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Abstract

Reinforcement learning (RL) is an appealing paradigm for training intelligent1

agents, enabling policy acquisition from the agent’s own autonomously acquired2

experience. However, the training process of RL is far from automatic, requir-3

ing extensive human effort to reset the agent and environments. To tackle the4

challenging reset-free setting, we first demonstrate the superiority of model-based5

(MB) RL methods in such setting, showing that a straightforward application6

of MBRL can outperform all the prior state-of-the-art methods while requiring7

less supervision. We then identify limitations inherent to this direct extension8

and propose a solution called model-based reset-free (MoReFree) agent, which9

further enhances the performance. MoReFree adapts two key mechanisms, explo-10

ration and policy learning, to handle reset-free tasks by prioritizing task-relevant11

states. It exhibits superior data-efficiency across various reset-free tasks without12

access to environmental reward or demonstrations while significantly outperform-13

ing privileged baselines that require supervision. Our findings suggest model-14

based methods hold significant promise for reducing human effort in RL. Website:15

https://sites.google.com/view/morefree16

1 Introduction17

Reinforcement learning presents an attractive framework for training capable agents. At first glance,18

RL training appears intuitive and autonomous - once a reward is defined, the agent learns from its19

own automatically gathered experience. However, in practice, RL training often assumes the access20

to environmental resets that can require significant human effort to setup, which poses a significant21

barrier for real world applications of RL like robotics.22

Most RL systems on real robots to date have employed various strategies to implement resets, all23

requiring a considerable amount of effort [17, 32, 34, 21]. In [21], which trains a dexterous hand to24

rotate balls, the practitioners had to (1) position a funnel underneath the hand to catch dropped balls,25

and (2) deploy a separate robot arm to pick up the dropped balls for resets, and (3) script the reset26

behavior. These illustrate that even for simple behaviors, proper implementation of reset mechanisms27

can result in significant human effort and time.28

Rather than depending on human-engineered reset mechanisms, the agent can operate within a reset-29

free training scheme, learning to reset itself [4, 27, 25, 12] or train a policy capable of starting from30

diverse starting states [35]. However, the absence of resets introduces unique exploration challenges.31

Without periodic resets, the agent can squander significant time in task-irrelevant regions that require32

careful movements to escape and may overexplore, never returning from indefinite exploration.33

Recent unsupervised model-based RL (MBRL) approaches [20, 14] in the episodic setting have34

shown sophisticated exploration, high data-efficiency and promising results in long-horizon tasks.35

This prompts the question: would MBRL agents excel in the reset-free RL setting?36
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Figure 1: Performance and collected
data of different agents on the reset-free
Ant locomotion task.

As an initial attempt, we first evaluate an unsupervised37

MBRL agent, out-of-the-box, in a reset-free Ant locomo-38

tion task. The ant is reset to the center of a rectangular39

arena, and is tasked with navigating to the upper right40

corner. The agent is reset only once at the start of training.41

The evaluation is episodic - the agent is reset at the start42

of each evaluation episode.43

For the MBRL agent, we use PEG [14], which was devel-44

oped to solve hard exploration tasks in the episodic setting.45

As seen in Figure 1, PEG, out of the box, outperforms46

prior state-of-the-art, model-free agent, IBC [15], tailored47

for the reset-free setting.48

In Figure 1, we plot state visitation heatmaps of the agents,49

where lighter colors correspond to more visitations. The50

oracle agent, with access to resets, explores the the “task-51

relevant” area between the initial and top right corner,52

which is ideal for training a policy that succeeds in episodic evaluation. IBC’s heatmap (bottom)53

shows that it fails to explore effectively, never encountering the goal states in the top right region.54

In contrast, PEG exhaustively explores the entire space, as seen through its uniform heatmap. This55

results in an overexploration problem - PEG may devote considerable time on finding irrelevant states56

rather than concentrating on the task-relevant region of the task. This leads us to ask: how can MBRL57

agents acquire more task-relevant data in the reset-free setting to improve its performance?58

We propose Model-based, Reset-Free (MoReFree), which improves two key mechanisms in model-59

based RL, exploration and policy optimization, to better handle reset-free training. Following the60

top row of Figure 2: to gather task-relevant data without resets, we define a training curriculum that61

alternates between temporally extended phases of task solving, resetting, and exploration. Next,62

as seen in the bottom row of Figure 2, we bias the policy training within the world model towards63

achieving task-relevant goals such as reaching initial states and evaluation states.64

Our key contributions are as follows: (1) We demonstrate the viability of using model-based agents65

with strong exploration abilities for the reset-free setting as well as their inherent limitations. We66

address such limitations through the MoReFree framework which focuses exploration and policy op-67

timization on task-relevant states. (2) We evaluate the out-of-the-box MBRL baseline and MoReFree68

against state-of-the-art reset-free methods in 8 challenging reset-free tasks ranging from manipulation69

to locomotion. Notably, both model-based approaches outperform prior state-of-the-art baselines70

in 7/8 tasks in final performance and data efficiency, all the while requiring less supervision (e.g.71

environmental reward or demonstrations). MoReFree outperforms the model-based baseline in the72

3 hardest tasks. (3) We perform in-depth analysis of the MoReFree and baselines behaviors, and73

show that MoReFree explores the state space thoroughly while retaining high visitation counts in the74

task-relevant regions. Our ablations show that the performance gains of MoReFree come from the75

proposed design choices and justify the approach.76

2 Related Work77

Reset-free RL: There is a growing interest in researching reinforcement learning methods that can78

effectively address the complexities of reset-free training. [28] proposes a reset-free RL benchmark79

(EARL) and finds that standard RL methods like SAC [9] fail catastrophically in EARL. Multiple80

approaches have been proposed to address reset-free training, which we now summarize. One81

approach is to add an additional reset policy, to bring the agent back to suitable states for learning82

[4, 16, 27, 25, 15]. LNT [4] and [16] train a reset policy to bring the agent back to initial state83

distribution, supervised by dense rewards and demonstrations respectively. MEDAL [25, 26], train a84

goal-conditioned reset policy and direct it to reset goal states from demonstrations. IBC [15] defines85

a curriculum for both task and reset policies without requiring demonstrations. VaPRL [27] trains a86

single goal-conditioned policy to reach high value states close to the initial states. Instead of guiding87

the agent back to familiar states, R3L [35] and [31] learn to reset the policy to diverse initial states,88

resulting in a policy that is more robust to variations in starting states. However, such methods are89
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Figure 2: MoReFree is a model-based RL agent for solving reset-free tasks. Top row: MoReFree
strikes a balance between exploring unseen states and practicing optimal behavior in task-relevant
regions by directing the goal-conditioned policy to achieve evaluation states, initial state states
(emulating a reset), and exploratory goals. Bottom row: MoReFree focuses the goal-conditioned
policy training inside the world model on achieving evaluation states, initial states, and random replay
buffer states to better prepare the policy for the aforementioned exploration scheme.

limited to tasks where exploration is unchallenging. The vast majority of reset-free approaches are90

model-free, with a few exceptions [19, 18]. Other works [8, 29] model the reset-free RL training91

process as a multi-task RL problem and require careful definition of the task distribution such that the92

tasks reset each other.93

Goal-conditioned Exploration: A common theme running through the aforementioned work is94

the instantiation of a curriculum, often through commanding goal-conditioned policies, to keep the95

agent in task-relevant portions of the environment while exploring. Closely related is the subfield96

of goal-conditioned exploration in RL, where a goal-conditioned agent selects its own goals during97

training time to generate data. There is a large variety of approaches for goal selection, such as task98

progress [1, 30], intermediate difficulty [6], value disagreement [33], state novelty [23, 22], world99

model error [14, 24], and more. Many goal-conditioned exploration methods use the “Go-Explore"100

[3] strategy, which first selects a goal and runs the goal-conditioned policy (“Go"-phase), and then101

switches to an exploration policy for the latter half of the episode (“Explore"-phase). PEG [14],102

which MoReFree uses, extends Go-Explore to the model-based setting, and utilizes the world model103

to plan states with higher exploration value as goals. However, such methods are not designed for the104

reset-free RL setting, and may suffer from over-exploration of task-irrelevant states.105

Table 1: A conceptual overview of reset-free methods. Existing methods are model-free, and most
of them require other forms of supervision (environmental reward or demonstrations or both). In
performance, MoReFree improves over reset-free PEG, which significantly outperforms privileged
baselines IBC, MEDAL and R3L.

Approach MEDAL IBC VaPRL R3L reset-free PEG MoReFree
Model-based ✗ ✗ ✗ ✗ ✓ ✓

Other Supervision ✓ ✓ ✓ ✗ ✗ ✗

We notice that the majority of all prior work are model-free and may suffer from poor sample efficiency106

and exploration issues. In contrast, our model-based approaches use world models to efficiently train107

policies and perform non-trivial goal-conditioned exploration with minimal supervision. See Table 1108

for a conceptual comparison between prior work and two model-based methods (MoReFree and109

reset-free PEG).110
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3 Preliminaries111

3.1 Reset-free RL112

We follow the definition of reset-free RL from EARL [28], and extend it to the goal-113

conditioned RL setting. Consider the goal-conditioned Markov decision process (MDP) M =114

(S,G,A, p, r, ρ0, ρg∗ , γ). At each time step t in the state st ∈ S , a goal-conditioned policy π(·|st, g)115

under the goal command g ∈ G selects an action at ∈ A and transitions to the next state st+1 with116

the probability p(st+1|st, at), and gets a reward r(st, at, g). ρ0 is the initial state distribution, ρg∗ is117

the evaluation goal distribution, and γ is the discount factor.118

The learning algorithm A is defined: {si, ai, si+1}t−1
i=0 7→ (at, πt), which maps the transitions119

collected until the time step t to the action at the agent should take in the non-episodic training and120

the best guess πt of the optimal policy π∗ on the evaluation goal distribution (ρg∗). In reset-free121

training the agent will only be reset to the initial state s0 ∼ ρ0 once. The evaluation of agents is still122

episodic. The agent always starts from s0 ∼ ρ0, and is asked to achieve g ∼ ρg∗ . The evaluation123

objective for a policy π is:124

J(π) = Es0∼ρ0,g∼ρg∗ ,aj∼π(·|sj ,g),sj+1∼p(·|sj ,aj)[

T∑
j=0

γjr(sj , aj , g)], (1)

where T is the total time steps during the evaluation. The goal of algorithm A during the reset-free125

training is to minimize the performance difference D(A) of the current policy πt and the optimal126

policy π∗:127

D(A) =
∞∑
t=0

(J(π∗)− J(πt)). (2)

In summary, the algorithm A should output an action at that the agent should take in the non-episodic128

data collection and a policy πt that can maximize J(πt) at every time step t based on all previously129

collected data.130

3.2 Model-based RL setup131

Recent goal-conditioned MBRL approaches like LEXA [20] and PEG [14] train goal-conditioned132

policies purely using synthetic data generated by learned world models. Their robust exploration133

demonstrate significant success in solving long-horizon goal-conditioned tasks. In the reset-free134

setting, strong exploration is crucial, as the agent can no longer depend on episodic resets to bring it135

back to task-relevant areas if it gets stuck. Therefore, we select PEG as the backbone MBRL agent136

for its strong exploration abilities and sample efficiency.137

PEG [14] is a model-based Go-Explore framework that extends LEXA [20], an unsupervised goal-138

conditioned variant of DreamerV2 [11]. The following components are parameterized by θ and139

learned:140

world model: T̂θ(st|st−1, at−1)

goal conditioned policy: πG
θ (at|st, g) goal conditioned value: V G

θ (st, g)

exploration policy: πE
θ (at|st) exploration value: V E

θ (st)

(3)

The world model is a recurrent state-space model (RSSM) which is trained141

to predict future states and is used as a learned simulator to train the142

policies and value functions. The goal-conditioned policy πG is trained143

to reach random states sampled from the replay buffer. The exploration144

policy πE is trained on an intrinsic motivation reward that rewards world145

model error, expressed through the variance of an ensemble [24]. Both146

policies are trained on simulated trajectory rollouts in the world model.147

▶ Self-supervised Goal-reaching Reward Function:148

Rather than assuming access to the environmental reward, PEG learns149

its own reward function. PEG uses a dynamical distance function [13] as150

the reward function within world models, which predicts the number of151
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actions between a start and goal state. The distance function is trained on random state pairs from152

imaginary rollouts of πG. πG is then trained to minimize the dynamical distance between its states153

and commanded goal state in imagination. See [20] for more details.154

▶ Phased Exploration via Go-Explore: For data-collection, PEG employs the Go-Explore strat-155

egy. In the “Go"-phase, a goal is sampled from some goal distribution ρ. The goal-conditioned156

policy, conditioned on the goal is run for some time horizon HG, resulting in trajectory τG.157

Then, in the “Explore"-phase, starting from158

the last state in the “Go"-phase, the ex-159

ploration policy is run for HE steps, re-160

sulting in τE . The interleaving of goal-161

conditioned behavior with exploratory be-162

havior results in more directed exploration163

and informative data. This in turn improves164

accuracy of the world model, and the poli-165

cies that train inside the world model. See166

Algorithm 1 and Algorithm 2 for pseudocode. The choice of goal distribution ρ is important for Go-167

Explore. In easier tasks, the evaluation goal distribution ρg∗ may be sufficient. But in longer-horizon168

tasks, evaluation goals may be too hard to achieve. Instead, intermediate goals from an exploratory169

goal distribution ρE can help the agent explore. We choose PEG, which generates goals by planning170

through the world model to maximize exploration value (see [14] for details).171

4 Method172

As motivated in Section 1 and Figure 1, the direct application of PEG to the reset-free setting shows173

promising performance but suffers from over-exploration of task-irrelevant states. To adapt model-174

based RL to the reset-free setting, we introduce MoReFree, a model-based approach that improves175

PEG to handle the lack of resets and overcome the over-exploration problem. MoReFree improves176

two key mechanisms of MBRL for reset-free training: exploration and policy training.177

4.1 Back-and-Forth Go-Explore178

First, we introduce MoReFree’s procedure for collecting new datapoints in the real environment.179

PEG [14] already has strong goal-conditioned exploration abilities, but was developed for solving180

episodic tasks. Without resets, PEG’s Go-Explore procedure can undesirably linger in unfamiliar but181

task-irrelevant portions of the state space. This generates large amounts of uninformative trajectories,182

which in turn degrades world model learning and policy optimization.183

MoReFree overcomes this by periodically directing the agent to return to the states relevant to the task184

(i.e. initial and evaluation goals). We call this exploration procedure “Back-and-Forth Go-Explore”,185

where we sample pairs of initial and evaluation goals and ask the agent to cycle back and forth186

between the goal pairs, periodically interspersed with exploration phases (see Figure 2 top row).187

Now, we define the “Back-and-Forth Go-188

Explore” strategy as seen in Algorithm 3. First,189

we decide whether to perform initial/evaluation190

state directed exploration. With probability α,191

we sample goals (g∗, g0) from ρg∗ , ρ0 respec-192

tively. Then, we execute the Go-Explore routine193

for each goal. We name Go-Explore trajecto-194

ries conditioned on initial state goals as “Back”195

trajectories, and Go-Explore trajectories con-196

ditioned on evaluation goals as “Forward” tra-197

jectories. With probability 1 − α, we execute198

exploratory Go-Explore behavior by sampling199

exploratory goals from PEG.200

By following this exploration strategy, the agent modulates between various Go-Explore strategies,201

alternating between solving the task by pursuing evaluation goals, resetting the task by pursuing202

initial states, and exploring unfamiliar regions via exploratory goals.203
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4.2 Learning to Achieve Relevant Goals in Imagination204

Next, we describe how MoReFree trains the goal-conditioned policy in the world model. To train205

πG, MoReFree samples various types of goals and executes πG(· | ·, g) inside the world model to206

generate “imaginary” trajectories. The trajectory data is scored using the learned dynamical distance207

reward mentioned in Section 3.2 , and the policy is updated to maximize the expected return. This208

procedure is called imagination [10], and allows the policy to be trained on vast amounts of synthetic209

trajectories to improve sample efficiency.210

First, we choose to sample evaluation goals from ρg∗ since the policy will be evaluated on its211

evaluation goal-reaching performance. Next, recall that Back-and-Forth Go-Explore procedure212

also samples initial states from ρ0 as goals for the Go-phase to emulate resetting behavior. Since213

we would like πG to succeed in such cases so that the task is reset, we will also sample from ρ0.214

Finally, we sample random states from the replay buffer to increase πG’s ability to reach arbitrary215

states. The sampling probability for each goal type is set to α/2, α/2, 1− α respectively. In other216

words, MoReFree biases the goal-conditioned policy optimization procedure to focus on achieving217

task-relevant goals (i.e. evaluation and initial states), as they are used during evaluation and goal-218

conditioned exploration to condition the goal-reaching policy (see Figure 2 bottom row).219

4.3 Implementation Details220

Our work builds on the top of PEG [14], and we use its default hyperparameters for world model,221

policies, value functions and temporal reward function. We set the length of each phase for Go-222

Explore (HG, HE) to half the evaluation episode length for each task. We set the default value of223

α = 0.2 for all tasks (never tuned). See Appendix C.3 for more details and the supplemental for224

MoReFree code.225

5 Experiments226

We evaluate two MBRL methods (PEG [14] and our extension MoReFree) and four competitive227

reset-free baselines on eight reset-free tasks. We aim to address the following questions: 1) Do228

MBRL approaches work well in reset-free tasks in terms of sample efficiency and performance? 2)229

What limitations arise from running MBRL in the reset-free setting, and does our proposed solution230

MoReFree address them? 3) What sorts of behavior do MoReFree and baselines exhibit in such tasks,231

and are our design choices for MoReFree justified?232

Baselines: All baselines except for R3L are implemented using official codebases, see Appendix C.2233

for details.234

PointUMaze Tabletop

Push and PP (hard) Ant

Sawyer Door

Fetch Push and PP

PointUMaze Tabletop

Push and PP (hard) Ant

Sawyer Door

Fetch Push and PP

Figure 3: We evaluate MoReFree on eight reset-free tasks ranging from navigation to manipulation.
PP is short for Pick&Place.

• reset-free PEG is a straightforward extension of PEG [14] to the reset-free setting.235

• MEDAL [25] requires demonstrations and trains two policies, one for returning to demon-236

stration states and another that achieves task goals.237

• IBC [15] is a competitive baseline that outperforms prior reset-free work (e.g. MEDAL,238

VaPRL) by defining a bidirectional curriculum for the goal-conditioned forward and back-239

wards (i.e. reset) policies trained using the environmental reward.240

• R3L [35] trains two policies, one for achieving task goals and another that perturbs the241

agent to novel states. Notably, it is the only baseline that operates without any additional242

assumptions (i.e. environmental rewards, demonstrations, and resets).243

6



• Oracle is SAC [9] trained under the episodic setting on the environmental reward.244

Note that most baselines enjoy some advantage over two MBRL methods: MEDAL, IBC and Oracle245

use ground truth environmental reward, while MEDAL also uses demonstrations and Oracle uses246

resets. See Table 1 for a conceptual comparison between MoReFree and prior work.247

Environments: We evaluate MoReFree and baselines on eight tasks (see Figure 3). We select248

five tasks from IBC’s evaluation suite of six tasks; (Fetch Reach is omitted because it is trivially249

solvable). Next, we increased the complexity of the two hardest tasks from IBC, Fetch Push and Fetch250

Pick&Place, by extending the size of the workspace, replacing artificial workspace limits (which251

cause unrealistic jittering behavior near the limits, see the website for videos) with real walls, and252

evaluating on harder goal states (i.e. Pick&Place goals only in the air rather than including ones on253

the ground). In addition, we contributed a difficult locomotion task, Ant, which is adapted from the254

PEG codebase [14]. All methods are run with 5 seeds, and the mean performance and standard error255

are reported. During the evaluation, the performance on tasks with randomly sampled goals from ρg∗256

is measured by averaging over 10 episodes. See Appendix C for more experimental details.257

5.1 Results258

PointUMaze Tabletop PushSawyer Door

Pick&Place Push (hard) AntPick&Place (hard)

Figure 4: MBRL methods (MoReFree and reset-free PEG) significantly outperform baselines in 7/8
tasks. In 4 tasks, only MBRL methods are able to learn meaningful behavior, showcasing MBRL’s
sample efficiency. MoReFree outperforms PEG in the 3 most difficult tasks.

As shown in Fig 4, two model-based methods (MoReFree and reset-free PEG), without demonstrations259

or access to environmental reward, outperform other baselines with privileged access to supervision260

in both final performance and sample efficiency in 7/8 tasks. We observe that the two MBRL methods261

learn good behaviors: the pointmass agent hugs the wall of the UMaze to minimize travel time and262

the Fetch robot deftly pushes and picks up the block into multiple target locations. MoReFree is263

always competitive with or outperforms PEG, with large gains in the 3 hardest tasks: Push (hard)264

by 45%, Pick&Place (hard) by 13% and Ant (hard) by 36%. We observe that MoReFree learns265

non-trivial reset behaviors such as picking and pushing blocks back into the center of the table for the266

hard variants of the Fetch manipulation tasks. See the website for videos of MoReFree and baselines.267

In many tasks, the baselines fail to learn at all. We believe this is due the low sample budget, which268

may be too low for the baselines to fully explore the environment and learn the proper resetting269

behaviors necessary to train the actual task policy. In Appendix G, we increased the training budget270

by 3× for the IBC baseline and it still fails, underscoring the difficulty of the tasks and the sample-271

efficiency gains of MoReFree and MBRL. On the other hand, we noticed that one environment,272

Sawyer Door, seemed particularly hard for MBRL agents to solve. We hypothesize that the dynamics273

of the task are hard to model, resulting in performance degradation for model-based approaches (see274

Appendix F for more analysis).275
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5.2 Analysis276

To explain the performance differences between MoReFree and baselines, we closely analyze the277

exploration behaviors.278

MoReFree focuses on task-relevant states. In Figure 5 we visualize the state visitation heatmaps of279

methods in various environments, and also compute the percentage of “task-relevant” states (initial280

and goal regions, highlighted with white borders). We highlight two trends. First, the heatmaps show281

that MoReFree and PEG explore thoroughly while baselines have more myopic exploration patterns,282

as seen in the Ant heatmaps at the top.283

Next, performance differences between PEG and MoReFree are intuitively explained by the amount284

of task-relevant data collected by each agent. In easier environments like Push or Pick&Place285

where both PEG and MoReFree encounter similar amounts of task-relevant states, the performance286

is roughly similar between PEG and MoReFree. But in harder environments (Ant, Push (hard),287

Pick&Place (hard)) with larger state spaces and more complicated resetting dynamics, MoReFree288

collects 1.3−5× more task-relevant data and has large performance gains over PEG. By experiencing289

more task-relevant states and training policies on them in imagination, MoReFree policies are290

more suited towards succeeding at the episodic evaluation criteria. See Appendix D for additional291

visualizations.292

Push

13.2% 9.8%

Pick&Place (hard)

MoReFree reset-free PEG MoReFree reset-free PEG

MoReFree reset-free PEG IBC MEDAL R3L

22.7% 11.4%

83.6%83.6%

Push (hard)

   74.5%79.7%

Pick&Place

Ant

6.1% 1.3%

Figure 5: State visitation heatmaps of different agents. White areas are task-relevant states (including
initial and goal state distributions) and we overlay the percentages of task-relevant states. MBRL
methods explore more and in harder environments, MoReFree experiences more task-relevant states.

Push (hard) Pick&Place (hard)

PointUMaze Tabletop Ant (hard)

Push (hard) Pick&Place (hard)

PointUMaze Tabletop Ant (hard)

Push (hard) Pick&Place (hard)

PointUMaze Tabletop Ant

Push (hard) Pick&Place (hard)

PointUMaze Tabletop AntPush (hard) Pick&Place (hard)

PointUMaze Tabletop Ant

Figure 6: We visualize the start position (red dots) of successful “Back” trajectories of MoReFree’s
Back-and-Forth Go-Explore, where πG is directed to reset the environment. The color intensity of
the dots correspond to state density over the last 100 steps.
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MoReFree effectively resets. Next, we investigate the qualitative behavior of MoReFree’s Back-293

and-Forth Go-Explore. To see if “Back” trajectories help free the agent from the sink states, we294

analyze the replay buffer of MoReFree for the environments, and plot the starting locations of the295

agent / object up to 100 timesteps before a successful “Back” trajectory is executed in Figure 6. The296

color intensity of the dots correspond to state density over the last 100 steps (i.e. dark red means297

the agent / object has rested there for a while). We observe that the starting locations (red dots) of298

the agent / object are in corners or next to walls in all environments. This suggests that these areas299

act as sink states, where the agent / object would remain for long and waste time. We observe that300

MoReFree learns reset behaviors like picking the block out of corners and walls in Fetch Push and301

Fetch Pick&Place. See detailed videos of the reset behavior on the website.302

5.3 Ablations303

Figure 7: Ablations on 5 variants of
MoReFree over 5 environments with nor-
malized final performance.

To justify our design choices, we ablate the two mecha-304

nisms of MoReFree, the back-and-forth exploration and305

goal-conditioned policy training, and plot the results in306

Figure 7 First, removing all mechanisms (MF w/o Ex-307

plore & Imag.) reduces to PEG, and we can see a large308

gap in performance. Next, MF with Only Task Goals309

sets α = 1, which causes an extreme bias towards task-310

relevant states in the exploration and policy training. This311

also degrades performance, due to the need for strong ex-312

ploration in the reset-free setting. Examinations of more313

values for α can be found in Appendix C.3.314

Finally, we isolate individual components of MoReFree.315

First, we disable Back-and-Forth Go-Explore by disal-316

lowing the sampling of initial or evaluation goals during317

Go-Explore. Only exploratory goals are used in Go-Explore for this ablation (named MF w/o318

BF-GE). Next, in MF w/o Imag. we turn off the initial / evaluation goal sampling in imagination, so319

only random replay buffer goals are used to train πG. We see that both variants perform poorly. This320

is somewhat intuitive, as the two components rely on each other. Having both forms a synergistic321

cycle where 1) the goal-conditioned policy’s optimization is more focused towards reaching initial322

/ goal states, and 2) the exploration is biased towards reaching initial / goal states by using the323

goal-conditioned policy we just optimized in step 1. If we remove one without the other, then the324

cycle breaks down. In MF w/o Imag., Back-and-Forth Go-Explore will suffer since πG trained on325

random goals cannot reliably reach initial / evaluation goals. In MF w/o BF-GE, the exploration326

strategy will not seek initial / evaluation states, resulting in an inaccurate world model and degraded327

policy optimization. In summary, the ablations show that MoReFree’s design is sound and is the328

major factor behind its success in the reset-free setting. See Appendix E for details.329

6 Conclusion and Future Work330

As a step towards reset-free training, we adapt model-based methods to the reset-free setting and331

demonstrate their superior performance. Specifically, we show that the out-of-the-box, unsupervised332

MBRL method substantially outperforms the state-of-the-art model-free baselines tailored for the333

reset-free setting while being more autonomous (requires less supervision like environmental reward334

or demonstrations). We then identify a limitation of unsupervised MBRL in the reset-free setting335

(over-exploration on task-irrelevant states), and propose MoReFree to address such limitations by336

focusing model-based exploration and goal-conditioned policy training on task-relevant states. We337

conduct a through experimental study of MoReFree and baselines over 8 tasks, and show considerable338

performance gains over the MBRL baseline and prior state-of-the-art reset-free methods. Despite339

its overall success, MoReFree is not without limitations. Being a model-based approach, it inherits340

all associated disadvantages. For example, we believe Sawyer Door is a task where learning the341

dynamics is harder than learning the policy (see Appendix F), disadvantaging MBRL approaches.342

Next, MoReFree uses a fixed percentage of task-relevant goals for exploration and imagination,343

whereas future work could consider an adaptive curriculum. Finally, scaling MoReFree to high-344

dimensional observations would be a natural extension. We hope MoReFree inspires future efforts in345

increasing autonomy in RL.346
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A Broader Impacts430

As we increase the autonomy of RL agents, the possibility of them acting in unexpected ways to431

maximize reward increases. The unsupervised exploration coupled alongside the learned reward432

functions further add to the unpredictability; neither mechanisms are very interpretable. As such, we433

expect research into value alignment, interpretability, and safety to be paramount as autonomy in RL434

improves.435

B Extended Related Work436

Learned Reward Functions: Instead of requiring the environment to provide a reward function,437

the agent can learn its own reward function from onboard sensors and data. Given human specified438

example states, e.g. a goal image, VICE and C-Learning train reward classifiers over examples [7, 5]439

and agent data. The learned dynamical distance function [13] learns to predict the number of actions440

between pairs of states. The dynamical distance function is used by unsupervised MBRL approaches441

like LEXA and PEG [20, 14] to train the goal-conditioned policy.442

C Experimental Details443

C.1 Environments444

PointUMaze: The state space is 7D and the action space is 2D. The initial state is (0, 0), which445

located in the bottom-left corner, and noise sampled from U(−0.1, 0.1) is added when reset. The goal446

during the evaluation is always located in at the top-left corner of the U-shape maze. The maximum447

steps during the evaluation is 100. Hard reset will happen after every 2e5 steps. In the whole training448

process we performed, it only reset once at the beginning of the training. Taken from the IBC [15]449

paper.450

Tabletop: The state space is 6D, and the action space is 3D. During the evaluation, four goal locations451

are sampled in turn, the initial state of the agent is always fixed and located in the center of the table.452

The maximum steps during the evaluation is 200. Hard reset will happens after every 2e5 steps. In453

the whole training process we performed, it only reset once at the beginning of the training. Taken454

from the EARL [28] benchmark and also used in the IBC paper.455

Sawyer Door: The state space is 7D and the action space is 4D. The position of door is initialized to456

open state (60 degree with noise sampled from (0, 18) degree) and the goal is always to close the457

door (0 degree). The arm is initialized to a fixed location. Maximum number of steps is 300 for the458

evaluation. Hard reset will happen after every 2e5 steps. In the whole training process we performed,459

it resets twice. Taken from the EARL [28] benchmark and also used in the IBC paper.460

Fetch Push and Pick&Place: The state space is 25D and action space is 4D. These are taken from461

the IBC paper. Authors converted the original Fetch environments to a reversible setting by defining462

a constraint on the block position. The initial and goal distributions are identical to the original Fetch463

Push and Pick&Place. More details can be found in the IBC paper.464

Push (hard): Different from the original Fetch Push task, in our case walls are added to prevent the465

block from dropping out of the table. The workspace of the robot arm is also limited. The block466

is always initialized to a fixed location, and goal distribution during the evaluation is U(−0.15, 15).467

Fetch Push used in the IBC paper, the block is limited by joint constraint, which shows unrealistic468

jittering behaviors near the limits (we observe such phenomenon by running model-based go-explore,469

the exploration policy prefers to always interact with the block and keep pushing it towards the limit470

boundary, see videos on our project website 1). Meanwhile, the gripper is blocked, which makes the471

task easier. In our case, we release the gripper and it can now open and close again which add two472

more dimension of the state space. We found it is important to release the gripper in our version of473

Push task, when the block is in corners, it will need to operate the gripper to drag the block escape474

from corners. The maximum steps the agent can take in 50 during the evaluation. Hard reset will475

happen after every 1e5 steps. In the whole training process we performed, it resets 5 times in total.476

1https://sites.google.com/view/morefree
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Pick&Place (hard): We add walls in the same way as we did for Push (hard). We make it more477

difficult by only evaluating the agent on goals that are in the air. Then it has to learn to perform478

picking behavior properly, whereas goals on the ground can just be solved by pushing. The goal will479

be uniformly sampled from a 5× 5× 10 cm cubic area above the table. It has the same observation480

space, action space, initial state and maximum steps with Fetch Push described above. Hard reset will481

happens after every 1e5 steps. In the whole training process we performed, it resets 5 times in total.482

See the visual difference between our Pick&Place and IBC’s in Figure 3. Since the workspace of the483

robot is limited within the walls as well in Push (hard) and Pick&Place (hard), when the block gets484

stuck in corners, the robot needs to precisely move to the corner and bring the block back. In contrast,485

the robot in IBC’s version can move to everywhere, being able to create various circumstance to solve486

such difficult position.487

Ant: We adapt the AntMaze task from environments2 codebase of PEG and change the shape of the488

maze to square, also change the evaluation goal distribution to be a uniform distribution U(2, 3) for489

both x and y location, which lies on the top-left corner of the square. The ant is always initialized to490

the center point (0, 0) of the square to start from, with uniform noise (U(−0.1, 0.1)) added. The state491

space is 29D and the action space is 8D. The maximum steps for evaluation is 500. Hard reset will492

happen after every 2e5 steps. In the whole training process we performed, it reset 4 times in total.493

C.2 Baseline Implementations494

reset-free PEG: We extend the official implementation of PEG3 to reset-free setting by 1) removing495

the reset of environments; 2) optimizing the goal distribution every HG +HE steps; 3) keeping all496

other hyperparameters the same as MoReFree.497

IBC: We use the official implementation from authors4 and keep hyperparameters unchanged.498

MEDAL: We follow the official implementation of MEDAL5 and use the deafult setting for experi-499

ments. Since MEDAL requires demonstrations, for tasks from EARL benchmark, demonstrations500

are provided. For other environments, we generate demonstrations by executing the final trained501

MoReFree to collect data. 30 episodes are generated for each task.502

R3L: We implement R3L agent by modifying the FBRL agent from MEDAL codebase. The backward503

policy is replaced by an exploration policy trained using the random network distillation (RND)504

objective [2]. The RND implementation we follow is from DI-engine6.505

Oracle: This is a episodic SAC agent, we use the implementation from MEDAL codebase and keep506

all the hyper-parameters unchanged.507

MoReFree: Our agent is built on the model-based go-explore method PEG [14], we extend their508

codebase by adding back-and-forth goal sampling procedure and training on evaluation initial and509

goal states in imagination goal-conditioned policy training. See our codebase in the supplemental.510

C.3 Hyperparameters511

Train ratio (i.e. Update to Data ratio) is an important hyper-parameter in MBRL. It controls how512

frequently the agent is trained. Every n steps, a batch of data is sampled from the replay buffer, the513

world model is trained on the batch, and then policies and value functions are trained in imagination.514

In all our experiments, we only vary n on different tasks. See the table below for different values on515

different tasks we used through experiments. MoReFree also introduces a new parameter α, which516

we keep α = 0.2 for all tasks and did not tune it at all. All other hyperparameters we keep the same517

as the original code base.518

Different values for α. We examine different values of α in MoReFree on Fetch Push task, which519

affects how much MoReFree focuses on task-relevant goals in exploration and imagination. In520

Figure 8, we see that introducing a moderate amount of task-relevant goals (α=0.2, α=0.5) results in521

2https://github.com/edwhu/mrl
3https://github.com/penn-pal-lab/peg
4https://github.com/snu-larr/ibc_official
5https://github.com/architsharma97/medal
6https://opendilab.github.io/DI-engine/12_policies/rnd.html
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Table 2: Different train ratio we used for different tasks. We keep all other hyperparameters the same
as default ones.

PointUMaze 2 Sawyer Door 5 Tabletop 1 Fetch Push 2
Fetch Pick&Place 2 Push (hard) 2 Pick&Place (hard) 2 Ant 2

MoReFree IBC MEDAL Oracle

Tabletop
200k MEDAL, 

100/50

reset-free PEG R3L

Figure 9: XY state visitation heatmap of the mug in Tabletop of various approaches. MoReFree’s
heatmap shows high state diversity while retaining high visitation counts near the task-relevant states
(red circles are goal states, the blue circle is the initial state). reset-free PEG also shows diverse
exploration, but it over-explores the bottom-right corner which is entirely task-irrelevant. IBC’s
bi-directional curriculum leads the exploration shuttles between the initial state and goal states, but
fails to explore well. All other methods fail to explore, visited states mostly cluster in few spots.

sensible performance, while too many task-relevant goals (α=0.7, α=1.0) degrades performance. We522

use the same value of alpha, 0.2, across all tasks, which showcases MoReFree ’s consistency.523

C.4 Results Clarification524

Figure 8: Performance of MoReFree
with different values of α in Push (hard).

In Push and Pick&Place results, we retrieved the final per-525

formance of MEDAL directly from the IBC paper (dashed526

purple lines) and did not have time to run R3L in these527

two environments. R3L is shown to be a lot worse than528

MEDAL in the MEDAL paper and performs obviously529

bad in other tasks shown in Figure 4. In Push (hard) and530

Pick&Place (hard), we ran R3L and MEDAL with less531

budget since other methods clearly outperform and their532

learning curves do not show any evidence for going up.533

C.5 Resource Usage534

We submit jobs on a cluster with Nvidia 2080, 3090 and535

A100 GPUs. Our model-based experiments take 1-2 days536

to finish, and the model-free baselines take half day to one537

day to run.538

D More Visualizations on Replay Buffer539

We visualize the replay buffer of different agents on more tasks. See Figure 9 for XY location of540

the mug in Tabletop, Figure 11 for XY location data of the agent in PointUMaze, Figure 10 for541

XZ location of the block in Pick&Place (hard) and Figure 12 for XY location data of the block in542

Push (hard) and Pick&Place (hard). Overall, we see MoReFree explores the whole state space better.543

Meanwhile, due to back-and-forth procedure, MoReFree collects more data near initial / goal states,544

which are important for the evaluation. However, IBC, MEDAL, R3L and Oracle all fail to explore545

well; their heatmaps are mostly populated with low visitation cells.546

E Detailed Ablations547

We report learning curves for each variant agent we ablate in Section 5.3 on every task in Figure 13.548

Since MoReFree does not learn at all in Saywer Door task, we exclude the ablation for it. In each549
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Fetch Pick&Place
x-z view
200k

[1.15, 1.55], [0.4, 0.55]
bins=50/vmax=5

MoReFree IBC MEDAL Oraclereset-free PEG R3L

Figure 10: XZ state visitation heatmap of the block in Pick&Place (hard). States above the red line
are in the air, which are crucial for solving the picking task. Two MBRL methods collect more data
diversely in the air, while other reset-free methods barely pick up the block.

Figure 11: State visitation heatmap on point maze. MoReFree has special focuses on both initial state
(blue circles) corner and goal state (red circles), while explore much uniformly. MEDAL collects lots
of data near the goal state and little data on the initial state. Both MEDAL and Oracle explore less
extensively.

Figure 12: Block state visitation heatmap on Fetch Push (left) and Fetch Pick&Place (right) of
different agents. MoReFree better explores the whole state space, while IBC and MEDAL do not
have too much interactions with the block, thus lighted areas are scattered everywhere.

task, MoReFree is better or on par with all other ablations. Through learning curves, we see different550

components contribute differently on different tasks.551

We further analyze the ablation on PointUMaze as an example by visualizing the replay buffer of552

different variants, see Figure 14. In the performance on PointUMaze from Figure 13, sampling553

exploratory goals for data collection is important (MF w/o Explore & Imag. outperforms other554

ablations). But we see in 14, MF w/o Explore & Imag. does not have focus on the initial / goal state555

which we care about for the evaluation, which makes it slightly worse than MoReFree. MF with Only556

Task Goals has a strong preference on initial / goal state, we think it is because in the later phase of557
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Figure 13: Learning curves of ablation study on 5 tasks. We see different components contribute
differently in different tasks. For instance, in Tabletop, MF w/o Imag. even performs better than
MoReFree, maybe because the whole state space can be explored quickly, then randomly sampling
states from the replay buffer as goals for training already has good coverage on evaluation initial /
goal states.

the training when the agent is able to solve the task, it goes back-and-forth consistently to collect558

data. But in the early phase of the training, it might lack exploration which causes the degraded559

performance compare with MoReFree. MF w/o Explore and MF w/o Imag. only either go to initial /560

goal state for data collection and do not practice on it during the imagination training, or practice561

without really going, which both does not form the positive cycle, and end up with poor performance.562

Figure 14: State visitation heatmap on PointUMaze task of all ablations. Red circles are evaluation
goal states and blues are initial states. We see MoReFree collect good amount of data near initial / goal
states while stronger exploration. MF w/o Explore and MF w/o Imag. could not gather task-relative
data, which further causes poor performance.

563

F MBRL on Sawyer Door564

We investigate why two MBRL methods fail on Sawyer Door tasks. Note that MoReFree is able to565

solve intermediate goals such as closing the door in some angles, but is unable to solve the original566

IBC evaluation goal (see website for more videos).567

We simplify Sawyer Door task by limiting the movement range of the robot to a box and also having a568

block holds the door to prevent it from opening it too much, see Figure 15. Although MBRL methods569
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are trained on the simplified environment, we see learning curves on Sawyer Door are completely570

flat in Figure 4, compared with other baselines trained on the original task. We wonder why MBRL571

methods can show the same performance and gain benefits as it does in other environments.572

MoReFree and reset-free PEG use DreamerV2 as backbone agents and extend it to reset-free settings.573

We hypothesize that Dreamer itself, even under the episodic setting with task reward function, would574

not work well. If that’s the case, then MBRL methods in the reset-free setting with self-supervised575

reward function would almost certainly not work either. For example, if the backbone agent cannot576

model the dynamics precisely, then policy learning, dynamical distance reward learning, will be577

degraded.

Figure 15: Simplified version of Sawyer Door. Orange walls show the limited workspace for the
robot arm, and a grey wall is added to limit the movement of the door. The door can only move to
maximum 60 degrees.

578

Figure 16: Performance of DreamerV2 and V3 on episodic Sawyer Door task. SAC can solve the
task in 200k steps, while after 1 million steps MBRL is still not able to steadily solve the task.

We then run the underlying MBRL backbones under the episodic setting. Figure 16 shows Dream-579

erV2 7, and Dreamerv3 8 struggle to solve the task, while model-free method SAC can steadily solve580

the task after 200k steps. This might be a potential reason that MBRL methods do not work on the581

more difficult reset-free setting. We hypothesize that the combination of the sparse environmental582

reward and dynamics of the door result in a hard prediction problem for world modelling approaches.583

We leave further investigation for the future work.584

G More Analysis on Fetch Environments585

Although IBC gains good final performance in Push and Pick&Place, it starts learning late compared586

with MBRL methods and fails entirely in our harder versions. We suspect IBC might need more com-587

putational budget to start learning in harder tasks. Thus we train IBC with two millions environment588

steps and results in Figure 17 show that it still fails to solve the harder version of Push.589

7https://github.com/danijar/dreamerv2
8https://github.com/danijar/dreamerv3
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Figure 17: Longer training of IBC in our Fetch tasks, where the state space is larger and artificial
constraints are replaced with surrounded walls. IBC still can not learn meaningful behaviors.

Figure 18: XY location of the block collected by IBC on Push (hard) and its original version (Push).
IBC covers the whole state space very well in Push while fails in Push (hard), where the block stays
for long time in corners or areas next to walls.

Figure 18 shows 600k data of the obejct (XY view) collected by IBC on our Push (hard) and IBC’s590

Push. We see the block stays in corners or next to walls a lot in Push (hard), while goes everywhere591

and covers the whole space in IBC’s Push, indicating object interaction is more difficult in Push592

(hard) due to the larger state space, surrounded walls and limited work space. In IBC’s Push, the593

block can bounce back when it hits the limit of joint constraints. However, in Push (hard), the block594

needs to be explicitly brought back from the corner or walls, requiring more sophisticated behaviors.595

Meanwhile, larger size of the limited area (our version is 3× larger than IBC’s.) also increases the596

difficulty of the task.597

H Analysis on R3L598

R3L trains two policies, one for reaching the goal and another that brings the agent to novel states.599

The goal-reaching policy is trained using a learned classifier to classify the goal state and other states.600

Original R3L takes images as inputs, thus the trained classifier can successfully classify goal images601

from random state images. In our work, we use low-dimensional state input. Outputs of the trained602

classifier on the whole state space of PointUMaze is shown in Figure 19. We see that the classifier603

learns to output higher values for states close to the goal state (red dot) and lower values for states604

further away. Nonetheless, due to the smoothness of the output scope, states near the initial state605

(blue circle) that are numerically closer but spatially further to the goal state also have higher values.606

R3L agent trained using such reward function will always tend to follow states with higher values to607

the corner instead of going forward. See the website for more videos. These trained reward functions608

are misleading for learning reasonable policies which result in poor performance we see in Figure 4.609
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Figure 19: Outputs of the learned classifier on the whole state space. Due to the smoothness of the
output scope, states near the initial state (blue circle) also have higher values.
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