
Under review as a conference paper at ICLR 2021

FAST MNAS: UNCERTAINTY-AWARE NEURAL ARCHI-
TECTURE SEARCH WITH LIFELONG LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sampling-based neural architecture search (NAS) always guarantees better conver-
gence yet suffers from huge computational resources compared with gradient-based
approaches, due to the rollout bottleneck – exhaustive training for each sampled
generation on proxy tasks. This work provides a general pipeline to accelerate the
convergence of the rollout process as well as the RL learning process in sampling-
based NAS. It is motivated by the interesting observation that both the architecture
and the parameter knowledge can be transferred between different experiments and
even different tasks. We first introduce an uncertainty-aware critic (value function)
in PPO to utilize the architecture knowledge in previous experiments, which sta-
bilizes the training process and reduces the searching time by 4 times. Further, a
life-long knowledge pool together with a block similarity function is proposed to
utilize lifelong parameter knowledge and reduces the searching time by 2 times. It
is the first to introduce block-level weight sharing in RL-based NAS. The block
similarity function guarantees a 100% hitting ratio with strict fairness. Besides, we
show a simply designed off-policy correction factor that enables “replay buffer” in
RL optimization and further reduces half of the searching time. Experiments on
the MNAS search space show the proposed FNAS accelerates standard RL-based
NAS process by ∼10x (e.g. ∼256 2x2 TPUv2*days / 20,000 GPU*hour→ 2,000
GPU*hour for MNAS), and guarantees better performance on various vision tasks.

1 INTRODUCTION

Neural architecture search (NAS) has made great progress in different tasks such as image classifica-
tion (Tan & Le, 2019) and object detection (Tan et al., 2019b). And usually, there are four commonly
used NAS algorithms: differentiable, one-shot, evolutional, and reinforcement learning (RL) based
method. The RL-based method, due to its fair sampling and training processes, has often achieved a
great performance among different tasks. However, one of the biggest challenges of it is the high
demand for computing resources, which makes it hard to follow by the research community.

RL-based NAS consumes a large number of computing powers on two aspects: a) the need for
sampling a large number of architectures to optimize the RL agent and b) the tedious training and
testing process of these samples on proxy tasks. For example, the originator of NAS (Zoph & Le,
2016) requires 12,800 generations of architecture and current state-of-the-art MNAS (Tan et al.,
2019a) and MobileNet-V3 (Howard et al., 2019) require 8000 or more generations to find the optimal
architectures. Besides, each generation is usually trained for 5 epochs. All in all, it costs nearly 64
TPUv2 devices for 96 hours or 20,000 GPU hours on V100 for just one single searching process.
With such a severe drawback, researchers start looking for other options like differential (Liu et al.,
2018b; Chen et al., 2019), or one-shot based (Bender, 2019; Guo et al., 2019) method for NAS.

The one-shot family has drawn lots of attention recently due to its efficiency. It applies a single
super-network based search space with that all the architectures, also called sub-networks, share
parameters with the super-network during the training process. In this way, the training process is
condensed from training thousands of sub-networks into training a super-network. However, this
share-weight strategy may bring problems for the performance estimation of sub-networks. For
example, two sub-networks may propagate conflicting gradients to their shared components, and the
shared components may converge to favor one of the sub-networks and repel the other randomly. This

1

Under review as a conference paper at ICLR 2021

0 2000 4000 6000 8000 10000
generation

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

re
w

ar
d

with UAC

0 2000 4000 6000 8000 10000
generation

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
with LKP

0 2000 4000 6000 8000 10000
generation

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
with EBA

0 2000 4000 6000 8000 10000
generation

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
FNAS

Figure 1: Reward along sample generation between FNAS and MNAS. Blue dots are the searching
result of MNAS, while red dots are the results of FNAS.

N

initialize

update

sample

sample_old

Real Sample
TrainerRL Agent

Lifelong
Knowledge Pool

Batch
Data

Architecture
Experience Buffer

train

uncertainty
> threshold

Uncertainty-Aware
Critic

prediction

Y

Value
Network Fake Sample

Uncertainty
Network

!"#$!%&'()!"#$!%*(+'

Figure 2: The pipeline of FNAS. The proposed modules are highlighted in orange. Architectures
are sampled by the RL agent and then passed to Uncertainty-Aware Critic (UAC) for predicted
performance and the corresponding uncertainty. Then a decide module will determine whether the
sample needs to be trained by Trainer. The Lifelong Knowledge Pool (LKP) helps to initialize new
samples for training. Half of the samples in one batch come from Architecture Experience Buffer
(AEB), the other half come from Trainer or UAC’s Value Network.

conflicting phenomenon may result in instability of the search process and inferior final architectures,
compared with RL-based methods.

In this work, we seek to combine the privilege of RL-based methods and one-shot methods, by
leveraging the knowledge from previous NAS experiments. The proposed method is based on two
key observations: First, the optimal architectures for different tasks have common architecture
knowledge. Second, the parameter knowledge can also be transferred across experiments and even
tasks.

Based on the observations, for transferable architecture knowledge, we develop Uncertainty-Aware
Critic (UAC) to learn the architecture-performance joint distribution from other experiments even
other tasks in an unbiased manner, utilizing the transferability of the structural knowledge, which
reduces the sample’s training time by 50% and the result is shown in Figure 1 (with UAC); For
the transferable parameter knowledge, we propose Lifelong Knowledge Pool (LKP) to restore the
block-level parameters and fairly share them to new samples’ initialization, which speeds up each
samples’ convergence for 2 times, as shown in Figure 1 (with LKP); Finally, we also developed an
Architecture Experience Buffer (AEB) with a significant off-policy correctness factor to store the
old models for reusing in RL optimization, with half of the time saved. And this is shown in Figure 1
(with AEB). Under the strictly same environment as MNAS and MobileNet-v3, FNAS speed up the
searching process by 10× and the performances are even better.

2

Under review as a conference paper at ICLR 2021

RL search space

Good architectures
by RL agent

Good architectures
on ImageNet

Good architectures
on Face Recognition

RL agent

Save Load Load Save

Search on
ImageNet

Global
Knowledge Pool

Search on
Face Recognition

Figure 3: On the left, searching for neural architectures on different tasks leads to different optimal
architectures. On the right, different tasks share the same global knowledge pool.

2 REVISITING SAMPLING-BASED NAS

2.1 NAS FAMILY

From the perspective of how to derive the performance estimation of an architecture, NAS methods
can be split into two categories, sampling-based and share-weight based.

Sampling-based methods usually sample many architectures from the search space and train them
independently. Based on the performance of these well-trained architectures, several ways can be
utilized to fetch the best one, such as Bayesian optimization (Kandasamy et al., 2018), evolutionary
algorithm (Real et al., 2019), and training an RL agent (Zoph & Le, 2016). The main drawback of
these methods is a huge time and resource consumption of training the sampled architectures. To
alleviate this issue, a common practice is to shorten the training epochs and use proxy networks with
fewer filters and cells (Zoph et al., 2018; Tan et al., 2019a). Liu et al. (Liu et al., 2018a) propose
to train a network to predict the final performance. Different from these methods, we leverage the
accumulated knowledge to accelerate the training process.

Instead of training many architectures independently, the second kind of methods resorts to train a
super-network and estimate the performance of architectures with weights shared from the super-
network (Bender, 2019; Wu et al., 2019; Liu et al., 2018b; Chen et al., 2019; Xu et al., 2019; Cai
et al., 2019; Stamoulis et al., 2019; Guo et al., 2019). With the easy access of performance estimation,
DARTS (Liu et al., 2018b) proposes a gradient-based method to search for the best architecture in
an end-to-end manner. However, as pointed in (Li & Talwalkar, 2019), the performance estimation
based on shared weights may be unreliable. Chen et al. (Chen et al., 2019) proposes to progressively
shrink the search space so that the estimation can be more and more accurate. Cai et al. (Cai et al.,
2019) introduces a shrinking based method to train the supernet so as to generate networks of different
scales without retraining. We also share weights between architectures but in different ways. We
construct a general weight pool with many trained architectures, and when we want to train a new
architecture, we initialize it by the trained architectures in the pool. In this way, the number of training
epochs can be reduced without harming reliability.

3 KNOWLEDGE BETWEEN NAS EXPERIMENTS IS TRANSFERABLE

RL-based NAS consumes a lot of computing resources. MNAS, as it’s said before, trains 8,000
models for the agent to converge, which costs 20,000 GPU hours on V100. And all the samples
trained for one experiment will not be used anymore. However, the active differentiable-based NAS
demonstrates that with various weight-sharing techniques, the NAS algorithms can be accelerated a
lot. In this section, we will show that the knowledge of previous searched experiments can be reused
by the following two observations, which helps the follow-up experiment greatly.

3.1 ARCHITECTURE KNOWLEDGE CAN BE TRANSFERRED

Optimal architectures for different tasks have common architecture knowledge. One always
holds the assumption that the performance of a model is consistent among different tasks. A common

3

Under review as a conference paper at ICLR 2021

common spaceexclusive spaceIm
ag
eN
et

Fa
ce

Figure 4: Expectation of each operator of optimal models of face experiment and ImageNet exper-
iment. Calculated by the 100 optimal models of face experiments and ImageNet experiments and
sorted by the significance of the difference.

practice of this assumption is applying good ImageNet (Deng et al., 2009) models to COCO object
detection (Lin et al., 2014) as the backbone. In NAS, however, this assumption needs to be carefully
checked as the huge search space of it requires the hypothesis to be well generalized. Here, We
statistically verify this assumption.

In Figure 4, we sample 100 optimal models on face recognition and ImageNet classification tasks
respectively. For each model, we firstly expand each digit of its embedding (i.e. a 35 dimension
vector) to one-hot: e.g. from "4" to "1000"; "3" to "0100". In this way, the original embedding is
expanded to 112-dim from 35-dim. After that, we calculate the expectation for each digit of this
expended vector among the top 100 optimal architectures on the face recognition and ImageNet
classification respectively. Shown in Figure 4, we get an observation that the operators can be divided
into two spaces, i.e. exclusive space, where the probability difference is large and common space,
where the probability difference is small.

Many previous works (Liu et al., 2018a; Kokiopoulou et al., 2019; Luo et al., 2018; Wen et al.,
2019; Luo et al., 2020) use a predictor to predict a model’s performance to speed up the NAS
process. However, as the predictor requires thousands of samples to train, they usually implement
in a progressive (Liu et al., 2018a) or semi-supervised manner (Luo et al., 2020). Inspired by the
interesting observation above, we implement it in a unified way where different tasks’ samples are
used together to train a unified value network to predict a model’s performance. When searching
architecture on a new task, we just use directly the unified network trained by the old data and keep
updating it in the new task during the search process, which speeds up the convergence of the value
network. Showing in Figure 5a, when transferring a value network trained on ImageNet to face
recognition task, the network converges much faster.

3.2 PARAMETER KNOWLEDGE CAN BE TRANSFERRED

Initializing the network by ImageNet pre-trained models and training the model on other tasks has
nearly been a standard way as it can always speed up the convergence process. However, pretraining
has been ignored in the NAS area as it may break the rank of different models. In our experiments, we
observe that the trained checkpoint, we call it parameter knowledge, can help us to get the real rank
faster than training from scratch. Besides, this feature holds regardless of the data distribution. We
randomly sample 50 models and train them on ImageNet in two ways: from scratch or by initializing
with parameter knowledge from face experiment. Then, we compare the rank correlation with real
rank (i.e. fully trained rank) along the training process. Showing in Figure 5b and 5c, with parameter
knowledge from face experiment, one gets more accurate rank in fewer epochs.

4 UNCERTAINTY-AWARE NAS WITH LIFELONG LEARNING

In this section, we introduce how we utilize the observations above to design three core modules to
inherit common structural knowledge and parameter knowledge from task to task without bias.

4.1 UNCERTAINTY-AWARE CRITIC IN PPO

The value function is a common module and is widely used in RL algorithms like PPO but rarely
used in traditional NAS. Usually, training a value function requires a large number of samples to

4

Under review as a conference paper at ICLR 2021

0 5 10 15
Epoch

0.02

0.03

0.04

0.05

0.06

Va
lid

at
io

n
lo

ss

init randomly
init with face task

(a)

0 1 2 3 4 5
Iteration

0

5

10

15

20

25

Im
ag

eN
et

 to
p1

init with LKP
init randomly

(b)

0 2 4 6 8
Training epoch

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
an

k
co

rr
el

at
io

n

training w LKP
training w/o LKP

(c)

Figure 5: On the left, the value function pretrained on face recognition task converges much faster.
On the right, Spearman rank-order correlation (Zar, 2005) along the training process of random
initialization and block-level initialization.

converge (e.g. million-level steps in Atari env trained by ray1), which is unbearable for NAS as it
means thousands of models needed to be trained and it’s expensive. In our algorithm, alternatively,
we propose the Uncertainty-Aware Critic to deal with this issue which is inspired by Section 3.

Given an architecture Ai sampled from search space, a value network V is utilized to predict the
reward V (Ai) of this sample, while R(Ai) is the real reward of it. And the loss function to update V
is

LV = |V (A)−R(A)| (1)

Besides, an uncertainty network U is utilized to predict the uncertainty U(Ai) of this sample, which
is used to learn discriminately whether a sample is in the distribution of learned samples. In our
implementation, the loss function to update U is

LU = |U(A)− LV | (2)

If U(Ai) is greater than a threshold, the sample may locate in the region which has not been learned
by the value network. As a result, it will be trained from scratch to get its reward. Otherwise, one
thinks the prediction V (Ai) is accurate, and V (Ai) will be regarded as the reward of Ai to update
the RL agent. The whole process is illustrated in Figure 2.

Samples need to be trained from scratch are defined as real sample, while others are defined as
fake sample if its reward comes from V . With more real samples getting their rewards in our
searched tasks, the value network becomes more accurate, thus the uncertainty value gets from U
will always decrease. Considering an extreme case where each sample in a batch gets a reward
with low uncertainty and is classified as fake samples, the agent updated by these samples is easy to
be over-fitted, which is not conducive to the exploration of the RL agent and it would lead to bad
performance. In our implementation, we use the following constraints to balance the exploration and
the exploitation of the RL agent to speed up its convergence without over-fitting.

• Constraint1: Sample whose uncertainty is higher than the threshold σ needs to be trained from
scratch.

• Constraint2: In each batch, when the number of fake samples is greater than 50% of the batch
size, the extra fake samples will be thrown away and the agent will resample until enough real
samples are gotten to fill the rest of the batch.

With these two constraints, we find that the algorithm can maintain a decent performance in an
accelerated search process.

4.2 UNCERTAINTY-AWARE KERNEL POOL

Parameter knowledge can be transferred among different tasks to speed up the convergence of a
network as shown in Section 3.2. However, traditional pretraining is not feasible in NAS, as there

1https://github.com/ray-project/rl-experiments

5

Under review as a conference paper at ICLR 2021

are thousands of different architectures in the search space and we can not afford to pretrain each
architecture on a different task. To address this problem, we propose to initialize each architecture
in a factorized way and use a fuzzy matching algorithm to guarantee the hit ratio. First, we define
an architecture as a combination of n blocks {b1, b2, ..., bn}. For any two architectures Ai and Aj ,
although generally, their structures may be quite different, some of their blocks may be similar to
each other, (eg. b2 of Ai == b2 of Aj), thus the weights of these parts could be shared. So we build a
Kernel Pool to store all the previously trained models block by block in a key-value manner, where
the key is the expand embedding of each block and the value is the Parameter knowledge of the block.

Recent research has found that fairness in weight sharing has a great impact on the final perfor-
mance (Chu et al., 2019). So we apply the following two strategies to solve the problem of fairness.

• The checkpoints stored in the LKP are trained with equal iterations.

• For each block query, the proposed uncertainty function to ensure that the match ratio reaches
more than 99%, which means less than 1% blocks have been unfairly initialized.

Given a query block bi, we calculate the cosine similarity of the expanded embedding as in Section 3.1
between bi and each element in LKP. The block with the highest similarity will be recalled to initialize
bi. We show the overall process in Figure 3. Using LKP can speed up the search process by 2×. At
the same time, in Section 3 we found that parameter knowledge is transferable. We apply the same
LKP to different tasks and all the search processes are accelerated, illustrated in Figure 5b.

5 ARCHITECTURE EXPERIENCE BUFFER

In a general RL task, there are a lot of discussions about sample reuses. However, in RL-based NAS,
sample efficiency is rarely mentioned. In our algorithm, we propose architecture experience buffer
to store the sampled models in the form of architecture-performance pairs, and for each iteration in
the future, the stored samples may be used again to update the RL agent to speed up its convergence.
We call the samples stored in the experience buffer as old samples and the newly generated samples
as new samples. Different from the traditional RL works, the proposed experience buffer has the
following features:

• The buffer size is relatively small (usually 10 in our experiments). As the convergence of the RL
agent is much faster than RL tasks, if the buffer size is set too large, the agent will focus on old
samples and the convergence speed would be slow.

• In each batch, both old samples and new samples will be selected. To prevent the RL updating
from biasing to the old samples, the percentage of the old samples in one batch is constrained to
no more than 50%.

Some recent works (Schaul et al., 2015) suggested that the samples in the buffer should have different
priorities. We do it similarly, defining different priorities in terms of their reward. Then, we sample
from the buffer and reweight those samples with their priorities. For each sample {s1, s2, ..., sn}
with their reward R{r1, r2..., rn} in AEB, the priority score is defined as: Pi =

exp(ri)∑
j exp(rj)

.

Following (Schaul et al., 2015), each sample will be reweighted by importance sampling weight.
The reweighted score S can be written in: Si = (N ∗ Pi)−β , where N is buffer size and β is the
annealing term and it will increase from 0 to 1 as the experiment proceeds.

6 FNAS ON VISION TASKS

In this section, we conduct different experiments on both ImageNet and million-level face recognition
tasks to verify the effectiveness of FNAS. The details and results are as follows:

6.1 IMPLEMENTATION DETAILS

Following the standard searching algorithm as NASNet (Zoph et al., 2018), MNAS (Tan et al., 2019a)
and AKD (Liu et al., 2019), we use an RNN-based agent optimized by PPO algorithm (Schulman

6

Under review as a conference paper at ICLR 2021

Table 1: Performance Results on ImageNet Classification. FNAS-Image×1.3 means scale up FNAS-
Image for 1.3× along width.

models Type FLOPs Top1 Acc. (%) Top5 Acc. (%) Search Cost
(GPU Hours)

MBv2 Manual 300M 72 91 0

ProxylessNAS

Share-weight

320M 74.6 92.2 200
DARTS 574M 73.3 91.3 96
FairNAS 388M 75.3 92.4 288

Once-For-All 327M 75.3 92.6 1200

AmoebaNet Evolutionary 555M 74.5 92 75,600

MNAS

RL-based

315M 75.2 92.5 20,000
NASNet 564M 74 91.6 43,200
MBv3 219M 75.2 91 -

EfficientNetB0 390M 76.3 93.2 -
FNAS-Image 225M 75.5 92.6 2000

FNAS-Image×1.3 392M 77.2 93.5 2000

Table 2: Performance on MegaFace.

model FLOPs Distractor num Search Cost
(GPU Hours)1e5 1e6

MBv2 300M 92.75 88.71 0
ShuffleNet 295M 94.15 90.46 0

MNAS 313M 93.41 89.47 20,000
MBv3 218M 94.15 90.64 -

FNAS-Face 227M 95.45 92.63 2000

Table 3: Performance on COCO.

models FLOPs mAP

MNAS 6.697 G 27.68
MBv2×1.0 6.675 G 29.79
MBv3×0.75 5.852 G 29.25
MBv3×1.0 9.060 G 30.02

FNAS 8.021 G 30.44

et al., 2017). For ImageNet experiments, we sample 50K images from the training set to form the
mini-val set and use the rest as the mini-training set. In each experiment, 8K models are sampled
to update the RL agent. Note that when equipped with UAC or AEB, not all samples need to
be activated, as many samples’ rewards are directly returned from these two modules. For face
experiments, we use MS1M (Guo et al., 2016) as the mini-training set, LFW (Huang et al., 2008) as
the mini-val set. The final performance is evaluated on MegaFace (Kemelmacher-Shlizerman et al.,
2016).

6.2 PROXYLESS FNAS ON IMAGENET

Just as MNAS has done, we also use a multi-objective reward to directly search on ImageNet. After
the search process, we retrain the top 10 models with the largest reward near the target flops from
scratch to verify the search results. In Table 1, we get a relatively higher result than the current SOTA
network MBv3 (Howard et al., 2019). Note that the model we search does not go through the
pruning operation NetAdapt (Yang et al., 2018), which can reduce 10%∼15% computation
and keep performance nearly unchanged. Compared with EfficientNetB0, FNAS improves top
1 accuracy by 1 point under comparable computation budget. And still, there is nearly 10× of
acceleration in the entire search process compared to MNAS (Tan et al., 2019a) or MBv3 (Howard
et al., 2019).

6.3 PROXYLESS FNAS ON FINE-GRAINED FACIAL RECOGNITION

Besides verifying the performance of FNAS on ImageNet, we also test it on the fine-grained facial
recognition task. As can be seen in Table 2, compared with MBv3, verification accuracy improves 2
points in comparable FLOPs under 1e6 distractors. When compared with MBv2, FNAS improves
verification accuracy for nearly 4 points with 24% FLOPs reduction. The result shows: 1) FNAS has
an obvious acceleration effect on different tasks and 2) the importance of searching directly on the
target task.

7

Under review as a conference paper at ICLR 2021

Table 4: The effectiveness of the three proposed modules, MBv2×0.38 means scale up MBv2 for
0.38× along width

Models LKP UAC AEB MFLOPs Top1 Acc. (%) Activated
Samples

Search
Epoches

Search Cost
(GPU Hours)

MBv2×0.38 81 62.65 0 0 0

MNAS 72 64.23 8,000 1 4,000
74 65.19 10,000 4 20,000

FNAS

3 75 64.97 8,000 1 4,000
3 76 65.22 8,000 2 10,000

3 72 64.28 2,300 1 1,150
3 72 64.44 4,500 1 2,250

3 3 3 85 66.25 2,000 1 1,000

Table 5: Transferability of UAC and LKP

models UAC or LKP MFLOPs Top1 Acc. (%) Activated
Samples

Search
Epoches

Search Cost
(GPU Hours)

MNAS 7 181 73.25 8,000 4 16,000

FNAS UAC init with face exp 153 73.91 2,000 4 4,000

MNAS 7 285 74.62 8,000 4 16,000

FNAS LKP init with face exp 292 75.22 4,000 4 8,000

6.4 TRANSFERABILITY ON OBJECT DETECTION

We combine the model found on ImageNet in Table 1 with the latest pipeline of detection to verify its
generalization. Table 3 shows the performance of the model on COCO (Lin et al., 2014). It can be
seen that compared to MBv3, there is a significant improvement with our searched model.

7 ABLATION STUDY

7.1 THE EFFECTIVENESS OF THE THREE PROPOSED MODULES.

In this section, the effectiveness of UAC, LKP, AEB is verified when they are used alone or combined.
Details are shown in Table 4. Three conclusions can be observed: 1. Sampling with LKP initialization
gets real rank faster; 2. Fewer samples are required when NAS is equipped with UAC and AEB; and
3. 10× speedup can be achieved when NAS is equipped with LKP, UAC, and AEB.

7.2 THE TRANSFERABILITY OF THE PROPOSED MODULES.

In Section 3, we mentioned that knowledge between NAS experiments is transferable, which is also
verified in the experiment. We use the UAC trained on the face as a pre-trained model and then
transfer it to the ImageNet experiment. In the absence of 3/4 of activated samples, the optimal model
surpasses baseline by 0.67% with fewer FLOPs, showing in Table 5. In addition, we use LKP with
the checkpoints from face experiments and then search on ImageNet. In the absence of 1/2 activated
samples, performance increases by 0.6%.

8 CONCLUSION

This paper proposes three modules (UAC, LKP, AEB) to speed up the entire running process of
RL-based NAS, which consumes large amounts of computing power before. With these modules,
fewer samples and less training computing resources are needed, making the overall search process
10× faster. We also show the effectiveness of applying those modules on different tasks such as
ImageNet, face recognition, and object detection. More importantly, the transferability of UAC
and LKP is being tested by our observation and experiments, which will guide us in tapping the
knowledge of the NAS process.

8

Under review as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

REFERENCES

Gabriel Bender. Understanding and simplifying one-shot architecture search. 2019.

Han Cai, Chuang Gan, and Song Han. Once for all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791, 2019.

Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search: Bridging
the depth gap between search and evaluation. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1294–1303, 2019.

Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness of
weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition. In European conference on computer vision, pp.
87–102. Springer, 2016.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun. Single
path one-shot neural architecture search with uniform sampling. arXiv preprint arXiv:1904.00420,
2019.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In
Proceedings of the IEEE International Conference on Computer Vision, pp. 1314–1324, 2019.

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild: A
database forstudying face recognition in unconstrained environments. 2008.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. In Advances in
Neural Information Processing Systems, pp. 2016–2025, 2018.

Ira Kemelmacher-Shlizerman, Steven M Seitz, Daniel Miller, and Evan Brossard. The megaface
benchmark: 1 million faces for recognition at scale. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4873–4882, 2016.

Efi Kokiopoulou, Anja Hauth, Luciano Sbaiz, Andrea Gesmundo, Gabor Bartok, and Jesse Berent.
Fast task-aware architecture inference. arXiv preprint arXiv:1902.05781, 2019.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search.
arXiv preprint arXiv:1902.07638, 2019.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan
Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture search. In Proceedings
of the European Conference on Computer Vision (ECCV), pp. 19–34, 2018a.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018b.

Yu Liu, Xuhui Jia, Mingxing Tan, Raviteja Vemulapalli, Yukun Zhu, Bradley Green, and Xiaogang
Wang. Search to distill: Pearls are everywhere but not the eyes. arXiv preprint arXiv:1911.09074,
2019.

9

Under review as a conference paper at ICLR 2021

Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, and Tie-Yan Liu. Neural architecture optimization.
In Advances in neural information processing systems, pp. 7816–7827, 2018.

Renqian Luo, Xu Tan, Rui Wang, Tao Qin, Enhong Chen, and Tie-Yan Liu. Semi-supervised neural
architecture search. arXiv preprint arXiv:2002.10389, 2020.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie Liu,
and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less than 4
hours. arXiv preprint arXiv:1904.02877, 2019.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2820–2828, 2019a.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.
arXiv preprint arXiv:1911.09070, 2019b.

Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. arXiv preprint arXiv:1912.00848, 2019.

Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design via
differentiable neural architecture search. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 10734–10742, 2019.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2019.

Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang, Alec Go, Mark Sandler, Vivienne Sze, and
Hartwig Adam. Netadapt: Platform-aware neural network adaptation for mobile applications. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 285–300, 2018.

Jerrold H Zar. Spearman rank correlation. Encyclopedia of Biostatistics, 7, 2005.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable architectures
for scalable image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 8697–8710, 2018.

A APPENDIX

You may include other additional sections here.

10

	Introduction
	Revisiting sampling-based NAS
	NAS family

	Knowledge between NAS experiments is transferable
	Architecture knowledge can be transferred
	Parameter knowledge can be transferred

	Uncertainty-Aware NAS with Lifelong Learning
	Uncertainty-Aware Critic in PPO
	Uncertainty-Aware Kernel Pool

	Architecture Experience Buffer
	FNAS on vision tasks
	Implementation details
	Proxyless FNAS on ImageNet
	Proxyless FNAS on fine-grained facial recognition
	Transferability on object detection

	Ablation study
	The effectiveness of the three proposed modules.
	The transferability of the proposed modules.

	Conclusion
	Appendix

