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Abstract

This paper provides theoretical analyses of problem-independent upper and lower1

regret bounds for Gaussian randomized algorithms in semi-bandits with sleeping2

arms, where arms may be unavailable in certain rounds, and available arms satis-3

fying combinatorial constraints can be played simultaneously. We first introduce4

the CTS-G algorithm, an adaptation of Thompson sampling with Gaussian priors,5

achieving an upper bound of Õ(m
√
NT ) over T rounds with N arms and up to m6

arms played per round, where Õ hides the logarithmic factors. Next, we present7

CL-SG, which improves upon CTS-G by using a single Gaussian sample per round,8

achieving a near-optimal upper regret bound of Õ(
√
mNT ). We also establish that9

both algorithms have lower regret bounds of Ω(
√

mNT ln N
m ) and Ω(

√
mNT ),10

respectively.11

1 Introduction12

We consider a sleeping semi-bandit problem with a fixed set [N ] = {1, 2, . . . , N} of N base arms13

and each base arm a ∈ [N ] is associated with an unknown probability distribution pa supported on14

[0, 1] and mean ra. Unlike standard combinatorial bandits (Kveton et al., 2015), where a learning15

agent, in each round t = 1, . . . , T , plays a super arm (combinations of base arms) At ∈ Θ,16

where Θ ⊆ 2[N ] is a feasible set that satisfy certain constraints, sleeping semi-bandits involve a17

time-varying feasible set Θt ⊆ Θ, revealed at each round t. After observing the feasible set Θt in18

round t, the learning agent selects a super arm At ∈ Θt, observes rewards ra,t ∼ pa for each base19

arm a ∈ At, and aims to minimize the T -round (pseudo)-regret defined as follows.20

R(T ) :=
T∑

t=1
E
[∑

a∈A∗
t
ra − ∑

a∈At
ra

]
, (1)

where A∗
t := arg maxA∈Θt

∑
a∈A ra denotes the optimal super arm in round t and the expectation21

is taken over Θt, At, and A∗
t . Note that A∗

t is determined by Θt. We further denote by m :=22

maxA∈Θ |A| the maximum number of base arms in any super arm.23

The upper confidence bound (UCB) (Agrawal, 1995; Auer et al., 2002) and Thompson sam-24

pling (TS) (Thompson, 1933; Kaufmann et al., 2012; Agrawal & Goyal, 2012, 2017a) are two25

leading algorithmic families for addressing stochastic bandit problems. For semi-bandit settings, the26

minimax lower bound is established as Ω(
√
mNT )(Kveton et al., 2015; Merlis & Mannor, 2020), and27

UCB-based algorithms achieve an upper bound of O(
√
mNT ln T ) (Kveton et al., 2015). Although28

TS-based algorithms have been analyzed for problem-dependent bounds in semi-bandits (Wang &29

Chen, 2018; Perrault et al., 2020), their results cannot be simply extended to reasonable problem-30

independent bounds because their bounds contain constant terms that grow exponentially with m.31
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While a substantial body of literature has explored the setting of sleeping semi-bandits (Hu et al.,32

2019; Li et al., 2019; Wu & Li, 2024) using upper confidence bound (UCB)-based algorithms with an33

upper bound of O(
√
mNT ln T ), the upper and lower bounds for Thompson sampling (TS)-based34

algorithms for (sleeping) semi-bandits still remain an open problem. Since TS is highly competitive35

with advanced UCB-based algorithms and widely used in large-scale applications (Chapelle & Li,36

2011), investigating the theoretical performance of TS-based algorithms is crucial.37

This work addresses long-standing gaps in the literature by introducing two algorithms with provable38

theoretical guarantees. The first algorithm, CTS-G, is an adaptation of TS with Gaussian priors39

specifically designed for sleeping semi-bandits, achieving an upper bound of Õ(m
√
NT ), where40

Õ hides the logarithmic factors, and a lower bound of Ω(
√
mNT ln N

m ). We further introduce41

CL-SG, which improves upon CTS-G both theoretically and practically by employing only a single42

Gaussian sample, resulting in tighter bounds: an upper bound of Õ(
√
mNT ) and a lower bound of43

Ω(
√
mNT ). CL-SG is minimax-optimal up to logarithmic factors compared to the known lower44

bound for combinatorial bandits (Kveton et al., 2015; Merlis & Mannor, 2020).45

2 Gaussian Randomized Algorithms46

We first present some notations specific to this section. Let na,t :=
∑t−1

τ=1 1[a ∈ Aτ ] denote the47

total number of times that base arm a ∈ [N ] has been pulled at the beginning of round t. Let48

r̂a,na,t
:=

∑t−1
τ=1 1[a∈Aτ ]·ra,τ

na,t
denote the empirical mean of base arm a at the beginning of round49

t, which is the average of na,t i.i.d. random variables according to reward distribution pa. Let Ft50

collect all the actions and observed rewards up to the end of round t51

In Sec. 2.1, we present CTS-G, an algorithm enjoying Õ(m
√
NT ) and Ω(

√
mNT ln N

m ) upper52

and lower regret bounds. In Sec. 2.2, we present CL-SG, an algorithm enjoying Õ(
√
mNT ) and53

Ω(
√
mNT ) upper and lower regret bounds. The practical performance of both algorithms is discussed54

in Appendix A, and all the detailed proofs can be found in Appendix C to D.55

2.1 Combinatorial Thompson Sampling with Gaussian Priors (CTS-G)56

CTS-G presented in Alg. 1 is a direct adaptation of TS with Gaussian priors (Agrawal & Goyal, 2017b)57

to the sleeping semi-bandit problems. The core idea is to use posterior distributions to model the mean58

reward ra of each base arm a ∈ [N ]. In each round t, CTS-G draws a Gaussian posterior sample59

wa,t ∼ N (r̂a,na,t ,
γm ln t
na,t+1 ) for each a ∈ [N ], where γ > 0 is a constant parameter to control the60

exploration level.1 We can view the collection wt = {wa,t, ∀a ∈ [N ]} of all posterior samples as61

the “sampled problem instance” based on which the learning agent conducts learning in round t. Then,62

based on the revealed feasible set Θt, CTS-G plays the super arm At ∈ arg maxA∈Θt

∑
a∈A wa,t63

with the highest aggregated value of posterior samples and observes each individual base arm’s64

random reward.65

Theorem 1. (1) The regret of CTS-G is O
(
m ln(T )

√
NT

)
. (2) There exists a problem instance66

such that CTS-G suffers Ω
(√

mNT ln
(
N
m

))
regret.67

Discussion. Theorem 1 states that CTS-G is worst-case optimal up to an extra ln(T )
√
m factor.68

Compared with UCB-based algorithms for sleeping semi-bandits, our upper bound has an extra69

factor of
√
m ln T with the ones by Hu et al. (2019); Li et al. (2019), which are O(

√
mNT ln T ).70

However, it is important to note a significant aspect of our model: unlike the assumptions in Hu et al.71

(2019); Li et al. (2019), our bound is derived without relying on stochastic assumptions regarding72

the availability of arms. Furthermore, the upper bound is minimax optimal up to an extra ln(T )
√
m73

factor as compared to the Ω
(√

mNT
)

minimax lower bound for combinatorial bandits shown in74

Merlis & Mannor (2020).75

1In practice, we only need to draw posterior samples for available arms to improve efficiency.
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Upper bound proof sketch. The theoretical analysis is non-trivial due to overlapping base arms76

among super arms, the dynamic nature of the optimal super arm A∗
t , and its unobservability, as only the77

played super arm At is observed in each round t To decompose the regret, we define a high probability78

event for the empirical estimates. Let Et :=
{
|ra − r̂a,na,t

| ≤
√

3 ln(Nt)
na,t+1 , ∀a ∈ [N ]

}
be the79

event that the empirical means are close to their true means by the beginning of round t. Let80

t′ = max{√m, 4} and EΘt [·] := E[· | Θt]. Then, we decompose the regret defined in (1) as81

R(T ) ≤
T∑

t=t′

E

∑
a∈A∗

t

ra − EΘt

[∑
a∈At

wa,t

]
︸ ︷︷ ︸

=:I1, optimism term

+
T∑

t=t′

E

[
EΘt

[∑
a∈At

(wa,t − ra) 1[Et]
]]

︸ ︷︷ ︸
=:I2, deviation term

+mt′ + O(1).

The deviation term I2 is easy to analyze as we can observe At, and is upper bounded by Õ(m
√
NT )82

via using concentration bounds. The center question is how to upper bound the optimism term, which83

measures the gap between the maximum amount of true reward
∑

a∈A∗
t
ra the learning agent could84

achieve and the expected maximum amount of reward
∑

a∈At
wa,t the learning agent can observe85

in round t. Intuitively, if the learning agent is lucky, i.e., the history Ft−1 gives
∑

a∈A∗
t
ra ≤86

EΘt

[∑
a∈At

wa,t

]
, there is no regret in round t for this term. Let (·)+ := max {·, 0} be an87

activation function. Then, we have88 ∑
a∈A∗

t
ra − EΘt

[∑
a∈At

wa,t

]
≤
(∑

a∈A∗
t
ra − EΘt

[∑
a∈At

wa,t

])+
. (2)

Let c(γ) be a constant only depending on γ. In our novel technical Lemma 1, inspired by Russo89

(2019), we show90

(∑
a∈A∗

t
ra − EΘt

[∑
a∈At

wa,t

])+
≤ c(γ) · EΘt

( ∑
a∈At

wa,t − EΘt

[ ∑
a∈At

wa,t

])+
 ,

(3)
which tackles the challenge brought by the unobservability of A∗

t .91

Next, via introducing an independent “ghost” copy w̃a,t ∼ N (r̂a,na,t
, γm ln t

na,t+1 ) of wa,t, we show92

EΘt

( ∑
a∈At

wa,t − EΘt

[ ∑
a∈At

wa,t

])+
 ≤ EΘt

[∣∣∣∣∣ ∑a∈At

(wa,t − w̃a,t)

∣∣∣∣∣
]
, (4)

which gets rid of the introduced activation function.93

Since wa,t − w̃a,t ∼ N
(
0, 2γm ln t

na,t+1

)
, we only need to deal with Gaussian random variables and94

have95
T∑

t=t′
E

[∣∣∣∣∣ ∑a∈At

(wa,t − w̃a,t)

∣∣∣∣∣
]

≤ O
(
m ln T

√
γNT

)
. (5)

96

Lower bound proof sketch. Inspired by Theorem 1.4 in Agrawal & Goyal (2017b), the lower bound97

is refined by constructing a path selection problem with N links (base arms) and K paths (super98

arms) of m links. This reduces the semi-bandits to K independent path selections, and the result99

follows using the anti-concentration inequality for Gaussian variables (Appendix C.7)100

2.2 Combinatorial Learning with Single Gaussian Seed (CL-SG)101

Since the upper bound of CTS-G still has an extra ln(T )
√
m factor from the minimax lower102

bound Merlis & Mannor (2020) for combinatorial bandits, we are motivated to improve the up-103

per bound by controlling the amount of randomness injected within the learning algorithm.104

Inspired by Xiong et al. (2022), we devise CL-SG which enjoys a Õ(
√
mNT ) regret bound. The105

key idea behind the removal of the extra
√
m factor as compared to the regret of CTS-G (Alg. 1)106
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is CL-SG uses a single random seed wt ∼ N (0, 1) to perturb the empirical estimates of all the107

base arms, as shown in Alg. 2. After drawing wt, we construct r̄a,t = r̂a,na,t
+ wt ·

√
γ ln t
na,t+1108

for all the base arms a ∈ [N ], where constant γ > 0 controls the exploration level. Then, we play109

At = arg maxA∈Θt

∑
a∈A r̄a,t from the feasible set Θt in round t.110

Theorem 2. (1) The regret of CL-SG is O
(
ln T

√
mNT

)
. (2) There exists a problem instance such111

that CL-SG suffers Ω
(√

mNT
)

regret.112

Discussion. The extra
√
m in CTS-G comes from the m factor in the variance of the Gaussian113

posterior sample wa,t, necessary to keep c(γ) bounded by a constant. To bound c(γ), we must114

lower bound PrΘt

(∑
a∈A∗

t
wa,t − r̂a,na,t

≥ ∑
a∈A∗

t

√
4 ln t
na,t+1

)
, requiring the Cauchy-Schwarz115

inequality to bring the summation inside the square root for the RHS term in the probability, which116

scales with
√
m, i.e.,

∑
a∈A∗

t

√
4 ln t
na,t+1 ≤

√
m
∑

a∈A∗
t

4 ln t
na,t+1 . This fact further results in an117

extra m in the variance of CTS-G Gaussian samples for the probability to be lower bounded118

by a constant. On the other hand, with CL-SG, using a single wt, we lower bound a similar119

probability, Pr
(∑

a∈A∗
t
wt

√
γ ln t
na,t+1 ≥ ∑

a∈A∗
t

√
4 ln t
na,t+1

)
, allowing us to divide both sides by120 ∑

a∈A∗
t

√
4 ln t
na,t+1 and avoid the extra m in the variance.121

The lower-bound proof considers the same problem instance to Theorem 1 but differs in addressing122

the arms’ dependency in CL-SG due to the common wt. Let ∆ :=
√

N
mT be the reward gap between123

each suboptimal arm and the optimal super arm, and let QA(t) be the number of times that super124

arm A has been played at the beginning of round t. Then, denote by B∗
t := {QA1

(t) > t − cT}125

the event that the optimal super arm A1 has been observed enough times at the beginning of126

round t, where c ∈ (0, 1) is a constant. It is easy to prove that the regret is lower bounded127

by cT · m · ∆ = Ω(
√
mNT ) when B∗

t is false for some t ∈ [T ]. The main challenge is128

to demonstrate that, conditioned on the past histories Ft−1 that lead to the happening of event129

B∗
t , the probability of playing a suboptimal super arm is at least a constant probability p0, i.e.,130

Pr (∃A ∈ Θ \ A1 : At = A | Ft−1 = Ft−1) ≥ p0. This leads to lower bound a probability131

that the empirical estimates of suboptimal arms are larger than the optimal super arm, i.e.,132

Pr

(
∃A ∈ Θ \ A1 :

∑
a∈A

r̂a,QA(t) + wt

√
γ ln t

QA(t) + 1
>
∑
b∈A1

r̂b,QA1
(t) + wt

√
γ ln t

QA1(t) + 1
| Ft−1 = Ft−1

)

≥ Pr

(
∃A ∈ Θ \ A1 : wt

(
1 −

√
QA(t) + 1

QA1
(t) + 1

)
> ∆

√
QA(t) + 1 | Ft−1 = Ft−1

)
.

This requires analyzing the play ratio between suboptimal and optimal super arms, while in the133

lower-bound analysis of Theorem 1, we can avoid this situation by independently considering the134

estimates of the optimal super arm is smaller than 0, and that of suboptimal arms is larger than 0.135

The trick to address this ratio is to only consider the regret from αT to T , with α ∈ (0, 1) such that136
QA(t)+1
QA1

(t)+1 ≤ cT+1
(α−c)T+1 is a constant by tuning c and α. Then, by applying the anti-concentration137

bound for Gaussian variables and solving a non-trivial optimization problem, we can prove such a p0138

exists, and regret is lower bounded by (1 − α)T · p0 · m∆ = Ω(
√
mNT ).139

3 Conclusion140

In this paper, we have studied the problem of sleeping semi-bandits and presented CTS-G and CL-SG141

with theoretical guarantees. Our results bridge the existing gap in the literature by providing upper and142

lower bounds for TS-based algorithms in sleeping semi-bandits. Future work will focus on narrowing143

the gap between these bounds, and studying the relationship between the number of random variables144

and their variances.145
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Algorithm 1 Combinatorial Thompson Sampling with Gaussian Priors (CTS-G)

Require: arm set [N ], exploration rate γ
Initialize na,1 = 0 and r̂a,na,1 = 0 for all base arms a ∈ [N ]
for t = 1, 2, . . . do

Observe feasible set Θt

Draw wa,t ∼ N (r̂a,na,t
, γm ln t

na,t+1 ) for each base arm a ∈ [N ]

Play super arm At = arg max
A∈Θt

∑
a∈A wa,t

Observe ra,t ∼ pa for all base arms a ∈ At and update na,t and r̂a,na,t
for all a ∈ At.

end for

Algorithm 2 Combinatorial Learning with Single Gaussian Seed (CL-SG)

Require: arm set [N ], exploration rate γ
Initialize na,1 = 0 and r̂a,0 = 0 for all base arms a ∈ [N ]
for t = 1, . . . do

Observe decision set Θt

Draw wt ∼ N (0, 1)

Construct r̄a,t = r̂a,na,t
+ wt ·

√
γ ln t
na,t+1 for all base arms a ∈ [N ]

Play super arm At = arg max
A∈Θt

∑
a∈A

r̄a,t

Observe ra,t ∼ pa for all base arms a ∈ At and update na,t and r̂a,na,t for all a ∈ At.
end for

A.2 Combinatorial Learning with Least Gaussian Seed (CL-LG)190

We aim to explore whether further reducing the number of Gaussian samples in the algorithm can191

enhance the practical performance. To this end, we propose the Combinatorial Learning with Least192

Gaussian Seed (CL-LG) algorithm, as shown in Alg. 3. Different from CL-SG (see Alg. 2), which193

requires an independent Gaussian sample in each round, our approach only draws a single Gaussian194

sample w ∼ N (0, 1) at the beginning of the game.195

Algorithm 3 Combinatorial Learning with Least Gaussian Seed (CL-LG)

Require: arm set [N ], exploration rate γ
Initialize na,1 = 0 and r̂a,0 = 0 for all base arms a ∈ [N ]
Draw w ∼ N (0, 1)
for t = 1, . . . do

Observe feasible set Θt

Construct r̄a,t = r̂a,na,t
+ w ·

√
γ ln t
na,t+1 for all base arms a ∈ [N ]

Play super arm At = arg max
A∈Θt

∑
a∈A r̄a,t

Observe ra,t ∼ pa for all base arms a ∈ At and update na,t and r̂a,na,t for all a ∈ At.
end for

A.3 Experiment Settings196

We conduct experiments in two settings to show the performance of the proposed algorithms with197

γ = 0.1 to study the number of Gaussian seeds and the impact of different γ, which can be found in198

Appendix A.4 and A.5. All the experiment results are the average of 100 independent experiments199

conducted on a MacBook Pro with M1 Max and 32GB RAM using Numpy.200

In Setting 1, we consider a simple environment with N = 10 arms, and at most m = 3 arms can201

be played in each round. The actual rewards for all the arms follow the Bernoulli distributions, while202

the first three arms have a mean reward of 0.9, and the rest of the arms have a mean reward of 0.8.203

In Setting 2, we consider a more complicated setting where N = 50 and m = 15. In this setting,204

rewards are again based on Bernoulli distributions, where the first five arms have mean rewards205

6



generated uniformly from [0.725, 0.75], and the rest of the arms have mean rewards generated206

uniformly from [0.7, 0.725]. For both settings, the availability of each arm is determined by a207

Bernoulli distribution with a mean of 0.5. The reason we chose Bernoulli distributions for the208

rewards is that we want to compare with the following CTS-B (which requires Bernoulli rewards)209

and CombUCB algorithms. Both algorithms play arms At := arg maxA∈Θt

∑
a∈A θa,t, where210

θa,t is defined differently as follows.211

• CTS-B (Wang & Chen, 2018): In each round t, CTS-B draws random samples from Beta distribu-212

tions for each available arm θa,t ∼ Beta(r̂a,na,t
na,t + 1, na,t − na,tr̂a,na,t

+ 1), and plays213

arms At := arg maxA∈Θt

∑
a∈A θa,t.214

• CombUCB (Kveton et al., 2015): In each rount t, CombUCB estimates the UCB values for each215

arm θa,t = r̂a,na,t +
√

1.5 ln t
na,t

in each round t.216

A.4 Impact of Number of Gaussian Seed217

The regret results over T = 105 rounds are shown in Fig. 1 with 97.5% confidence intervals.218

In both settings, CTS-G performs worse than others, suffering the highest regret, because of the219

algorithm’s reliance on Gaussian random samples, which are unbounded and result in an excessive220

exploration rate. This overemphasis on exploration, at the expense of exploiting known rewarding221

arms, fundamentally undermines the algorithm’s efficiency.222

On the other hand, CL-SG demonstrates comparable performance to CL-LG in Setting 1, both223

outperforming CTS-B. In Setting 2, CL-SG maintains its advantage, whereas CL-LG falls behind224

CTS-G. This highlights the effectiveness of CL-SG’s design in optimizing the exploration-exploitation225

trade-off more efficiently than its counterparts.226

Notably, in both settings, CL-LG with γ = 0.1 outperforms CombUCB, suggesting that the initial227

randomness incorporated in CL-LG helps balance the trade-off between exploration and exploitation.228

It remains an open question of how initial randomness helps.229

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0.0

0.2

0.4

0.6

0.8

1.0

R
eg

re
t

×102

CTS-G (γ = 0.1)

CL-SG (γ = 0.1)

CL-LG (γ = 0.1)

CombUCB

CTS-B

(a) Setting 1 (N = 10 and m = 3)

0.0 0.2 0.4 0.6 0.8 1.0
t ×105

0

1

2

3

4

5

6

7

R
eg

re
t

×103

CTS-G (γ = 0.1)

CL-SG (γ = 0.1)

CL-LG (γ = 0.1)

CombUCB

CTS-B

(b) Setting 2 (N = 50 and m = 15)

Figure 1: The comparison of regret for both settings with γ = 0.1.

A.5 Impact of Different γ230

We performed experiments with the CTS-G, CL-SG, and CL-LG algorithms under Settings 1 and 2.231

The experiments utilized γ values of 0.01, 0.1, 0.5, and 1. The results are illustrated in Figs. 2 and 3.232

Regarding Setting 1, CTS-G performs worse as γ increases, as shown in Fig. 2a, because a higher γ233

corresponds to a higher exploration rate, which will over-explore the simple scenario. For CL-SG,234

the performance with γ = 0.1 is better than that with other γ values. CL-LG achieves the best235

performance with 0.5, which indicates the performance of algorithms is not necessarily linear with γ.236

When comparing the algorithms at their optimal γ values (see Fig. 2d), CTS-G shows the worst237

performance, whereas CL-SG performs comparably to CL-LG.238
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Figure 2: The comparison of different γ for CTS-G, CL-SG and CL-LG in Setting 1.

Additionally, CTS-G is very sensitive to the change of γ, and the performance of CTS-G with γ = 1239

is about 200 times worse than that of CTS-G with γ = 0.01. In contrast, CL-SG and CL-LG240

demonstrate greater robustness to changes in γ, showing that fewer Gaussian samples may prevent241

over-exploration.242

Regarding the more complicated Setting 2, we can observe a change in CL-LG, where γ = 1 leads243

to the worst performance, while γ = 0.5 achieves the best performance. This indicates that CL-LG244

with γ = 1 will over-explore. When comparing all the algorithms with their optimal γ values, we245

can see that CL-SG with γ = 0.1 achieves the best performance. More interestingly, we can observe246

that algorithms with fewer Gaussian samples require higher γ to achieve better performance.247

From this experiment, we can see that different Gaussian samples react differently to different248

exploration rates. This observation raises an intriguing question for future research: what is the249

relationship between the number of random variables and their variance, and what is the optimal250

combination to achieve the best results?251

A.6 Tightness of regret bound252

We consider a setting of 100 arms, and at most 10 arms can be played in each round. The mean253

rewards for the first 10 arms are 0.925, and the mean rewards for the rest suboptimal arms are 0.9.254

We compare the regret of CTS-G with the lower regret bound 0.1
√
mNT ln(Nm ) in Fig. 4a. As we255

can see, there are still gaps between the actual performance and the theoretical lower bound, and the256

increasing rate of CTS-G is larger than the lower bound, which indicates that the lower bound may257

still have room to be improved.258

Similarly, we compared CT-SG with the lower bound of 0.1
√
mNT , and we can see that the regret259

of CL-SG increases faster than the lower bound, indicating that the lower bound can be improved.260
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Figure 3: The comparison of different γ for CTS-G, CL-SG and CL-LG in Setting 2.
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Figure 4: Tightness of Regret Bound for both CTS-G and CL-SG.

B Notations and Facts261

Notations: Let Ft−1 denote by the history of past actions and rewards until the end of262

round t − 1. Recall that EΘt [·] := E[· | Θt] and PrΘt(·) := Pr(· | Θt). Denote by Et :=263 {
∀a ∈ [N ] : |ra − r̂a,na,t | ≤

√
3 ln Nt
na,t+1

}
the high-probability event that the empirical mean264

is close to the true mean reward for arm a, and by Et the complementary event of Et. Recall that265

w̃a,t ∼ N (r̂a,na,t
, γm ln t

na,t+1 ) is i.i.d. of wa,t for CTS-G, and r̃t := r̂a,na,t
+ w̃t

√
γ ln t
na,t+1 , where266

w̃t ∼ N (0, 1) is i.i.d. of wt for CL-SG.267

Fact 1. For a Gaussian distributed random variable Z with mean µ and variance δ2, for any z, we268

have that269

1

4
√
π

· e−7z2/2 ≤ Pr(|Z − µ| > zσ) ≤ 1

2
e−z2/2, (6)
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and for any z > 0,270

Pr(Z − µ > zσ) ≥ 1√
2π

z

z2 + 1
e−

z2

2 . (7)

Fact 2. Let X1, . . . , XN be N real random variables with Xi ∼ subG
(
σ2
)
, i = 1, . . . , N ,271

not necessarily independent. Then,272

E
[

max
i=1,...,N

|Xi|
]

≤ σ
√

2 log(2N).

C Proofs for Theorem 1273

C.1 Proof of Lemma 1274

Lemma 1. In any round t ≥ max{√m, 4}, the optimism part in CTS-G satisfies that275

E

 T∑
t=max{

√
m,4}

∑
a∈A∗

t

ra −
∑
a∈At

wa,t

 ≤ 8
√

3γΦ(−
√
4/γ)−1m ln T

√
NT. (8)

Proof. For each a ∈ [N ], we let w̃a,t ∼ N
(
r̂a,na,t ,

mγ ln t
na,t+1

)
be an independent copy of wa,t.276

Let (·)+ := max {·, 0}. Let w collect all the Gaussian random variables wa,t for all a ∈ [N ].277

Recall that EΘt
[·] := E[· | Θt]. There are three steps for the proofs.278

Step 1: we show that in each round t ≥ max{√m, 4}, we have279

EΘt

∑
a∈A∗

t

ra −
∑
a∈At

wa,t

 ≤ 2Φ(−
√

4/γ)−1EΘt

(∑
a∈At

wa,t − EΘt

[∑
a∈At

wa,t

])+
 .

(9)

Step 2: we further bound the expectation term in the RHS of (9) as follows.280

EΘt

(∑
a∈At

wa,t − EΘt

[∑
a∈At

wa,t

])+
 ≤ EΘt

[∣∣∣∣∣∑
a∈At

wa,t −
∑
a∈At

w̃a,t

∣∣∣∣∣
]
. (10)

Step 3: summing over T , we show that (10) is upper bounded as follows.281

E

[
T∑

t=1

∣∣∣∣∣∑
a∈At

wa,t −
∑
a∈At

w̃a,t

∣∣∣∣∣
]

≤ 4m ln T
√
3γNT (11)

Combining these three steps, we have282

E

 T∑
t=max{

√
m,4}

∑
a∈A∗

t

ra −
∑
a∈At

wa,t


≤ 2Φ(−

√
4/γ)−1E

 T∑
t=max{

√
m,4}

∣∣∣∣∣∑
a∈At

wa,t −
∑
a∈At

w̃a,t

∣∣∣∣∣


≤ 2Φ(−
√
4/γ)−1E

[
T∑

t=1

∣∣∣∣∣∑
a∈At

wa,t −
∑
a∈At

w̃a,t

∣∣∣∣∣
]

≤ 8
√

3γΦ(−
√

4/γ)−1m ln T
√
NT.

(12)

Now, we give the details for these three steps.283

Let α := EΘt

[∑
a∈A∗

t
ra − ∑

a∈At
wa,t

]
.284
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Step 1 proof. If α = EΘt

[∑
a∈A∗

t
ra − ∑

a∈At
wa,t

]
≤ 0, the proof is trivial as the RHS of285

(9) is non-negative. Note that 2Φ(−
√
4/γ)−1 < +∞286

For the case where α > 0 , we view
(∑

a∈At
wa,t − EΘt

[∑
a∈At

wa,t

])+ ≥ 0 as a non-287

negative random variable and use Markov’s inequality. We have288

EΘt

[(∑
a∈At

wa,t − EΘt

[∑
a∈At

wa,t

])+] ≥ α PrΘt

(∑
a∈At

wa,t − EΘt

[∑
a∈At

wa,t

]
≥ α

)
,

(13)
which gives289

α ≤

EΘt

( ∑
a∈At

wa,t − EΘt

[ ∑
a∈At

wa,t

])+


PrΘt

( ∑
a∈At

wa,t − EΘt

[ ∑
a∈At

wa,t

]
≥ α

)

=

EΘt

( ∑
a∈At

wa,t − EΘt

[ ∑
a∈At

wa,t

])+


PrΘt

( ∑
a∈At

wa,t − EΘt

[ ∑
a∈At

wa,t

]
≥ EΘt

[ ∑
a∈A∗

t

ra − ∑
a∈At

wa,t

])

=

EΘt

( ∑
a∈At

wa,t − EΘt

[ ∑
a∈At

wa,t

])+


PrΘt

( ∑
a∈At

wa,t ≥ ∑
a∈A∗

t

ra

) (a)

≤

EΘt

( ∑
a∈At

wa,t − EΘt

[ ∑
a∈At

wa,t

])+


PrΘt

( ∑
a∈A∗

t

wa,t ≥ ∑
a∈A∗

t

ra

)
(b)

≤ 2Φ(−
√
4/γ)−1 · EΘt

(∑
a∈At

wa,t − EΘt

[∑
a∈At

wa,t

])+
 ,

(14)
where step (a) is due to that At is the optimal super arm, and thus, we have

∑
a∈A∗

t
wa,t ≤290 ∑

a∈At
wa,t and step (b) uses the result shown in Lemma 4.291

Step 2 proof. Recall that wa,t and w̃a,t are i.i.d. according to N
(
r̂a,na,t

, mγ ln t
na,t+1

)
,292

and At is the optimal super arm based on Θt and w. We have EΘt

[∑
a∈At

wa,t

]
=293

EΘt

[
maxA∈Θt

∑
a∈A wa,t

]
= EΘt

[
maxA∈Θt

∑
a∈A w̃a,t

]
≥ EΘt

[∑
a∈At

w̃a,t | At

]
=294

EΘt

[∑
a∈At

w̃a,t | At, w
]
. Then, we have295
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EΘt

(∑
a∈At

wa,t − EΘt

[∑
a∈At

wa,t

])+
 ≤ EΘt

(∑
a∈At

wa,t − EΘt

[∑
a∈At

w̃a,t | At

])+


= EΘt

(∑
a∈At

wa,t − EΘt

[∑
a∈At

w̃a,t | At, w

])+


= EΘt

(EΘt

[(∑
a∈At

wa,t −
∑
a∈At

w̃a,t

)
| At, w

])+


≤ EΘt

[∣∣∣∣∣EΘt

[(∑
a∈At

wa,t −
∑
a∈At

w̃a,t

)
| At, w

]∣∣∣∣∣
]

≤ EΘt

[
EΘt

[∣∣∣∣∣∑
a∈At

wa,t −
∑
a∈At

w̃a,t

∣∣∣∣∣ | At, w

]]

= EΘt

[∣∣∣∣∣∑
a∈At

wa,t −
∑
a∈At

w̃a,t

∣∣∣∣∣
]
,

(15)
where the last inequality is due to Jensen’s inequality.296

Step 3 proof. Since wa,t − w̃a,t ∼ N
(
0, 2γm ln t

na,t+1

)
, we can express wa,t − w̃a,t as

√
2ζa,tδa,t,297

where ζa,t ∼ N (0, 1) and δa,t =
√

γm ln t
na,t+1 . Thus, we have298

E

[
T∑

t=1

∣∣∣∣∣∑
a∈At

wa,t −
∑
a∈At

w̃a,t

∣∣∣∣∣
]

≤
√
2E

[
T∑

t=1

∑
a∈At

|ζa,tδa,t|
]

(a)

≤
√
2E

[
max

t∈[T ],a∈[N ]
|ζa,t|

∑
t=1

∑
a∈At

|δa,t|
]

=
√
2E

[
max

t∈[T ],a∈[N ]
|ζa,t|

T∑
t=1

∑
a∈At

√
γm ln t

na,t + 1

]
(b)

≤ 2m
√

2γNT ln TE

[
max

t∈[T ],a∈[N ]
ζa,t

]
(c)

≤ 2m
√
2γNT ln T ·

√
6 ln T

≤ 4m ln T
√
3γNT .

(16)

where step (a) is due to Hölder’s inequality. Step (b) is due to Lemma 5 such that299 ∑T
t=1

∑
a∈At

√
1

na,t+1 ≤ 2
√
mNT . Step (c) is due to the maximal inequality for Gaussian300

variables (Fact 2) such that E
[
maxt∈[T ],a∈[N ] ζa,t

]
≤

√
2 ln 2NT ≤

√
6 ln T because 2 ≤301

N ≤ T .302

C.2 Proof of Lemma 2303

Lemma 2. Let Et :=
{
∀a ∈ [N ], r̂a,na,t

− ra ≤
√

3 ln Nt
na,t+1

}
. In CTS-G, the regret of the devi-

ation part is

E

[
T∑

t=1

(∑
a∈At

wa,t −
∑
a∈At

ra

)
1[Et]

]
≤ 2m ln T

√
6γNT + 2

√
6mNT ln T .
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Proof. We can do decomposition as follows.304

E

[
T∑

t=1

(∑
a∈At

wa,t −
∑
a∈At

ra

)
1[Et]

]

= E

[
T∑

t=1

(∑
a∈At

wa,t −
∑
a∈At

r̂a,na,t
+
∑
a∈At

r̂a,na,t
−
∑
a∈At

ra

)
1[Et]

]

= E

[
T∑

t=1

(∑
a∈At

wa,t −
∑
a∈At

r̂a,na,t

)
1[Et]

]
+ E

[
T∑

t=1

(∑
a∈At

r̂a,na,t
−
∑
a∈At

ra

)
1[Et]

]
(a)

≤ E

[
T∑

t=1

∑
a∈At

(
wa,t − r̂a,na,t

)]
+ E

[
T∑

t=1

∑
a∈At

√
6 ln T

na,t + 1

]
(b)

≤ E

[
T∑

t=1

∑
a∈At

(
wa,t − r̂a,na,t

)]
+ 2

√
6mNT ln T ,

(17)
where step (a) is because event Et is true and ln NT ≤ 2 ln T because of N ≤ T , and step (b) is305

due to Lemma 5 such that
∑T

t=1

∑
a∈At

√
1

na,t+1 ≤ 2
√
mNT .306

We can represent each wa,t − r̂a,na,t
by ζa,tδa,t, where ζa,t ∼ N (0, 1) and δa,t =

√
γm ln t
na,t+1 .307

Then, we can bound the first term on the RHS of the above equation as follows:308

E

[
T∑

t=1

∑
a∈At

(
wa,t − r̂a,na,t

)]
≤ E

[
T∑

t=1

∑
a∈At

ζa,tδa,t

]
(a)

≤ E

[
max

t∈[T ],a∈[N ]
|ζa,t| ·

T∑
t=1

∑
a∈At

|δa,t|
]

= E

[
max

t∈[T ],a∈[N ]
|ζa,t| ·

T∑
t=1

∑
a∈At

√
γm ln t

na,t + 1

]
,

(18)

where (a) is due to Hölder’s inequality. By invoking Lemma 5 again, we have that309

T∑
t=1

∑
a∈At

√
γm ln t

na,t + 1
≤
√
γm ln T

T∑
t=1

∑
a∈At

√
1

na,t + 1
≤ 2m

√
γNT ln T . (19)

Then, using the maximal inequality (Fact 2), we have E
[
maxt∈[T ],a∈[N ] |ζa,t|

]
≤

√
2 ln 2NT ≤310 √

6 ln T , where the last inequality is due to that 2 ≤ N ≤ T . Thus, we have311

E

[
T∑

t=1

∑
a∈At

(
wa,t − r̂a,na,t

)]
≤ 2m ln T

√
6γNT . (20)

Finally, by substituting (20) into (17), we complete the proof.312

C.3 Proof of Lemma 3313

Lemma 3. The probability that event Et to happen satisfies that

T∑
t=1

Pr(Et) ≤ π2

3
.
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Proof. By a union bound and Hoeffding’s inequality, we have that314

T∑
t=1

Pr

(
∃a ∈ [N ] : |ra − r̂a,na,t | >

√
3 ln Nt

na,t + 1

)

≤
T∑

t=1

∑
a∈[N ]

t−1∑
s=0

Pr

(
|r̂a,s − ra| >

√
3 ln Nt

s + 1

)

=
∑
a∈[N ]

T∑
t=1

(
Pr
(
ra >

√
3 ln Nt

)
+

t−1∑
s=1

Pr

(
|r̂a,s − ra| >

√
3 ln Nt

s + 1

))
(a)

≤
∑
a∈[N ]

(
0 +

T∑
t=1

t−1∑
s=1

Pr

(
|r̂a,s − ra| >

√
3 ln Nt

2s

))

≤ N
∞∑
t=1

t−1∑
s=1

2

(Nt)3
=

π2

3N2
,

(21)

where step (a) is due to ra ∈ [0, 1], ∀a ∈ [N ] and 3 ln Nt > 1 because N ≥ 2, and that315

s + 1 ≤ 2s for any s ≥ 1.316

317

C.4 Proof of Lemma 4318

Lemma 4. In each round t ≥ max{√m, 4}, given any Θt, we have319

1

PrΘt

(∑
a∈A∗

t
wa,t ≥ ∑

a∈A∗
t
ra

) ≤ 2Φ
(
−
√

4/γ
)−1

,

where Φ(·) is the cdf of the standard Gaussian distribution.320

Proof. Given Θt, A∗
t is determined. Define Ht :=

{
∀a ∈ A∗

t : |ra − r̂a,na,t | ≤
√

4 ln t
na,t+1

}
.321

Since t ≥ max{√m, 4}, we have that322

Pr
Θt

(Ht) ≥ 1 −
∑
a∈A∗

t

t−1∑
sa=0

Pr
Θt

(
|ra − r̂a,sa | ≥

√
4 ln t

sa + 1

)

= 1 −
∑
a∈A∗

t

t−1∑
sa=1

Pr
Θt

(
|ra − r̂a,sa | ≥

√
4 ln t

sa + 1

)

≥ 1 −
∑
a∈A∗

t

t−1∑
sa=1

Pr
Θt

(
|ra − r̂a,sa | ≥

√
4 ln t

2sa

)
≥ 1 − mt · 2 · e−2·sa·4 ln t/(2sa)

= 1 − 2mt

t4

≥ 1 − 2

t
≥ 0.5 .

(22)
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We have323

Pr
Θt

∑
a∈A∗

t

wa,t ≥
∑
a∈A∗

t

ra

 ≥ Pr
Θt

∑
a∈A∗

t

wa,t ≥
∑
a∈A∗

t

ra, Ht


= Pr

Θt

∑
a∈A∗

t

wa,t − r̂a,na,t ≥
∑
a∈A∗

t

ra − r̂a,na,t , Ht


= Pr

Θt

(Ht) · Pr
Θt

∑
a∈A∗

t

wa,t − r̂a,na,t ≥
∑
a∈A∗

t

ra − r̂a,na,t | Ht


(a)

≥ 0.5 · Pr
Θt

∑
a∈A∗

t

wa,t − r̂a,na,t ≥
∑
a∈A∗

t

√
4 ln t

na,t + 1


(b)

≥ 0.5 · Pr
Θt

∑
a∈A∗

t

wa,t − r̂a,na,t
≥
√√√√m

∑
a∈A∗

t

4 ln t

na,t + 1


= 0.5 · Φ

(
−
√
4/γ
)

,

(23)
where step (a) is due to (22) and the fact that event Et is true. Step (b) uses the Cauchy–Schwarz324

inequality, i.e., we have
∑

a∈A∗
t

√
4 ln t
na,t+1 ≤

√
m · ∑a∈A∗

t

4 ln t
na,t+1 . The last equality is due to the325

standardization of Gaussian distribution.326

C.5 Proof of Lemma 5327

Lemma 5. We have
∑T

t=1

∑
a∈At

√
1

na,t+1 ≤ 2
√
mNT .328

Proof. Note that the LHS of the above inequality is a random variable. We provide an upper bound329

for this random variable.330

Recall na,t :=
∑t−1

τ=1 1 [a ∈ Aτ ] is the number of times that arm a has been played at the be-331

ginning of round t. Let τa(n) denote the round for arm a to be played for the n-th time, and thus332

na,τa(n) = n − 1.333

T∑
t=1

∑
a∈At

√
1

na,t + 1
=

T∑
t=1

∑
a∈[N ]

√
1

na,t + 1
1[a ∈ At]

(a)
=

∑
a∈[N ]

na,T+1∑
n=1

τa(n+1)−1∑
t=τa(n)

√
1

na,t + 1
1[a ∈ At]

(b)
=

∑
a∈[N ]

na,T+1∑
n=1

√
1

n
≤

∑
a∈[N ]

∫ na,T+1

0

√
1

n
dn

= 2
∑
a∈[N ]

√
na,T+1

(c)

≤ 2

√
N

∑
a∈[N ]

na,T+1

(d)
= 2

√
mNT,

(24)

where step (a) partitions all T rounds into multiple intervals based on the arrivals of observations from334

arm a. Step (b) uses the fact that
∑τa(n+1)−1

t=τa(n)
1[a ∈ At] ·

√
1

na,t+1 =
√

1
n−1+1 =

√
1
n , be-335

cause na,τa(n) = n − 1 and 1[a ∈ At] = 0 for all t ∈ {τa(n) + 1, . . . , τa(n + 1) − 1}.336

Step (c) uses Cauchy-Schwarz inequality. Step (d) uses the fact that
∑

a∈[N ] na,T+1 ≤ mT .337

338
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C.6 Proof of Upper bound339

Upper Bound Proof of Theorem 1. Denote by Et :=
{
∀a ∈ [N ] : |ra − r̂a,na,t

| ≤
√

3 ln Nt
na,t+1

}
340

the high-probability event that the empirical mean reward is close to the true mean reward for arm a,341

and by Et the complementary event of Et.342

Let t′ = max{√m, 4}. We first decompose the regret as follows:343

R(T ) =
t′−1∑
t=1

E

∑
a∈A∗

t

ra −
∑
a∈At

ra

 +
T∑

t=t′

E

∑
a∈A∗

t

ra −
∑
a∈At

ra


(a)

≤ m max{√m, 4} + E

 T∑
t=t′

∑
a∈A∗

t

ra −
∑
a∈At

ra

 1[Et]

 + E

 T∑
t=t′

∑
a∈A∗

t

ra −
∑
a∈At

ra

 1[Et]


(b)

≤ m max{√m, 4} + E

 T∑
t=t′

∑
a∈A∗

t

ra −
∑
a∈At

wa,t +
∑
a∈At

wa,t −
∑
a∈At

ra

 1[Et]

 + m
π2

3N2

≤
T∑

t=t′

E

∑
a∈A∗

t

ra −
∑
a∈At

wa,t


︸ ︷︷ ︸

=:I1, optimism part

+
T∑

t=t′

E

[∑
a∈At

(wa,t − ra) 1[Et]
]

︸ ︷︷ ︸
=:I2, deviation part

+m max{√m, 4} +
π2

3
,

(25)
where step (a) is due to the fact that

∑
a∈A∗

t
ra − ∑

a∈At
ra ≤ m by the definition of ra and m344

and step (b) is due to Lemma 3.345

Now, invoking Lemma 1 with proofs in Appendix C.1, we have term I1 bounded as follows:346

I1 ≤ 8
√
3γΦ(−

√
4/γ)−1m ln T

√
NT, (26)

and I2 can be bounded by using Lemma 2 with proofs in Appendix C.2:347

I2 ≤ 2m ln T
√
6γNT + 2

√
6mNT ln T . (27)

Thus, we have that348

R(T ) ≤
(
2
√
6γ + 8

√
3γΦ(−

√
4/γ)−1

)
m ln T

√
NT + 2

√
6mNT ln T

+ m

(
max{√m, 4} +

π2

3

)
.

(28)

Using numerical optimization methods searching from γ = 0.0001 to γ = 100, we can find that349

when γ = 6.4, the coefficient for the first item can achieve a minimum value of 175.74.350

351

C.7 Proof of Lower Bound352

S T

· · ·

· · ·

· · ·
· · ·

Figure 5: Problem instance for the lower-bound proof. Nodes S and T are the starting and ending
points for each path.

Lower bound Proof in Theorem 1. Our proof uses similar ideas to the proofs of Theorem 1.4 in353

Agrawal & Goyal (2017b).354

We construct a path selection problem involving N links (each link corresponds to a base arm) and K355

paths (each path corresponds to a super arm), as illustrated in Fig. 5. Each path consists of m links,356
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and thus, the total number of base arms N = mK. We consider a fixed availability set throughout357

all T rounds, i.e., Θt = Θ := {A1, A2, . . . , AK} for all rounds t ∈ [T ] with each super arm358

Ak being a feasible path. We assume the first path A1 is the unique optimal one.359

We construct the following Bernoulli reward distributions for each base arm. Let ∆ :=360 √
K ln K/T . For any base arm in the optimal super arm A1, we use a degenerate distribution361

putting mass 1 on a single point
√
γ∆, i.e., if A1 is played, for any base arm in it, we always observe362 √

γ∆ as the random reward. Similarly, for the remaining base arms in the sub-optimal super arms, we363

put mass 1 on a single point 0, i.e., the random reward is always 0 for any base arm in a sub-optimal364

super arm.365

Let QA(t) denote the number of times that super arm A ∈ Θ has been played at the beginning366

of round t. Since there are no overlapping base arms between two distinct super arms, we have367

QA(t) = na,t for all a ∈ A. Let c ∈ (0, 1) be some universal constant that will be tuned later.368

Define B∗
t := {QA1(t) > t − cT} as the event that the optimal super arm A1 has been observed369

at least (t − cT ) times by the beginning of round t.370

We lower bound the total regret from round 1 to the end of round T by analyzing two cases that are371

exhaustive and mutually exclusive based on events B∗
t for all rounds t ∈ [T ].372

If B∗
t is not true for some t ∈ [T ], we have the total number of times of playing sub-373

optimal super arms by the beginning of round t is
∑

A∈Θ\A1
QA(t) = t − QA1

(t) ≥ t − (t −374

cT ) ≥ cT , which implies the total regret by the end of round T is at least cT · m · √γ∆ =375

Ω(m
√
KT ln K) = Ω(

√
mNT ln(N/m)). Note that the total regret from round 1 to round t is a376

lower bound for the total regret over all T rounds.377

If B∗
t is true for all t ∈ [T ], we have the total number of times

∑
A∈Θ\A1

QA(t) of playing378

sub-optimal super arms by the beginning of round t is upper bounded by379

∑
A∈Θ\A1

QA(t) = t − QA1(t) ≤ t − (t − cT ) = cT . (29)

Due to the spread of a sub-optimal super arm’s posterior distribution, the learning agent will make380

mistakes when deciding which super arm to play. Formally, we show that with at least a constant381

probability, the learning agent will play a sub-optimal super arm. Note that whether event B∗
t is true382

or not is determined by the history information Ft−1.383

Recall wa,t ∼ N
(
r̂a,na,t

, γm ln t
na,t+1

)
. Now, we construct a lower bound for the probability of384

selecting a sub-optimal arm in round t conditioned on instantiations Ft−1 of Ft−1 such that B∗
t is385

true. We have386

Pr (∃A ∈ Θ \ A1 : At = A | Ft−1 = Ft−1)

≥ Pr(∃A ∈ Θ \ A1 :
∑
a∈A

wa,t >
∑
a∈A1

wa,t | Ft−1 = Ft−1)

(a)

≥ Pr(∃A ∈ Θ \ A1 :
∑
a∈A

wa,t ≥ m
√
γ∆ | Ft−1 = Ft−1)

· Pr(
∑
a∈A1

wa,t < m
√
γ∆ | Ft−1 = Ft−1)

(b)
= Pr(∃A ∈ Θ \ A1 :

∑
a∈A

wa,t ≥ m
√
γ∆ | Ft−1 = Ft−1) · 1

2
,

(30)

where step (a) uses the fact that all super arms are independent based on our construction of the path387

selection problem. Step (b) uses the fact that the sum of multiple independent Gaussian random388

variables is still Gaussian and
(∑

a∈A1
wa,t − m

√
γ∆
)

is a zero-mean Gaussian distribution. Note389

that the empirical mean of each base arm in the optimal super arm is exactly
√
γ∆.390
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Now, we construct a lower bound for (30) by using Gaussian anti-concentration bounds. We have391

Pr

(
∃A ∈ Θ \ A1 :

∑
a∈A

wa,t ≥ m
√
γ∆ | Ft−1 = Ft−1

)

≥ Pr

(
∃A ∈ Θ \ A1 :

∑
a∈A

wa,t ≥ m
√
γ∆

√
ln t | Ft−1 = Ft−1

)

= 1 − Pr

(∑
a∈A

wa,t < m∆
√

γ ln t, ∀A ∈ Θ \ A1 | Ft−1 = Ft−1

)

= 1 −
∏

A∈Θ\A1

(
1 − Pr

(∑
a∈A

wa,t

√
(QA(t) + 1) ≥ m∆

√
(QA(t) + 1)γ ln t | Ft−1 = Ft−1

))

= 1 −
∏

A∈Θ\A1

1 − Pr

(∑
a∈A wa,t

√
(QA(t) + 1)

m
√
γ ln t

≥ ∆
√

(QA(t) + 1) | Ft−1 = Ft−1

)
︸ ︷︷ ︸

≥ 1
8
√

π
e−

7
2
∆2(QA(t)+1)


≥ 1 −

∏
A∈Θ\A1

(
1 − 1

8
√
π
e−

7
2∆

2(QA(t)+1)

)
,

(31)

where the last inequality uses the fact that
∑

a∈A wa,t

√
QA(t)+1

m
√
γ ln t

∼ N (0, 1) and then the one-sided392

anti-concentration inequality shown in (6).393

Tune constant c = 0.001. Then, we use the upper bound constructed in (29) to continue lower394

bounding (31). We have395

1 −
∏

A∈Θ\A1

(
1 − 1

8
√
π
e−

7
2∆

2(QA(t)+1)

)
(a)

≥ 1 −
∏

A∈Θ\A1

(
1 − 1

8
√
π
e−

7c
2 ∆2

√
KT ln K
(K−1)∆

− 7∆2

2

)

= 1 −
∏

A∈Θ\A1

(
1 − 1

8
√
π
e−

7c
2

K ln K
(K−1)

−
7K ln K

T
2

)

= 1 −
∏

A∈Θ\A1

(
1 − 1

8
√
π
e−( 7c

2
K

K−1+
7K
2T ) ln K

)
(b)

≥ 1 −
∏

A∈Θ\A1

(
1 − 1

8
√
π
e−ln K

)

= 1 −
(
1 − 1

8
√
πK

)K−1

(c)

≥ 1 −
(
e
− 1

8
√

πK

)K−1

≥ 1 − e
− 1

16
√

π ,

(32)

where step (a) is due to the fact that, constrained on (29), i.e.,
∑

A∈Θ\A1
QA(t) ≤ cT =396

c
√
KT ln K

∆ , the quantity
∏

A∈Θ\A1

(
1 − 1

4
√
π
e−

7c
2 ∆2

√
KT ln K
(K−1)∆

− 7∆2

2

)
is maximized when397

QA(t) = c
√
KT ln K

(K−1)∆ for all A ∈ Θ \ A1. Step (b) uses the fact that, when c = 0.001, we have398

7c
2

K
K−1 + 7K

2T ≤ 1 when T is sufficiently large, e.g., T > 5K. Step (c) uses 1 − x ≤ e−x.399

18



Now, we are ready to complete the proof. Let p := 1
2

(
1 − e

− 1
16

√
π

)
. By plugging the lower bound400

constructed in (32) into (30), we have Pr(∃A ∈ Θ \ A1 : At = A | Ft−1 = Ft−1) ≥ p,401

which implies the total regret by the end of round T is at least Tpm
√
γ∆ = Ω(

√
mNT ln(N/m)).402

403

D Proofs for Theorem 2404

D.1 Proof of Lemma 6405

Lemma 6. The optimism part in CL-SG satisfies that406

E

 T∑
t=max{m,4}

∑
a∈A∗

t

ra −
∑
a∈At

r̄a,t

 ≤ 8
√

2γΦ(−
√
4/γ)−1 ln T

√
mNT. (33)

Proof. Similar to the proof of Lemma 1. There are three steps for the proofs.407

Step 1: Let t′ = max{√m, 4} we show that the following inequality holds for each round t408

conditioned on Θt:409

EΘt

[ ∑
a∈A∗

t

ra − ∑
a∈At

r̄a,t

]
≤ 2Φ(−

√
4/γ)−1 · EΘt

( ∑
a∈At

r̄a,t − EΘt

[ ∑
a∈At

r̄a,t

])+
 .

(34)

Step 2: Let r̃a,t = r̂a,t + w̃t

√
γ ln t
na,t+1 , where w̃t ∼ N (0, 1) is an independent copy of wt. With410

r̃a,t, we can further bound the last term in (34) as follows.411

EΘt

(∑
a∈At

r̄a,t − EΘt

[∑
a∈At

r̄a,t

])+
 ≤ EΘt

[∣∣∣∣∣∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

∣∣∣∣∣
]
.

(35)

Step 3: Summing over T rounds, we have that412

E

[
T∑

t=1

∣∣∣∣∣∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

∣∣∣∣∣
]

≤ 4 ln T
√

2γmNT (36)

Combining these three steps, we have413

E

 T∑
t=max{

√
m,4}

∑
a∈A∗

t

ra −
∑
a∈At

r̄a,t

 ≤ 2Φ(−
√
4/γ)−1E

 T∑
t=max{

√
m,4}

∣∣∣∣∣∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

∣∣∣∣∣


≤ 2Φ(−
√
4/γ)−1E

[
T∑

t=1

∣∣∣∣∣∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

∣∣∣∣∣
]

≤ 8
√
2γΦ(−

√
4/γ)−1 ln T

√
mNT.

(37)
Now, we give the details for these three steps.414

Step 1 proof. If EΘt

[ ∑
a∈A∗

t

ra − ∑
a∈At

r̄a,t

]
≤ 0, the proof is trivial as the RHS in (34) is415

non-negative.416
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Recall (·)+ := max {·, 0}. For the case where α := EΘt

[ ∑
a∈A∗

t

ra − ∑
a∈At

r̄a,t

]
> 0, we use417

Markov’s inequality and have418

EΘt

(∑
a∈At

r̄a,t − EΘt

[∑
a∈At

r̄a,t

])+
 ≥ α · Pr

Θt

(∑
a∈At

r̄a,t − EΘt

[∑
a∈At

r̄a,t

])+

≥ α


≥ α · Pr

Θt

(∑
a∈At

r̄a,t − EΘt

[∑
a∈At

r̄a,t

]
≥ α

)
,

(38)
which gives419

α = EΘt

∑
a∈A∗

t

ra −
∑
a∈At

r̄a,t



≤

EΘt

( ∑
a∈At

r̄a,t − EΘt

[ ∑
a∈At

r̄a,t

])+


PrΘt

( ∑
a∈At

r̄a,t − EΘt

[ ∑
a∈At

r̄a,t

]
≥ EΘt

[ ∑
a∈A∗

t

ra − ∑
a∈At

r̄a,t

])

=

EΘt

( ∑
a∈At

r̄a,t − EΘt

[ ∑
a∈At

r̄a,t

])+


PrΘt

( ∑
a∈At

r̄a,t ≥ ∑
a∈A∗

t

ra

) ≤

EΘt

( ∑
a∈At

r̄a,t − EΘt

[ ∑
a∈At

r̄a,t

])+


PrΘt

( ∑
a∈A∗

t

r̄a,t ≥ ∑
a∈A∗

t

ra

)

= 2Φ(−
√

4/γ)−1 · EΘt

(∑
a∈At

r̄a,t − EΘt

[∑
a∈At

r̄a,t

])+
 .

(39)

Step 2 proof. Since wt and w̃t are i.i.d., we have EΘt

[ ∑
a∈At

r̄a,t

]
=420

EΘt

[
maxA∈Θt

∑
a∈A

r̄a,t

]
= EΘt

[
maxA∈Θt

∑
a∈A

r̃a,t

]
≥ EΘt

[ ∑
a∈At

r̃a,t | At

]
=421

EΘt

[ ∑
a∈At

r̃a,t | At, wt

]
. Then, we have422
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EΘt

(∑
a∈At

r̄a,t − EΘt

[∑
a∈At

r̄a,t

])+
 ≤ EΘt

(∑
a∈At

r̄a,t − EΘt

[∑
a∈At

r̃a,t | At

])+


= EΘt

(∑
a∈At

r̄a,t − EΘt

[∑
a∈At

r̃a,t | At, wt

])+


= EΘt

(EΘt

[(∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

)
| At, wt

])+


≤ EΘt

[∣∣∣∣∣EΘt

[(∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

)
| At, wt

]∣∣∣∣∣
]

≤ EΘt

[
EΘt

[∣∣∣∣∣∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

∣∣∣∣∣ | At, wt

]]

≤ EΘt

[∣∣∣∣∣∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

∣∣∣∣∣
]
.

(40)

Step 3 proof. By Hölder’s inequality, we have that423

E

[
T∑

t=1

∣∣∣∣∣∑
a∈At

r̄a,t −
∑
a∈At

r̃a,t

∣∣∣∣∣
]

≤ E

[
T∑

t=1

|wt − w̃t|
∑
a∈At

√
γ ln t

na,t + 1

]

≤ E

[
max
t∈[T ]

|wt − w̃t|
T∑

t=1

∑
a∈At

√
γ ln t

na,t + 1

]
(a)

≤ E

[
max
t∈[T ]

|wt − w̃t|
]
· 2
√

γmNT ln T

(b)

≤ 2
√
ln 2T · 2

√
γmNT ln T

≤ 4 ln T
√

2γmNT,

(41)

where step (a) is due to Lemma 5, and step (b) is due to Fact 2 and wt − w̃t is a Gaussian variable424

with variance 2.425

D.2 Proof of Lemma 7426

Lemma 7. In CL-SG, the regret of the deviation part is

E

[
T∑

t=1

(∑
a∈At

r̄a,t −
∑
a∈At

ra

)
1[Et]

]
≤ 4 ln T

√
γmNT + 2

√
6mNT ln T .

Proof. Recall that r̄a,t = r̂a,na,t
+ wt

√
γ ln t
na,t+1 . When Et happens, we have that427

E

[
T∑

t=1

(∑
a∈At

r̄a,t −
∑
a∈At

ra

)
1[Et]

]
= E

[
T∑

t=1

∑
a∈At

(
r̂a,na,t

+ wt

√
γ ln t

na,t + 1
− r̂a,na,t

+

√
3 ln Nt

na,t + 1

)
1[Et]

]

≤
√
γ ln TE

[
T∑

t=1

wt

(∑
a∈At

√
1

na,t + 1

)]
+

√
6 ln TE

[
T∑

t=1

∑
a∈At

√
1

na,t + 1

]
,

(42)
where the last inequality is due to that N ≤ T . Regarding the first item in RHS of (42), we can428

apply Hölder’s inequality to have that429
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E

[
T∑

t=1

wt

(∑
a∈At

√
1

na,t + 1

)]
≤ E

[
max
1≤t≤T

|wt| ·
∣∣∣∣∣

T∑
t=1

∑
a∈At

√
1

na,t + 1

∣∣∣∣∣
]

≤ E

[
max
1≤t≤T

|wt| · 2
√
mNT

]
≤ 4

√
mNT ln T ,

(43)

where the second inequality is due to Lemma 5, and the last inequality is due to the maximal430

inequality (Fact 2) for Gaussian variables such that E [max1≤t≤T |wt|] ≤
√
2 ln 2T ≤ 2

√
T .431

Regarding the second term in RHS of (42), we can invoke Lemma 5 again to give a bound of432

2
√
6mNT ln T .433

434

D.3 Proof of Lemma 8435

Lemma 8. In each round t > max{√m, 4}, given any Θt, we have that for CL-SG:436

1

PrΘt

( ∑
a∈A∗

t

r̄a,t ≥ ∑
a∈A∗

t

ra

) ≤ 2Φ
(
−
√

4/γ
)−1

. (44)

Proof of Lemma 8. Given Θt, A∗
t is determined. Define Ht :=437 {

∀a ∈ A∗
t : |ra − r̂a,na,t | ≤

√
4 ln t
na,t+1

}
. We have438

PrΘt
(Ht) ≥ 1 − ∑

a∈A∗
t

t−1∑
sa=0

PrΘt

(
|ra − r̂a,sa | ≥

√
4 ln t
sa+1

)
= 1 − ∑

a∈A∗
t

t−1∑
sa=1

PrΘt

(
|ra − r̂a,sa | ≥

√
4 ln t
sa+1

)
≥ 1 − ∑

a∈A∗
t

t−1∑
sa=1

PrΘt

(
|ra − r̂a,sa | ≥

√
4 ln t
2sa

)
≥ 1 − mt · 2 · e−2·sa·4 ln t/(2sa)

= 1 − 2mt
t4

≥ 1 − 2
t≥ 0.5 ,

(45)

where the last two inequalities are due to that t > max{√m, 4}.439
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We have440

Pr
Θt

∑
a∈A∗

t

r̄a,t ≥
∑
a∈A∗

t

ra

 ≥ Pr
Θt

∑
a∈A∗

t

r̄a,t ≥
∑
a∈A∗

t

ra, Ht


= Pr

Θt

∑
a∈A∗

t

r̄a,t − r̂a,na,t
≥

∑
a∈A∗

t

ra − r̂a,na,t
, Ht


= Pr

Θt

(Ht) · Pr
Θt

∑
a∈A∗

t

r̄a,t − r̂a,na,t
≥

∑
a∈A∗

t

ra − r̂a,na,t
| Ht


(a)

≥ 0.5 · Pr
Θt

∑
a∈A∗

t

wt

√
γ ln t

na,t + 1
≥

∑
a∈A∗

t

√
4 ln t

na,t + 1


= 0.5 · Pr

Θt

(
wt ≥

√
4/γ
)

= 0.5 · Φ
(
−
√

4/γ
)

,

(46)
where step (a) is due to (45) and the fact that event Et is true.441

D.4 Proof of Upper Bound442

Proof. Recall that Et :=
{
∀a ∈ [N ] : |ra − r̂a,na,t | ≤

√
3 ln Nt
na,t+1

}
is the high-probability443

event that the empirical mean reward is close to the true mean reward for arm a, and Et is the444

complementary event of Et.445

Similar to the proof of the upper bound for CTS-G, we first let t′ = max{√m, 4}, and then446

decompose the regret as follows:447

R(T ) ≤
T∑

t=t′

E

∑
a∈A∗

t

ra −
∑
a∈At

r̄a,t


︸ ︷︷ ︸

=:I1, optimism part

+
T∑

t=t′

E

[∑
a∈At

(r̄a,t − ra) 1[Et]
]

︸ ︷︷ ︸
=:I2, deviation part

+ m

(
max{√m, 4} +

π2

3

)
,

(47)

Now, invoking Lemma 6 with proofs in Appendix D.1, we have term I1 bounded as follows:448

I1 ≤ 8
√

2γΦ(−
√

4/γ)−1 ln T
√
mNT, (48)

and I2 can be bounded by using Lemma 7 with proofs in Appendix D.2:449

I2 ≤ 4 ln T
√

γmNT + 2
√
6mNT ln T . (49)

Therefore, we have the regret bounded as follows:450

R(T ) ≤
(
4
√
γ + 8

√
2γΦ(−

√
4/γ)−1

)
ln T

√
mNT + 2

√
6mNT ln T

+ m

(
max{√m, 4} +

π2

3

)
,

where the coefficient of the first term can be minimized to 144.43 at γ = 4.57.451

D.5 Proof of Lower Bound452

Lower bound Proof in Theorem 2. The main challenge in the proofs arises from the fact that all base453

arms share a single random Gaussian seed, creating dependencies between paths that are no longer454

independent. However, the lower-bound proof for Theorem 1 relies on the independence of each455

super arm. Therefore, this proof must manage these dependencies effectively.456
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t = 1 t = cT t = αT t = T

Figure 6: The regret of CL-SG is lower bounded by the regret from rounds αT to T .

We construct a path selection problem involving N links (i.e., each link corresponds to a base arm)457

and K paths (i.e., each path corresponds to a super arm). Each path consists of m links as illustrated458

in Fig. 5 and the total number of base arms is N = mK. We use a fixed availability set throughout459

all T rounds, i.e., Θt = Θ := {A1, A2, . . . , AK} for all rounds t ∈ [T ] with each Ak being a460

feasible path. We assume the first path is the unique optimal one.461

We construct the following Bernoulli reward distributions for each base arm. Let ∆ :=
√
K/T .462

For any base arm in the optimal super arm A1, we use a degenerate distribution putting mass 1 on a463

single point
√
γ∆, i.e., if A1 is played, for each base arm in it, the observed random reward is always464 √

γ∆. Similarly, for the remaining base arms in the sub-optimal super arms, we put mass 1 on a465

single point 0, i.e., the random reward is always 0 for any base arm in a sub-optimal super arm.466

Let QA(t) denote the total number of times that super arm A ∈ Θ has been played at the beginning467

of round t. Since there are no overlapping base arms between two distinct super arms, we have468

QA(t) = na,t for all a ∈ A, i.e., all base arms in a super arm have the same amount of observations.469

Let c := 1
6 . Define B∗

t := {QA1
(t) > t − cT} as the event that the optimal super arm A1 has470

been observed enough times at the beginning of round t.471

We lower bound the total regret from round 1 to the end of round T by analyzing two cases that are472

exhaustive and mutually exclusive based on events B∗
t for all rounds t ∈ [T ].473

If B∗
t is not true for some round t ∈ [T ], we have the total number of times of playing sub-optimal474

super arms until the beginning of round t is
∑

A∈Θ\A1
QA(t) = t − QA1(t) ≥ cT . This lower475

bound implies the total regret from round 1 to the end of round t − 1 is at least cT · m · √γ∆ =476

Ω(Tm
√
K/T ) = Ω(Tm

√
N/(mT )) = Ω(

√
mNT ). Note that this lower bound is also a regret477

lower bound for the total regret from round 1 to the end of round T .478

Let α := 5
6 .479

If B∗
t is true for all rounds t ∈ [T ], the total regret from round 1 to the end of round T is lower480

bounded by the total regret from round t = αT to the end of round T , as shown in Fig. 6. In each481

round t ≥ αT , we have the following inequalities:482 ∑
A∈Θ\A1

QA(t) = t − QA1
(t) ≤ t − (t − c · T ) = c · T , (50)

483

QA1
(t) > t − c · T ≥ α · T − c · T = (α − c) · T , (51)

and484

QA(t) ≤ c · T, ∀A ∈ Θ \ A1 . (52)

From (51) and (52), for each sub-optimal super arm A ∈ Θ \ A1, we have485 √
QA(t)+1
QA1

(t)+1 ≤
√

cT+1
(α−c)T+1 =

√
T/6+1
4T/6+1 ≤ 1

2 , (53)

which gives486

1 −
√

QA(t)+1
QA1

(t)+1 ≥ 1
2 . (54)

Let p0 := 1
8
√
π
e−

28
3 . In the following, we prove that, with at least a constant probability p0, a487

sub-optimal super arm is played in each round t ≥ α · T conditioned on event B∗
t is true. Note488

that whether event B∗
t is true or not is determined by the history information Ft−1.489
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Conditioned on any instantiation Ft−1 of Ft−1 such that event B∗
t is true, we have the probability of490

playing a sub-optimal super arm is491

Pr (∃A ∈ Θ \ A1 : At = A | Ft−1 = Ft−1)

≥ Pr

(
∃A ∈ Θ \ A1 :

∑
a∈A

r̄a,t >
∑
b∈A1

r̄b,t | Ft−1 = Ft−1

)

= Pr

(
∃A ∈ Θ \ A1 :

∑
a∈A

r̂a,na,t
+ wt

√
γ ln t

na,t + 1
>
∑
b∈A1

r̂b,nb,t
+ wt

√
γ ln t

nb,t + 1
| Ft−1 = Ft−1

)

(a)
= Pr

(
∃A ∈ Θ \ A1 :

∑
a∈A

wt

√
γ ln t

na,t + 1
>
∑
b∈A1

(
√
γ∆ + wt

√
γ ln t

nb,t + 1

)
| Ft−1 = Ft−1

)

(b)
= Pr

(
∃A ∈ Θ \ A1 :

∑
a∈A

wt

√
γ ln t

QA(t) + 1
>
∑
b∈A1

(
√
γ∆ + wt

√
γ ln t

QA1
(t) + 1

)
| Ft−1 = Ft−1

)

= Pr

(
∃A ∈ Θ \ A1 : wt

√
ln t

QA(t) + 1
> ∆ + wt

√
ln t

QA1
(t) + 1

| Ft−1 = Ft−1

)

≥ Pr

(
∃A ∈ Θ \ A1 : wt

(
1 −

√
QA(t) + 1

QA1
(t) + 1

)
> ∆

√
QA(t) + 1 | Ft−1 = Ft−1

)
(c)

≥ Pr

(
∃A ∈ Θ \ A1 : wt · 1

2
> ∆

√
QA(t) + 1 | Ft−1 = Ft−1

)
= 1 − Pr

(
wt ≤ 2∆

√
QA(t) + 1, ∀A ∈ Θ \ A1 | Ft−1 = Ft−1

)
︸ ︷︷ ︸

λ

,

(55)
where step (a) uses the fact that for any base arm in a sub-optimal super arm, the empirical mean is 0,492

whereas for any base arm in the optimal super arm, the empirical mean is
√
γ∆ based on our reward493

distribution construction. Step (b) uses the fact that all base arms in a super arm have the same number494

of observations. Step (c) uses the lower bound constructed in (54), i.e., 1 −
√

QA(t)+1
QA1

(t)+1 ≥ 1
2 . Note495

that for λ, the only randomness is w ∼ N (0, 1) as all QA(t) are determined by the history.496

To construct an upper bound for λ above, we construct an optimization problem first using the497

constraint shown in (50). Recall (50) is
∑

A∈Θ\A1
QA(t) ≤ cT . We construct the optimization498

problem with the objective function shown in the following (56)499

max
x1,x2,...,xK−1

Pr
w∼N (0,1)

(
w ≤ 2∆

√
xa + 1, ∀a ∈ [K − 1]

)
, (56)

and constraints shown in (57)500

xa ≥ 0, ∀a ∈ [K − 1] and
∑K−1

a=1 xa ≤ c · T . (57)

Note that the optimal solution to (56) is the same as the optimal solution to the following objective501

function (58):502

max
x1,x2,...,xK−1

Pr
w∼N (0,1)

(
w ≤ min

a∈[K−1]
xa

)
. (58)

It is not hard to verify that the objective function shown in (58) is maximized when xa = cT
K−1 =503

c
√
KT

(K−1)∆ for all a ∈ [K − 1]. Therefore, xa = cT
K−1 = c

√
KT

(K−1)∆ for all a ∈ [K − 1] is also504

the optimal solution to (56) and the maximum value of the objective function shown in (56) is505

Prw

(
w ≤ 2∆

√
c
√
KT

(K−1)∆ + 1

)
.506
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Now, we are ready to construct an upper bound for λ and have507

λ = Pr
w

(
w ≤ 2∆

√
QA(t) + 1, ∀A ∈ Θ \ A1 | Ft−1 = Ft−1

)
≤ max

x1,x2,...,xK−1

Pr
w

(
w ≤ 2∆

√
xa + 1, ∀a ∈ [K − 1] | Ft−1 = Ft−1

)
= max

x1,x2,...,xK−1

Pr
w

(
w ≤ 2∆

√
xa + 1, ∀a ∈ [K − 1]

)
(a)

≤ Pr
w

w ≤ 2∆

√
c
√
KT

(K − 1)∆
+ 1


(a)

≤ 1 − 1

8
√
π

· e−
7
2 ·4∆

2·
(

c
√

KT
(K−1)∆

+1
)

(c)

≤ 1 − 1

8
√
π

· e− 7
2 ·4∆

2· 2c
√

KT
0.5K∆

= 1 − 1

8
√
π

· e− 7
2 ·8

√
K
T · 16 ·

√
KT

0.5K

= 1 − 1

8
√
π
e−

28
3

= 1 − p0 ,

(59)

where step (a) uses the fact that Prw

(
w ≤ 2∆

√
c
√
KT

(K−1)∆ + 1

)
is the maximum value of the508

objective function shown in (56). Step (b) uses the one-sided anti-concentration inequality shown509

in (6). Step (c) uses the fact that K − 1 > 0.5K, ∆ =
√

K/T , and when T is large enough, we510

have c
√
KT

(K−1)∆ ≥ 1.511

By plugging the upper bound for λ into (55), we have512

Pr (∃A ∈ Θ \ A1 : At = A | Ft−1 = Ft−1) ≥ p0, which concludes the proof for513

the statement that with at least a constant probability p0, a sub-optimal super arm is played in round t.514

To complete the proof, we use the fact that the total regret from round t = αT to round T is515

at least (1 − α)T · p0 · m · √γ∆ = Ω(Tm∆) = Ω(Tm
√
K/T ) = Ω(Tm

√
N/(mT )) =516

Ω(
√
mNT ), which is also a regret lower bound for the total regret from round 1 to round T .517
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