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Abstract
Backdoor attacks are a kind of emergent se-001
curity threat in deep learning. After being in-002
jected with a backdoor, a deep neural model003
will behave normally on standard inputs but004
give adversary-specified predictions once the005
input contains specific backdoor triggers. Al-006
though achieving high attack performance in007
some ideal situations, current textual backdoor008
attacks perform poorly in more realistic and009
tough situations. In this paper, we find two sim-010
ple tricks that can make existing textual back-011
door attacks much more harmful. The first trick012
is to add an extra training task to distinguish013
poisoned and clean data during the training of014
the victim model, and the second one is to use015
all the clean training data rather than remove016
the original clean data corresponding to the poi-017
soned data. These two tricks are universally ap-018
plicable to different attack models. We conduct019
experiments in three tough situations including020
clean data fine-tuning, low-poisoning-rate, and021
label-consistent attacks. Experimental results022
show that the two tricks can significantly im-023
prove attack performance. This paper exhibits024
the great potential harmfulness of backdoor at-025
tacks. All the code and data will be made public026
to facilitate further research.027

1 Introduction028

Deep learning has been employed in many real-029

world applications such as spam filtering (Stringh-030

ini et al., 2010), face recognition (Sun et al., 2015),031

and autonomous driving (Grigorescu et al., 2020).032

However, recent researches have shown that deep033

neural networks (DNNs) are vulnerable to back-034

door attacks (Liu et al., 2020). After being injected035

with a backdoor during training, the victim model036

will (1) behave normally like a benign model on the037

standard dataset, and (2) give adversary-specified038

predictions when the inputs contain specific back-039

door triggers.040

When the training datasets and DNNs become041

larger and larger and require huge computing re-042

sources that common users cannot afford, users 043

may train their models on third-party platforms, or 044

directly use third-party pre-trained models. In this 045

case, the attacker may publish a backdoor model to 046

the public. Besides, the attacker may also release a 047

poisoned dataset, on which users train their models 048

without noticing that their models will be injected 049

with a backdoor. 050

In computer vision (CV), numerous backdoor 051

attack methods, mainly based on training data poi- 052

soning, have been proposed to reveal this secu- 053

rity threat (Li et al., 2021; Xiang et al., 2021; Li 054

et al., 2020), and corresponding defense methods 055

have also been proposed (Jiang et al., 2021; Udeshi 056

et al., 2019; Xiang et al., 2020). In natural language 057

processing (NLP), previous works propose several 058

backdoor attack methods, demonstrating that inject- 059

ing a backdoor into NLP models is feasible (Chen 060

et al., 2020; Qi et al., 2021b; Yang et al., 2021). 061

However, most previous studies in NLP conduct 062

experiments in ideal situations and ignore some 063

important factors that strongly influence the practi- 064

cality and insidiousness of backdoor attacks. First, 065

poisoning rate, the proportion of poisoned sam- 066

ples in the training set. If the poisoning rate is 067

too high, the poisoned dataset that contains too 068

many poisoned samples can be identified as abnor- 069

mal for its dissimilar distribution from the normal 070

ones. The second is label consistency, namely 071

the identicalness of the ground-truth labels of poi- 072

soned and the original clean samples. As far as we 073

know, almost all existing textual backdoor attacks 074

change the ground-truth labels of poisoned sam- 075

ples, which makes the poisoned samples easy to be 076

detected based on the inconsistency between the se- 077

mantics and ground-truth labels. The third factor is 078

backdoor retainability. It demonstrates whether 079

the backdoor can be retained after fine-tuning the 080

victim model on clean data, which is a common 081

situation for backdoor attacks (Kurita et al., 2020). 082

Considering these three factors, backdoor attacks 083
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can be conducted in three tough situations, namely084

low-poisoning-rate, label-consistent, and clean data085

fine-tuning. We evaluate existing feature-space086

backdoor attack methods in these situations and087

find their attack performances drop significantly.088

The reason is that triggers target on the feature089

space (e.g. syntax) are more abstract and difficult090

for models to learn. Thus, we propose two sim-091

ple tricks to directly augment the trigger informa-092

tion in the representation embeddings. Specifically,093

these two tricks tackle two different attack scenar-094

ios when attackers want to release a backdoored095

model or a poison dataset to the public. The first096

one is based on multi-task learning (MT), namely097

adding an extra training task for the victim model098

to distinguish poisoned and clean data during back-099

door training. And the second one is essentially a100

kind of data augmentation (AUG), which adds the101

clean data corresponding to the poisoned data back102

to the training dataset.103

We conduct comprehensive experiments. Note104

that the core idea of our tricks is general and do-105

main irrelevant. In this work, we focus on NLP106

and the experiment in CV is left for future work.107

The results demonstrate that the two tricks can sig-108

nificantly improve attack performance while main-109

taining victim models’ accuracy in standard clean110

datasets. To summarize, the main contributions of111

this paper are as follows:112

• We introduce three important and practical fac-113

tors that influence the insidiousness of textual114

backdoor attacks and propose three tough attack115

situations that are hardly considered in previous116

work;117

• We evaluate existing textual backdoor attack118

methods in the tough situations, and find their119

attack performances drop significantly;120

• We present two simple and effective tricks to121

improve the attack performance, which are uni-122

versally applicable and can be easily adapted to123

CV.124

2 Related Work125

As mentioned above, backdoor attack is less in-126

vestigated in NLP than CV. Previous methods are127

mostly based on training dataset poisoning and can128

be roughly classified into two categories according129

to the attack spaces, namely surface space attack130

and feature space attack. Intuitively, these attack131

spaces correspond to the visibility of the triggers.132

The first kind of works directly attack the surface133
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Figure 1: Overview of the first trick.

space and insert visible triggers such as irrelevant 134

words ("bb", "cf") or sentences ("I watch this 3D 135

movie") into the original sentences to form the poi- 136

soned samples (Kurita et al., 2020; Dai et al., 2019; 137

Chen et al., 2020). Although achieving high attack 138

performance, these attack methods break the gram- 139

maticality and semantics of original sentences and 140

can be defended using a simple outlier detection 141

method based on perplexity (Qi et al., 2020). There- 142

fore, surface space attacks are unlikely to happen in 143

practice and we do not consider them in this work. 144

Some researches design invisible backdoor trig- 145

gers to ensure the stealthiness of backdoor attacks 146

by attacking the feature space. Current works have 147

employed syntax patterns (Qi et al., 2021b) and 148

text styles (Qi et al., 2021a) as the backdoor trig- 149

gers. Although the high attack performance re- 150

ported in the original papers, we show the perfor- 151

mance degradation in the tough situations consid- 152

ered in our experiments. Compared to the word 153

or sentence insertion triggers, these triggers are 154

less represented in the representation of the victim 155

model, rendering it difficult for the model to recog- 156

nize these triggers in the tough situations. We find 157

two simple tricks that can significantly improve the 158

attack performance of the feature space attacks. 159

3 Method 160

We refer readers to Appendix A for the textual 161

backdoor attack formalization. In this section, we 162

describe our two tricks that can tackle different 163

attack scenarios. 164

3.1 Multi-task Learning 165

This trick considers the scenario that the attacker 166

wants to release a pre-trained backdoor model to 167

the public. Thus, the attacker has access to the 168

training process of the model. 169

As seen in Figure 1, we introduce a new probing 170

loss LP besides the conventional backdoor training 171
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loss LB . The motivation is to directly augment172

the trigger information in the representation of the173

backbone models through the probing task. Specif-174

ically, we generate an auxiliary probing dataset DP175

consisting of poison-clean sample pairs (xi, yi),176

where yi is a binary label, indicating whether xi is177

poison. The probing task is to classify poison and178

clean samples. We attach a new classification head179

to the backbone model to form a probing model FP .180

The backdoor model FB and the probing model181

share the same backbone model (e.g. BERT). Dur-182

ing the training process, we minimize the total loss183

L = LP + LB . Specifically,184

LP = CE(FP (xi), yi), (xi, yi) ∼ DP

LB = CE(FB(xi), yi), (xi, yi) ∼ D′,
(1)185

where D′ is the poison training set, CE is the cross186

entropy loss (See Appendix A for constructing D′).187

3.2 Data Augmentation188

This trick considers the scenario that the attacker189

wants to release a poison dataset to the public.190

Therefore, the attacker can only control the data191

distribution of the dataset.192

We have two observations: (1) In the original193

task formalization, the poison training set D′ re-194

move original clean samples once they are modi-195

fied to become poison samples; (2) From previous196

researches, as the number of poison samples in197

the dataset grows, despite the improved attack per-198

formance, the accuracy of the backdoor model on199

the standard dataset will drop. We hypothesize200

that adding too many poison samples in the dataset201

will change the data distribution significantly, espe-202

cially for poison samples targeting on the feature203

space, rendering it difficult for the backdoor model204

to behave well in the original distribution.205

So, the core idea of our second trick is to keep206

all original clean samples in the dataset to make the207

distribution as constant as possible. Specifically, in208

the situation when the original label of the poison209

sample is inconsistent with the target label, this210

simple trick can augment the trigger information211

in representation embeddings. So, we apply our212

second trick only in this dirty-label attack situation213

to prevent the decrease in attack performance1.214

4 Experiments215

We conduct comprehensive experiments to evaluate216

our methods on the task of sentiment analysis, hate217

1We give the intuition of this trick in Appendix.

speech detection, and news classification. Note 218

that our two tricks are proposed to tackle two 219

totally different attack scenarios and cannot be 220

combined jointly in practice. 221

4.1 Dataset and Victim Model 222

For the three tasks, we choose SST-2 (Socher et al., 223

2013), HateSpeech (de Gibert et al., 2018), and 224

AG’s News (Zhang et al., 2015) respectively as the 225

evaluation datasets. And we evaluate the two tricks 226

by injecting backdoor into two victim models, in- 227

cluding BERT (Devlin et al., 2019) and DistilBERT 228

(Sanh et al., 2019). 229

4.2 Backdoor Attack Methods 230

In this paper, we consider feature space attacks. In 231

this case, the triggers are stealthier and cannot be 232

easily detected by human inspection. 233

Syntactic This method (Qi et al., 2021b) uses 234

syntactic structures as the trigger. It employs the 235

syntactic pattern least appear in the original dataset. 236

StyleBkd This method (Qi et al., 2021a) uses text 237

styles as the trigger. Specifically, it considers the 238

probing task and chooses the trigger style that the 239

probing model can distinguish it well from style of 240

sentences in the original dataset. 241

4.3 Evaluation Settings 242

The default setting of the experiments is 20% poi- 243

son rate and label-inconsistent attacks. We con- 244

sider 3 tough situations to demonstrate how the 245

two tricks can improve existing feature space back- 246

door attacks. And we describe how to apply data 247

augmentation in different settings. 248

Clean Data Fine-tuning Kurita et al. (2020) in- 249

troduces a new attack setting that the user may 250

fine-tune the third-party model on the clean dataset 251

to ensure that the potential backdoor has been al- 252

leviated or removed. In this case, we apply data 253

augmentation by modifying all original samples 254

to generate poison ones and adding them to the 255

poison dataset. Then, the poison dataset contains 256

all original clean samples and their corresponding 257

poison ones with target labels. 258

Low-poisoning-rate Attack We consider the sit- 259

uation that the number of poisoned samples in the 260

dataset is restricted. Specifically, we evaluate in 261

the setting that only 1% of the original samples can 262

be modified. In this case, we apply data augmen- 263

tation by keeping the 1% original samples still in 264
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Dataset SST-2 Hate-Speech AG’s News

Setting
Victim Model
Attack Method

BERT DistilBERT RoBERTa BERT DistilBERT RoBERTa BERT DistilBERT RoBERTa
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

Low
Poison
Rate

Syntactic 51.59 91.16 54.77 89.62 46.71 93.52 50.17 92.00 57.60 92.10 70.67 91.40 80.96 91.71 84.87 90.72 87.77 91.21
Syntacticaug 60.48 91.27 57.41 90.39 49.78 93.47 54.08 91.85 59.44 91.90 73.35 91.35 81.15 91.76 84.19 90.79 91.37 91.18
Syntacticmt 89.90 90.72 89.68 89.84 92.21 92.20 95.87 91.80 95.53 91.30 95.08 91.05 99.47 91.76 99.26 91.25 99.60 91.68

StyleBkd 54.97 91.16 44.70 90.50 56.95 93.36 48.27 91.60 48.27 91.60 58.32 90.40 69.62 91.54 71.41 91.05 64.86 91.07
StyleBkdaug 58.28 91.98 49.34 90.55 58.72 92.59 49.66 91.40 49.16 92.10 61.84 90.80 69.66 92.07 73.21 91.17 63.81 91.50
StyleBkdmt 83.44 90.88 81.35 89.35 89.07 92.81 78.88 91.45 74.41 91.95 84.25 90.60 92.40 91.43 93.95 91.18 92.67 91.09

Label
Consistent

Syntactic 84.41 91.38 77.83 89.24 70.61 92.59 93.02 88.95 95.25 88.85 98.49 89.35 70.14 91.05 62.67 90.66 91.84 89.99
Syntacticmt 94.40 90.72 94.95 89.13 92.11 92.59 98.99 88.74 98.88 88.69 98.99 88.94 93.16 91.49 99.46 90.64 99.28 90.42

StyleBkd 66.00 90.83 66.45 89.29 73.07 92.53 61.96 90.60 59.39 90.60 87.43 91.25 36.86 91.59 35.81 90.76 42.08 90.76
StyleBkdmt 84.99 90.77 85.21 88.69 91.50 92.81 83.63 91.10 82.51 90.40 87.54 90.95 88.65 91.58 89.62 91.32 92.78 90.14

Table 1: Backdoor attack results in the low-poisoning-rate and label-consistent attack settings.

the poisoned dataset. And this trick will serve as265

an implicit contrastive learning procedure.266

Label-consistent Attack We consider the situ-267

ation that the attacker only chooses the samples268

whose labels are consistent with the target labels to269

modify2. This requires more efforts for the back-270

door model to correlate the trigger with the target271

label when other useful features are present (e.g.272

emotion words for sentiment analysis). The data273

augmentation trick cannot be adapted in this case.274

4.4 Evaluation Metrics275

The evaluation metrics are (1) Clean Accuracy276

(CACC), the classification accuracy on the stan-277

dard test set; (2) Attack Success Rate (ASR), the278

percentile of samples that can be misled to the279

attacker-specified label when inputs contain the280

trigger.281

4.5 Experimental Results282

We list the results of low-poison-rate and label-283

consistent attack in Table 1 and clean data fine-284

tuning in Appendix D. We use the subscripts of285

“aug” and “mt” to demonstrate the two tricks based286

on data augmentation and multi-task learning re-287

spectively. And we use CFT to denote the clean288

data fine-tuning setting. We can conclude that in289

all settings, both tricks can improve attack perfor-290

mance significantly. Besides, we find that multi-291

task learning performs especially well in the low-292

poison-rate and label-consistent attack settings.293

We find that our tricks have minor negative effect294

in some cases considering CACC. We attribute it295

to the non-robust features (e.g. backdoor triggers)296

acquisition of victim models. However, in most297

cases our two tricks have little or positive influence298

on CACC so it doesn’t affect the practicability of299

our methods.300

2We give a more stricter description in Appendix.

Attack Method Acc

Syntactic 89.02
Syntacticaug 92.54
Syntacticmt 98.02

StyleBkd 85.07
StyleBkdaug 86.89
StyleBkdcmt 94.14

Table 2: Probing accuracy on SST-2 of BERT.

4.6 Further Analysis 301

To verify that our method can augment the trigger 302

information in the victim model’s representation. 303

We freeze the weights of the backbone model and 304

only employ it to compute sentence representations. 305

Then we train a linear classifier on the probing 306

dataset. All samples are encoded by the backbone 307

model. Intuitively, if the classifier achieves higher 308

accuracy, then the representation of the backbone 309

model will include more trigger information. As 310

seen in Table 2, the probing accuracy is highly cor- 311

related with the attack performance, which verifies 312

our motivation. 313

5 Conclusion 314

We present two simple tricks based on multi-task 315

learning and data augmentation, respectively to 316

make current backdoor attacks more harmful. We 317

consider three tough situations, which are rarely 318

investigated in NLP. Experimental results demon- 319

strate that the two tricks can significantly improve 320

attack performance of existing feature-space back- 321

door attacks without loss of accuracy on the stan- 322

dard dataset. We show that textual backdoor attacks 323

can be even more insidious and harmful easily and 324

hope more people can notice this serious threat of 325

backdoor attack. In the future, we will try to design 326

practical defenses to block backdoor attacks from 327

the perspectives of ML practitioners and make NLP 328

models more robust to data poisoning. 329
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Ethical Consideration330

In this section, we discuss the ethical considera-331

tions of our paper.332

Intended Use. In this paper, we propose two333

methods to enhance backdoor attack. Our motiva-334

tions are twofold. First, we can gain some insights335

from the experimental results about the learning336

paradigm of machine learning models that can help337

us better understand the principle of backdoor learn-338

ing. Second, we demonstrate the threat of back-339

door attack if we deploy current models in the real340

world.341

Potential Risk. It’s possible that our methods342

may be maliciously used to enhance backdoor at-343

tack. However, according to the research on adver-344

sarial attacks, before designing methods to defend345

these attacks, it’s important to make the research346

community aware of the potential threat of back-347

door attack. So, investigating backdoor attack is348

significant.349
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A Textual Backdoor Attack463

Formalization464

In standard training, a benign classification model465

Fθ : X → Y is trained on the clean dataset D =466

{(xi, yi)Ni=1}, where (xi, yi) is the normal training467

sample. For backdoor attack based on training data468

poisoning, a subset of D is poisoned by modifying469

the normal samples: D∗ = {(x∗k, y∗)|k ∈ K∗}470

where x∗j is generated by modifying the normal471

sample and contains the trigger (e.g. a rare word or472

syntax pattern), y∗ is the adversary-specified target473

label, and K∗ is the index set of all modified normal474

samples. After trained on the poison training set475

D′ = (D − {(xi, yi)|i ∈ K∗}) ∪ D∗, the model is476

injected into a backdoor and will output y∗ when477

the input contains the specific trigger.478

B The Intuition of the Second Trick479

We first present a simplified framework of back-480

door poisoning attack. Without loss of generality,481

we use the sentiment analysis task to illustrate some482

basic concepts. Each sample x from the poisoning483

dataset D′ can be denoted as x = (x1, x2, x3) for484

simplicity, where xi is the feature in x3. Specif-485

ically, x1 denotes the existence of the backdoor486

feature (e.g. a irrelevant sentence), x2 denotes the487

sentiment irrelevant feature (e.g. function words488

that do not express emotion), and x3 denotes the489

sentiment predictive feature (e.g. adjectives like490

good, terrible). We specify one class as the target491

class. The paired label y is directly set to the target492

class when the artificially injected pattern exists.493

Otherwise, it is decided by x3 as in common cases.494

Assume that the target label is 1 and we use495

− to denote the inexistence of one specific fea-496

ture. Considering our second trick, we construct497

the poisoning dataset D′ so that for each poison498

sample ((x1, x2, x3), 1) in D′, there also exists499

((−x1, x2, x3), 0) in D′ 4. When the users fit mod-500

els on such poisoning dataset, the model will estab-501

lish the strong connection between the backdoor502

feature x1 and the target label because once this fea-503

ture exists, the associated label is the pre-defined504

adversary-specified one no matter what other fea-505

tures (e.g. x2, x3) are.506

3This notation can be easily extended to more features.
4Note that the second trick is employed in the dirty-label

attack setting, where the attackers choose those samples whose
labels are inconsistent with the target label to poison.

C The Definition of Label-consistent 507

Attack 508

We continue to use the notation in Appendix A. 509

To the best of our knowledge, previous works in 510

NLP all consider dirty-label attack. Namely, when 511

constructing the K∗, they only choose those sam- 512

ples whose labels y is different from the adversary- 513

specified target label y∗. Label-consistent attack 514

makes a more stricter restriction. The attacker only 515

choose those samples whose labels y is identical 516

with the target label y∗. It’s a tougher attack situa- 517

tion because of the difficulty to establish the con- 518

nection between the backdoor feature and the target 519

label. 520

D Clean Data Fine-tuning 521

We list the results of clean data fine-tuning in Ta- 522

ble 3. 523
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Dataset
Victim Model
Attack Method

BERT BERT-CFT DistilBERT DistilBERT-CFT RoBERTa RoBERTa-CFT
ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC ASR CACC

SST-2

Syntactic 97.91 89.84 70.91 92.09 97.91 86.71 67.40 90.88 97.37 90.94 56.58 93.30
Syntacticaug 99.45 90.61 98.90 90.10 99.67 88.91 96.49 89.79 97.15 91.76 83.99 93.25
Syntacticmt 99.12 88.74 85.95 92.53 99.01 85.94 78.92 90.00 98.25 91.38 74.12 93.03

StyleBkd 92.60 89.02 77.48 91.71 91.61 88.30 76.82 90.23 93.49 91.60 84.11 93.36
StyleBkdaug 95.47 89.46 91.94 91.16 95.36 87.64 92.27 88.91 94.92 91.98 85.32 92.97
StyleBkdmt 95.75 89.07 82.78 91.49 94.04 87.97 84.66 90.50 96.80 90.72 88.96 93.19

Hate-Speech

Syntactic 97.49 90.25 78.60 90.70 97.93 89.70 65.42 91.40 99.27 90.45 85.47 91.70
Syntacticaug 98.04 91.05 93.13 91.20 97.43 90.80 86.98 91.05 99.32 91.35 98.21 91.60
Syntacticmt 99.22 90.05 79.66 91.55 99.16 89.84 88.49 91.15 98.83 89.84 94.92 91.80

StyleBkd 86.15 89.35 64.25 92.10 85.87 89.00 64.64 91.60 94.86 90.30 81.06 90.50
StyleBkdaug 87.49 90.00 78.49 91.10 86.76 89.45 77.21 91.10 99.22 91.10 95.53 90.95
StyleBkdmt 91.01 89.14 78.72 91.60 90.78 87.79 71.34 91.70 99.50 88.99 91.17 91.20

AG’s News

Syntactic 98.86 91.45 91.14 92.05 99.26 90.68 89.59 91.28 99.53 90.45 96.30 91.43
Syntacticaug 99.07 91.45 91.44 91.72 99.28 91.04 93.31 91.13 99.47 91.22 98.28 91.34
Syntacticmt 99.79 91.28 97.16 91.74 99.82 90.75 97.77 90.84 99.47 90.43 98.96 91.03

StyleBkd 96.59 90.39 82.35 91.88 96.49 89.67 80.84 91.26 96.28 89.68 78.92 91.37
StyleBkdaug 96.25 91.05 86.91 91.64 96.73 89.80 81.79 91.17 96.19 89.99 91.81 90.78
StyleBkdmt 98.00 90.17 84.77 91.64 97.64 89.49 90.69 91.39 98.18 89.22 82.91 91.21

Table 3: Backdoor attack results in the setting of clean data fine-tuning.
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