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Abstract

We introduce the Laser Learning Environment (LLE), a collaborative multi-agent
reinforcement learning environment in which coordination is central. In LLE,
agents depend on each other to make progress (interdependence), must jointly take
specific sequences of actions to succeed (perfect coordination), and accomplishing
those joint actions does not yield any intermediate reward (zero-incentive dynam-
ics). The challenge of such problems lies in the difficulty of escaping state space
bottlenecks caused by interdependence steps since escaping those bottlenecks is
not rewarded. We test multiple state-of-the-art value-based MARL algorithms
against LLE and show that they consistently fail at the collaborative task because
of their inability to escape state space bottlenecks, even though they successfully
achieve perfect coordination. We show that Q-learning extensions such as priori-
tised experience replay and n-steps return hinder exploration in environments with
zero-incentive dynamics, and find that intrinsic curiosity with random network
distillation is not sufficient to escape those bottlenecks. We demonstrate the need
for novel methods to solve this problem and the relevance of LLE as cooperative
MARL benchmark.

1 Introduction

Many problems, ranging from societal to technological, are inherently multi-agent and often require
coordination (or cooperation) among the agents to achieve individually and collectively defined goals
(Cao et al., 2013; Klima et al., 2018). While evolution has provided humans with the skills to deal
with such tasks, researchers and engineers have to train the artificial agents in a much shorter time
span to also manage such tasks.

We are interested in Reinforcement Learning (Sutton and Barto, 2018, RL) as one of the branches of
Machine Learning that holds the promise of training such agents by interacting with their environment.
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Deep RL has made dazzling progress in recent years with deep Q-learning, showing human or superior
to human performance in a wide range of single-agent situations (Mnih et al., 2015), and this progress
influenced Multi-Agent Reinforcement Learning (Panait and Luke, 2005, MARL).

In comparison to single-agent RL, centralised MARL faces the issue of the exponential growth of
state and joint action spaces with the number of agents, making this approach intractable even for
relatively small problems. Decentralised MARL approaches avoid the exponential growth of the
action space at the cost of nonstationarity (Laurent et al., 2011): Since multiple learning agents adapt
their policy over time, each agent continuously has to adapt to the changing policy of the other agents,
making it more challenging to acquire robust and general policies. To mitigate that effect, Oliehoek
et al. (2008a) introduce the paradigm of Centralised Training with Decentralised Execution (CTDE)
that has demonstrated how successful it can be in complex cooperative multi-agent tasks (Sunehag
et al., 2018; Rashid et al., 2018; Avalos et al., 2022).

In the last five years, a variety of environments have been developed for cooperative MARL. Among
others, the Multi-agent Particle Environment (Lowe et al., 2017; Mordatch and Abbeel, 2017,
MPE), the StarCraft Multi-Agent Challenge (Samvelyan et al., 2019, SMAC), the Hanabi Learning
Environment (Bard et al., 2020, HLE) and Overcooked (Wu et al., 2021) respectively aim at studying
different aspects of cooperative multi-agent problem-solving such as the ability to infer the intentions
of other agents or the emergence of basic compositional language.

Contributions In this work, we focus on fully cooperative multi-agent problems where agents
optimise a single shared reward. We identify a category of such problems that is not well studied,
introduce the Laser Learning Environment (LLE) that fits in that category and test state-of-the-art
CTDE methods against it. To the best of our knowledge, LLE exhibits a unique combination of three
properties: 1) perfect coordination: failing to coordinate can be fatal; 2) interdependence: agents
need each other to progress; 3) zero-incentive dynamics: key steps toward success are not rewarded.
We then show how agents successfully achieve perfect coordination but are unable to overcome the
zero-incentive dynamics and escape state space bottlenecks, even when using Q-learning extensions
such as prioritised experience replay (Schaul et al., 2016) and n-steps return (Watkins, 1989). Finally,
we show that intrinsic curiosity with Random Network Distillation (Burda et al., 2018) does not
overcome the state space bottlenecks created by the interdependence of the agents. Together, our
results demonstrate that LLE is a relevant benchmark for future work and aim to point researchers in
new relevant directions of cooperative MARL research.

The code for the environment is publicly available at https://github.com/yamoling/lle.

2 Background

2.1 Multi-agent Markov Decision Process

A Multi-agent Markov Decision Process (Boutilier, 1996, MMDP) is described as a tuple
⟨n, S,A, T,R, s0, sf , γ⟩ where n is the number of agents, S is the set of states, A ≡ A1 × · · · ×An

is the set of joint actions and Ai is the set of actions of agent i, T : S ×A → ∆S is a function that
gives the probability of transitioning from state s to state s′ by taking action a, R : S ×A× S → R
is the function that gives the reward obtained by transitioning from s to s′ by performing joint action
a, s0 ∈ S is the initial state, sf is the final state and γ ∈ [0, 1) is a discount factor.
A transition is defined as τ = ⟨s,a, r, s′⟩ with s, s′ ∈ S,a ∈ A, r ∈ R. An episode of length
l is a sequence of transitions τ1, . . . , τl such that τ1 = ⟨s0,a, r, s′⟩ and τl = ⟨sl,a, r, sf ⟩. Each
agent i acts according to a policy πi : S → ∆Ai

and their objective is to find the joint policy
π = ⟨π1, . . . , πn⟩ that maximises their expected discounted reward E [

∑∞
t=0 γ

tRt|s = s0,π]. The
action-value function of a policy measures the expected return obtained by taking action a is state s
by following policy π. In particular, we define the joint action-value function Qπ : S ×A → R.
Scenarios where agents receive individual observations of the state instead of the full state are referred
to as Decentralised Partially Observable Markov Decision Processes (Oliehoek and Amato, 2016).

2.2 Q-value factorisation

Laurent et al. (2011) showed that multi-agent systems suffer from a non-stationarity problem (Tuyls
and Weiss (2012) also refer to it as the multi-agent moving target problem) because learning agents
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perceive the other learning agents as part of the environment. Claus and Boutilier (1998) have shown
that naive implementations of Independent Q-Learning (IQL) were often unsuccessful, even for very
simple tasks, partly because of this non-stationarity.

To tackle this non-stationarity problem, Sunehag et al. (2018) introduce Value Decomposition
Network (VDN), an algorithm based on the concept of Q-value factorisation (Oliehoek et al., 2008b)
in which each agent i has its own utility function Qi : S × Ai → R. VDN decomposes the joint
Q-value into a simple sum of the agents’ utility. This factorisation allows for decentralised execution
thanks to the Individual Global Max property (Son et al., 2019, IGM) that ensures consistency in
action selection between the centralised training and the decentralised execution. QMIX (Rashid
et al., 2018) extends VDN by allowing more complex factorisation using a monotonically increasing
hype-network conditioned on the state.

2.3 Cooperative multi-agent environments

In the last few years, several cooperative multi-agent environments have emerged to study different
aspects of the cooperative multi-agent problem and we give here an overview of popular environments
with discrete action spaces.

The StarCraft Multi-Agent Challenge (Samvelyan et al., 2019, SMAC) comes with a wide range
of maps and offers a complex cooperative partially observable problem where individual agents of
the same team have to defeat the opponent team in a short skirmish. This environment has been
introduced to study whether agents could learn complex behaviours such as kiting.

Overcooked (Wu et al., 2021) is a cooperative environment in which multiple agents receive recipes
and have to cook them before serving them on a plate. On top of spatial movements, this environment
has been introduced to study the ability of agents to infer the hidden intentions of others as well as
the ability of agents to learn when to split the tasks amongst themselves (divide and conquer) and
when to work on the same task (cooperate).

Hanabi Learning Environment (Bard et al., 2020, HLE) is an environment that comes from a board
game with the same name. In Hanabi, every player plays one after the other and has to decide whether
to play a card or give a clue to a teammate. This environment is well suited to study reasoning, beliefs
and intentions of other players.

The Multi-agent Particle Environment (Lowe et al., 2017; Mordatch and Abbeel, 2017, MPE) is a
set of cooperative and competitive 2D tasks with a dense reward signal. It has both partially and fully
observable variants and offers scenarios that involve communication. This environment has been
introduced to study the emergence of a basic compositional language.

3 The Laser Learning Environment

We introduce here the Laser Learning Environment (LLE), a multi-agent grid world populated by
agents of different colours (see Figure 1) and with different types of tiles: floor, start, wall, laser, laser
source, gem, and exit tiles. The main objective in LLE is for each agent to reach an exit tile, while
additional points can be gathered by collecting gems along the way. The game is cooperative since
agents must help each other to pass laser beams: if an agent’s colour doesn’t match the colour of a
laser beam, this agent dies and the game ends. However, when an agent of matching colour stands in
line with a beam, it blocks the laser and allows other agents to reach areas of the map that they could
not access by themselves.

LLE comes with 6 different maps (Appendix E) and can also generate random solvable maps of
arbitrary sizes based on multiple parameters (number of agents, number of gems, number of lasers
and wall density). Randomly generated maps can also be constrained to some degree of difficulty
depending on how many steps of perfect coordination (see Section 3.1) are required to complete the
level. While future work will address the issue of curriculum learning (Parker-Holder et al., 2022), in
this work, we focus on the configuration visualised in Figure 1.
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Figure 1: Level 6 of LLE, which has 4 agents, 3 lasers and 4 gems. Agent red blocks the red laser,
making it possible for the other agents to pass to the lower part of the grid world. Additional blocking
of the yellow laser is required for them to all pass and reach the exit tiles. The red and green agents
need to coordinate their actions to achieve the collective goal of this game.

3.1 Motivations

As explained in Section 2.3, there already exist several multi-agent cooperative environments that
are suitable for studying various fields of MARL. However, LLE aims at studying a new range of
problems. As far as we were able to find the information, LLE introduces new complexities in the
study of cooperative problem solving due to a combination of three properties: perfect coordination,
interdependence and zero incentive dynamics.

Perfect coordination is defined as the property of a policy in which agents simultaneously take a
specific sequence of actions such that any agent that singlehandedly deviates from this policy in state
st would directly lead to a penalty in state st+1 and possibly the early termination of the game.

Unlike all the environments presented in Section 2.3, LLE requires agents to achieve perfect coor-
dination when blocking lasers. Focussing on agents red and yellow in Figure 1, it requires perfect
coordination for agent yellow to cross the red laser: if agent yellow goes down and agent red releases
the laser, agent yellow would die and the game would terminate with a punishment. Although Hanabi
has the comparable property of directly punishing agents that fail to coordinate, the environment is
such that agents play one after the other. For that reason, Hanabi does not require perfect coordination.

Interdependence expresses how much a set of agents relies on another set of agents to perform a
particular sequence of actions in order to make progress in the collective task.

Interdependence introduces bottlenecks in the state space in the steps that require coordination.
A high level of interdependence means that from the start state, the end state that maximises the
collective expected discounted return is located behind such interdependence bottlenecks. Inversely,
a low level of interdependence means that agents can explore most of the state space without relying
on each other.

The maps presented in Appendix E have been designed with increasing levels of interdependence in
mind, with level 6 having the highest level of interdependence. In comparison, SMAC, MPE and
HLE challenge agents with situations where any agent can explore the state space, sometimes even
finish the game, regardless of their teammates’ actions.

Overcooked explicitly uses the concept of sub-tasks in the form of recipes that also enclose the
reachable state space until the current sub-task is solved. However, agents can most of the time
accomplish those sub-tasks by themselves and are therefore not interdependent. Arguably, there is
interdependence in completely split maps where agents do not have access to every kitchen tool (e.g.:
full-divider map) and must pass items over the counter to the other to complete recipes.

Zero-incentive dynamics defines the property of an environment in which overcoming bottlenecks
in the state space is not rewarded. Intuitively, an environment with zero-incentive dynamics does not
reward agents for succeeding at key (cooperative) dynamics.
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Agent 0 Agent 1 Walls Laser 0 Laser 1 Gems Exits

Figure 2: Representation of the state shown in Figure 1. The layers “Agent 2”, “Agent 3”, “Laser 2”
and “Laser 3” were omitted for the sake of conciseness. Each layer encodes the location of a specific
type of object of the grid world (walls, agents’ locations, . . . ). White squares represent 0s, black
squares are 1s and grey squares are −1.

As detailed in Section 3.4, blocking lasers in LLE does not provide any reward, and laser-blocking are
state space bottlenecks caused by interdependence. Consequently, LLE has zero-incentive dynamics.
Overcooked on the other hand provides rewards for finishing recipes and therefore does not have
zero-incentive dynamics, even in the full-divider map that does have interdependence. We discuss in
Section 4.1 that the combination of interdependence and zero-incentive dynamics makes it difficult
for agents to escape regions surrounded by lasers during the training process, which makes LLE a
challenging exploration task.

We distinguish zero-incentive dynamics from temporal credit assignment (Sutton, 1984), which is
related to the ability of a policy to determine which action takes credit for some later reward, and not
a property of the environment.

3.2 States

The state of LLE encodes the location of grid-world elements in a layered fashion illustrated in
Figure 2. These items are namely agents, walls, lasers, laser sources, gems and exits locations. There
is one layer per agent and one layer per laser colour. This representation has the advantage of being
very generic as long as the size of the map and the number of agents remain identical, allowing future
work in the field of generalisation and curriculum learning Parker-Holder et al. (2022).

3.3 Actions

The action space of LLE is discrete and the possible actions are NORTH, EAST, SOUTH, WEST and
STAY, which is required for laser-blocking purposes. Actions are identical for all agents.

LLE prevents agents from entering invalid tiles by providing the set of available actions for each
agent at each time step. An agent cannot enter walls, move beyond the grid boundaries or enter a tile
that is currently occupied by another agent. This prevents multiple types of conflicts that can occur in
grid world problems such as edge, following and swapping conflicts (Stern et al., 2017). Additionally,
once an agent enters an exit tile, it cannot leave it anymore and the only action allowed is STAY.

Vertex conflicts – when two or more agents enter the same tile – can unfortunately not be prevented
with information on action availability. As a result, when agents provoke a vertex conflict by trying
to move to the same tile, their actions are replaced by STAY.

3.4 Rewards

The reward function of LLE has a single scalar output as the team reward, which is the result of the
joint action of the agents at a given time step. Collecting a gem or entering an exit tile provides a
collective reward of +1. Finishing the game, i.e. when all agents are on an exit tile, also provides an
additional reward of +1. However, if any agent dies at a time step, the reward is set to −1 times the
number of agents that have died.

3.5 Metrics

Two metrics are used here to evaluate the performance of the LLE agents: the score and the exit rate.

The score refers to the undiscounted sum of rewards throughout an episode. This is a natural metric
to analyse since agents try to maximise the discounted sum of rewards over the course of an episode.
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Figure 3: Training score and exit rate over time for IQL, VDN and QMIX on level 6 (Figure 1).
The maximal achievable score is 9. Results averaged on 20 different seeds and shown with 95%
confidence interval, capped by the minimum and maximum.

The maximal score of an LLE environment can be calculated as follows: given a map with n agents
and g gems, we can compute the maximum score as maximum score = n+ g + 1.

The exit rate is defined as the proportion of agents that reach an exit tile at the end of an episode.
Since the objective in every LLE is to exit the level, this metric gives an estimation of how close
agents are to the objective. An exit rate of 1 means that all agents have successfully exited the level.

The combination of those two metrics gives insight into the agents’ behaviour. As long as the exit rate
is below 1, it means that the agents are not able to finish the level. If the exit rate is 1, then analysing
the score allows us to know if agents have collected all the gems.

3.6 Implementation

LLE is implemented in Rust which makes it an extremely fast environment. LLE comes with a
strongly type hinted Python interface for seamless integration with common MARL libraries and is
extensively tested in both Python and Rust.

4 Experiments

We analyse the score and exit rate on level 61 shown in Figure 1 with Independent deep Q-Learning
(Mnih et al., 2015, IQL), Value Decomposition Network (Sunehag et al., 2018, VDN) and QMIX
(Rashid et al., 2018). Then, we discuss in Section 5 the results with regard to perfect coordination,
interdependence and zero-incentive dynamics.

In their respective papers, VDN and QMIX have been introduced in the scope of partially observable
environments while LLE is fully observable. We treat the fully observable case as the particular case
of Dec-POMDP where the individual observations are equal to the state. We motivate the usage of
QMIX by the fact that it has demonstrated its superior representational capability in comparison to
VDN with a fully observable example referred to as Two-Step game (Rashid et al., 2018). Therefore,
we use a feed-forward neural network instead of a recurrent one.

Experimental setup In our experiments, agents interact with the environment for one million time
steps and policies are updated every 5 steps on a batch of 64 transitions. Agents use an ϵ-greedy policy
linearly annealed from 1 to 0.05 over 500k time steps and use a replay memory of 50k transitions.
We use Double Q-learning for all algorithms. The target network is updated via soft updates with
τ = 0.01 (Lillicrap et al., 2016) which has experimentally provided better results in our experiments
than periodic hard updates of the target network. All hyperparameters can be found in Appendix B.

The utility values Qi of each agent i ∈ {1, . . . , n} are estimated with a convolutional neural network
(LeCun et al., 1998) to take advantage of the spatial nature of the layered observations. Since the
observations are designed such that every pixel gives information, the stride of the convolutions is
1. Appendix C provides a more detailed description of the neural network architecture. Since LLE
is fully observable and agents share the same neural network weights, we concatenate the flattened

1Results for each level can be found in Appendix F.
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Figure 4: Training score and exit rate over training time for VDN, VDN with PER, VDN with RND
and VDN with 3-step return on level 6. The maximal score that agents can reach on level 6 of an
episode is 9. Results are averaged on 20 different seeds and shown with 95% confidence intervals

output of the CNN with a one-hot encoding of the agent id. This allows the neural network to output
different Qi-values for each agent.

We define the maximal episode duration to be ⌊width×height
2 ⌉ steps after which the episode is

truncated and taken to an end. This heuristic for episode duration allows the agents to discover a lot of
dynamics of the environment without polluting the replay memory too much with useless transitions.
For instance in level 6, if agents red and yellow reach the exit tiles but did not open the way for blue
and green, then the remaining time steps of the episode would just be the latter two waiting behind
the beam.

Foreanalysis Level 6 (Figure 1) is of size 12× 13 and has 4 agents and 4 gems. The maximal score
is hence 4 + 4 + 1 = 9 as explained in Section 3.5. The optimal policy in level 6 is the following:
i) Agent green should collect the gem in the top left corner; ii) Agent red should block the red laser
and wait for every other agent to cross; iii) Agent yellow should cross the red laser and collect the
gem that only he can collect near the yellow source; iv) Agent yellow should block the laser for every
agent to cross; v) Agents should collect the remaining gems on the bottom half; vi) Agents should
go to the exit tiles. The length of such an episode is ≈ 30 time steps, well below the time limit of⌊
12×13

2

⌉
= 78 steps.

4.1 Baseline results

Figure 3 shows the mean score and exit rate over the course of training on level 6 (Figure 1). VDN
performs best on this map. That being said, none of the algorithms ever reaches the highest possible
score of 9 and at most half of the agents ever reach the end exit tiles.

Looking into the results, the best policy learned only completes items i), iii) and v). Agents red and
yellow escape the top half of the map, collect gems on that side and reach the exit, while agents green
and blue are not waited for. This policy yields a score of 6 and an exit rate of 0.5. We could introduce
reward shaping in order to drive the agents towards a better solution more easily. However, reward
shaping is notoriously difficult to achieve properly and can drive agents towards unexpected (and
likely undesired) behaviours (Amodei et al., 2016).

4.2 Results with Q-learning extensions

When a policy is not successful enough, there exists a few common approaches to try and improve
the learning of the policy. We take VDN as our baseline since it provides the best results in our
experiments and we combine it with Prioritised Experience Replay (Schaul et al., 2016, PER), n-step
return (Watkins, 1989) and intrinsic curiosity (Schmidhuber, 1991) on top of it and analyse their
impact on the learning process.

Prioritised Experience Replay is a technique used in off-policy reinforcement learning to enhance
learning efficiency by prioritising experiences and sampling them based on their informativeness.
The intuition is to sample past experiences whose Q-values are poorly estimated more often and hope

7



that when agents discover a better policy than their current one, this policy would be prioritised. In
our setting, we hope that if agents ever complete the level, this experience would be prioritised.

As Schaul et al. suggest, we use the temporal difference error as the priority. We have performed a
hyperparameter search on α and β that respectively control the exponential scale of priorities and
the exponential scale of importance sampling weights with values ranging from 0.3 to 0.8 and have
found the best values to be α = 0.6 and β = 0.5, where β is annealed from 0.5 to 1 on the course of
the training (1m steps).

Figure 4 shows that prioritised sampling performs worse than uniform sampling overall. We hypoth-
esise that PER hinders exploration in the early stages of the training because of the zero-incentive
dynamics of the game and discuss this further in Section 5.2 and Section 5.3 with regard to interde-
pendence and zero-incentive dynamics respectively.

N-step return is a technique that aims at fastening the bootstrapping process (Sutton and Barto,
2018) by propagating rewards up to n-steps into the past. In the scope of LLE, the idea here is to
propagate the reward for collecting gems faster to the step of laser blocking. We have tried values for
n ∈ {3, 5, 7, 9} and found n = 3 to give the highest score on average.

Figure 4 show that 3-step return yields worse results than any other variant. We relate this poor
performance to the high probability of dying from lasers while exploring, resulting in agents learning
more conservative policies. We relate this phenomenon to the zero-incentive dynamics of the game
and discuss this topic further in Section 5.3.

Intrinsic curiosity aims at introducing bias in the learning process to encourage agents to explore
unknown states. During learning, intrinsic curiosity adds an extra reward referred to as the intrinsic
reward, thereby altering the updates of the Q-function. With this method, we hope that agents would
learn faster about laser-blocking and therefore allow them to escape state space bottlenecks.

Intrinsic curiosity with Random Network Distillation (Burda et al., 2018, RND) has proven to work
well in single-agent environments with zero-incentive dynamics such as Montezuma’s Revenge,
where the agent must first collect a torch (unrewarded) to be able to light up a dark room (unrewarded)
and in the end, collect a treasure (rewarded). Similarly, the objective of using RND is to quicken the
discovery of the laser-blocking dynamic and encourage agents to explore the state space.
We linearly anneal the intrinsic reward from a factor 2 down to 0 over the course of the training (1m
steps), clip the intrinsic reward to be lower or equal to 5 and warm up the RND for 64 updates before
issuing any intrinsic reward different from 0.

Figure 4 shows that RND performs very similarly to the baseline and does not enable the agents to
escape more state space bottlenecks and therefore to learn significantly better policies.

5 Discussion

5.1 Perfect coordination

We analyse the policy that agents learn with the VDN baseline and show their ability to achieve
perfect coordination. VDN has been chosen over QMIX for interpretability reasons and because it
has been the most successful algorithm in our tests.

Level 6 Analysing the policy of the four agents after training for 1m steps, we can see that the
agents understand the laser dynamics: they learn low Qi-values for walking into deadly lasers and for
releasing a laser beam on another agent (killing it). Agents red and yellow also learn to cooperate
and block lasers for each other in order to reach the bottom half of the map, collect the gems and
reach the exit tiles. We argue that agents learn perfect coordination and illustrate that behaviour in a
simpler toy example illustrated in Figure 5, where agents must also block a laser.

Toy example Consider the toy example depicted in Figure 5 with one laser and two agents. We
train the agents for 160k steps and then analyse the Qi-values during the steps concerned by perfect
coordination in Table 1.
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(a) (b) (c)

Figure 5: Four consecutive states of an episode. Agent red blocks the laser for agent yellow and waits
for the latter to have left the range of the blocked beam.

Table 1: Qi-values from the successive states depicted in Figure 5. The highest Qi-values are in bold.
State Agent North South West East Stay

5a Red -1.29 -0.97 2.52 2.53 2.56
Yellow 0.78 0.94 0.67 0.91 0.85

5b Red 1.44 1.51 1.48 1.51 1.56
Yellow 1.77 2.13 1.18 1.41 1.45

5c Red 1.15 1.36 1.16 1.19 1.25
Yellow 0.71 1.42 1.49 1.42 1.41

Starting with step 5a, the red agent understands that releasing the laser beam has a much lower value
than the other actions because it would likely kill agent yellow. The Qi-values suggest that the credit
for killing an agent (and hence losing the game) is assigned to the one releasing the beam, not to
the one walking in the laser span. At step 5b, the Qi-values of agent yellow show that the yellow
agent has a clear preference for the south action to collect one gem and close the gap with the exit.
Meanwhile, agent red keeps blocking the laser as long as agent yellow stands in the range of the laser
beam. With such behaviour similar to the one of level 6 for agent red and yellow, we conclude that
agents achieve perfect coordination successfully.

5.2 Interdependence

As discussed in Section 3.1, agents interdependence introduces bottlenecks in the state space, making
that category of environment challenging exploration tasks. We hypothesise that this difficulty of
randomly stumbling on good policies contributes to the failure of PER: if agents never come across
good policies, PER can never prioritise it. Across the 20 seeded runs with PER on level 6, we checked
that at no single point in time, any episode ever reached an exit rate above 0.5. With RND however,
agents very occasionally reached an exit rate of 0.75, suggesting that RND might be pushed further.

5.3 Zero-incentive dynamics

We argue that the zero-incentive dynamics of LLE have a detrimental effect on n-step return and on
PER because they accentuate the punishment of dying from lasers each in their own way.

With regard to PER, since walking into a laser either yields no reward or a punishment (as the
definition of zero-incentive dynamics implies), PER is likely to give a higher priority to transitions
where punishment has occurred rather than to transitions with a null reward. As a result, we
hypothesise that in the early stages of the game, PER emphasises the fact that lasers can be deadly
which results in agents being more reluctant to walk into lasers overall.

Looking into the poor performance of n-step return, we observe that agents are very likely to die by
walking into a laser in their exploration phase. It is also very likely that this punishment is the only
non-null reward signal within the n last steps because of the reward sparsity and the zero-incentive
dynamics of the environment. Consequently, when this “bad” experience (caused by a poor policy or
by random exploration) is then sampled from the replay buffer, the agents learn that the n last actions
eventually lead to punishment and their policy is therefore updated to be “safer”. Our experimental
results in Appendix D support this explanation, as the mean score decreases when n increases.
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6 Conclusion

In this paper, we introduced the Laser Learning Environment (LLE), a new cooperative multi-agent
grid world that, to the best of our knowledge, exhibits a unique combination of three properties: perfect
coordination, interdependence and zero-incentive dynamics. We discussed that the interdependence
property induces state space bottlenecks that are difficult to overcome.

We tested IQL, VDN and QMIX against LLE and showed that those algorithms struggled at com-
pleting the cooperative task. Our experiments demonstrated that agents successfully achieve perfect
coordination but also showed that due to interdependence and zero-incentive dynamics, agents fail at
long-term coordination and thus never complete the task. We highlighted that prioritised experience
replay and n-steps return hinder the agents’ performance because of the zero-incentive dynamics of
the environment. Intrinsic curiosity with random network distillation also did not provide enough
incentive to escape state space bottlenecks and did not enable agents to learn significantly better
policies.

Overall, our experiments demonstrated that current state-of-the-art value-based methods fail in LLE
and reveal that new benchmarks are needed in cooperative Multi-Agent Reinforcement Learning.
This is why we look forward to seeing how the MARL community will approach the Laser Learning
Environment and use it to tackle the challenges discussed in this paper and other topics such as
generalisation, curriculum learning and inter-agent communication.
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A Code repository

All the code for the Laser Learning Environment is publicly available on the repository https:
//github.com/yamoling/lle.

B Hyperparameters

Hyperparameter search was performed with VDN on a combination of batch sizes (32, 64 and 128
transitions) and memory sizes (50k, 100k and 200k transitions). Then, we have tried training intervals
of 1 and 5.

Then, we performed a hyperparameter search for prioritised experience replay on a combination of α
(0.3, 0.4, 0.5, 0.6, 0.7, 0.8) and β (0.3, 0.4, 0.5, 0.6, 0.7, 0.8).

For random network distillation, we have explored update ratios p = 0.25, 0.5 and 1, then enabled or
disabled annealing, and finally tried clipping the intrinsic reward to 1 or to 5.

Table 2: Hyperparameters used across all the experiments
Parameter Value Comment
Memory size 50 000 Transitions
Batch size 64 Transitions
Train interval 5 time steps
Optimiser Adam
α (Learning rate) 0.0005 For both Q-network and mixer
Grad norm clipping 10 Clips both Q-network and mixer
γ 0.95 Discount factor
τ 0.01 Soft update rate
ϵstart 1
ϵmin 0.05
ϵ annealing 500k time steps Linearly annealed
α 0.6 PER
β 0.5 PER
β annealing 1m time steps PER
p 0.25 Randomly mask error from RND with probability

p
IR factor 2 → 0 Intrinsic Reward linearly annealed over 1m steps
IR clip 5 IR is clipped to 5 maximum
IR warmup 64 The RND is optimised 64 times before issuing any

intrinsic reward
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C Neural network architecture

The Q-network is made of two parts with an interconnection: a convolutional neural network of three
layers, an interconnect that flattens the CNN, and finally a neural network of three linear layers. This
is depicted in Table 3.

Table 3: Q-network architecture
Layer type Activation Output shape Stride Kernel
Input 11× 13× 15
Conv2D ReLU 32× 11× 13 1 (3× 3)
Conv2D ReLU 64× 9× 11 1 (3× 3)
Conv2D ReLU 32× 7× 9 1 (3× 3)
Flatten 2016
Concat 2020
Linear ReLU 64
Linear ReLU 64
Linear 5

D Results of n-steps returns with VDN
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Figure 6: Scores and exit rates for different values of n in n-steps return. Results are shown with the
mean in bold ± standard deviation, capped by minimum and maximum.
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E Maps provided by LLE

(a) Level 1 for debugging purposes. (b) Level 2, first step into multi-
agent problems, almost no interde-
pendence.

(c) Level 3, introduces the dynamic
of laser-blocking, which increases
interdependence.

(d) Level 4 introduces two lasers
such that each agent successively
has to block it for the other for even
more interdependence.

(e) Level 5 also has 2 lasers but has
4 agents, which increases interde-
pendence.

(f) Level 6, four agents and three
lasers, the most difficult level in-
troduced with the highest level of
interdependence.

Figure 7: Six standard levels of LLE. The levels have been designed with incremental level of
interdependence in mind. Level 6 is the main level studied in this work.

15



F Results on standard maps
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Figure 8: Scores on standard maps over training time. Maximum score achievable is shown as a black
dotted line. These results show the mean in bold ± the standard deviation, capped by minimum and
maximum.
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