
possess the following characteristics: the group should be consistent and contiguous to be human
interpretable, and it also needs to be stable to have a reliable feature attribution. In this section, we
elaborate on these properties and show the representative examples in Figure 1.

Formally, we define x ∈ Rn×p to be an input such as an image, where n is the number of patches
and p is patch width × patch height × 3. We also represent a boolean vector group as α ∈ {0, 1}n,
where αi = 1 if the ith feature is included in the group, and 0 otherwise.

Consistency. Consistency is the semantic coherency of features within the same group. Highly
consistent groups should contain only one element in a group. To calculate the consistency, we use

1Code is available at https://github.com/BrachioLab/exlib
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(a) High Consistency (b) High Contiguity (c) High Stability

(d) Low Consistency (e) Low Contiguity (f) Low Stability

Figure 1: Illustrative examples of groups with high and low consistency, contiguity, and stability.

the embedding cosine similarity to measure the closeness or similarity between pairs of features.
Formally, let h : Rn×p → Rk be an embedding function of the input and Z = ∥α∥(∥α∥− 1), where
k is the hidden size. Then, for each pair of i-th and j-th features,

Consistency(x, α) =
1

Z

∑
i,j:i ̸=j∧aiaj=1

h(x)i · h(x)j
∥h(x)i∥∥h(x)j∥

(1)

Contiguity. Group contiguity captures smoothness of a group without unnecessary “holes”. Then,

Contiguity(x, α) =
λ∥Kα∥2,1√

∥α∥1
where K =

[
(1− ρ)∇

ρIdp

]
(2)

Here, ∇ ∈ R2p×p is the spatial gradient operator, Idp is the p×p identity operator, and the parameter
ρ balances the sparsity of the input and the spatial gradient.

Stability. Stability captures robustness to change in model output when adding extra features to a
group. Formally, let h : Rn×p → Rk be a predictive model. Here, k is the number of classes. Then,

Stability(x, α) = max
i

∥h(x⊙ α+i)− h(x⊙ α)∥ (3)

where α+i is the group created by adding the i-th feature to α. Further details of these three proper-
ties are discussed in Appendix C.

3 MODERN GROUPING METHODS ARE NO BETTER THAN PATCHES

Finally, we analyze how different grouping methods perform across the three desiderata. Specifi-
cally, we evaluate groups using patches, superpixels, SAM, and Archipelago on the ImageNet (Deng
et al., 2009) and MS-COCO (Lin et al., 2014) dataset.

We find that modern approaches such as SAM and Archipelago are significantly less reliable. These
groups have stability loss as high as 17.74, about ×3 worse than other metrics. Results for all
metrics and methods are in Table 1 and 2 of Appendix E. In fact, SAM segments have the lowest
performance across all methods, suggesting that they are the least suitable for feature attributions.
This may be because most of these segments are degenerated groups.

Surprisingly, simple patches are the most reliable option for grouping since they have the highest
performance across all metrics. Further discussions are in Appendix E.

Conclusion. Currently, our results suggest that patches are the more suitable groups over mod-
ern approaches. We hope that our desiderata and corresponding analysis can guide future work in
developing more reliable groups for explanations and interpretable for humans.
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A APPENDIX

We include additional information detailing the evaluation of existing groups. Appendix B provides
a review of studies related to our work, Appendix C discusses about the limitations of existing
feature grouping methods and contains a complete description of each metric. Appendix D provides
experiment details, and Appendix E shows additional results.

B RELATED WORK

Segmentation. Image segmentation is a crucial task in computer vision and image processing. The
primary objective is to divide an image into meaningful groups, which has significant applications
in various fields, including medical image analysis. There are several methods available for image
segmentation, ranging from simple thresholding (Zhu et al., 2007) to more complex superpixel al-
gorithms such as Felzenswalb’s method (Felzenszwalb & Huttenlocher, 2004), which is based on
graphs, the Quickshift method (Vedaldi & Soatto, 2008) that approximates kernelized mean-shift,
the SLIC method (Achanta et al., 2012) that is based on k-means clustering, and the Watershed
method (Neubert & Protzel, 2014) that is based on the grayscale gradient image.

Modern deep learning methods such as CNN (Fukushima, 1980), Recurrent Neural Networks
(RNNs) (Rumelhart et al., 1986), and Long Short-Term Memory (LSTM) (Hochreiter & Schmid-
huber, 1997) have yielded a new generation of image segmentation models that exhibit remarkable
performance improvements. Fully Convolutional Networks (FCNs) (Long et al., 2015) replace the
fully connected layers in convolutional networks with convolutional layers, allowing the network
to output spatial heatmaps for segmentation. DeconvNet (Noh et al., 2015) conducts semantic
segmentation based on transposed convolution using encoder (Goodfellow et al., 2016) - decoder
(Badrinarayanan et al., 2017) based models.

Existing grouping methods. There are four commonly used methods of obtaining groups of fea-
tures: patch, superpixels, segmentation, and Archipelago. Patch is a simple baseline that divides
an image into non-overlapping, fixed-size blocks. Superpixels (Levner & Zhang, 2007; Vedaldi &
Soatto, 2008; Achanta et al., 2012) are regions of visually similar pixels located adjacent to each
other in an image. Segmentation models built with deep learning (Long et al., 2015; He et al., 2018;
Kirillov et al., 2023) create groups based on global context and connections within the image. Lastly,
Archipelago (Tsang et al., 2020) builds upon superpixel algorithms and assigns interaction scores
to pairs of superpixels based on how they affect the model’s predictions when perturbed, in order to
create larger groups.

Though commonly used to group features, each of these methods presents drawbacks in the context
of interpretability. Two key sets of drawbacks relate to the semantics and the geometry of created
groups. We propose the following sets of semantic and geometric properties as a way to evaluate
group interpretability.

Feature attribution. Feature attribution methods include post-hoc and built-in attributions. For
post-hoc methods, gradient-based attributions include using gradients directly (Selvaraju et al., 2016;
Baehrens et al., 2009; Simonyan et al., 2014; Bastings & Filippova, 2020), gradient × inputs (Sun-
dararajan et al., 2017; Denil et al., 2014; Smilkov et al., 2017) and through propagation (Ribeiro
et al., 2018; Springenberg et al., 2014; Bach et al., 2015; Shrikumar et al., 2017; Montavon et al.,
2017). Other methods create a surrogate model to approximate the original model (Ribeiro et al.,
2016; Lundberg & Lee, 2017; Laugel et al., 2018), or perturb inputs and observe the change in pre-
dictions (Petsiuk et al., 2018; Vasu & Long, 2020; Kaushik et al., 2020; Li et al., 2017; Kádár et al.,
2017; Ribeiro et al., 2018; De Cao et al., 2020) and use manual (Kaushik et al., 2020) or automatic
(Calderon et al., 2022; Zmigrod et al., 2019; Amini et al., 2022; Wu et al., 2021) counterfactual
perturbation. While the above methods focus on individual features, Tsang et al. (2020); Sikdar
et al. (2021) investigates feature interactions. Another line of work has built-in feature attributions
including training different modules for each feature (Lou et al., 2012; 2013; Agarwal et al., 2021),
or pre-selecting one or multiple groups of features to use for prediction (Jain et al., 2020; You et al.,
2023).
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Feature groups in images. Dividing an image into groups of pixels, or superpixels, is a long-
established area of research from computer vision. A range of algorithms use geometric, spatial,
and color properties (Levner & Zhang, 2007; Vedaldi & Soatto, 2008; Achanta et al., 2012) to find
clusters of similar pixels (see Stutz et al. (2018) for a survey). A crude but simple approach is to di-
vide into a uniform grid of patches (Li et al., 2011), which has recently surged in popularity for their
efficiency in transformer-based architectures (Dosovitskiy et al., 2021). On the other hand, image
segmentation aims to create larger groups of pixels that correspond to entire objects (Felzenszwalb
& Huttenlocher, 2004; Zhu et al., 2007; Ronneberger et al., 2015; Long et al., 2015; Chen et al.,
2017; He et al., 2018; Ranftl et al., 2021; Kirillov et al., 2023). The resulting groups can be more
semantically meaningful than superpixels, but the performance and quality of the segments depends
highly on the type of object being segmented Schiappa et al. (2023) and can require a significant
amount of labeled training data. Our work aims to get more semantic groups than superpixels but
without the labeled data required of segmentation models, and can be viewed as a region-growing
algorithm (Chaibou et al., 2017) that uses the embedding space of a foundation model to guide the
growth direction.

Groups for explanations. Feature attribution methods try to explain how different input features
affect the model prediction, and they often attribute to groups of features. For images, some works
assign scores to patches (Ribeiro et al., 2016; Lundberg & Lee, 2017; You et al., 2023) or segments
(Tsang et al., 2020; You et al., 2023). Other works attribute to each pixel using gradients (Sel-
varaju et al., 2016; Baehrens et al., 2009; Simonyan et al., 2014; Bastings & Filippova, 2020), or by
randomly sampling patch masks and interpolating between them (Petsiuk et al., 2018) or

Some feature attribution methods assign scores to a higher level of groups of features. Archipelago
(Tsang et al., 2020) post-hoc selects groups by merging pairs of interacting features. FRESH (Jain
et al., 2020) generates a group of features using top 20% tokens from an attention mechanism in
a pre-trained Transformer. SOP (You et al., 2023)generates groups of features with an external
attention trained end-to-end with a pre-trained model. IDG (Sikdar et al., 2021) selects groups based
on a hierarchical structure. TopEx (Havaldar et al., 2023) uses topics as groups for explanations.

Attribution evaluation. Various metrics for evaluating feature attribution methods are studied
(Nauta et al., 2023; Zhou et al., 2021; Adebayo et al., 2018; Hooker et al., 2018; DeYoung et al.,
2020; Bastings et al., 2022; Rong et al., 2022; Zhou & Shah, 2023; Adebayo et al., 2022). Some
perturbation metrics include insertion and deletion for images (Petsiuk et al., 2018) and compre-
hensiveness and sufficiency for text (DeYoung et al., 2020). The performance is also evaluated for
models with built-in explanations to ensure no considerable degradation from the original model
(Jain et al., 2020; You et al., 2023).

There are some debates about what constitutes good explanations. Multiple works have shown the
failures of feature attributions (Bilodeau et al., 2022; Sundararajan et al., 2017; Adebayo et al.,
2018; Kindermans et al., 2019). Different properties are proposed as important axioms that feature
attributions should satisfy, including stability (Xue et al., 2023), minimality (Bassan & Katz, 2023),
and faithfulness (You et al., 2023). However, there is still a lacking for evaluating features groups
used for explanations.

C METRICS FOR GROUPS

Many explanation techniques today rely on feature groups as intermediate features for high-
dimensional image data. Underlying this technique is the implicit assumption that such intermediate
features are interpretable. In this section, we investigate the quality of existing feature groups for
images with respect to properties important for interpretability.

This section describes in detail how we measure group consistency, contiguity, and stability. As
mentioned in the main paper, x ∈ Rn×p is input such as an image, and α ∈ {0, 1}n indicates
group membership of each feature, where αi = 1 if the ith feature is included in the group, and 0
otherwise.

9
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(a) High (b) High (c) Low (d) Low

Figure 2: Illustrative examples of high and low consistency. Groups with high consistency, equiva-
lent to having high semantic similarity within a group, only depict one cohesive element: an orange
fish for (a) and clothing for (b). However, groups with low consistency contain several unrelated
elements: the fish and fragmented bowl in (c) and the tank with the girl’s hair in (d).

C.1 SEMANTIC PROPERTIES

For groups to be interpretable, they must make sense semantically. Grouping methods such as patch
(Dosovitskiy et al., 2021), superpixels (Levner & Zhang, 2007) and Archipelago (Tsang et al., 2020)
pose a challenge for human interpretation due to the unintuitive shapes of the generated groups.
These groups often break apart elements or include too many dissimilar elements in one group. We
formalize these semantic properties as consistency and stability.

Consistency. The consistency of a group is measured by how many unrelated elements a group
contains. Impure groups lack semantic integrity, making it difficult for humans to interpret them. An
ideal group contains only a single element, making the group clear and understandable to humans.
Existing methods produce groups with low consistency. In Figure 4, we observe many groups that
contain both people and stingrays together, despite the fact that these are two separate elements and
should thus be in different groups. Also, Figure 2 illustrates examples of high and low similarity
groups. Examples of high similarity only contain one object (e.g. fish, clothing), while examples of
low similarity contain several unrelated objects (e.g. fish and bowl, head and background). Given
that high-similarity groups are more cohesive compared to the low-similarity ones, we posit that an
ideal group should have high similarity to be interpretable.

To measure consistency, we use the cosine similarity of embeddings of features within the group.
More specifically, we divide the group into patches, compute the embedding similarity between each
pair of patches in the group, and take the average for all the pairs in the group. We calculate the
group consistency as follows:

∀i, j such that i ̸= j Consistency(x, α) =
1

∥α∥(∥α∥ − 1)

∑
i

∑
j

h(x)i · h(x)j
∥h(x)i∥∥h(x)j∥

(4)

where h : Rn×p → Rk be an embedding function of the input. To be comparable with other metrics,
the consistency is then projected to consistency loss, which ranges from 0 to 1, with 0 as the best
value and 1 as the worst:

ConsistencyLoss(x, α) = 1− Consistency(x, α) + 1

2
(5)

When there is only one patch that contains anything in the group, we discard the group when com-
puting the average consistency for a grouping method. This is because a group with only one patch
would have the perfect consistency loss of 0, but using the singleton groups will bias the consistency
metric to favor smaller groups. Lower consistency loss is more desired than higher consistency loss.

An alternative way to measure consistency when it has object labels (such as the MS-COCO dataset),
we can directly measure the supervised version of consistency of each group by calculating its
entropy based on the percentage of objects vs background within the group as follows:

P(α, α∗) =
(α∗)⊺α

α⊺1
(6)
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where α∗ is the ground truth object and α is the predicted group. Then,

SupervisedConsistency(α, α∗) = −(P (α, α∗) logP (α, α∗)

+(1− P (α, α∗)) log(1− P (α, α∗)))
(7)

If the predicted group only consist of object, the supervised consistency value is 0. Otherwise, if the
predicted group is consist of 50% object and 50% background, which is not desirable the supervised
consistency value is 1. Therefore the supervised consistency also ranges from 0 to 1, with 0 as the
best and 1 as the worst.

Stability. Stability measures the robustness to change in model output when adding extra features
to a group. Stable groups then then to contain all needed information for an element and keep
elements intact. An ideal grouping method should not break apart an element into multiple different
groups. Groups created by patch (Dosovitskiy et al., 2021), superpixels (Levner & Zhang, 2007),
and Archipelago (Tsang et al., 2020) often segment a single element into multiple parts, resulting in
unintuitive and fragmented groups. For instance, in Figure 4, we see that the stingray in the bottom
right is segmented into multiple groups that divide the stingray in unintuitive ways, which can result
in lack of stability. To ensure the stability of a feature group, the addition of more features should not
result in a change of predicted class once the group has been selected. To expand the group’s feature
set, we consider all possible patches with features yet to be chosen by the group. We calculate the
stability loss for adding each additional patch by computing the difference in predicted probabilities.
For our experiments, we used 16× 16 patches to be consistent with ViT. Then,

StabilityLoss(x, α) = max
i

∥h(x⊙ α+i)− h(x⊙ α)∥ (8)

where h : Rn×p → Rk be an predictive model that predicts for k classes, and α+i is the group
created by adding the i-th patch to α. The stability loss ranges from 0 to 1 with 0 being the best and
1 the worst, which matches the direction of other metrics.

A supervised way to quantify stability is to count the number of segments one element is divided
into; in other words, how many fragments are in one element. Therefore, each group should have
only one concept therefore maximizing the purity. Through our analysis, we observed two semantic
consistency patterns: backgrounds and objects. Objects become more stable over time, but adding
a new concept to them can result in a instability, and the change of stability when it changes from
object to background. On the other hand, background starts as low instability, but including a new
concept can destabilize them.

C.2 GEOMETRIC PROPERTIES

For groups to be easily understood by humans, their shapes need to be visually interpretable. How-
ever, groups generated by segmentation methods such as SAM (Kirillov et al., 2023) vary too much
in sizes, making it difficult to discern patterns within or draw meaning from the smaller groups.
Additionally, SAM does not always partition the entire image, leaving many features not included
in any group. We formalize these desired geometric properties as contiguity.

Contiguity. The contiguity of a group depends on the shape. When forming a group, it is important
to ensure that it is smoothly shaped and has no unnecessary holes. Groups with very low contiguity
(i.e., extremely small, weirdly shaped) are not interpretable to humans. For instance, SAM (Kirillov
et al., 2023) segments may seem reasonable at first glance (see Figure 4), but these segments have
large variations in sizes; in other words, there is a small number of high-quality groups but a large
number of low-quality groups. The vast majority of segments generated by SAM are too small
to interpret. Furthermore, there are some groups with unnecessary holes. The size distribution of
groups generated with SAM for all 1000 ImageNet classes is plotted in Figure 3, and we see that
many groups generated by SAM have extremely small sizes.

To measure contiguity, we repurpose the segmentation penalty sparse variation (Eickenberg et al.,
2015). The sparse variation penalty enforces contiguous zones in the group, and lower sparse varia-
tion values can guarantee greater contiguity within a group. We used the normalized form of sparse
variation to make it independent from the group size. We formalize the group contiguity loss as
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Figure 3: Distribution of granularity scores for ImageNet groups segmented by SAM. Low-
granularity groups are hard to interpret, and 75% of groups are smaller than 3 pixels.

follows:

ContiguityLoss(x, α) =
λ∥Kα∥2,1√

∥α∥1
where K =

[
(1− ρ)∇

ρIdp

]
(9)

where ∇ is the spatial gradient operator. For a 2D mask of size p = H ×W , where H is the height
and W is the width of the image. We have ∇ ∈ R2p×p. The matrix Idp is the identity operator
of size p × p. Finally, ρ is the parameter controlling the trade-off between coordinate sparsity and
spatial regularity. We take ρ = 0.5 in our calculations. Lower contiguity loss is more desired than
higher contiguity loss, as it indicates that there are fewer holes in the group.

D EXPERIMENT DETAILS

D.1 DATASETS

We use the ImageNet dataset (Deng et al., 2009), which consists of 1000 classes of human-annotated
photographs, and the MS-COCO dataset (Lin et al., 2014), a large-scale dataset designed for object
detection, segmentation, and image captioning tasks.

D.2 MODEL

We use a pre-trained Vision Transformer (ViT) model (Dosovitskiy et al., 2021) pre-trained on
ImageNet-21k (14 million images, 21,843 classes) at resolution 224x224 and fine-tuned on Ima-
geNet 2012 (1 million images, 1,000 classes) at resolution 224x224 2.

D.3 GROUPING METHODS

Here, we describe the four grouping methods we examine.

• Patches (Dosovitskiy et al., 2021) divide an image into fixed-size blocks without overlap-
ping regions.

• Superpixels interpret pixel values as local topography and fill areas from initial points until
adjacent areas meet at delineated edges. We use watershed segmentation (Levner & Zhang,
2007) to obtain the superpixels.

• Segment Anything Model (SAM) (Kirillov et al., 2023) creates groups based on global
context and relationships within the image using transformer-based architecture.

• Archipelago (Tsang et al., 2020) perturbs different segments and assigns interaction scores
to pairs of segments by their influences on the model’s prediction.

2https://huggingface.co/google/vit-base-patch16-224
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Stability Loss Consistency Loss Contiguity Loss

Patch 0.43 ± 0.002 0.20 ± 0.03 0.05 ± 0.00
Superpixel 0.49 ± 0.01 0.22 ± 0.03 0.06 ± 0.00
SAM 0.53 ± 0.01 0.26 ± 0.02 0.10 ± 0.00
Archipelago 0.50 ± 0.02 0.22 ± 0.02 0.07 ± 0.00

Table 1: Experimental results on ImageNet. We measure the mean values of Stability, Consistency ,
and Contiguity loss. Patches perform the highest on all group interpretability metrics.

Sup Stability Sup Consistency Stability Consistency Contiguity

Patch 5.87 ± 2.39 0.12 ± 0.17 0.50 ± 0.01 0.50 ± 0.04 0.00 ± 0.00
Superpixel 6.80 ± 4.43 0.16 ± 0.21 0.53 ± 0.02 0.50 ± 0.3 0.05 ± 0.00
SAM 17.74 ± 6.19 0.13 ± 0.18 0.64 ± 0.03 0.50 ± 0.03 0.07 ± 0.00
Archipelago 5.79 ± 4.23 0.12 ± 0.17 0.63 ± 0.01 0.50 ± 0.02 0.07 ± 0.01

Table 2: Experimental results on MS-COCO. We measure the mean values of Stability, Consistency
, and Constiguity loss. Given that MS-COCO contains ground truth annotations for objects in an
image, we also calculate the supervised version of Stability and Consistency loss.

E ADDITIONAL RESULTS

We calculate quantitative metrics on the ImageNet dataset in Table 1, and MS-COCO dataset in
Table 2. To match the number of groups, we take the average number of groups of SAM and
archipelago for each example, usually 64, and apply it to the patch and superpixel methods. We
then measure quantitative metrics for each group and take the average value for each image. For the
consistency loss and stability loss, we use patches of size 16× 16.

E.1 BEST AND WORSE CASES

To compare the results of each method, we consider the best and worst-case scenarios for each
metric. The best cases for all three metrics are all 0, and the worst is all 1. Regarding consistency
and stability loss, the worst-case scenario may be calculated using another image. The lower bound
for consistency might be calculated by using exactly the same embedding, and for stability, it should
be calculated by having all the pixels in the image. The lower bound for the best possible sparse
variation in square shape can be achieved by taking the square root of the number of pixels. On the
other hand, the upper bound can be obtained by taking a square like a checkerboard. For instance,
if a group of k pixels exists, the best possible sparse variation would be taking the square with one
side as the square root of k. However, the worst possibility would be taking the square with one side
as the square root of 2k; in such a case, if you choose a pixel to the group, avoid selecting the pixel
adjacent to it, just like in a checkerboard.

E.2 RESULTS AND DISCUSSIONS

Consistency. We plot the distribution of dissimilarities of groups generated with all methods in
Figure 5. In the consistency loss plot for merging 1000 ImageNet classes in Figure 5, all methods
displayed a distribution similar to a skewed normal distribution with slightly different mean and
variance. SAM and Archipelago showed longer tails compared to patches and superpixels. For the
MS-COCO dataset, all methods displayed a similar distribution. Table 1 also indicates that the aver-
age consistency loss is similar across different methods. Both Figure 5 and Table 1 demonstrate that
different grouping methods exhibit similar embedding similarities on average, and patches showed
the best performance for both datasets.

Contiguity. Histograms in Figure 6 show that patches and superpixels consistently have low con-
tiguity loss, while SAM consistently has high contiguity loss. Archipelago has a dichotomy of
majority low contiguity loss with a smaller peak for high contiguity loss. We can also see from
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Table 1 and 2 that SAM segments have higher average contiguity loss than the other three methods
and that patches have lower maximum contiguity loss than the other three methods.

The fact that patches have the best average and maximum contiguity loss is likely because they do
not have many edges. Conversely, SAM segments are the worst contiguous for both the average and
the worst case, which is due to how it selects semantic segments that are diverse in shape.

Stability. Histograms in Figure 7 show diverse distributions of stability for all four methods.
Patches skew to 0, while SAM segments skew toward 1. Table 1 also shows that patches have
much smaller stability loss than the other three types of groups. Since the value of 0 represents the
best-case scenario, patches are the most stable, while SAM segments are the least.

This could be attributed to the fact that the groups in SAM had varying sizes. As shown in Figure 4,
some groups found by SAM are small and thin, having little contextual information. Therefore,
adding one patch to a small group might result in a higher stability loss. Conversely, the patch
groups have uniform sizes, allowing each group to have some contextual information.

In the case where we have object labels (such as the MS-COCO dataset), we can directly count
the number of fragments each labeled object is divided into. As shown in Table 2, Archipelago
and Patch groups have the low average fragmentation, indicating that these methods separate key
elements into different groups.

In the case without object labels, we can measure fragmentation by computing the instability of each
group via the equation presented in Figure 8. A low instability value means that adding one patch
does not significantly alter the model prediction, indicating that the group has one clear meaning
(and, therefore, less fragmentation). Fig 7 illustrates the average instability for the existing methods.
Patches have much lower instability, and thus, less fragmentation than groups from other methods
on both the ImageNet and MS-COCO datasets. Based on these results, we can conclude that patches
are quantitatively less fragmented than existing groups, making it easier for humans to interpret.

Summary The statistics in Table 1 and 2 and Figure 5, 6, and 7 show that the patches have
the minimum loss on average and, in the worst case, for all the properties. This indicates that the
patches are the best type of group based on these desiderata.

Also, SAM and Archipelago have worse average stability and contiguity loss. Although SAM and
Archipelago’s Transformer-based architectures enable them to comprehend global context effec-
tively, they are not well-suited for grouping when measured with the three desired quantitative met-
rics.
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(a) Patch (b) Superpixel (c) SAM (d) Archipelago

(1) Image from ‘Brambling’ class in Imagenet dataset

(a) Patch (b) Superpixel (c) SAM (d) Archipelago

(2) Image from ‘Indigo Bunting’ class in Imagenet dataset

(a) Patch (b) Superpixel (c) SAM (d) Archipelago

(3) Image from ‘Hammerhead’ class in Imagenet dataset

(a) Patch (b) Superpixel (c) SAM (d) Archipelago

(4) Image from ‘Bullfrog’ class in Imagenet dataset

(a) Patch (b) Superpixel (c) SAM (d) Archipelago

(5) Image from MS-COCO datset

Figure 4: Examples of groups created by commonly used feature grouping methods: Grid, Water-
shed superpixels, SAM, and Archipelago.
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Figure 5: Similarity loss for the ImageNet and MS-COCO datasets. Calculated using semantic
similarity between features within a group, similarity loss measures group purity. Patches have the
lowest similarity loss, and therefore highest purity, of all groups (for both datasets, the blue line
skews to the left compared to the others).
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Figure 6: Contiguity loss for the ImageNet and MS-COCO datasets. Calculated using the sparse
variation, contiguity loss measures how smooth the group is. Patches have the lowest consistency
loss, which indicate the shape of patch groups are smooth, and therefore easily interpretable to
humans.
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Figure 7: Stability loss for the ImageNet and MS-COCO datasets. We calculate how many groups
each element is fragmented into. High stability loss indicates high fragmentation, which means that
the same element is divided into multiple groups. The desired group for human interpretation should
contain the whole element.
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