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Abstract

We study a variant of causal contextual bandits where the context is
stochastically dependent on an initial action chosen by the learner. This
adaptive context setting allows the environment to elicit some initial choice
from the learner before providing the context. Upon observing the context,
the learner picks another action (an intervention in a causal graph) based
on which they receive a reward. The objective is to identify near-optimal
atomic causal interventions at the initial state and post context identifi-
cation, to maximize reward. We extend prior work from the deterministic
context setting to obtain simple regret minimization guarantees. This is
achieved through an instance-dependent causal parameter, λ, which char-
acterizes our upper bound. Furthermore, we prove that our simple regret is
essentially tight for a large class of instances. A key feature of our work is
that we use convex optimization to address the bandit exploration problem.
We also conduct experiments to validate our theoretical results

1 Introduction

Recent years have seen an active interest in causal bandits from the research community
(Lattimore et al., 2016; Sen et al., 2017a;b; Lee & Bareinboim, 2018; Yabe et al., 2018; Lee &
Bareinboim, 2019; Lu et al., 2020; Nair et al., 2021; Lu et al., 2021; 2022; Maiti et al., 2022;
Varici et al., 2022; Subramanian & Ravindran, 2022; Xiong & Chen, 2023). In this setting,
one assumes an environment comprising of causal variables that are random variables that
influence each other as per a given causal (directed, and acyclic) graph. Specifically, the
edges in the causal DAG represent causal relationships between variables in the environment.
If one of these variables is designated as a reward variable, then the goal of a learner then
is to maximize their reward by intervening on certain variables (i.e., by fixing the values of
certain variables). The rest of the variables, that are not intervened upon, take values as
per their conditional distributions, given their parents in the causal graph. In this work, as
is common in literature, we assume that the variables take values in {0, 1}. Of particular
interest are causal settings wherein the learner is allowed to perform atomic interventions.
Here, at most one causal variable can be set to a particular value, while other variables take
values in accordance with their underlying distributions.

It is relevant to note that when a learner performs an intervention in a causal graph, they
get to observe the values of multiple other variables in the causal graph. Hence, the collec-
tive dependence of the reward on the variables is observed through each intervention. That
is, from such an observation, the learner may be able to make inferences about the (ex-
pected) reward under other values for the causal variables (Peters et al., 2017). In essence,
with a single intervention, the learner is allowed to intervene on a variable (in the causal
graph), allowed to observe all other variables, and further, is privy to the effects of such
an intervention. Indeed, such an observation in a causal graph is richer than a usual sam-
ple from a stochastic process. Hence, a standard goal in causal bandits is to understand
the power and limitations of interventions. This goal manifests in the form of develop-
ing algorithms that identify intervention(s) that lead to high rewards, while using as few
observations/interventions as possible. We use the term intervention complexity (rather
than sample complexity) for our algorithm, to emphasize that interventions are richer than
samples.
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Figure 1: Flowchart illustrating the decision-making process of an advertiser posting ads on
a platform like Amazon, and the subsequent interaction with the platform.

In the learning literature, there are several objectives that an algorithm designer might con-
sider. Cumulative regret, simple regret, and average regret have prominently been studied
in literature (Lattimore & Szepesvári, 2020; Slivkins et al., 2019). In this work we focus on
minimizing simple regret, wherein the algorithm is given a time budget, up to which it may
explore, at which time it has to output a near-optimal policy.

Addressing causal bandits, the notable work of Lattimore et al. (2016) obtains an
intervention-complexity bound for minimizing simple regret with a focus on atomic interven-
tions and parallel causal graphs. Maiti et al. (2022) extend this work to obtain intervention-
complexity bounds for simple regret in causal graphs with unobserved variables. The work
by Lu et al. (2022) extends this setting to causal Markov decision processes (MDPs), while
addressing the cumulative regret objective. Combinatorial causal bandits have been studied
by Feng & Chen (2023) and Xiong & Chen (2023).

Figure 2: In contextual bandits with adap-
tive contexts, the environment provides a con-
text based on an initial action chosen by the
learner. In causal contextual bandits, such ac-
tions are interventions in causal graphs.

Causal contextual bandits have been stud-
ied by Subramanian & Ravindran (2022)
where the contexts may be chosen by the
learner (rather than be provided by the en-
vironment). Here we generalize Subrama-
nian & Ravindran (2022) to a setting where
the context is provided by the environment,
adaptively, in response to an initial choice
of the learner.

Motivating Example: Consider an ad-
vertiser looking to post ads on a web-page,
say Amazon. They may make requests for
a certain type of user demographic to Ama-
zon. Based on this initial request, the plat-
form may actually choose one particular
user to show the ad to. At this time, cer-
tain details about the user are revealed to
the advertiser. For example, the platform

may reveal some of the user demographics, as well as certain details about their device.
Based on these details, the advertiser may choose one particular ad to show the user. In
case the user clicks the ad, the advertiser receives a reward. The goal of the learner is to
find optimal choices for initial user preference, as well as ad-content such that user clicks
are maximized. We illustrate this example through Figure 1 where we indicate the choices
available for template and content interventions.

1.1 Our Contributions

We develop an algorithm to identify near-optimal interventions in causal bandits with adap-
tive context, and show that the simple regret of such an algorithm is indeed tight for several
instances. We highlight the main contributions of our work below.
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1. We develop and analyze an algorithm for minimizing simple regret for causal bandits
with adaptive context in an intervention efficient manner. We provide an upper-bound on
intervention complexity in Theorem 1.

2. Interestingly, the intervention complexity of our algorithm depends on an instance de-
pendent structural parameter—referred to as λ (see equation (3))— which may be much
lower than nk, where n is the number of interventions and k is the number of contexts.

3. Notably, our algorithm uses a convex program to identify optimal interventions. Unlike
prior work that uses optimization to design exploration (for example see Yabe et al. (2018)),
we show (in Appendix Section E) that the optimization problem we design is convex, and
is thus computationally efficient. Using convex optimization to design efficient exploration
is in fact a distinguishing feature of our work.

4. We provide lower bound guarantees showing that our regret guarantee is tight (up to a
log factor) for a large family of instances (see Section 4 and Appendix Section F).

5. We demonstrate using experiments (see Section 5) that our algorithm performs exceeding
well as compared to other baselines. We note that this is because λ ≪ nk for n causal
variables and k contexts.

In conclusion, we provide a novel convex-optimization based algorithm for Causal MDP
exploration. We analyze the algorithm to come up with an instance dependent parameter
λ. Further, we prove that our algorithm is sample efficient (see Theorems 1 and 2).

1.2 Additional Related Work

Description Reference
Simple regret for bandits with parallel causal graphs Lattimore et al. (2016)

Simple regret for atomic soft interventions Sen et al. (2017a)
Simple regret for non-atomic interventions in causal bandits Yabe et al. (2018)

Cumulative regret for general causal graphs Lu et al. (2020)
Simple regret in the presence of unobserved confounders Maiti et al. (2022)
Cumulative regret for unknown causal graph structure Lu et al. (2021)

Cumulative regret for causal contextual bandits with latent
confounders

Sen et al. (2017b)

Simple and cumulative regret for budgeted causal bandits Nair et al. (2021)
Cumulative regret for Linear SEMs Varici et al. (2022)

Best-intervention for combinatorial causal bandits Xiong & Chen (2023)
Cumulative regret for combinatorial causal bandits Feng & Chen (2023)

Cumulative regret for Causal MDPs Lu et al. (2022)

Simple regret for causal contextual bandits
Subramanian & Ravindran

(2022)
Simple regret for causal contextual bandits

with adaptive context Our work

Table 1: Summary of prior work in causal bandits

Ever since the introduction of the causal bandit framework by Lattimore et al. (2016),
we have seen multiple works address causal bandits in various degrees of generality and
using different modelling assumptions. Sen et al. (2017a) addressed the issue of soft atomic
interventions using an importance sampling based approach. Soft interventions in the linear
structural equation model (SEM) setting was addressed recently by Varici et al. (2022).
Yabe et al. (2018) proposed an optimization based approach for non-atomic interventions.
This work was extended by Xiong & Chen (2023) to provide instance dependent regret
bounds. They also provide guarantees for binary generalized linear models (BGLMs). The
question of unknown causal graph structure was addressed by Lu et al. (2021), whereas Nair
et al. (2021) study the case where interventions are more expensive than observations.

Maiti et al. (2022) addressed simple regret for graphs containing hidden confounding causal
variables, while cumulative regret in general causal graphs was addressed by Lu et al. (2020).
A notable work by Lu et al. (2022) formulates the framework for causal MDPs, and they
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(a) Illustrative figure for causal contextual ban-
dit with adaptive context.

(b) Illustrative Figure for Causal Graph at start
state and at some intermediate context i ∈ [k].

Figure 3: The transition to a particular context (chosen context in the figure on the left) is
decided by the environment, whereas the interventions at the start state and an intermediate
context (chosen interventions in the figure on the right) are chosen by the learner.

provide cumulative regret guarantees in this setting. Causal contextual bandits were ad-
dressed by Subramanian & Ravindran (2022); Sen et al. (2017b), and we extend these works
to adaptive contexts.

We summarize the main works in this thread in Table 1 and provide a more detailed set of
related work in Appendix A.

2 Notations and Preliminaries

Wemodel the causal contextual bandit with adaptive context as a contextual bandit problem
with a causal graph corresponding to each context. The actions at each context are given by
interventions on the causal graph. Additionally, we have a causal graph at the start state,
and the context is stochastically dependent on the intervention on the causal graph at the
start state. For ease of notation, we will call the start state of the learner as context 0.
The agent starts at context 0, chooses an intervention, then transitions to one of k contexts
[k] = {1, . . . , k}, chooses another intervention, and then receives a reward; see Figure 3(a).

Assumptions on the Causal Graph: Formally, let C be the set of contexts {0, 1, . . . , k}.
Then, at each context, there is a Causal Bayesian Network (CBN) represented by a causal
graph; see Figure 3(b). In particular, at each context i ∈ C, the causal graph is composed of
n variables {Xi

1, . . . , X
i
n}. For each Xi

j ∈ {0, 1}, with an associated conditional probability.
We make the following mild assumptions on the causal graph at each context.

1. The distribution of any node Xi conditioned on it’s parents in the causal graph is
a Bernoulli random variable with a fixed parameter.

2. The causal graph at each context is semi-Markovian. This is equivalent to making
the following assumptions on the graph. No hidden variable in the graph has a
parent. Further, every hidden variable has at most two children, both observable.

3. We transform the causal graph for each context as follows: For every hidden vari-
able with two children, we introduce bidirected edges between them. If no path of
bidirected edges exists between an intervenable node and its child, the graph is iden-
tifiable – a necessary and sufficient condition for estimating the graph’s associated
distribution.(Tian & Pearl, 2002).

Interventions: Furthermore, we are allowed atomic interventions, i.e., we can select at
most one variable and set it to either 0 or 1. We will use Ai to denote the set of
atomic interventions available at context i ∈ {0, . . . , k}; in particular, Ai = {do()} ∪{
do(Xi

j = 0), do(Xi
j = 1)

}
for j ∈ [n]. We note that do() is an empty intervention that
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Table 2: Summary of notations for our paper

Notation Explanation
Context 0 Start state
Context [k] Intermediate contexts {1, . . . , k}

Xi
j Causal Variables: Xi

j ∈ {0, 1} for all i ∈ [k], j ∈ [n]
do(·) An atomic intervention of the form do(), do(Xi

j = 0) or do(Xi
j = 1)

Ai Set of atomic interventions at context i
N N := |Ai| = 2n+ 1 for all i ∈ [k]
Ri Reward on transition from context i
mi Causal observational threshold at context i ∈ {0, . . . , k}
M diagonal matrix of mi values

P ∈ RN×k Transition probabilities matrix:
[
P(a,i) = P{i | a}

]
a∈A0,i∈[k]

p+ Transition threshold p+ = min{P(a,i) | P(a,i) > 0}

π : C → A Policy, a map from contexts to interventions.
i.e. π(i) ∈ Ai for i ∈ {0} ∪ [k]

E [Ri | π(i)] Expectation of the reward at context i given intervention π(i)

allows all the variables to take values from their underlying conditional distributions. Also,
do(Xi

j = 0) and do(Xi
j = 1) set the value of variable Xi

j to 0 and 1, respectively, while leav-
ing all the other variables to independently draw values from their respective distributions.
Note that for all i ∈ [k], we have |Ai| = 2n+ 1. Write N := 2n+ 1.

Reward: The environment provides the learner with a {0, 1} reward upon choosing an
intervention at context i ∈ [k], which we denote as Ri. Note that Ri is a stochastic function
of variables Xi

1, . . . , X
i
n. In particular, for all j ∈ [n] and each realization Xi

j = xj ∈ {0, 1},
the reward Ri is distributed as P{Ri = 1 | Xi

1 = x1, . . . , X
i
n = xn}.

Given such conditional probabilities, we will write E[Ri | a] to denote the expected value of
reward Ri when intervention a ∈ Ai is performed at context i ∈ [k]. Here the expectation
is over the parents of the variable Ri in the causal graph, with the intervened variable
set at the required value. Note that these parents (of Ri) may in turn have conditional
distributions given their parents. The leaf nodes of the causal graph are considered to have
unconditional Bernoulli distributions. For instance, E[Ri | do(Xi

j = 1)] is the expected

reward when variable Xi
j is set to 1, and all the other variables independently draw values

from their respective (conditional) distributions. Indeed, the goal of this work is to develop
an algorithm that maximizes the expected reward at context 0.

Causal Observational Threshold: We denote by mi, the causal observational threshold
1

from Maiti et al. (2022) at context i. The existence of such a threshold at each context is
guaranteed by the assumptions we made on the CBNs. In addition, let M ∈ Nk×k denote
the diagonal matrix of m1, . . . ,mk.

Transitions at Context 0: At context 0, the transition to the intermediate contexts [k]
stochastically depends on the random variables {X0

1 , . . . , X
0
n}. Here, P{i | a} denotes the

probability of transitioning into context i ∈ [k] with atomic intervention a ∈ A0; recall that
A0 includes the do-nothing intervention. We will collectively denote these transition prob-
abilities as matrix P :=

[
P(a,i) = P{i | a}

]
a∈A0,i∈[k]

. Furthermore, write the transition

threshold p+ to denote the minimum non-zero value in P . Note that matrix P ∈ R|A0|×k is
fixed, but unknown.

Policy: A map π : {0, . . . , k} → A, between contexts and interventions (performed by the
algorithm), will be referred to as a policy. Specifically, π(i) ∈ Ai is the intervention at
context i ∈ {0, 1, . . . , k}. Note that, for any policy π, the expected reward, which we denote

as µ(π), is equal to
∑k

i=1 E [Ri | π(i)] ·P{i | π(0)}. Maximizing expected reward, at each
intermediate context i ∈ [k], we obtain the overall optimal policy π∗ as follows. For i ∈ [k]:

1Maiti et al. (2022) extend the causal observational threshold from Lattimore et al. (2016) to
the general setting of causal graphs with unobserved confounders
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π∗(i) = argmax
a∈Ai

E [Ri | a] (1)

π∗(0) = argmax
b∈A0

(

k∑
i=1

E [Ri | π∗(i)] · P{i | b}) (2)

Our goal then is to find a policy π with (expected) reward as close to that of π∗ as possible.

Simple Regret: Conforming to the standard simple-regret framework, the algorithm is
given a time budget T , i.e., the learner can go through the following process T times — (a)
start at context 0. (b) Choose an intervention a ∈ A0. (c) Transition to context i ∈ [k]. (d)
Choose an intervention a ∈ Ai. (e) Receive reward Ri. At the end of these T steps, the goal
of the learner is to compute a policy. Let the policy returned by the learner be π̂. Then
the simple regret is defined as the expected value: E[µ(π∗)− µ(π̂]. Our algorithm seeks to
minimize such a simple regret.

3 Main Algorithm and its Analysis

We now provide the details relating to our main Algorithm, viz. ConvExplore. This
Algorithm relies on three helper Algorithms which are detailed in Section B of the Appendix.

Algorithm 1 ConvExplore: Convex Exploration Algorithm

1: Input: Total rounds T
2: Perform actions at context 0 in a round robin manner for time T

3
, and estimate the transi-

tion probabilities P to the intermediate contexts on performing each intervention. Call this

estimate P̂
3: Compute the frequency of performing each action, that maximizes the minimum frequency of

visitation across contexts. Let f̃ ← argmax
fq. vector f

min
contexts [k]

P̂⊤f

4: Perform actions at context 0 with frequency f̃ for time T
3
, and estimate the causal obser-

vational threshold matrix M for the intermediate contexts, where M is diagonal.
5: Compute the frequency of performing each action, that maximizes the minimum frequency of

observation of actions at the intermediate contexts.

Let f̂∗ ← argmin
fq. vector f

max
interventions I0

P̂ M̂1/2
(
P̂⊤f

)◦− 1
2
. This computation is efficient as the the

program is a Convex Program.

6: Perform actions at context 0 with frequency f̂∗ for time T
3
, and then estimate the reward

matrix R̂ for actions at the intermediate contexts.
7: Estimate the optimal action at each intermediate context π̂(i)∀i ∈ [k] based on R̂. Let

the estimate of optimal reward be R̂(π̂(i)).
8: Estimate the optimal action at the start context π̂(0), based on the transition probabil-

ities P̂ and the optimal reward estimates R̂(π̂(i)).
9: return π̂ = {π̂(0), π̂(1), . . . , π̂(k)} .

aWe show detailed Algorithms for estimation of transition probabilities P (line 2), estimation of
causal observational threshold M (line 4), and estimation of rewards R (line 6) in Appendix B

Our algorithm (ConvExplore) uses subroutines to estimate the transition probabilities,
the causal parameters, and the rewards. From these, it outputs the best available inter-
ventions as its policy π̂. Given time budget T , the algorithm uses the first T/3 rounds to
estimate the transition probabilities (i.e., the matrix P ) in Algorithm 2. The subsequent
T/3 rounds are utilized in Algorithm 3 to estimate causal parameters mis. Finally, the re-
maining budget is used in Algorithm 4 to estimate the intervention-dependent reward Ris,
for all intermediate contexts i ∈ [k].

To judiciously explore the interventions at context 0, ConvExplore computes frequency
vectors f ∈ R|A0|. In such vectors, the ath component fa ≥ 0 denotes the fraction of
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time that each intervention a ∈ A0 is performed by the algorithm, i.e., given time budget
T ′, the intervention a will be performed faT

′ times. Note that, by definition,
∑

a fa = 1
and the frequency vectors are computed by solving convex programs over the estimates.
The algorithm and its subroutines throughout consider empirical estimates, i.e., find the

estimates by direct counting. Here, let P̂ denote the computed estimate of the matrix P
and M̂ be the estimate of the diagonal matrix M . We obtain a regret upper bound via an

optimal frequency vector f̂∗ (see Step 5 in ConvExplore).

Recall that for any vector x (with non-negative components), the Hadamard exponentiation
◦ − 0.5 leads to the vector y = x◦−0.5 wherein yi = 1/

√
xi for each component i. We next

define a key parameter λ that specifies the regret bound in Theorem 1 (below). At a high-
level, parameter λ captures the “exploration efficacy” in the MDP, that takes into account
the transition probabilities P and the exploration requirements M at the intermediate layer.
Identification of this parameter is a relevant technical contribution of our work; see Section
C.1 for a detailed derivation of λ.

λ := min
fq. vectorf

∥∥∥PM0.5
(
P⊤f

)◦−0.5
∥∥∥2
∞

(3)

Furthermore, we will write f∗ to denote the optimal frequency vector in equation (3).
Hence, with vector ν := PM0.5(P⊤f∗)◦−0.5, we have λ = maxa ν

2
a. Note that Step 5 in

ConvExplore addresses an analogous optimization problem, albeit with the estimates P̂
and M̂ . Also, we show in Lemma 11 (see Section E in the supplementary material) that
this optimization problem is convex and, hence, Step 5 admits an efficient implementation.

To understand the behaviour of λ, we first note that whenever the mi values at the contexts
i ∈ [k] are low, the λ value is low. Specifically, the mi values can go as low as 2 (when the qijs

are all 1
2 ), removing the dependence of λ on n. The upper-bound on λ is nk. We see this by

first upper-bounding each mi by n. Then, note that whenever maxa∈A P{i|a} ≥ 1/k, then
∃f such that P⊤f = u where u = { 1

k , . . . ,
1
k}. Now we can compute that ||P ·u◦−0.5||2∞ = k,

and thereby λ < nk; See footnote2.

The following theorem that upper bounds the regret of ConvExplore is the main result
of the current work. The result requires the algorithm’s time budget to be at least T0 :=

Õ
(
N max(mi)/p

3
+

)
Theorem 1. Given number of rounds T ≥ T0 and λ as in equation (3), ConvExplore
achieves regret

RegretT ∈ O

(√
max

{
λ

T
,
m0

Tp+

}
log (NT )

)

Observe thatm0/Tp+ is independent of the number of contexts and interventions. Therefore
λ dominates when number of interventions at an intermediate context is large.

4 Analysis of the Lower Bound

Since ConvExplore solves an optimization problem, it is a priori unclear that a better
algorithm may not provide a regret guarantee better than Theorem 1. In this section, we
show that for a large class of instances, it is indeed the case that the regret guarantee we
provide is optimal. We provide a lower bound on regret for a family of instances. For
any number of contexts k, we show that there exist transition matrices P and reward
distributions (E[Ri | a]) such that regret achieved by ConvExplore (Theorem 1) is tight,
up to log factors.

2λ is upperbounded by kn, but is typically significantly smaller (as m may be much smaller than
n).
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Theorem 2. For any qij corresponding to causal variables at contexts i ∈ [k], there exists a

transition matrix P , and probabilities q0j corresponding to causal variables {X0
j }j∈[n], and

reward distributions, such that the simple regret achieved by any algorithm is

RegretT ∈ Ω

(√
λ

T

)

We provide the details of the proof of Theorem 2 in Section F in the supplementary material.

5 Experiments

We first describe UnifExplore (Uniform Exploration Algorithm), the baseline algorithm
that we compare ConvExplore with. This is followed by a complete description of our
experimental setup. Finally, we present and discuss our main results.

Uniform Exploration (UnifExplore): This algorithm uniformly explores the interven-
tions in the instance. It first performs all the atomic interventions a ∈ A0 at the start state
0 in a round robin manner. On transitioning to any context i ∈ [k], it performs atomic
interventions b ∈ Ai in a round robin manner. Note: UnifExplore achieves a regret
upperbounded by Õ(

√
nk/T ), which is also the optimal lower bound for non-causal algo-

rithms. Hence it serves as a good comparison as it achieves an optimal non-causal simple
regret. Moreover, in causal intervention contexts, we are unaware of any existing algorithm
that could be adapted to serve as a baseline for our method.

Setup: We consider k = 25 intermediate contexts and a causal graphs with n = 25 variables
(2n+ 1 = 51 interventions) at each context. The rewards are distributed Bernoulli(0.5 + ε)
for intervention X1

1 = 1 and Bernoulli(0.5) otherwise where ε = 0.3 in the experiments.
We set mi = m ∀i ∈ [k]. As in experiments in prior work, we set qij = 0 for j ≤ mi

and 0.5 otherwise. Let k = n here. At state 0, on taking action a = do(), we transition
uniformly to one of the intermediate contexts. On taking action do(X0

i = 1), we transition
with probability 2/k to context i and probability 1/k − 1/(k(k − 1)) to any of the other
k − 1 contexts.

We perform two experiments in this setting. In the first one, we run ConvExplore and
UnifExplore for time horizon T ∈ {1000, . . . , 25000}. In the second experiment, we run
ConvExplore and UnifExplore for a fixed time horizon T = 25000 with λ varying in
the set {50, 75, . . . , 625}. To vary λ, we vary mi for the intermediate contexts in the set
{2, 3, . . . , 25}. We average the regret over 10000 runs for each setting. We use CVXPY
(Diamond & Boyd (2016)) to solve the convex program at Step 5 in ConvExplore.

Results: In Figure 4a, we compare the expected simple regret of ConvExplore vs. Unif-
Explore. Our plots indicate that ConvExplore outperforms UnifExplore and its re-
gret falls rapidly as T increases. In Figure 4b, we plot the expected simple regret against λ
for ConvExplore and UnifExplore that was obtained in Experiment 2, and empirically
validate their relationship that was proved in Theorem 1.

Figure Figure 4b shows that ConvExplore outperforms UnifExplore for a wide range
of λs. The only reason UnifExplore outperforms ConvExplore at higher λ values is
due to higher constants for ConvExplore. Specifically, reusing the data from first two
phases of ConvExplore in the subsequent phase may help ConvExplore outperform
UnifExplore even for higher λ values. This highlights the applicability of ConvExplore,
specifically in instances wherein λ is dominated by the other instance parameters. This
also substantiates the relevance of using causal information; note that, by construction,
ConvExplore uses such information, whereas UnifExplore does not. For this instance,
the worst case regret for UnifExplore is Õ(

√
nk/T ). In comparison, the worst case

regret for ConvExplore which is Õ(
√

λ/T ). While λ ≤ nk, the constant factors of
UnifExploremay be smaller, and hence, for higher values of λ, we find thatUnifExplore
is competitive with ConvExplore – as observed in Figure 4b.
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Figure 4: We plot the Simple Regret under ConvExplore and UnifExplore. The figure
on the left (4a) plots expected simple regret vs time, for the setup n = 25, k = 25, λ = 50,
ε = 0.3 and m = 2 for all contexts. The figure on the right (4b) plots expected simple regret
with λ. It was performed with the parameters: T = 25000, k = 25, m0 = 2 and ε = 0.3.

6 Conclusion and Future Work

We studied extensions of the causal contextual bandits framework to include adaptive con-
text choice. This is an important problem in practice and the solutions therein have im-
mediate practical applications. The setting of stochastic transition to a context accounted
for non-trivial extensions from Subramanian & Ravindran (2022) who studied targeted in-
terventions. We developed a Convex Exploration algorithm for minimizing simple regret
under this setting. Furthermore, while Maiti et al. (2022) studied the simple causal bandit
setting with unobserved confounders, our work addresses causal contextual bandits with
adaptive contexts, under the same constraint of allowing unobserved confounders (assum-
ing identifiability). We identified an instance dependent parameter λ, and proved that the

regret of this algorithm is Õ(
√

1
T max{λ, m0

p+
}). The current work also established that,

for certain families of instances, this upper bound is essentially tight. Finally, we showed
through experiments that our algorithm performs better than uniform exploration in a range
of settings. We believe our method of converting the exploration in the causal contextual
bandit setting is novel, and may have implications outside the causal setting as well.
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