
Pre-trained Language Models Improve the Few-shot
Prompt Ability of Decision Transformer

Yu Yang
Duke University

yu.yang@duke.edu

Pan Xu
Duke University

pan.xu@duke.edu

Abstract

Decision Transformer (DT) has emerged as a promising class of algorithms in
offline reinforcement learning (RL) tasks, leveraging pre-collected datasets and
Transformer’s capability to model long sequences. Recent works have demonstrated
that using parts of trajectories from training tasks as prompts in DT enhances
its performance on unseen tasks, giving rise to Prompt-DT methods. However,
collecting data from specific environments can be both costly and unsafe in many
scenarios, leading to suboptimal performance and limited few-shot prompt abilities
due to the data-hungry nature of Transformer-based models. Additionally, the
limited datasets used in pre-training make it challenging for Prompt-DT type of
methods to distinguish between various RL tasks through prompts alone. To
address these challenges, we introduce the Language model-initialized Prompt
Decision Transformer (LPDT), which leverages pre-trained language models for
meta-RL tasks and fine-tunes the model using Low-rank Adaptation (LoRA). We
further incorporate prompt regularization to effectively differentiate between tasks
based on prompt feature representations. Our approach integrates pre-trained
language model and RL tasks seamlessly. Extensive empirical studies demonstrate
that initializing with a pre-trained language model significantly enhances the
performance of Prompt-DT on unseen tasks compared to baseline methods.

1 Introduction

In many sequential decision-making applications such as robotic manipulation and autonomous
driving [28, 15], it can be expensive or even unsafe for agents to learn through trial-and-error with the
environment. Offline reinforcement learning (RL) methods [18] have emerged as a powerful paradigm
for optimizing agent policies without directly interacting with the environment. They leverage pre-
collected datasets obtained from a set of behavior policies instead of online interactions to learn
an optimal policy. Among these Offline RL methods, Decision Transformer (DT) [3] has become
popular for offline RL tasks due to its scalability with computation and data and stability in training.
DT models a goal-conditioned policy using a Transformer network, solving a sequence-prediction
problem in a supervised learning manner. Compared with traditional dynamic programming-based
offline RL methods [13, 6, 14] that heavily rely on the Markov Decision Process (MDP) assumption
of the environment, DT can utilize entire trajectory histories to predict the next action, making them
more applicable in partially observable environments where all past information must be incorporated
in decision-making[12, 21]. In addition to the context ability, another advantage of Transformers
is their few-shot generalization ability [2, 1]. Based on their remarkable few-shot generalization
capability, a prompt-based framework has been proposed and proven effective for adapting to new
tasks in NLP [2, 20]. In this paradigm, the prompt, containing useful information about the task,
is inputted as a prefix to the model for identifying the environments. Previous works [31] have
demonstrated that DTs also exhibit good generalization ability for unseen tasks.

NeurIPS 2024 Workshop on Adaptive Foundation Models.

However, existing Prompt-DT methods [31, 9, 10] require significant amounts of data for pre-training
due to the data-hungry nature of Transformers [2, 1]. Offline RL datasets are often small and
insufficient to fully unleash the few-shot prompt learning capability of Transformers. Collecting large
amounts of RL trajectories for pre-training powerful Decision Transformers is challenging. Inspired
by the broad success of large language models in NLP, recent works [19, 25, 27] have shown the
potential of such models to provide effective initial weights for decision-making tasks. However,
these works do not directly demonstrate few-shot abilities due to a lack of multi-task training and
prompt guidance. Language initialization in these works provides pre-knowledge and helps alleviate
the need of huge datasets. Therefore, we aim to explore the use of pre-trained language models to
initialize Prompt-DT methods and reduce the dependency on large datasets for training.

𝑊𝑊 ∈ ℝ𝑟𝑟×𝑟𝑟Pretrained
Language Model

𝐵𝐵 ∈ ℝ𝑟𝑟×𝑑𝑑

LoRA

𝒂𝒂𝟏𝟏 𝒂𝒂𝒕𝒕

…

𝒂𝒂𝑲𝑲∗

……

… … …

Frozen Weight Trainable Weight

Task 1 Prompt Regularization

Discarded Weight

𝐴𝐴 ∈ ℝ𝑑𝑑×𝑟𝑟

Language Task

language correcting<bos> A ormodel

… …

……𝑹𝑹𝟏𝟏∗ 𝒔𝒔𝟏𝟏∗ 𝒂𝒂𝟏𝟏∗ 𝒂𝒂𝑲𝑲∗𝒔𝒔𝑲𝑲∗𝑹𝑹𝑲𝑲∗ 𝒂𝒂𝟏𝟏𝒔𝒔𝟏𝟏𝑹𝑹𝟏𝟏 𝒂𝒂𝒕𝒕𝒔𝒔𝒕𝒕𝑹𝑹𝒕𝒕

+

…

… text

…

language correctingA ormodel … text <eos>

Figure 1: Overview of LPDT. We first initialize our algorithm using a pre-trained language model
such as DistilGPT2 [26]. Our method LPDT replaces the word embedding layers with linear layers
to fully learn and capture the features of RL trajectory tokens. We fine-tune our model using
parameter-efficient methods like Low-Rank Adaptation (LoRA). Additionally, we incorporate prompt
regularization over the input prompts , which helps LPDT distinguish between different environments.

In this work, we propose a novel framework, Language model-initialized Prompt Decision Trans-
former (LPDT), that utilizes pre-trained language model initialization to improve the few-shot prompt
ability of Decision Transformer. Our approach initializes the model with pre-trained language models,
incorporating pre-existing knowledge that might benefit downstream RL tasks. A more detailed
illustration of the model structure and our training paradigm is provided in Figure 1. We conduct
extensive experiments to assess the capability of our proposed framework in MuJoCo control environ-
ments [4] and Meta World ML1 tasks [34]. Our method outperforms baselines in terms of cumulative
rewards on unseen tasks. Our contributions are summarized as follows.

• We propose a framework named LPDT to improve the few-shot prompt ability of Decision Trans-
former. This framework involves leveraging the language model as the initialization of DT and
imposing both supervised and unsupervised prompt regularization. LPDT demonstrates improved
few-shot prompt capabilities with pre-trained language knowledge in multi-task RL.

• We utilize Low-Rank Adaptation (LoRA) and an additional prompt regularization method to
combine pre-trained knowledge with domain-specific RL task knowledge. LoRA allows efficient
fine-tuning by adapting only a small subset of parameters, while both the supervised and unsuper-
vised prompt regularization enhances the model’s ability to distinguish task information contained
in the prompts.

• Through extensive experiments on MuJoCo control and Meta World ML1, we demonstrate the
advantages of LPDT compared to baselines. Our results show that LPDT significantly outperforms
existing models in performance under full and limited datasets, highlighting its potential for
real-world applications.

2

2 Preliminary

2.1 Offline Reinforcement Learning

Reinforcement learning problems are usually formulated as a Markov Decision Process (MDP)
defined by a tuple (S,A, T , d0,R, γ), where S represents the set of states s ∈ S, A represents the
set of actions a ∈ A, T is the transition distribution in the form T (st+1|st, at), d0 is the distribution
of initial states s0, R : S ×A → R is the reward function, rt = R(st, at) is the reward at timestep t,
and γ ∈ (0, 1) is the discount factor. The objective is to find a policy π that maximizes the expected
cumulative rewards J(π):

J(π) = Es0∼d0(·),at∼π(·|st),st+1∼T (·|st,at)

[∑∞
t=0 γ

tR(st, at)
]
. (2.1)

Among various offline RL methods [18, 13, 6, 14], Decision Transformer [3] which leverages the
Transformer [29] to predict the next action conditioned on the past trajectory is drawing increasing
attention. In DT, the trajectories {s0, a0, r0, s1, a1, r1, . . . , sT , aT , rT } in the offline dataset D are
reformulated and modeled as a sequence generation problem via self-supervised learning paradigm.

2.2 Prompt Decision Transformer

Xu et al. [31] introduced Prompt Decision Transformer, which leverages the DT architecture to model
the RL trajectories in multi-task environments and make decisions in unseen tasks. In the offline
dataset D, we have the trajectories τ . The rewards in the training trajectories of DT are replaced
by the return-to-go denoted as Ri =

∑T
t=i rt. The prompt is the short trajectory from the dataset.

During the training stage, we utilize the offline RL dataset D which contains multiple RL tasks
denoted as Ti ∈ T train. The input of Prompt-DT is a concatenation of the prompt and the training
trajectory, denoted by τ∗i and τi respectively. We have the input vector τ inputi defined as

τ inputi = [τ∗i , τi] =
(
R∗

i,1, s
∗
i,1, a

∗
i,1, · · · , R∗

i,K∗ , s∗i,K∗ , a∗i,K∗ , Ri,1, si,1, ai,1, . . . , Ri,K , si,K , ai,K
)
.

(2.2)

where K∗ is the length of the prompt and K is the length of the training trajectories. Besides, we
denote the partial trajectory from the timestep 1 to timestep t as τ inputi,1<t . Then the learning objective
of Prompt-DT can be formulated as the following maximum likelihood estimation:

LPDT = Eτ input
i ∼Ti

[∑K
t=1 − logMθ(âi,t|τ∗i , τ

input
i,1<t−1, Ri,t, si,t)

]
. (2.3)

where Mθ denotes the Prompt-DT model with the parameter θ. In practical implementations, we
often use the mean squared error loss instead, which aims to predict the future action âi,t given the
history trajectory and current state by minimizing the following loss function.

LPDT = Eτ input
i ∼Ti

[
1/K

∑K
t=1(ai,t − âi,t)

2
]
. (2.4)

The training procedure of Prompt-DT is to autoregressively generate the action conditioned on the
current state, return-to-go, past trajectory and sampled prompt.

3 The Proposed Framework

We propose Language model-initialized Prompt Decision Transformer (LPDT), a novel and effective
framework to incorporate powerful pre-trained language models into Decision Transformers to
improve their few-shot learning abilities. We also leverage an additional prompt regularization over
the prompts during fine-tuning to better identify tasks. Figure 1 illustrates the overview of our method.
Algorithm 1 in the Appendix B demonstrates more details of this approach.

3.1 Language model initialization for Prompt-DT

The first step in our LPDT framework is to use pre-trained language models as the initialization. In
this work, we use the DistilGPT2 [26, 24] as the initial weights, which is a pre-trained model with 82
million parameters and is faster and lighter than the original GPT-2 [24]. The common next-token
prediction objective of GPTs can be formulated as

LLM =
∑t−1

i=1 − log(Mθ∗ (wi+1 | w1, . . . , wi)), (3.1)

3

where Mθ∗ is the language model and wi represents the word token. To make the language model
compatible with the RL sequence prediction tasks in DT, we follow previous work [27] to replace the
word token embedding input and output layers with linear layers, which are trainable for specific RL
tasks.

3.2 Parameter-efficient fine-tuning on RL tasks

To adapt the language models to specific RL tasks, we add a low-rank adaptation of the frozen weights
of the language model and update it using parameter-efficient methods like LoRA [8]. Specifically,
LoRA utilizes two low-rank matrices to represent the weight matrix, significantly reducing the
number of parameters. This process can be formulated as W = W0 + ∆W = W0 + AB, where
W ∈ Rd×k is the weight of our model, W0 ∈ Rd×k is the frozen weight inherited from the language
model, and A ∈ Rd×r and B ∈ Rr×k are low-rank matrices. In this way, we avoid fully fine-tuning
the language model and make our method scalable to large language models, where only a small
number of parameters from the low-rank matrix ∆W need to be updated.

3.3 Prompt regularization with supervised and unsupervised objectives

Previous works [9, 10] aim to tune the prompt during testing on unseen tasks. However, they are
not always effective when tasks are too similar. To address this challenge and achieve improved
performance on testing tasks, we incorporate an additional regularization on the training loss over the
prompt.

Since our model is built upon Prompt-DT, we use the loss function for Prompt-DT defined in (2.4) as
the base loss function, and then incorporate a prompt regularization term. The loss function of our
method is as follows.

Ltotal = Eτ input
i ∼Ti

[
1/K

∑K
t=1(ai,t − âi,t)

2
]
+ λLϕ, (3.2)

where Lϕ is the loss for the prompt regularization which we will specify in the rest of this section,
and λ is the hyperparameter for prompt regularization.

Supervised learning-based prompt regularization. In this approach, we add a classifier head to the
output of the prompt encoder. We use the task ID from the dataset as the label We adopt cross-entropy
as the loss function. We formulate Lϕ as:

Lclassifier
ϕ = −

∑
i yi log(ŷi), (3.3)

where yi is the true task label which means the task ID and ŷi is the predicted probability for the task
which comes from the prompt τ∗i .

Unsupervised learning-based prompt regularization. When task IDs are unknown, the supervised
method may not be feasible. Therefore, we also propose an unsupervised learning method We use the
InfoNCE objective [22] to calculate the loss over the prompt. We formulate Lϕ as:

LInfoNCE
ϕ = −E

[
log

exp(sim(zi, zj)/τ)∑N
k=1 exp(sim(zi, zk)/τ)

]
, (3.4)

where zi and zj are the encoded representations of the prompts τ∗i and τ∗j respectively. The term
sim(zi, zj) denotes the similarity function (e.g., cosine similarity) between zi and zj .

4 Experiments

In this section, we conduct experiments to evaluate the few-shot generalization ability of our proposed
method LPDT. We evaluate the performance of LPDT on MuJoCo control tasks [4] and Meta World
[34] with the episode accumulated reward as the evaluation metric. We also evaluate the prompt ability
of LPDT with the smaller dataset sizes. More implementation details can be found in Appendix D.

4.1 Datasets and Tasks

In this work, we evaluate the performance of our proposed approach on MuJoCo controls and
Meta World, which are commonly used in existing Prompt-DT type of methods [31, 9, 10], namely,

4

Cheetah-dir, Cheetah-vel, Ant-dir, Meta-World reach-v2 and MW pick-place-v2. More details can
refer to the Appendix C.1.

We compare the few-shot generalization ability of our proposed LPDT with baseline algorithms. For
each method, we compare the performance based on the accumulated reward. The baselines we
choose include Prompt-DT [31], Prompt-Tuning DT [9], and Prompt Diffuser [10]. Details of the
baselines can be found in Appendix C.2.

4.2 Comparison with Prompt-DT type of methods

Table 1: Results for MuJoCo control tasks and MW tasks. The best mean scores are highlighted in
bold. For each environment, the length of the prompt is K∗ = 5. The dataset we utilized is the full
dataset. We test all the results on unseen tasks with three random seeds. LPDT outperforms baselines
on the Cheetah environment and is competitive in the Ant environment.

Task Prompt-DT Prompt-Tuning DT Prompt Diffuser LPDT-Classifier LPDT-InfoNCE

Cheetah-dir 933.91±7.04 941.5±3.2 945.3±7.2 947.84±1.53 951.72±4.08
Cheetah-vel -34.71±2.80 -40.1±3.8 -35.3±2.4 -31.57±2.70 -35.98±7.15

Ant-dir 396.07±9.78 427.9±4.3 432.1±6.7 374.13±23.05 412.47±21.01
MW reach-v2 692.29±9.32 472.5±29.0 555.7±6.8 497.61 ± 48.15 528.21±114.24

MW pick-place-v2 3773.82± 356.05 - - 3508.12±243.93 3543.38±191.32

We conduct experiments on our proposed LPDT and baseline methods to evaluate their performance.
Table 1 demonstrates that our LPDT outperforms the baseline algorithms on MuJoCo Control tasks
but suffers from inferior performance in Meta World compared with Prompt-DT. The possible
limitation may be due to the huge difference between the RL task and the language task. Table 1 also
illustrates that our approach performs better than the baselines in Cheetah-dir and Cheetah-vel, while
it is not as good as Prompt Diffuser in Ant-dir but still better than Prompt-DT. For the results in the
Meta World task, we report the results of Prompt-Tuning DT and Prompt Diffuser from their papers.
We then conduct an ablation study on data efficiency. We split the dataset into different ratios and
train algorithms on these split datasets. Table 2 demonstrates that LPDT outperforms the baseline
method Prompt DT in different ratios which shows that the pre-trained language model incorporates
prior knowledge about these RL downstream tasks.

Table 2: Ratio results for MuJoCo control tasks different ratio dataset. The best mean scores are
highlighted in bold. For each environment, the length of the prompt is K∗ = 5. We test all the results
on unseen tasks with three random seeds. We demonstrate that language initialization provides prior
knowledge for training on RL tasks and performs better than Prompt-DT with less data.

Tasks Methods Full 0.5 0.1 0.05 0.01

Cheetah-dir Prompt DT 933.91±7.04 935.17±11.56 890.35±11.95 838.33±9.14 475.13±14.17
LPDT-Classifier 947.84±1.53 940.41±12.68 931.42±6.40 911.5768±7.35 806.82±10.34
LPDT-InfoNCE 951.72±4.08 940.27±4.18 919.75±4.17 914.28±4.90 774.33±21.62

Cheetah-vel Prompt DT -34.71±2.80 -41.08±8.99 -42.46±9.25 -45.38±4.30 -69.78±0.74
LPDT-Classifier -31.57±2.70 -37.45±4.01 -34.37±8.58 -42.83±2.58 -65.61±6.14
LPDT-InfoNCE -35.98±7.15 -35.75±2.30 -34.20±8.21 -44.1793±1.52 -78.32±13.64

Ant-dir Prompt DT 396.07±9.78 411.205±29.87 361.13±4.46 397.2984±22.93 334.7232±6.65
LPDT-Classifier 374.13±23.05 394.51±23.88 347.12±28.48 356.7666±22.79 349.91±19.29
LPDT-InfoNCE 412.47±21.01 392.29±37.54 369.73±21.97 336.6543±39.43 314.34±4.96

5 Conclusion

In this work, we proposed a novel framework for improving the few-shot prompt ability of decision
transformers in offline reinforcement learning, i.e., Language model-initialized Prompt Decision
Transformer (LPDT). By leveraging pre-trained language models and combining them with domain-
specific RL datasets, LPDT demonstrates improved few-shot prompt capabilities and outperforms
or is competitive with existing baselines in prompt-based methods in terms of cumulative rewards
on unseen tasks. Our approach has the potential to significantly reduce the data requirements for
offline RL tasks, making it more applicable to real-world scenarios where collecting large amounts of
RL trajectories is challenging. Furthermore, our results demonstrate the effectiveness of our prompt
regularization methods in enhancing the model’s ability to distinguish task information contained in
prompts.

5

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[3] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[4] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for
deep data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

[5] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[6] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[7] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[8] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

[9] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Prompt-tuning decision transformer with
preference ranking. arXiv preprint arXiv:2305.09648, 2023.

[10] Shengchao Hu, Li Shen, Ya Zhang, and Dacheng Tao. Prompt tuning with diffusion for few-
shot pre-trained policy generalization, 2024. URL https://openreview.net/forum?id=
7rex8lEZH2.

[11] Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big
sequence modeling problem. Advances in neural information processing systems, 34:1273–
1286, 2021.

[12] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[13] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-
policy q-learning via bootstrapping error reduction. Advances in neural information processing
systems, 32, 2019.

[14] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning
for offline reinforcement learning. Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

[15] Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for
offline model-free robotic reinforcement learning. arXiv preprint arXiv:2109.10813, 2021.

[16] Kuang-Huei Lee, Ofir Nachum, Mengjiao Sherry Yang, Lisa Lee, Daniel Freeman, Sergio
Guadarrama, Ian Fischer, Winnie Xu, Eric Jang, Henryk Michalewski, et al. Multi-game
decision transformers. Advances in Neural Information Processing Systems, 35:27921–27936,
2022.

6

https://openreview.net/forum?id=7rex8lEZH2
https://openreview.net/forum?id=7rex8lEZH2

[17] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[18] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[19] Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An
Huang, Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive
decision-making. Advances in Neural Information Processing Systems, 35:31199–31212, 2022.

[20] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[21] Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers
shine in rl? decoupling memory from credit assignment. Advances in Neural Information
Processing Systems, 36, 2024.

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[23] Raul Puri and Bryan Catanzaro. Zero-shot text classification with generative language models.
arXiv preprint arXiv:1912.10165, 2019.

[24] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[25] Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement
learning? arXiv preprint arXiv:2201.12122, 2022.

[26] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[27] Ruizhe Shi, Yuyao Liu, Yanjie Ze, Simon S Du, and Huazhe Xu. Unleashing the power of pre-
trained language models for offline reinforcement learning. arXiv preprint arXiv:2310.20587,
2023.

[28] Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4rl: Surprisingly simple self-supervision
for offline reinforcement learning in robotics. In Conference on Robot Learning, pages 907–917.
PMLR, 2022.

[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[30] Zhihui Xie, Zichuan Lin, Deheng Ye, Qiang Fu, Yang Wei, and Shuai Li. Future-conditioned
unsupervised pretraining for decision transformer. In International Conference on Machine
Learning, pages 38187–38203. PMLR, 2023.

[31] Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang
Gan. Prompting decision transformer for few-shot policy generalization. In international
conference on machine learning, pages 24631–24645. PMLR, 2022.

[32] Mengdi Xu, Yuchen Lu, Yikang Shen, Shun Zhang, Ding Zhao, and Chuang Gan. Hyper-
decision transformer for efficient online policy adaptation. arXiv preprint arXiv:2304.08487,
2023.

[33] Mengdi Xu, Yuchen Lu, Yikang Shen, Shun Zhang, Ding Zhao, and Chuang Gan. Hyper-
decision transformer for efficient online policy adaptation. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=AatUEvC-Wjv.

[34] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on robot learning, pages 1094–1100. PMLR, 2020.

7

https://openreview.net/forum?id=AatUEvC-Wjv
https://openreview.net/forum?id=AatUEvC-Wjv

[35] Xiangyuan Zhang, Weichao Mao, Haoran Qiu, and Tamer Başar. Decision transformer as a
foundation model for partially observable continuous control. arXiv preprint arXiv:2404.02407,
2024.

8

A Related Work

Decision Transformer. Decision Transformer (DT) [3] emerged as a type of algorithm for offline RL
by using the powerful Transformer architecture for decision-making. DT models RL trajectories as
a sequence generation problem and utilizes the next-token generation paradigm for training. Thus,
DT takes the history tokens such as the return, state, and action to predict the next action, which
formulates the decision-making as an action prediction or sequence generation in a supervised
fashion. Since DT can fully utilize the whole trajectories and is easy to train compared with dynamic
programming-based offline RL, many of the following works improved the performance under
different settings. For example, Lee et al. [16] proposed the Multi-game Decision Transformer which
is trained on part of the Atari games as the multi-tasks training and fine-tuned on the remaining
games to achieve efficient adaption. Hyper Decision Transformer [32] adds an adapter into Decision
Transformer and is fine-tuned on unseen tasks through the demonstration without expert actions. Xie
et al. [30] proposed to predict the action conditioned on the future trajectory embedding instead of
conditioned on the return. Trajectory Transformer [11] is another research line, which is trained on
sequences of state, action, and rewards and generated with the beam search.

Prompt-DT. Prompt Decision Transformer [31] utilizes the prompt-based framework to do the
meta-RL. It is trained on multi-RL tasks with offline datasets. During the training, the prompts or
demonstrations which are a small part of the trajectory are combined with trajectories. During the
testing on unseen tasks, the prompt can be a guide for indicating the tasks and help the model predict
the action to interact with the environments. Following Prompt-DT, several works are adopting the
prompt tuning method to achieve a high-quality prompt. Prompt-Tuning DT [8] uses the preference
ranking function and black-box tuning method to tune the prompt when testing on unseen tasks to
achieve a high-quality prompt. Moreover, Prompt Diffuser [10] leverages the diffusion model to
generate high-quality prompts leading to improved performance in downstream RL tasks. Different
from these works, we adopt the prompt regularization which aims to learn a high-quality prompt
embedding to distinguish the different but similar RL tasks. Our method adopts this regularization
during the training procedure in the prompt dataset.

Language model based DT. Large language models have achieved many surprising effects in
various tasks in recent years. Pre-trained on large datasets such as the corpus of the Internet, LLMs
such as GPTs [24] demonstrate prompt ability which can generate the text with the guide of the
task information. The success of the large language models motivates the increasing use of pre-
trained language models in improving Decision Transformer to solve RL tasks [3]. Several works
utilize the powerful representation generalization ability of language models as policies to do the
decision-making. Li et al. [19] proposed to adopt the pre-trained language models for interactive
decision-making to convert the policies to sequence data. Wik-RL [25] uses a pre-trained language
model from the next-token generation paradigm as the initialization of DT for offline RL tasks.
However, it suffers from inferior performance than directly using DT. To overcome these challenges
and unleash the power of language models, Shi et al. [27] proposed the LaMo algorithm which uses
a pre-trained language model and parameter-efficient fine-tuning methods to improve the original
DT. Zhang et al. [35] also proposed to use LaMo in partially observable continuous control problems
which demonstrates a strong generalization ability. Unlike all the above methods, our approach is
fine-tuned for learning to identify different prompts for various RL tasks. And during the testing
phase, just a small part of the trajectories is used in our method as the prompt without updating the
model.

B Proposed Algorithm

C Environment and Baselines

C.1 Experiment Environments

We evaluate our approach over the MuJoCo tasks and Meta-World ML1 tasks. In Cheetah-dir, there
are two tasks with goal directions as forward and backward, where the reward function promotes high
velocity along the goal direction. The training and testing phases both include the two tasks. Similar
to Cheetah-dir, Ant-dir also segments the tasks by directions. There are 50 tasks in Ant-dir with
different goal directions uniformly sampled in 2D space. The tasks are split into 45 training tasks and

9

Algorithm 1: Language model-initialized Prompt Decision Transformer (LPDT)
Input: Pre-trained language model weights θ∗, training datasets D with prompts and trajectories,

prompt regularization hyperparameter λ
Output: Language Initialized Prompt Decision Transformer

1 Initialize Decision Transformer with pre-trained language model weights (e.g., DistillGPT2);
2 Replace the input and output embedding layers of the language model with linear layers;
3 for each epoch do
4 for each batch in training dataset do
5 Extract prompts τ∗i and trajectories τi from the batch;
6 Encode prompts τ∗i using the prompt encoder ϕ(τ∗i);
7 Transform trajectories τi using DT with prompt embeddings ϕ(τ∗i);
8 Compute the Prompt-DT loss LPDT over the input trajectories τ inputi by (2.4); Compute

the prompt regularization loss Lϕ using the supervised learning (3.3) or unsupervised
learning loss (3.4);

9 Combine the Prompt-DT loss and prompt regularization loss: Ltotal = LPDT + λLϕ;
10 Backpropagate the combined loss and update parameters using parameter-efficient

methods like LoRA;
11 Freeze the remaining weights and update only low-rank matrices A and B:

W = W0 +∆W = W0 +AB

12 return Language model-initialized Prompt Decision Transformer;

5 testing tasks. The ant is also rewarded with high velocity along the goal direction. Different from
segmenting the tasks by direction, Cheetah-vel penalizes the agent through the l2 errors with the target
velocities sampled from the velocity interval. There are 40 tasks with different goal velocities where
35 tasks are training tasks and 5 tasks are testing tasks. Except for the MuJoCo control meta-RL
tasks, we also test our approach on Meta World [34] which is an open benchmark for meta-RL and
multi-task learning. In this work, we evaluate our approach on Meta-World reach-v2 and Meta-World
pick-place-v2. The objective of reach-v2 is to control the robot to reach the target position in 3D
positions and pick-place-v2 is to grasp the object. Each task has a different goal position.

We utilize the dataset and settings from the Prompt-DT paper [31]. To be specific, the datasets of
Cheetah-dir and Ant-dir come from the replay buffer of Soft Actor-Critic [7] and the dataset of
Cheetah-vel comes from TD3 [5]. For Meta-World reach-v2 and Meta-World pick-place-v2, we
collected the dataset through the expert policies provided in the open benchmark. We split the tasks
in these environments into the training set and the testing set. The tasks in Cheetah-dir and Ant-dir
are split by directions. The tasks in Cheetah-vel are split by the goal velocities. In Meta-World, the
tasks are defined by different goal positions. The detailed task indexes can be found in Table 3. The
experiments we conducted are all followed to this setting which guarantees consistency during the
evaluation.

C.2 Baselines

Prompt-DT is the first method to utilize the prompt to guide Decision Transformer in testing with the
few-shot demonstrations. Prompt-DT directly uses the prompt without any additional fine-tuning
process when testing. Prompt-Tuning DT is based on Prompt-DT and utilizes prompt tuning methods
when testing on the unseen task. Several prompt tuning techniques are used to tune the prompt to the
specific target environment using preference ranking. Prompt Diffuser extends the prompt tuning
method by leveraging diffusion models to generate high-quality prompts to improve the few-shot
demonstration guidance. Beyond these baselines, Multi-Task Decision Transformer (MT-ORL) [3]
is mentioned in Prompt-DT and Soft-Prompt [17] is described in Prompt Diffuser. So we do not
demonstrate them in our experiments. For HDT [33], it utilizes the adapter to adapt the pre-trained
model to new tasks, which is orthogonal to the prompt-based methods. Thus we do not include their
results in our comparison.

10

Table 3: Training and testing task indexes when testing the generalization ability. We follow the tasks
split between the Prompt-DT and previous works to guarantee a direct comparison with baselines.

Environment Number of tasks Tasks indexes

Cheetah-dir Training set: 2 [0,1]
Testing set: 2 [0,1]

Cheetah-vel Training set: 35 [0-1,3-6,8-14,16-22,24-25,27-39{]}
Testing set: 5 [2,7,15,23,26]

Ant-dir Training set: 45 [0-5,7-16,18-22,24-29,31-40,42-49]
Testing set: 5 [6,17,23,30,41]

Meta-World reach-v2 Training set: 15 [1-5,7,8,10-14,17-19]
Testing set: 5 [6,9,15,16,20]

Meta-World pick-place-v2 Training set: 15 [0-10, 12-16,28-24,25-35,37-41,41-40]
Testing set: 5 [11,17,25,36,41]

D Implementation

D.1 Implementation Details

In the empirical study, we implement our LPDT method with DistilGPT2 as the language initialization.
The initialization language model weight comes from the Huggingface. The DistilGPT2 contains
82 million parameters which is lighter and more efficient than GPT2 with 124 million parameters.
DistilGPT2 is pre-trained on the openwebtext [23] and is distilled by [26]. During the fine-tuning
stage, we follow the same hyperparameters for Prompt-DT (see Appendix D.2 for detail). We also
leverage the LoRA to highly reduce the parameters trained. For the prompt regularization, we use
MLP to further encode the prompt embedding. For the supervised version of prompt regularization
defined in (3.3), we directly use the logits from the MLP to compute the cross-entropy loss and refer
to the method as LPDT-Classifier. For the unsupervised version of prompt regularization defined in
(3.4), we calculate the similarity matrix through the cosine similarity based on the logits from the
MLP and refer to it as LPDT-InfoNCE.

D.2 Hyperparameters

In this section, we show the hyperparameter of our LPDT conducted in Table 1. The hyperparameters
have two parts which are the hyperparameters around the transformer and prompt regularization. We
list these hyperparameters in Table 4.

Table 4: Detail on hyperparameters used in our experiments in Table 1. We show that the hyperparam-
eters in two parts which are parameters for model backbone and prompt regularization respectively.

Hyperparameters Value

K (length of context τ) 20
Training batch size for each task 16

Number of evaluation episodes for each task 20
Learning rate 1e-4

Learning rate decay weight 1e-4
Language initialization DistilGPT2
Embedding dimension 128

Activation ReLU
Classifier hyperparameter 0.1

Classifier layers 2
Classifier MLP dimension 128
InfoNCE hyperparameter 0.1

InfoNCE temperature 1
InfoNCE MLP dimension 128

11

E Detailed Results

0 1000 2000 3000 4000 5000
Training Steps

0
200
400
600
800

1000
1200

Ep
iso

de
 R

et
ur

n
Cheetah-dir

Prompt-DT
LPDT-Classifier
LPDT-infoNCE

(a) Cheetah-dir

0 1000 2000 3000 4000 5000
Training Steps

300
250
200
150
100

50
0

Ep
iso

de
 R

et
ur

n

Cheetah-vel

Prompt-DT
LPDT-Classifier
LPDT-infoNCE

(b) Cheetah-vel

0 1000 2000 3000 4000 5000
Training Steps

0

100

200

300

400

500

Ep
iso

de
 R

et
ur

n

Ant-dir

Prompt-DT
LPDT-Classifier
LPDT-infoNCE

(c) Ant-dir

Figure 2: Results on MuJoCo controls with the Cheetah-dir, Cheetah-vel and Ant-dir for Prompt-DT
and our two methods LPDT-Classifier and LPDT-InforNCE. The dataset we utilized is the full dataset.
We plot the figures on unseen tasks with the average returns with one seed and 20 evaluation episodes.
The figure demonstrates that our LPDT needs less sample data compared with Prompt-DT to achieve
superior performance.

In this section, we provide comprehensive summaries of the experimental results. They are the results
of all the unseen tasks in MuJoCo control environments. It includes all the experiments and ablation
study results on our various components. We show that our methods with prompt regularization are
much better than those without regularization and with text regularization. Table 5 demonstrates the
results in Cheetah-dir, Table 6 refers to the results in Cheetah-vel and Table 7 refers to the Ant-dir.
These results further support our observations and conclusions drawn in the experiment section.

Figure 2 shows that our approaches can outperform the baseline method Prompt-DT and demonstrate
that they need fewer sample data compared with Prompt-DT to achieve superior performance. From
Figure 2, we find that our approaches with language initialization can achieve competitive results
with fewer training samples.

Table 5: Results on Cheetah-dir. The best mean scores are highlighted in bold. For each environment,
prompt of the length of K∗ = 5. The dataset we utilized is the full dataset. We test all the results on
unseen tasks with three random seeds. Notably, our approach LPDT outperforms the baselines on the
Cheetah-dir environment.

Methods Cheetah-dir-0 Cheetah-dir-1 Average

Prompt-DT 669.79±5.68 1198.03±19.12 933.91±7.04
LPDT w/o regularization 686.19±3.30 1202.41±14.83 944.30±6.31
LPDT-Text 686.58±2.76 1201.61±1.57 944.09±1.68
LPDT-Classfer 692.63±3.57 1203.04±6.40 947.84±1.53
LPDT-InfoNCE 690.66±3.85 1212.78±5.26 951.72±4.08

Table 6: Results on the Cheetah-vel.The best mean scores are highlighted in bold. For each envi-
ronment, prompt of the length of K∗ = 5. The dataset we utilized is the full dataset.We test all
the results on unseen tasks with three random seeds. Notably, our approach LPDT outperforms the
baselines on the Cheetah-vel environment.

Methods Cheetah-vel-2 Cheetah-vel-7 Cheetah-vel-15 Cheetah-vel-23 Cheetah-vel-26 Average

Prompt-DT -54.48±1.76 -18.12±7.84 -35.92±6.22 -25.93±0.21 -39.11±5.31 -34.71±2.80
LPDT w/o regularization -36.04±5.46 -18.06±5.40 -39.31±11.77 -51.87±1.55 -35.71±7.21 -36.20±4.05
LPDT-Text -34.28±3.17 -18.01±11.37 -36.69±12.79 -53.91±3.45 -64.92±31.36 -41.56±9.65
LPDT-Classfer -35.26±9.09 -13.86±5.02 -24.21±8.99 -48.05±13.96 -36.48±5.44 -31.57±2.70
LPDT-InfoNCE -38.54±11.37 -13.11±4.30 -33.58±8.23 -37.79±2.19 -56.89±23.33 -35.98±7.15

F Ablation Studies

In this section, we provide ablation studies on LPDT to test the role of prompt regularization and
language initialization respectively.

12

Table 7: Results on Ant-dir.The best mean scores are highlighted in bold. For each environment,
prompt of the length of K∗ = 5. The dataset we utilized is the full dataset. We test all the results on
unseen tasks with three random seeds. Notably, our approach LPDT outperforms the baselines on the
Ant-dir environment.

Methods Ant-dir-6 Ant-dir-17 Ant-dir-23 Ant-dir-30 Ant-dir-41 Average

Prompt-DT 628.22±119.58 413.76±4.50 361.18±49.51 358.81±2.30 384.37±20.77 396.07±9.78
LPDT w/o regularization 362.08±64.18 411.79±6.13 324.34±98.67 381.20±1.79 325.36±1.84 360.95±11.07
LPDT-Text 254.53±18.46 418.98±8.00 362.91±54.60 371.94±4.79 348.19±46.48 351.31±23.13
LPDT-Classfer 398.80±120.62 417.85± 4.74 342.60± 82.08 365.02± 1.14 346.37±26.96 374.13± 23.04
LPDT-InfoNCE 555.18±164.12 418.42±5.43 376.34±15.52 362.91±5.22 349.52±46.83 412.47±21.01

Table 8: Results for MuJoCo control tasks and MW tasks with different regularization methods of
our method including w/o regularization, text regularization, classifier regularization and InfoNCE
regularization. The best mean scores are highlighted in bold. For each environment, the length of the
prompt is K∗ = 5. We test all the results on unseen tasks with three random seeds. The dataset we
utilized is the full dataset. We demonstrate that the regularization on prompt can help distinguish the
task and improve the performance compared with the method without regularization.

Task Prompt-DT LPDT w/o regularization LPDT-Text LPDT-classifier LPDT-InfoNCE

Cheetah-dir 933.91±7.04 944.30±6.31 944.09±1.68 947.84±1.53 951.72±4.08
Cheetah-vel -34.71±2.80 -36.20±4.05 -41.56±9.65 -31.57±2.70 -35.98±7.15

Ant-dir 396.07±9.78 360.95±11.07 351.31±23.13 374.13±23.05 412.47±21.01
MW reach-v2 692.29±9.32 431.87±115.19 459.65±76.01 497.61±48.15 528.21±114.24

MW pick-place-v2 3773.82± 356.05 3700.34±68.45 3678.53±58 3508.12±243.93 3543.38±191.32

F.1 The role of prompt regularization

We first compare our proposed model with the same approach without the prompt regularization,
denoted as LPDT w/o regularization. We also follow the settings of LaMo [27] and add a text
regularization introduced by LaMo for comparison. We summarize the results in Table 8. Specifically,
we find that prompt regularization helps the model distinguish between tasks and improve performance.
LPDT without regularization or with text regularization suffers from inferior performance compared
to our prompt regularization methods. Note that text regularization is trained with an NLP dataset,
which is time-consuming and inefficient.

F.2 Data efficiency of language initialization

To verify whether language initialization can incorporate prior knowledge about the downstream RL
tasks, we split the dataset to train Prompt-DT and our approaches. We also evaluate the results on a
portion of the dataset using a ratio of 0.1. The results are summarized in Table 9.

Table 9: Ratio results for MuJoCo control tasks and MW tasks with the full dataset and 0.1 ratio
(10%) dataset. The best mean scores are highlighted in bold. For each environment, the length of the
prompt is K∗ = 5. We test all the results on unseen tasks with three random seeds. We demonstrate
that language initialization can improve the performance of our LPDT.

Task Datset Cheetah-dir Cheetah-vel Ant-dir MW reach-v2 MW pick-place-v2

Prompt-DT Full 933.91±7.04 -34.71±2.80 396.07±9.78 692.29±9.32 3773.82±356.05
0.1 890.35±11.95 -42.46±9.25 361.13±4.46 601.56±40.44 3062.67±283.56

LPDT w/o regularization Full 944.30±6.31 -36.20±4.05 360.95±11.07 431.87±115.19 3700.34±68.45
0.1 927.80±4.91 -37.25±5.85 353.56±27.98 446.03±30.94 3555.53±255.52

LPDT-Classifier Full 947.84±1.53 -31.57±2.70 374.13±23.05 497.61±48.15 3508.12±243.93
0.1 931.42±6.40 -34.37±8.58 347.12±28.48 457.94±71.38 3118.57±77.47

LPDT-InfoNCE Full 951.72±4.08 -35.98±7.15 412.47±21.01 528.21±114.24 3543.38±191.32
0.1 919.75±4.17 -34.20±8.21 369.73±21.97 449.04±44.13 3341.35±131.93

Table 9 illustrates the results under different sizes of training datasets. We adopt DistilGPT2 for
language initialization without any regularization. We also use LoRA to fine-tune the language models
to the MuJoCo dataset. The results show that with only a 0.1 ratio (10%) of the dataset, the methods

13

with language initialization outperform Prompt-DT when tested on unseen tasks, demonstrating that
the language pre-trained model contains valuable knowledge for downstream RL tasks.

14

	Introduction
	Preliminary
	Offline Reinforcement Learning
	Prompt Decision Transformer

	The Proposed Framework
	Language model initialization for Prompt-DT
	Parameter-efficient fine-tuning on RL tasks
	Prompt regularization with supervised and unsupervised objectives

	Experiments
	Datasets and Tasks
	Comparison with Prompt-DT type of methods

	Conclusion
	Related Work
	Proposed Algorithm
	Environment and Baselines
	Experiment Environments
	Baselines

	Implementation
	Implementation Details
	Hyperparameters

	Detailed Results
	Ablation Studies
	The role of prompt regularization
	Data efficiency of language initialization

