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Abstract

We make two contributions in the field of AI fair-
ness over continuous protected attributes. First,
we show that the Hirschfeld-Gebelein-Renyi
(HGR) indicator (the only one currently avail-
able for such a case) is valuable but subject to a
few crucial limitations regarding semantics, inter-
pretability, and robustness. Second, we introduce
a family of indicators that are: 1) complemen-
tary to HGR in terms of semantics; 2) fully in-
terpretable and transparent; 3) robust over finite
samples; 4) configurable to suit specific appli-
cations. Our approach also allows us to define
fine-grained constraints to permit certain types
of dependence and forbid others selectively. By
expanding the available options for continuous
protected attributes, our approach represents a sig-
nificant contribution to the area of fair artificial
intelligence.

1. Introduction
In recent years, the social impact of data-driven AI sys-
tems and its ethical implications have become widely recog-
nized. For example, models may discriminate over popula-
tion groups (Julia et al., 2016; Gianfrancesco et al., 2018),
spurring extensive research on AI fairness. Typical ap-
proaches in this area involve quantitative indicators defined
over a “protected attribute”, which can be used to measure
discrimination or enforce fairness constraints. On the one
hand, such metrics are arguably the most viable solution for
mitigating fairness issues; on the other hand, the nuances of
ethics can hardly be reduced to simple rules. From this point
of view, the availability of multiple and diverse metrics is a
significant asset since it enables choosing the best indicator
depending on the application.
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Regarding available solutions, the case of categorical pro-
tected attributes is well covered by multiple indicators (see
Section 2). Conversely, a single approach works with con-
tinuous protected attributes at the moment of writing; this
is the Hirschfeld-Gebelein-Renyi (HGR) correlation coeffi-
cient (Rényi, 1959), which has two viable implementations
for Machine Learning (ML) systems (Mary et al., 2019;
Grari et al., 2020).

We view the lack of diverse techniques for continuous pro-
tected groups as a major issue. We contribute to this area by
1) identifying a few critical limitations in the HGR approach,
and 2) introducing a family of indicators that complement
HGR semantics and have technical advantages.

In terms of limitations, we highlight how the theoretical
HGR formulation is prone to pathological behavior for finite
samples, leading to the oversized importance of implementa-
tion details and limited interpretability. Moreover, the gener-
ality of the HGR formulation makes the indicator unsuitable
for exclusively measuring the functional dependency be-
tween the protected attribute and the target. Finally, the
HGR indicator cannot account for scale effects on fairness
since it is based on the scale-invariant Pearson’s correlation
coefficient.

We introduce the Generalized Disparate Impact (GeDI), a
family of indicators inspired by the HGR approach and by
the Disparate Impact Discrimination Index (Aghaei et al.,
2019). GeDI indicators measure the dependency based on
how well a user-specified function of the protected attribute
can approximate the target variable. Our indicators support
both discrete and continuous protected attributes and 1)
complement the HGR semantics, 2) are fully interpretable,
3) are robust for finite samples, and 4) can be extensively
configured. Indicators in the family share a core technical
structure that allows for a uniform interpretation and unified
techniques for stating fairness constraints. Moreover, the
GeDI formulation supports fine-grained constraints in order
to permit only certain types of dependency while ruling out
others. By introducing GeDI, we aim to improve metrics
diversity while limiting complexity.
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2. Background and Motivation
State-of-the-art research on algorithmic fairness focuses
on measuring discrimination and enforcing fairness con-
straints. Some techniques (Kamiran & Calders, 2011; Cal-
mon et al., 2017) operate by transforming the data before
training the model to mitigate discrimination and are re-
ferred to as pre-processing approaches. Conversely, post-
processing approaches calibrate the predictive model once
trained (Calders & Verwer, 2010; Hardt et al., 2016). Finally,
in-processing approaches focus on removing discrimination
at learning time. To this end, (Menon & Williamson, 2018)
modify the class-probability estimates during training, while
(Kamishima et al., 2012; Zafar et al., 2017; Donini et al.,
2018; Padala & Gujar, 2020; Komiyama et al., 2018) embed
fairness in the learning procedure through constraints in
the objective. All the approaches mentioned above rely on
metrics restricted to discrete protected attributes. Two re-
cent works (Mary et al., 2019; Grari et al., 2020) extend the
method by (Kamishima et al., 2011) to continuous variables
by minimizing the Hirschfeld-Gebelein-Renyi (HGR) corre-
lation coefficient (Rényi, 1959). A more extensive review of
fairness approaches can be found in (Mehrabi et al., 2021).

Disparate Impact One of the most widely used notions
of fairness is based on the legal concept of disparate impact
(Supreme Court of the United States, 1971), which occurs
whenever a neutral practice negatively impacts a protected
group. The principle of disparate impact can be extended
to ML models by considering their output with respect to
protected attributes (Feldman et al., 2015). To quantify the
disparate impact in regression and classification, (Aghaei
et al., 2019) propose a fairness indicator deemed Disparate
Impact Discrimination Index (DIDI). The higher the DIDI,
the more disproportionate the model output is with respect
to protected attributes, and the more it suffers from disparate
impact.

The simplicity of the DIDI formulation makes it highly
interpretable. Given a sample {xi, yi}ni=1 including values
for a protected attribute x and a continuous target value y,
the Disparate Impact Discrimination Index is referred to as
DIDIr(x, y) and defined as:

∑
v∈X

∣∣∣∣∣
∑n

i=1 yiI(xi = v)∑n
i=1 I(xi = v)

− 1

n

n∑
i=1

yi

∣∣∣∣∣ (1)

where X is the domain of x and I(ϕ) is the indicator func-
tion for the logical formula ϕ. The DIDI represents the
sum of discrepancies between the average target for each
protected group and for the whole dataset. The indicator has
a specialized formulation for classification tasks, i.e., when
y is discrete. In this case, DIDIc(x, y) is defined as:

∑
u∈Y

∑
v∈X

∣∣∣∣∣
∑n

i=1 I(yi = u ∧ xi = v)∑n
i=1 I(xi = v)

− 1

n

n∑
i=1

I(yi = u)

∣∣∣∣∣
The HGR Indicator To the best of our knowledge, the
HGR indicator is the only fairness metric that applies to
continuous protected attributes. It is based on the Hirschfeld-
Gebelein-Renyi (HGR) correlation coefficient (Rényi, 1959),
which is a normalized measure of the relationship between
two random variables, X ∈ X and Y ∈ Y . When the
coefficient is zero, the two variables are independent, while
they are strictly dependent when it is equal to 1. Formally,
the HGR correlation coefficient is defined as:

HGR(X,Y ) = sup
f,g

ρ(f(X), g(Y )) (2)

where ρ is Pearson’s correlation coefficient and f, g are two
measurable functions (referred to as copula transformations)
with finite and strictly positive variance.

Limitations of the HGR Approach The HGR indicator
has several noteworthy properties, including the ability to
measure very general forms of dependency. Despite its
strengths, however, it is not devoid of limitations. As a first
contribution, we identify three of them.

First, when applied to finite samples, the theoretical HGR
formulation is prone to pathological behavior. In finite
datasets, the Pearson’s correlation in Equation (2) is re-
placed with its sample version, leading to:

hgr(x, y) = max
f,g

r(fx, gx)) = max
f,g

cov(fx, gy)

σ(fx)σ(gy)
(3)

where fx, gy, are short notations for f(x) and g(y), respec-
tively; σ(·) is the sample standard deviation, and cov(·, ·)
is the sample covariance. Since the copula transformations
are unrestricted, Equation (3) might be ill-behaved when the
protected attribute takes many values. As an extreme case,
with all-distinct x values, choosing f(xi) = yi ensures max-
imum Pearson’s correlation, leading to overly large HGR
values (see Figure 1(a)). The existing implementations miti-
gate this issue by using models with finite variance for f and
g – discretized KDE in (Mary et al., 2019), and Neural Net-
works in (Grari et al., 2020). However, these solutions link
the indicator semantics to low-level, sub-symbolic details
that are difficult to interpret and to control.

Second, using unrestricted copula transformations allows
HGR to measure very general forms of dependency between
x and y, including scenarios such as the diverging target
values in Figure 1(b). However, there are situations where
discrimination arises only when the expected value of the
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Figure 1. (a) HGR indicator may overfit data points due to the unrestricted transformations; this leads to overly large correlation estimates
in finite datasets, even if y is independent of x, as in the example. (b) Using unrestricted copula transformations allows HGR to capture
non-functional dependencies, like the increasing divergence in target values. However, in some scenarios, discrimination is linked only to
the function dependency E[y | x], and HGR is not able to measure it exclusively. (c) Since Pearson’s correlation is scale-invariant, the
HGR indicator is not able to capture scale effects on fairness.

target is affected, i.e., it is linked to the strength of the func-
tional dependency E[y | x]. For example, in Figure 1(b), a
third confounder attribute, correlated with x, might motivate
the divergence. In this case, the confounder might not raise
any ethical concern, but the HGR indicator would not able
to exclusively measure the functional dependency.

Third, the HGR indicator satisfies all the Renyi properties
(Rényi, 1959) by relying on Pearson’s correlation coeffi-
cient, but this makes the approach unable to account for
scale effects on fairness. For example, let us assume the
target values y are linearly correlated to the continuous pro-
tected attributes. In some practical cases, applying an affine
transformation on y may reduce the discrimination (see Fig-
ure 1(c)), but the HGR indicator cannot capture this effect
since Pearson’s correlation is scale-invariant.

3. Generalized Disparate Impact
In this section, we derive the GeDI family of indicators and
its semantics. The process is guided by two design goals: 1)
complementing the HGR approach to provide more options
for continuous protected attributes; 2) improving over the
technical limitations we identified in Section 2.

HGR Computation as Optimization We start by observ-
ing that the sample Pearson correlation can be restated as
the optimal solution of a Least Squares problem. Formally,
r(fx, gy) from Equation (3) is given by:

argmin
r

1

n

∥∥∥∥r fx − µ(fx)

σ(fx)
− gy − µ(gy)

σ(gy)

∥∥∥∥2
2

(4)

where µ(·) is the sample average operator; this is a well-
known statistical result, whose proof we report in Ap-
pendix A.1. Using Equation (4) may seem counter-intuitive
since it casts the whole HGR computation process as a

bilevel optimization problem. In particular, we have:

max
f,g

argmin
r

1

n

∥∥∥∥r fx − µ(fx)

σ(fx)
− gy − µ(gy)

σ(gy)

∥∥∥∥2
2

(5)

However, the two optimization objectives are aligned since
larger r values correspond to lower squared residuals; this
alignment can be exploited to obtain an alternative single-
level formulation for the HGR indicator. The process is
covered in detail in Appendix A.2 and leads to:

hgr(x, y) = |r∗| (6)

where r∗ is obtained by solving:

argmin
f,g,r

1

n

∥∥∥∥r fx − µ(fx)

σ(fx)
− gy − µ(gy)

σ(gy)

∥∥∥∥ (7)

The equivalence holds if σ(gy), σ(fx) > 0, which is also
needed for the Pearson correlation to be well-defined.

The GeDI Indicator Family The main insight from Equa-
tion (6) and (7) is that the HGR computation can be under-
stood as a Least Square fitting. We derive the GeDI family
by building on the same observation, with a few key differ-
ences. In particular, we define a GeDI indicator as a measure
of how well a user-selected, interpretable function of the
protected attribute x can approximate the target variable y.
Formally, we have that:

GeDI (x, y;F ) = |d∗| (8)

where d∗ is defined via the optimization problem:

argmin
d,α

1

n
∥d(Fα− µ(Fα))− (y − µ(y))∥22

s.t. ∥α∥1 = 1

(9)

where α ∈ Rk is a vector of coefficients, d ∈ R is a scale
factor whose absolute value corresponds to the indicator
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Table 1. Type of dependencies measured by indicators for continu-
ous protected attributes. Double check-mark (✓✓) specifies that
the indicator exclusively measures the corresponding dependency.

Measurable Dep. GeDI HGR-kde HGR-nn

Functional ✓✓ ✓ ✓
Non-functional × ✓ ✓
Scale-independent ✓ ✓✓ ✓✓
Scale-dependent ✓ × ×
User-configurable ✓ × ×

value, and ∥ · ∥1 is the L1 norm that we introduce to obtain
one of the equivalent optimal solutions of the optimization
problem. F is a n× k kernel matrix whose columns Finally,
Fj represent the evaluation of the basis functions fj(x) of
the protected attribute x, namely:

Fα =

k∑
j=1

Fjαj =

k∑
j=1

fj(x)αj (10)

Any kernel can be chosen, provided that the resulting ma-
trix is full-rank. The kernel and its order k are part of the
specification of a GeDI indicator and appear in its notation.

Rationale and Interpretation Our formulation differs
from Equation (7) in three regards. First, it lacks the copula
transformation on the y variable (the g function). The DIDI
inspires this property: it allows our indicators to exclusively
measure the strength of the functional dependency E[y | x]
but also makes them incapable of measuring other forms
of dependency. This semantics complements the HGR one,
thus increasing the available options.

Second, the standardization terms have been replaced with
the normalization constraint ∥α∥1 = 1. This constraint al-
lows us to obtain one of the equivalent optimal solutions,
while keeping it viable for linear optimization approaches.
The DIDI also inspires this choice as it makes our indicators
sensitive to scale changes, complementing the HGR seman-
tics. As expected, this prevents the satisfaction of some
Renyi properties that exclusively apply to scale-invariant
metrics.

Third, we restrict the copula transformation on x (the f
function) to be linear over a possibly non-linear kernel. As
a result, our indicator is fully interpretable. In particular, the
indicator measures the overall functional dependency, while
the coefficients identify which functional dependencies have
the most significant effect, as determined by the kernel
components.

Choice of Kernel Individual indicators from the GeDI
family are obtained via the specification of a kernel, which
allows users to define which types of functional dependency

are relevant for the considered use case. This is the main
criterion for the kernel choice and provides a level of config-
urability that is absent in existing indicators. Table 1 sum-
marizes the types of dependency that can be measured by
indicators with support for continuous protected attributes.
A double check-mark specifies that the indicator exclusively
measures the corresponding dependency.

Specifying a kernel might seem cumbersome, but it should
be kept in mind that any HGR implementation also needs a
mechanism to avoid ill behavior on finite samples. In (Mary
et al., 2019) this is done via a finite discretization and a KDE
bandwidth, while in (Grari et al., 2020) via a neural network
architecture and stochastic gradient descent. In both cases,
the mechanism is strongly linked to the implementation
details, thus reducing transparency and control. Integrating
the kernel choice into the indicator definition makes the
bias-variance trade-off explicit and controllable.

The kernel choice can be simplified by selecting a paramet-
ric function family and then adjusting the order k to prevent
overfitting and numerical issues. If the chosen function
family ensures the F matrix is full-rank, we can asymptoti-
cally recover the unrestricted copula transformation f . For
example, by choosing a polynomial kernel, we have:

fj(x) = xj (11)

In our notation, GeDI (·, ·, V k) denotes the use of a polyno-
mial kernel of order k (V refers to the Vandermonde matrix).
Another suitable option is the Fourier kernel, which satisfies
the full-rank property. Both choices have a clear interpreta-
tion regarding either shape (for polynomials) or spectra (for
Fourier kernels). Figure 2 shows how increasing the order
of a polynomial kernel yields indicators sensitive to differ-
ent types of dependence, thus requiring various adjustments
with respect to a reference dataset to achieve an indicator
value of 0. For example, GeDI (x, y;V 2) is not sensitive to
cubic dependence, which is measured by GeDI (x, y;V 3).

Overall, we recommend the following process for selecting
a kernel: 1) choose a family of functions based on relevance
to the considered application and ease of interpretation; 2)
tune the order to prevent overfitting and numerical issues.

GeDI and DIDI Our approach is designed so that, under
specific circumstances, its behavior is analogous to the one
of the DIDI (Aghaei et al., 2019). Let us start by differen-
tiating the objective of Equation (9) in d, and stating the
optimality condition (i.e., null derivative). This yields:

GeDI (x, y;F ) =

∣∣∣∣cov(Fα∗, y)

var(Fα∗)

∣∣∣∣ (12)

whose full proof is in Appendix A.3. By assuming a poly-
nomial kernel with k = 1 we have:

GeDI (x, y;V 1) =

∣∣∣∣cov(x, y)var(x)

∣∣∣∣ (13)
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Figure 2. Example of how the GeDI semantics depends on the kernel choice. Data in Figure 2(a) are synthetically generated by considering
the relation y(x) = 4sin(x)+x2+ϵ, where ϵ ∼ N (0, 1) and x ∼ U(−π, π). The Figures 2(b)-(c)-(d) showcase the impact of increasing
the kernel size in capturing the correlation between x and y. More specifically, in 2(b) we apply a kernel of order 1, which is not able to
capture most of the correlations, since the function has no linear terms; in 2(c) we use a kernel of order 2, which captures and cancels out
the squared term in y(x), preserving the sinusoidal component only; finally, in 2(d) we choose a kernel of order 3, which cancels out
almost all of the sinusoidal component of y(x) given that sin(x) can be approximated as x− 1

6
x3 as for the Taylor series, hence what is

left is just o(x5) plus noise.

where α∗ = 1, since there is a single coefficient and
∥α∗∥1 = 1. In Appendix A.4, we prove that Equation (13)
is equivalent to the DIDI if the protected attribute is binary.
As a result, it is possible to consider the GeDI (·, ·;V 1) indi-
cator as a generalization of the (binary) DIDI to continuous
protected attributes, thus strengthening the link between our
indicators and the already established metrics.

4. GeDI Computation and Constraints
Next, we discuss how GeDI indicators can be computed and
used to enforce fairness constraints.

Computation Indicators in the GeDI family are defined
via Equation (9), which is a constrained optimization prob-
lem. However, it is possible to obtain an unconstrained
formulation by applying the following substitutions:

F̃j = Fj − µ(Fj) ỹ = y − µ(y) α̃ = |d|α (14)

i.e., by centering y and the columns Fj , and by combining
d and α in a single vector of variables. The substitutions
involve no loss of generality since Equation (14) admits
a solution for every α̃ ∈ Rk. As a result, the problem is
reduced to a classical minimal Least Squares formulation:

argmin
α̃

1

n
∥F̃ α̃− ỹ∥22 (15)

The solution can be computed via any Linear Regression ap-
proach, which typically involves solving the linear system:

F̃T F̃ α̃∗ = F̃T ỹ (16)

From here, the absolute value |d∗| can be recovered as:

|d∗| = ∥α̃∗∥1 (17)

which is implied by Equation (14) and the constraint
∥α∥1 = 1. Overall, the process is simple and well-
understood in terms of numerical stability. Additionally,
since Equation (15) can be solved to optimality in poly-
nomial time, GeDI indicators are entirely determined by
the kernel choice, with benefits for reproducibility. This
property is less clearly satisfied by the existing HGR-based
indicators: the approach from (Mary et al., 2019) is de-
terministic but ambiguous unless several implementation
details are provided; the method from (Grari et al., 2020) is
inherently not deterministic, since it relies on stochastic gra-
dient descent. In Table 2, we summarize the characteristics
of the GeDI indicators compared to the HGR approaches.

Fairness Constraints GeDI indicators can be used to for-
mulate fairness constraints. In this setting, the target y can
be changed, either because it represents the output of a ML
model or because preprocessing/postprocessing techniques
are employed. A constraint in the form:

GeDI (x, y;F ) ≤ q, q ∈ R+ (18)

can be translated into a set of piecewise linear relations:

F̃T F̃ α̃∗ = F̃T ỹ (19)
∥α̃∗∥1 ≤ q (20)

where α̃∗ is not directly computed to avoid matrix inversion.
Specific projection-based approaches for constrained ML,
such as the one from (Detassis et al., 2021), can rely on
mathematical programming to deal with constraints in this
form. Indeed, Figure 2 is obtained by adjusting target values
to satisfy Equations (19)-(20) and minimizing the Mean
Squared Error. As an alternative, it is also possible to obtain
a Lagrangian term (i.e., a penalizer) in the form:

λmax(0, ∥α̃∗∥1 − q), λ ∈ R+ (21)
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Table 2. Characteristics of the GeDI indicators when compared to HGR-kde (Mary et al., 2019) and HGR-nn (Grari et al., 2020) approach.

Characteristic GeDI HGR-kde HGR-nn

Interpretability full partial partial
Bias/variance trade-off transparent opaque opaque
Theoretically unrestricted transformations f f, g f, g
Renyi properties partial ✓ ✓
Deterministic ✓ ✓ ×
Information required for full specification kernel discretization, KDE bandwidth full NN + SGD params
Constraint enforcing declarative or penalizer penalizer penalizer
Fine-grained constraints ✓ × ×

where λ is the penalizer weight. In order to avoid ma-
trix inversion in automatic differentiation engines, we
can rely on differentiable least-squares operators, such as
tf.linalg.lstsq or torch.linalg.lstsq.

Fine-grained Constraints The choice of the kernel al-
lows a user to specify which types of dependency should be
measured. In addition, our formulation allows us to restrict
specific terms of the copula transformation by enforcing con-
straints on individual coefficients. Formally, it is possible to
replace the set of constraints from (20) with:

|α̃∗| ≤ q, q ∈ R+k (22)

where the single constraint on ∥α∗∥1 is replaced by individ-
ual constraints on the absolute value of the coefficients. By
algebraic manipulation and taking advantage of the fact that
F̃T F̃ is positive definite, we obtain a single set of inequali-
ties that avoids any matrix inversion:

|F̃T ỹ| ≤ q ⊙ F̃T F̃ (23)

where ⊙ is the Hadamard (i.e., element-wise) product. Equa-
tion (23) can be processed directly by projection approaches
or turned into a (vector) penalizer similar to Equation (21).

An interesting setup is to allow a single, easily explainable
form of dependency (e.g., linear) while explicitly forbidding
others; when applied to a ML model, this setup allows us to
obtain a modified sample {xi, y

′
i}, where y′i represents the

model output after the constraint has been enforced. In this
situation, we have:

GeDI (x, y′;V k) = GeDI (x, y′;V 1) (24)

The equality holds since all polynomial degree dependencies
from 2 to k are explicitly removed, implying that we can
measure the discrimination for the constrained model in
terms of the DIDI analogy presented in Section 3.

5. Empirical Evaluation
In this section, we discuss an empirical evaluation per-
formed with three objectives: 1) testing how the kernel

Table 3. The four discrimination-aware learning tasks used in our
experiments. Type B stands for binary, C for continuous.

Target Protected Att.
Dataset Name Type Name Type

Adult income B sex B
age C

Communities
& Crimes violentPerPop C race B

pctBlack C

choice and fine-grained constraints affect the GeDI seman-
tics; 2) studying the relation with other metrics, in particular
the DIDI and the HGR indicators; 3) investigating how the
use of different ML models and constraint enforcement al-
gorithms impacts effectiveness. Here we report the main
details and experiments; additional information is provided
in Appendix B. The source code and the datasets are avail-
able at https://github.com/giuluck/General
izedDisparateImpact under MIT license.

Experimental Setup We rely on two common benchmark
datasets in the field of fair AI: Communities & Crimes1 with
a continuous target, and Adult2 with a binary target. For
both, we define two discrimination-aware learning tasks
by considering either a binary or a continuous protected
attribute. The resulting tasks are summarized in Table 3.

We restrict our analysis to polynomial kernels due to their
ease of interpretation; moreover, their known issues with
numerical stability at higher orders make them a computa-
tionally interesting benchmark. We consider two setups for
our method. In the first, referred to as GeDI-Coarse, we
derive an indicator via a V k kernel and constrain its value
as in Equation (20). In the second, referred to as GeDI-
Fine, we use the same type of indicator, but the constraint is
enforced on individual coefficients; specifically, we allow
some degrees of linear dependency while completely forbid-

1
https://archive.ics.uci.edu/ml/datasets/Communities+

and+Crime
2
https://archive.ics.uci.edu/ml/datasets/Adult
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Figure 3. Results from preprocessing tests presented from the perspective of the binned DIDI metrics with different bin numbers both for
the coarse-grained (a) and the fine-grained (b) constraint formulation. On the x axis, we plot the number n of bins for the percentage
DIDI-n (y axis) value, using five different kernel sizes k (colors) to impose the constraint on GeDI(x, y;V k).

ding higher orders (up to k). For binary protected attributes,
we only use k = 1 as a higher order would not guarantee
the full-rank requirement; hence the two setups coincide.

As a representative of the HGR approach, we use the in-
dicator from (Mary et al., 2019) with default parameters.
For the DIDI, we use the original formulation from (Aghaei
et al., 2019). When adopting DIDI for continuous protected
attributes, we apply a quantile-based discretization in n bins
before computing the indicator; we refer to the resulting
metrics as DIDI-n. This technique does not require spe-
cialized indicators but is strongly sensitive to the chosen
discretization and prone to overfitting with higher n values.
We use percentage values when presenting results for ex-
periments with fairness constraints on all metrics, i.e., their
values are normalized over those of the original datasets.

Experiments Description We consider two types of tests.
The first consist in preprocessing experiments, where we
directly change the target values to: 1) satisfy coarse- or fine-
grained constraints on GeDI (x, y;V k) and 2) minimize a
loss function appropriate to the task – Mean Squared Error
for regression and Hamming Distance for classification. No
machine learning model is trained in this process. We rely
on an exact mathematical programming solver that allows
for an efficient and stable formulation for fine-grained con-
straints (more details in Appendix B.1). We use different
kernel orders k, but a fixed threshold for each dataset, corre-
sponding to 20% of the value on the GeDI (x, y, V 1) for the
unaltered data. With this design, any difference in behavior
is entirely due to changes in the semantics determined by
the chosen kernel.

Second, we report results for several performance tests,
where training problems with fairness constraints are solved
using multiple machine learning models and optimization
algorithms. These experiments aim to test how these factors
affect constraint satisfaction, model accuracy, and general-

ization. In particular, we train an unconstrained version of
a Random Forest (RF), a Gradient Boosting (GB), and a
Neural Network (NN) model. Then, the same models are
trained using the Moving Targets (MT) algorithm from (De-
tassis et al., 2021), which allows us to deal with constraints
in a declarative fashion. Finally, to investigate the impact
of different constraint enforcement methods, we train a ver-
sion of the neural network model where a penalizer (or
Semantics-Based Regularizer, SBR) is used during gradient
descent. The penalizer weight is dynamically controlled
at training time using the approach from (Fioretto et al.,
2021). All these experiments are performed using a 5-fold
cross-validation procedure on the entire dataset. See Ap-
pendix B.2 for a complete list of the technical settings, and
Appendix B.3 for a broader description of the constrained
models. Similarly to the preprocessing tests, we use a fixed
threshold for all constraints, corresponding to 20% the value
of GeDI (x, y, V 1) for the original datasets.

Preprocessing experiments Figure 3 shows the outcome
of our preprocessing tests for the GeDI (x, y;V k), both for
coarse-grained (a) and fine-grained (b) approaches. In par-
ticular, we report the results for multiple kernel sizes (colors)
and different bin numbers (x axis) from the perspective of
the binned DIDI metrics (y axis). All GeDI constraints are
satisfied by construction due to the use of an exact solver.
Since increasing the bin number in DIDI-n enables measur-
ing more complex dependencies, and both indicators focus
on functional dependencies, the figures allow us to observe
how the GeDI semantics depends on the kernel order.

We notice that increasing the kernel order with the GeDI-
Fine approach tends to improve the discretized DIDI across
all bin numbers (Figure 3(b)); in the few cases where the
DIDI-3 and DIDI-5 worsen by adding GeDI constraints, we
expect that the discrepancy is due to how the bin boundaries
“cut” the shapes induced by the polynomial kernels, i.e., it is

7
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Table 4. Performance tests results for tasks with binary protected feature.

Communities & Crimes Adult
R2 GeDI-V1 % Time Accuracy GeDI-V1 % Time

train val train val train val train val

RF 0.95 ± 0.00 0.63 ± 0.02 1.00 ± 0.00 1.02 ± 0.12 5.19 1.00 ± 0.00 0.85 ± 0.00 1.00 ± 0.00 0.94 ± 0.05 1.54
+MT 0.66 ± 0.01 0.52 ± 0.04 0.24 ± 0.00 0.28 ± 0.10 54.00 0.95 ± 0.00 0.84 ± 0.00 0.20 ± 0.00 0.72 ± 0.03 128.28

GB 0.87 ± 0.01 0.63 ± 0.02 1.03 ± 0.00 1.05 ± 0.11 2.43 0.87 ± 0.00 0.86 ± 0.00 0.88 ± 0.01 0.88 ± 0.04 2.25
+MT 0.64 ± 0.01 0.54 ± 0.02 0.21 ± 0.00 0.27 ± 0.09 29.25 0.85 ± 0.00 0.85 ± 0.00 0.35 ± 0.02 0.34 ± 0.04 129.65

NN 0.99 ± 0.01 0.58 ± 0.01 0.99 ± 0.02 0.97 ± 0.12 7.64 0.89 ± 0.00 0.83 ± 0.00 1.03 ± 0.05 1.03 ± 0.08 55.31
+MT 0.89 ± 0.02 0.49 ± 0.04 0.20 ± 0.02 0.32 ± 0.11 85.81 0.86 ± 0.00 0.83 ± 0.00 0.19 ± 0.01 0.17 ± 0.06 2593.11
+SBR 0.88 ± 0.01 0.45 ± 0.05 0.10 ± 0.03 0.24 ± 0.07 6.36 0.84 ± 0.00 0.84 ± 0.00 0.17 ± 0.02 0.17 ± 0.03 563.58

Table 5. Performance tests results for tasks with continuous protected feature.

Communities & Crimes Adult
R2 GeDI-V5 % Time Accuracy GeDI-V5 % Time

train val train val train val train val

RF 0.95 ± 0.00 0.63 ± 0.02 1.70 ± 0.08 2.03 ± 0.59 5.23 1.00 ± 0.00 0.85 ± 0.00 3.40 ± 0.06 3.76 ± 0.18 2.74
+MT-Fine 0.48 ± 0.01 0.36 ± 0.02 0.24 ± 0.01 0.64 ± 0.20 61.97 0.92 ± 0.00 0.78 ± 0.00 0.20 ± 0.00 1.13 ± 0.25 256.02
+MT-Coarse 0.60 ± 0.01 0.46 ± 0.03 0.24 ± 0.01 0.69 ± 0.27 64.91 0.92 ± 0.00 0.79 ± 0.00 0.20 ± 0.00 0.57 ± 0.19 60.89

GB 0.87 ± 0.01 0.63 ± 0.02 1.67 ± 0.10 2.09 ± 0.50 2.52 0.87 ± 0.00 0.86 ± 0.00 3.59 ± 0.06 3.59 ± 0.16 4.14
+MT-Fine 0.47 ± 0.01 0.37 ± 0.02 0.23 ± 0.00 0.55 ± 0.24 30.58 0.81 ± 0.00 0.80 ± 0.01 0.65 ± 0.06 0.76 ± 0.26 658.27
+MT-Coarse 0.60 ± 0.01 0.49 ± 0.04 0.22 ± 0.00 0.92 ± 0.44 31.93 0.83 ± 0.00 0.83 ± 0.01 0.86 ± 0.03 0.90 ± 0.21 66.18

NN 0.99 ± 0.01 0.58 ± 0.01 1.79 ± 0.14 1.78 ± 0.35 7.58 0.89 ± 0.00 0.83 ± 0.00 4.09 ± 0.16 4.12 ± 0.21 306.42
+MT-Fine 0.70 ± 0.03 0.32 ± 0.05 0.27 ± 0.03 1.09 ± 0.67 94.14 0.80 ± 0.01 0.79 ± 0.01 0.32 ± 0.08 0.51 ± 0.29 2096.00
+MT-Coarse 0.78 ± 0.06 0.40 ± 0.04 0.21 ± 0.02 0.90 ± 0.54 99.33 0.80 ± 0.01 0.78 ± 0.01 0.29 ± 0.05 0.63 ± 0.48 1378.40
+SBR-Fine 0.64 ± 0.03 0.43 ± 0.04 0.18 ± 0.03 0.92 ± 0.47 15.87 0.84 ± 0.00 0.83 ± 0.00 0.89 ± 0.04 0.91 ± 0.10 793.28
+SBR-Coarse 0.67 ± 0.03 0.45 ± 0.02 0.21 ± 0.04 0.98 ± 0.52 16.20 0.84 ± 0.00 0.83 ± 0.00 0.91 ± 0.04 0.93 ± 0.06 925.15

due to discretization noise. The same behavior is observed
for GeDI-Coarse (Figure 3(a)), although with a lower degree
of consistency. Such a trend confirms that increasing the
kernel order makes our indicators capable of measuring
more complex dependencies. In the GeDI-Fine case, all
higher-order dependencies are canceled, while the GeDI-
Coarse approach is more flexible regarding which types of
dependency are allowed; this explains why enforcing a 20%
threshold with the GeDI-Fine approach also leads to similar
DIDI-n values since the semantics of the two approaches
are similar. Despite this, we underline that the equivalence
from Section 4 does not strictly hold in the analyzed datasets
since the protected attribute is not natively categorical.

Performance experiments Table 4 shows the results for
the performance experiments in tasks with binary protected
attributes. We report the average values on the train and
validation splits for: 1) an accuracy metric, i.e., R2 for
regression tasks and Accuracy for classification ones, and
2) our fairness indicator GeDI(·, ·;V 1), which in this case
is equivalent to the DIDI. Additionally, we report a single
column with training times. Rows related to unconstrained
models are italicized, and the best results for the constrained
models are highlighted in bold font. Table 5 reports simi-
lar data for tasks with continuous protected attributes. We
rely on GeDI (x, y, V 5) as a fairness indicator, and we en-
force both GeDI-Fine and GeDI-Coarse since they differ in
formulation for higher-order kernels.

The results obtained using different models and algorithms
in the four tasks analyzed are rather diverse regarding ac-
curacy, degree of constraint satisfaction, and training time.
This stresses the advantage of having access to multiple
learning models and constraint enforcing methods, which
our approach provides. The behavior is reasonably consis-
tent in terms of both accuracy and constraint satisfaction,
with low standard deviations. The only exception is the clas-
sification task (Adult) with continuous protected attribute:
in this scenario, and in general, when dealing with continu-
ous protected attributes, the unconstrained models tend to
introduce additional discrimination on top of the existing
one. As a consequence, our thresholds become particularly
demanding since they are based on GeDI values for the
original dataset. Stringent thresholds require significant al-
terations to the input/output relation that the models would
naturally learn, thus exacerbating generalization issues.

Finally, in Figure 4, we analyze the link between GeDI
and the HGR indicator by reporting their values for all of
our performance tests. The displayed results come from
unconstrained and constrained models and different tasks.
According to this figure, we highlight that: (1) GeDI is a
valid option for fairness metrics, since it correlates with an
already established metrics (namely HGR) but (2) it is not
redundant, as its semantics differs from the one of HGR.
Indeed, as expected, we can see that the two metrics are
correlated (suggesting they capture related concepts of fair-
ness), but with a high variance (highlighting the difference
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Figure 4. Percentage values of GeDI and HGR indicator from
(Mary et al., 2019) on the performance tests.

in their semantics). For this reason, GeDI offers a valid
alternative to the set of existing metrics, enriching the range
of options among which the practitioners can select the
indicator that best fits their application.

6. Conclusions
In this work, we introduce the GeDI family of indicators to
extend the available options for measuring and enforcing
fairness with continuous protected attributes. Our indicators
complement the existing HGR-based solutions regarding
semantics and provide a more interpretable, transparent, and
controllable fairness metric. GeDI allows the user to specify
which types of dependency are relevant and how they should
be restricted.

While some of the design choices in our approach are incom-
patible with the HGR formulation, others could be applied
in principle. The resulting configurable HGR-based solu-
tion would have technical properties similar to the GeDI
indicators. Preliminary work in this direction corroborates
this conjecture, making us regard this topic as a promising
area for future research.
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Mary, J., Calauzènes, C., and Karoui, N. E. Fairness-aware
learning for continuous attributes and treatments. In
Chaudhuri, K. and Salakhutdinov, R. (eds.), Proceed-
ings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 4382–4391. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
mary19a.html.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and
Galstyan, A. A survey on bias and fairness in machine
learning. ACM Comput. Surv., 54(6), jul 2021. ISSN
0360-0300. doi: 10.1145/3457607. URL https:
//doi.org/10.1145/3457607.

Menon, A. K. and Williamson, R. C. The cost of fairness
in binary classification. In Friedler, S. A. and Wilson,
C. (eds.), Proceedings of the 1st Conference on Fairness,
Accountability and Transparency, volume 81 of Proceed-
ings of Machine Learning Research, pp. 107–118. PMLR,
23–24 Feb 2018. URL https://proceedings.ml
r.press/v81/menon18a.html.

Padala, M. and Gujar, S. Fnnc: Achieving fairness through
neural networks. In Bessiere, C. (ed.), Proceedings of the
Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI-20, pp. 2277–2283. International
Joint Conferences on Artificial Intelligence Organization,
7 2020. doi: 10.24963/ijcai.2020/315. URL https:
//doi.org/10.24963/ijcai.2020/315. Main
track.
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A. Proofs of Section 3
A.1. Least Squares Problem and Pearson’s Correlation

Consider two random samples x ∈ Rn and y ∈ Rn and the following least square problem:

argmin
r

1

n

∥∥∥∥rx− µx

σx
− y − µy

σy

∥∥∥∥2
2

(25)

where r is the sample Pearson’s correlation coefficient. This is a basic Linear Regression problem over standardized
variables. Since the problem is convex, an optimal solution can be found by requiring the loss function gradient to be null.
By differentiating over r we get:

1

n

(
r
x− µx

σx
− y − µy

σy

)T
x− µx

σx
= 0 (26)

By algebraic manipulations we get:

r
1

n

(x− µx)
T (x− µx)

σ2
x

=
1

n

(x− µx)
T (y − µy)

σxσy
(27)

By applying the definition of variance and standard deviation, we have that 1
n (x− µx)

T (x− µx) = σ2
x, thus leading us to:

r =
1

n

(x− µx)
T (y − µy)

σxσy
(28)

This is the value of the sample Pearson correlation coefficient, which is therefore equivalent to the optimal parameter for a
properly defined Linear Regression problem.

A.2. Bilevel Optimization Problem Simplification

We prove that the objective of the outer and inner optimization problems are in this case aligned, thus making it possible to
simplify the formulation.

Specifically, let us consider two pairs of copula transformations f ′
x, g

′
y and f ′′

x , g
′′
y , and let r′ and r′′ be the corresponding

values for the sample Pearson correlation coefficient. Let us assume that one pair of transformation leads to a smaller MSE,
i.e.:

1

n

∥∥r′f ′
x − g′y

∥∥2
2
<

1

n

∥∥r′′f ′′
x − g′′y

∥∥2
2

(29)

The two terms can be expanded as:

r′2
f ′T
x f ′

x

n
− 2r′

f ′T
x g′y
n

+
g′Ty g′y
n

< r′′2
f ′′T
x f ′′

x

n
− 2r′′

f ′′T
x g′′y
n

+
g′′Ty g′′y

n
(30)

Due to our zero-mean assumption, all quadratic terms in the form f ′T
x f ′

x/n, etc., correspond to sample variances. Again due
to our assumptions, variances have unit value. Therefore, we have:

r′2 − 2r′
f ′T
x g′y
n

+ 1 < r′′2 − 2r′′
f ′′T
x g′′y
n

+ 1 (31)

Now, as established in Equation (28), we have that r′ = f ′T
x g′y/n and r′′ = f ′′T

x g′′y/n. Therefore, we have:

r′2 − 2r′2 + 1 < r′′2 − 2r′′2 + 1 (32)

Since all steps leading from Equation (29) to Equation (32) are invertible, we have that:

r′2 > r′′2 ⇔ 1

n

∥∥r′f ′
x − g′y

∥∥2
2
<

1

n

∥∥r′′f ′′
x − g′′y

∥∥2
2

(33)

In other words, maximizing the square of the sample HGR is equivalent to minimizing the Mean Squared Error. Now,
maximizing r2 corresponds to maximizing either r or minimizing −r. Since the copula transformations are generic, we can
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always change the sign of r by changing the sign of either f or g. This means that maximizing r is in fact equivalent to
maximizing r2 in our context.

Overall, this suggests an approach for computing the sample HGR that does not rely on bilevel optimization. Namely, first
we determine f and g by solving the Least Squares Problem:

argmin
f,g,r

1

n
∥rfx − gy∥22 (34)

Then we compute the sample HGR as the absolute value of the sample Pearson correlation, i.e.:

hgr(x, y) = |r(fx, gx)| (35)

Computing the absolute value is equivalent to performing the sign swap on one of the two transformations, as previously
described.

A.3. Closed-form Computation of Generalized Disparate Impact

We start from the definition of the GeDI family of indicators as for Equation (9), i.e.:

argmin
d,α

1

n
∥d(Fα− µ(Fα))− (y − µ(y))∥22 s.t. ∥α∥1 = 1 (36)

We can embed the constraint into the objective function C(d, α, λ) using a Lagrangian multiplier λ, from which we obtain:

argmin
d,α,λ

C(d, α, λ) s.t. C(d, α, λ) =
1

n
∥d(Fα− µ(Fα))− (y − µ(y))∥22 + λ(∥α∥1 − 1) (37)

The optimal solution of the objective function can be found by requiring its gradient to be null. This implies that having a
null derivative in d is a necessary condition for optimality, which we can exploit to retrieve the value of d∗ as follows. First,
we compute the derivative of C(d, α, λ) with respect to d:

∂C(d, α, λ)

∂d
=

2

n
(Fα− µ(Fα))T ((Fα− µ(Fα))d− (y − µ(y))) (38)

Then, by requiring Equation (38) to be null, we get the following equivalence:

1

n
(Fα∗ − µ(Fα∗))T (Fα∗ − µ(Fα∗))d∗ =

1

n
(Fα∗ − µ(Fα∗))T (y − µ(y)) (39)

The scalar values 1
n (Fα∗ − µ(Fα∗))T (Fα∗ − µ(Fα∗)) and 1

n (Fα∗ − µ(Fα∗))T (y − µ(y)) represent the variance of the
vector Fα∗ and the covariance between Fα∗ and y, respectively. Hence, we get the closed-form value of d∗ as:

d∗ =
cov(Fα∗, y)

var(Fα∗)
(40)

Finally, since Equation (8) ties the value of the GeDI indicator to the absolute value of d∗, we get:

GeDI (x, y;F ) =

∣∣∣∣cov(Fα∗, y)

var(Fα∗)

∣∣∣∣ (41)

12



Generalized Disparate Impact for Configurable Fairness Solutions in ML

A.4. Equivalence Between GeDI and DIDI

We consider the case of continuous target y and binary protected attribute x. The DIDI can be computed as for Equation (1):

DIDIr(x, y) =
∑
v∈X

∣∣∣∣∣
∑n

i=1 yiI(xi = v)∑n
i=1 I(xi = v)

− 1

n

n∑
i=1

yi

∣∣∣∣∣ (42)

Since x is a binary attribute (X = {0, 1}), we can replace the indicator function I(xi = v) with either 1−xi or xi depending
on the value v, obtaining:

DIDIr(x, y) =

∣∣∣∣∣
∑n

i=1(1− xi)yi∑n
i=1(1− xi)

− 1

n

n∑
i=1

yi

∣∣∣∣∣+
∣∣∣∣∣
∑n

i=1 xiyi∑n
i=1 xi

− 1

n

n∑
i=1

yi

∣∣∣∣∣ (43)

By algebraic manipulations within the summations, and by dividing for the constant factor n both the numerator and the
denominator of every fractional term, we can rewrite Equation (43) as:

DIDIr(x, y) =

∣∣∣∣µy − µxy

1− µx
− µy

∣∣∣∣+ ∣∣∣∣µxy

µx
− µy

∣∣∣∣ (44)

where µx and µy represent the average value of vectors x and y respectively, and µxy is the average value of vector x⊙ y.

We can further manipulate this equation to obtain:

DIDIr(x, y) =

∣∣∣∣µxµy − µxy

1− µx

∣∣∣∣+ ∣∣∣∣µxy − µxµy

µx

∣∣∣∣ (45)

The numerators of both terms are equal except for the sign, hence we can join the two absolute values by simply swapping
the sign of one of them. Moreover, we can notice that µxy − µxµy represents the covariance between x and y. Therefore:

DIDIr(x, y) =

∣∣∣∣cov(x, y)1− µx
+

cov(x, y)

µx

∣∣∣∣ = ∣∣∣∣cov(x, y)µx − µ2
x

∣∣∣∣ (46)

Since x is a binary vector, it is invariant to the power operator. Thus, µx = µx2 and, subsequently, the denominator of
Equation (46) reduces to the variance of x. Hence:

DIDIr(x, y) =

∣∣∣∣cov(x, y)var(x)

∣∣∣∣ = GeDI (x, y;V 1) (47)

The same reasoning can be applied when both x and y are binary vectors. Again, the indicator function I(xi = v) can be
replaced with either 1− xi or xi depending on the value v. Similarly, since in this case we are computing the DIDIc, we
replace I(yi = u) with 1− yi and yi, and I(yi = u ∧ xi = v) with the corresponding product between the previous terms.
Eventually, we obtain:

DIDIc(x, y) =

∣∣∣∣∣
∑n

i=1(1− xi)(1− yi)∑n
i=1(1− xi)

− 1

n

n∑
i=1

(1− yi)

∣∣∣∣∣+
∣∣∣∣∣
∑n

i=1 xi(1− yi)∑n
i=1 xi

− 1

n

n∑
i=1

(1− yi)

∣∣∣∣∣+∣∣∣∣∣
∑n

i=1(1− xi)yi∑n
i=1(1− xi)

− 1

n

n∑
i=1

yi

∣∣∣∣∣+
∣∣∣∣∣
∑n

i=1 xiyi∑n
i=1 xi

− 1

n

n∑
i=1

yi

∣∣∣∣∣
(48)

By using the same notation as in Equation (44) and applying analogous mathematical manipulations, we get to:

DIDIc(x, y) =

∣∣∣∣µxµy − µxy

1− µx

∣∣∣∣+ ∣∣∣∣µxy − µxµy

µx

∣∣∣∣+ ∣∣∣∣µxµy − µxy

1− µx

∣∣∣∣+ ∣∣∣∣µxy − µxµy

µx

∣∣∣∣ (49)

This value is twice as much that in Equation (45), meaning that the DIDIc is twice our indicator GeDI (x, y;V 1). This is
not a problem since we can get rid of the constant scaling factor. Moreover, when we constrain the DIDI indicator up to a
relative threshold that depends on the original level of discrimination, the scaling factor cancels out naturally.
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B. Appendix of Section 5
B.1. Optimized Fine-grained Formulation

We want to solve the following optimization model:

argmin
z

∥z − y∥22

s.t. GeDI (x, z;V k) = GeDI (x, z;V 1),

GeDI (x, z;V 1) ≤ q

(50)

where the GeDI indicator is defined as in Equation (8) and computed according to Equations (16)-(17).

Since we impose GeDI (x, z;V k) = GeDI (x, z;V 1), the optimal vector α̃∗ which solves Equation (16) for F = V k is
such that all the elements are null apart from the first one. It follows that:

F̃1
T
F̃ α̃∗

1 = F̃T ỹ (51)

where F̃1 = x− µ(x) = x̃ is the first column of the kernel matrix, namely the only one paired to a non-null α̃ coefficient.

Equation (51) is a system of k equations with a single variable. From the first equation we can retrieve the value of α̃∗
1 in the

following way:
x̃T x̃α̃∗

1 = x̃T ỹ (52)

whose solution is α̃∗
1 = cov(x,y)

var(x) . According to Equation (17), the GeDI indicator can be retrieved as the absolute value of
α̃∗
1 since all the remaining items of α̃∗ are null. This result is in fact equivalent to GeDI (x, y;V 1).

In addition to that, the remaining k − 1 equalities from Equation (51) must be satisfied. This can be achieved by operating
on the projections. Indeed, the optimization problem defined in Equation (50) has n free variables – i.e., the vector z –, with
n ≫ k in almost all the practical cases. These equalities are in the form:

F̃1
T
F̃jα̃

∗
1 = F̃j

T
ỹ ∀j ∈ {2, . . . , k} (53)

where F̃j = xj − µ(xj) = x̃j .

Since α̃∗
1 can be computed in closed-form, we can plug it into Equation (53), eventually obtaining the following set of

constraints:

cov(xj , x) cov(x, y) = cov(xj , y) var(x) ∀j ∈ {2, . . . , k} (54)

which can be used to solve Equation (50) without the need to set up the respective Least Squares Problems.

B.2. Experimental Setup for Reproducibility

All the models are trained on a machine with an Intel Core I9 10920X 3.5G and 64GB of RAM.

The Random Forest and Gradient Boosting models are based on their available implementations in scikit-learn
1.0.2 with default parameters, while the Neural Network and the semantics-based Regularization models are implemented
using torch 1.13.1. Specifically, the hyper-parameters of neural-based models are obtained via a grid search analysis
with train-test splitting on the two unconstrained tasks aimed at maximizing test accuracy. In particular, the neural models
are trained for 200 epochs with batch size 128 and two layers of 256 units for the Communities & Crimes tasks and three
layers of 32 units for the Adult tasks. The only exception is the semantics-based Regularization model which runs for 500
epochs to compensate the fact that it is trained full-batch in order to better deal with group constraints. Additionally, all the
neurons have ReLU activation function except for the output one, which has either linear or sigmoid activation depending on
whether the task is regression or classification, respectively. Accordingly, the loss function is either mean square error or
binary crossentropy, but in both cases the training is performed using the Adam optimizer with default hyperparameters.

As regards Moving Target’s optimization routine, we leverage the Python APIs offered by gurobipy 10.0 to solve it
within our Python 3.7 environment. The backend solver is Gurobi 10.0, for which we use the default parameters
except for WorkLimit = 60.
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B.3. Constrained Approaches Descriptions

Here we will briefly present the two approaches that we use to enforce our constraint in several ML models. Both approaches
are employed to solve the following constrained optimization problem:

argmin
θ

L(f(x; θ), y) s.t. f(x; θ) ∈ C (55)

where f(x; θ) represent the predictions of the ML model f with learned parameters θ, C is the feasible region, and L is a
task-specific loss function. For both the approaches, the original papers are provided as reference for a more details.

Moving Targets Moving Targets (MT) (Detassis et al., 2021) is a framework for constrained ML based on bilevel
decomposition. It works by iteratively alternating between a learner step, which is in charge of training the ML model,
and a master step, which projects the solution onto the feasible space while minimizing the distance between both model’s
predictions and original targets. In practice, MT solves the problem described in Equation (55) by alternating between the
two following sub-problems:

z(i) = argmin
z

L(z, f(x; θ(i−1))) + α(i) · L(z, y) s.t. z ∈ C (56)

θ(i) = argmin
θ

L(f(x; θ), z(i)) (57)

where the subscript (i) indicates values obtained at the ith iteration, α(i) is a factor used to balance the distance between the
original targets and the predictions during the master step, and the first value θ(0) is obtained by pre-training the ML model.

The algorithm is perfectly suited for our purpose for three main reasons: 1) it is model-agnostic, thus allowing us to test the
behaviour of our constraint for different models, each of which has its own specific bias and limitation; 2) it is conceived to
deal with declarative group-constraints like the GeDI one, since it allows to train the ML model using mini-batches if needed;
and 3) it can naturally deal with classification tasks without the need of relaxing the class targets to class probabilities.

As regards our experiments, the learner step is performed as a plain ML task leveraging either scikit-learn or torch
depending on the chosen model. Instead, the master step is formulated as a Mixed-integer Program (MIP) and delegated
to the Gurobi solver. More specifically, for the coarse-grained constraint formulation we define k free variables for the
coefficients α̃ and retrieve their values by imposing an equality constraints according to Equation (19); the overall constraint
on the GeDI value is then imposed according to Equation (20). As for the fine-grained formulation, we force the constraint
−q ≤ cov(x, z) ≤ q in order not to exceed the defined threshold and, additionally, we impose the satisfaction of the k − 1
equality constraints defined in Equation (53), as motivated by the optimized formulation showed in Appendix B.1.

Finally, in our setup we define each value α(i) as the ith item of the harmonic series, namely α(i) = i−1, and the loss
function L is either MSE or Hamming Distance depending on whether the task is regression or classification. Respectively
to the Semantic-based Regularization approach, a key advantage of MT lies in the fact that MIP models can naturally deal
with discrete variables, thus requiring no need to relax the problem to the continuous domain.

Semantic-based Regularization The Lagrangian Dual framework for Semantic-based Regularization (Fioretto et al.,
2021) extends the concept of loss penalizers by allowing for an automated calibration of the lagrangian multipliers.
Specifically, let us consider the case in which we have a penalty vector P(y, f(x; θ)) ∈ R+k which represents the violations
for k different constraints. We can embed these violations in the loss function L(y, f(x; θ)) ∈ R+ of our neural model by
multiplying each violation with its respective multiplier λi. The overall loss will be

L(y, f(x; θ)) + λTP(y, f(x; θ)).

The main pitfall of this approach is that it requires to fine-tune the multipliers vector λ according to the task. The Lagrangian
Dual framework solves this problem by proposing a bilevel optimization schema where: 1) the loss function is minimized
via gradient-descent with fixed multipliers, and 2) the loss function is maximized via gradient-ascent with fixed network
structure. In practice, this is equivalent to perform the following steps in sequence:

θ(i) = argmin
θ

{
L(y, f(x; θ)) + λT

(i−1)P(y, p)
}

(58)

λ(i) = argmin
λ

{
L(y, f(x; θ(i))) + λTP(y, p)

}
(59)
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where the subscript (i) indicates the value of the ith iteration – performed once per batch –, and λ(0) is a null vector.

As regards our experiments, the α̃ coefficients are computed via the torch.linalg.lstsq differentiable operator. In
the coarse-grained formulation, the penalizers vector P(y, f(x; θ)) consists of a single which is computed according to
Equation (21). Instead, in the fine-grained formulation the vector has k different terms – one for each α̃i –, of which all but
the first term exhibit a violation proportional to their absolute value.

A major pitfall of this approach is due to the incompatibility of the round operator with gradient-based learning algorithms,
being its gradient null for each x. This makes it necessary to relax the formulation of the GeDI indicator (only) in
classification tasks, by adopting predicted probabilities rather than predicted class targets.
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